2023 2024 EduVark > Education Discussion > General Discussion


  #1  
July 5th, 2014, 01:13 PM
Super Moderator
 
Join Date: Mar 2012
Percentile at 45 score of GATE

Will you please tell me how can I calculate my Percentile at 45 score of GATE???

It’s very easy to calculate Percentile of GATE exam, here I am giving you general formula to calculate GATE percentile with the help of GATE Score

GATE percentile is calculated as follows:

P = ( (N- your rank)/ N) x 100

P - Percentile
N - Total number of candidates appeared for exam.
(N- Your rank) -- Number of candidates who have scored less marks than you.



ENGINEERING MATHEMATICS

Linear Algebra: Matrix algebra, systems of linear equations, eigen values and eigen vectors.

Calculus: Functions of single variable, limit, continuity and differentiability, mean value theorems, evaluation of definite and improper integrals, partial derivatives, total derivative, maxima and minima, gradient, divergence and curl, vector identities, directional derivatives, line, surface and volume integrals. Theorems of Stokes, Gauss and Green.

Differential Equations: First order linear and nonlinear equations, higher order linear ODEs with constant coefficients, Cauchy and Euler equations, initial and boundary value problems, Laplace transforms. Partial differential equations and separation of variables methods.

Numerical methods: Numerical solution of linear and nonlinear algebraic equations, integration by trapezoidal and Simpson rule, single and multi-step methods for differential equations.
FLIGHT MECHANICS

Atmosphere: Properties, standard atmosphere. Classification of aircraft. Airplane (fixed wing aircraft) configuration and various parts.

Airplane performance: Pressure altitude; equivalent, calibrated, indicated air speeds; Primary flight instruments: Altimeter, ASI, VSI, Turn-bank indicator. Drag polar; take off and landing; steady climb & descent,-absolute and service ceiling; cruise, cruise climb, endurance or loiter; load factor, turning flight, V-n diagram; Winds: head, tail & cross winds.

Static stability: Angle of attack, sideslip; roll, pitch & yaw controls; longitudinal stick fixed & free stability, horizontal tail position and size; directional stability, vertical tail position and size; dihedral stability. Wing dihedral, sweep & position; hinge moments, stick forces.

Dynamic stability: Euler angles; Equations of motion; aerodynamic forces and moments, stability & control derivatives; decoupling of longitudinal and lat-directional dynamics; longitudinal modes; lateral-directional modes.
SPACE DYNAMICS

Central force motion, determination of trajectory and orbital period in simple cases. Orbit transfer, in-plane and out-of-plane. Elements of rocket motor performance.
AERODYNAMICS

Basic Fluid Mechanics: Incompressible irrotational flow, Helmholtz and Kelvin theorem, singularities and superposition, viscous flows, boundary layer on a flat plate.

Airfoils and wings: Classification of airfoils, aerodynamic characteristics, high lift devices, Kutta Joukowski theorem; lift generation; thin airfoil theory; wing theory; induced drag; qualitative treatment of low aspect ratio wings.

Viscous Flows: Flow separation, introduction to turbulence, transition, structure of a turbulent boundary layer.

Compressible Flows: Dynamics and Thermodynamics of I-D flow, isentropic flow, normal shock, oblique shock, Prandtl-Meyer flow, flow in nozzles and diffusers, inviscid flow in a c-d nozzle, flow in diffusers. subsonic and supersonic airfoils, compressibility effects on lift and drag, critical and drag divergence Mach number, wave drag.

Wind Tunnel Testing: Measurement and visualisation techniques.
STRUCTURES

Stress and Strain: Equations of equilibrium, constitutive law, strain-displacement relationship, compatibility equations, plane stress and strain, Airy’s stress function.

Flight Vehicle Structures: Characteristics of aircraft structures and materials, torsion, bending and flexural shear. Flexural shear flow in thin-walled sections. Buckling. Failure theories. Loads on aircraft.

Structural Dynamics: Free and forced vibration of discrete systems. Damping and resonance. Dynamics of continuous systems.
PROPULSION

Thermodynamics of Aircraft Gas Turbine engines, thrust and thrust augmentation.

Turbomachinery: Axial compressors and turbines, centrifugal pumps and compressors.

Aerothermodynamics of non rotating propulsion components: Intakes, combustor and nozzle. Thermodynamics of ramjets and scramjets. Elements of rocket propulsion.



Syllabus for Geology and Geophysics (GG)

PART – A : COMMON TO GEOLOGY AND GEOPHYSICS

Earth and Planetary system, size, shape, internal structure and composition of the earth; atmosphere and greenhouse effect; isostasy; elements of seismology; physical properties of the interior of the earth; continents and continental processes; physical oceanography; geomagnetism and paleomagnetism, continental drift, plate tectonics.

Weathering; soil formation; action of river, wind, glacier and ocean; earthquakes, volcanism and orogeny. Basic structural geology, mineralogy and petrology. Geological time scale and geochronology; stratigraphic principles; major stratigraphic divisions of India. Engineering properties of rocks and soils. Ground water geology. Geological and geographical distribution of ore, coal and petroleum resources of India

Introduction to remote sensing. Physical basis and applications of gravity, magnetic, electrical, electromagnetic, seismic and radiometric prospecting for oil, mineral and ground water; introductory well logging.

PART B – SECTION 1: GEOLOGY

Crystalsymmetry, forms, twinning; crystal chemistry; optical mineralogy, classification of minerals, diagnostic physical and optical properties of rock forming minerals.

Igneous rocks – classification, forms and textures, magmatic differentiation; phase diagrams and trace elements as monitors of magma evolutionary processes; mantle melting models and derivation and primary magmas. Metamorphism; controlling factors, metamorphic facies, grade and basic types; metamorphism of pelitic, mafic and impure carbonate rocks; role of fluids in metamorphism; metamorphic P-T-t paths and their tectonic significance; Igneous and metamorphic provinces of India; structure and petrology of sedimentary rocks; sedimentary processes and environments, sedimentary facies, basin analysis; association of igneous, sedimentary and metamorphic rocks with tectonic setting.

Stress, strain and material response; brittle and ductile deformation; primary and secondary structures; geometry and genesis of folds, faults, joints, unconformities; cleavage, schistosity and lineation; methods of projection, tectonites and their significance; shear zone; superposed folding; basement cover relationship.

Morphology, classification and geological significance of important invertebrates, vertebrates, microfossils and palaeoflora; stratigraphic principles and Indian stratigraphy.

Geomorphic processes and agents; development and evolution of landforms; slope and drainage; processes on deep oceanic and near-shore regions; quantitative and applied geomorphology.

Oremineralogy and optical properties of ore minerals; ore forming processes vis-à-vis ore-rock association (magmatic, hydrothermal, sedimentary and metamorphogenic ores); ores and metamorphism; fluid inclusions as an ore genetic tool; prospecting and exploration of economic minerals; sampling, ore reserve estimation, geostatistics, mining methods. Coal and petroleum geology; origin and distribution of mineral and fuel deposits in India; marine geology and ocean resources; ore dressing and mineral economics.

Cosmic abundance; meteorites; geochemical evolution of the earth; geochemical cycles; distribution of major, minor and trace elements; elements of geochemical thermodynamics, isotope geochemistry; geochemistry of waters including solution equilibria and water rock interaction.

Engineering properties of rocks and soils; rocks as construction materials; role of geology in the construction of engineering structures including dams, tunnels and excavation sites; natural hazards. Ground water geology – exploration, well hydraulics and water quality. Basic principles of remote sensing – energy sources and radiation principles, atmospheric absorption, interaction of energy with earth’s surface, air-photo interpretation, multispectral remote sensing in visible, infrared, thermal IR and microwave regions, digital processing of satellite images. GIS – basic concepts, raster and vector mode operation.

PART B – SECTION 2: GEOPHYSICS

The earth as a planet; different motions of the earth; gravity field of the earth, Clairaut’s theorem, size and shape of earth; geochronology; seismology and interior of the earth; variation of density, velocity, pressure, temperature, electrical and magnetic properties of the earth; earthquakes-causes and measurements, magnitude and intensity, focal mechanisms, earthquake quantification, source characteristics, seismotectonics and seismic hazards; digital seismographs, geomagnetic field, paleomagnetism; oceanic and continental lithosphere; plate tectonics; heat flow; upper and lower atmospheric phenomena.

Scalar and vector potential fields; Laplace, Maxwell and Helmholtz equations for solution of different types of boundary value problems in Cartesian, cylindrical and spherical polar coordinates; Green’s theorem; Image theory; integral equations in potential theory; Eikonal equation and Ray theory. Basic concepts of forward and inverse problems of geophysics, Ill-posedness of inverse problems.

‘G’ and ‘g’ units of measurement, absolute and relative gravity measurements; Land, airborne, shipborne and bore-hole gravity surveys; various corrections in gravity data reduction – free air, Bouguer and isostatic anomalies; density estimates of rocks; regional and residual gravity separation; principle of equivalent stratum; upward and downward continuation; wavelength filtering; preparation and analysis of gravity maps; gravity anomalies and their interpretation – anomalies due to geometrical and irregular shaped bodies, depth rules, calculation of mass.

Earth’s magnetic field – elements, origin and units of measurement, magnetic susceptibility of rocks and measurements, magnetometers, Land, airborne and marine magnetic surveys, corrections, preparation of magnetic maps, upward and downward continuation, magnetic anomalies-geometrical shaped bodies, depth estimates, Image processing concepts in processing of magnetic anomaly maps; Interpretation of processed magnetic anomaly data.

Conduction of electricity through rocks, electrical conductivities of metals, non-metals, rock forming minerals and different rocks, concepts of D.C. resistivity measurement, various electrode configurations for resistivity sounding and profiling, application of filter theory, Type-curves over multi-layered structures, Dar-Zarrouck parameters, reduction of layers, coefficient of anisotropy, interpretation of resistivity field data, equivalence and suppression, self potential and its origin, field measurement, Induced polarization, time and frequency domain IP measurements; interpretation and applications of IP, ground-water exploration, environmental and engineering applications.

Basic concept of EM induction, Origin of electromagnetic field, elliptic polarization, methods of measurement for different source-receiver configuration, components in EM measurements. Skin-depth, interpretation and applications; earth’s natural electromagnetic field, tellurics, magneto-tellurics; geomagnetic depth sounding principles, electromagnetic profiling, methods of measurement, processing of data and interpretation. Geological applications including groundwater, mining and hydrocarbon exploration.

Seismic methods of prospecting; Elastic properties of earth materials; Reflection, refraction and CDP surveys; land and marine seismic sources, generation and propagation of elastic waves, velocity – depth models, geophones, hydrophones, recording instruments (DFS), digital formats, field layouts, seismic noises and noise profile analysis, optimum geophone grouping, noise cancellation by shot and geophone arrays, 2D and 3D seismic data acquisition, processing and interpretation; CDP stacking charts, binning, filtering, dip-moveout, static and dynamic corrections, Digital seismic data processing, seismic deconvolution and migration methods, attribute analysis, bright and dim spots, seismic stratigraphy, high resolution seismics, VSP, AVO. Reservoir geophysics.

Geophysical signal processing, sampling theorem, aliasing, Nyquist frequency, Fourier series, periodic waveform, Fourier and Hilbert transform, Z-transform and wavelet transform; power spectrum, delta function, auto correlation, cross correlation, convolution, deconvolution, principles of digital filters, windows, poles and zeros.

Principles and techniques of geophysical well-logging. SP, resistivity, induction, gamma ray, neutron, density, sonic, temperature, dip meter, caliper, nuclear magnetic, cement bond logging, micro-logs. Quantitative evaluation of formations from well logs; well hydraulics and application of geophysical methods for groundwater study; application of bore hole geophysics in ground water, mineral and oil exploration.

Radioactive methods of prospecting and assaying of minerals (radioactive and non radioactive) deposits, half-life, decay constant, radioactive equilibrium, G M counter, scintillation detector, semiconductor devices, application of radiometric for exploration and radioactive waste disposal.

Geophysical inverse problems; non-uniqueness and stability of solutions; quasi-linear and non-linear methods including Tikhonov’s regularization method, Backus-Gilbert method, simulated annealing, genetic algorithms and artificial neural network.

Last edited by Neelurk; May 29th, 2020 at 11:26 AM.
Similar Threads
Thread
DTU Gate Score Cut off
IBSAT Score/Percentile
Gate percentile for IISC
What is meant by percentile score in NEET Exam
List of colleges which are accepting the score of 85 percentile in CAT
Colleges to apply with a percentile score of 93 in XAT exam
GATE Low Percentile Accepting Colleges list
M.Tech Colleges after scoring GATE of 508 and 96 percentile
Colleges which are accepting the score of 91.70 percentile in MAT
Percentile which will be required in the exam of GATE to get into IIT Delhi
MBA Colleges on Basis of MAT Score 96 Percentile
Scope in PEC for M.Tech with GATE Percentile
Percentile with 45 score in GATE
Can I get into IIT or IISc after 99 percentile in GATE
GATE Score cut off for IIT



Quick Reply
Your Username: Click here to log in

Message:
Options



All times are GMT +5. The time now is 07:08 PM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2024, vBulletin Solutions Inc.
Content Relevant URLs by vBSEO 3.6.0

1 2 3 4 5 6 7 8