AMRITA VISHWA VIDYAPEETHAM

(University established u/s 3 of UGC Act 1956)

Amrita Entrance Examination – Engineering 2009

PHYSICS, CHEMISTRY & MATHEMATICS					
Question booklet version code	В	Question booklet no:	208209	Time	: 3 hrs
Number of pages	20	Number of questions	120	Max. Marks	: 360
Registration numbe	r				
Name					
Signature				· · · · ·	

INSTRUCTIONS TO THE CANDIDATES

GENERAL

- 1. Any malpractice or attempt to commit malpractice in the examination hall will lead to disqualification of the candidate.
- 2. Candidates are not allowed to carry any textual material, printed or written bits of paper, Mathematical and Physical Tables, electronic gadgets like calculator, cell phone etc. into the examination hall.
- 3. Candidates shall possess the University Hall Ticket which should be produced on demand.
- 4. Candidates shall occupy the respective seats bearing their registration numbers on time.
- 5. Candidates are not permitted to leave the hall before the end of the examination.
- 6. Candidates are required to handover the ANSWER SHEET and the QUESTION BOOKLET to the invigilator before leaving the hall.

 WWW.PreviousExampapers.com

QUESTION BOOKLET

- 7. DO NOT OPEN THE SEALED QUESTION BOOKLET UNTIL THE INVIGILATOR ANNOUNCES TO DO SO.
- 8. Before opening the Question Booklet, write the Registration Number, Name and Signature using ball pen in the space provided at the top of this page.
- 9. Immediately after opening the booklet, the candidate should examine whether it contains all the 120 questions in serial order and 20 pages as mentioned at the top of this page. In case of unprinted, torn or missing pages in the booklet, the matter should be reported to the invigilator immediately.
- 10. Rough work may be done on the space provided in this booklet.

(Continued on the last page of this question booklet)

Date According Character Books	ta: celeration due to graviarge of electron= 1.6 x ltzman constant, $k=1.3$	ty = 10 m/s ² , N 10^{-19} C, Velo 38×10^{-23} J K ⁻¹ =	Mass of elective of light 10 - 12 - 13 - 13 - 13 - 13 - 13 - 13 - 13	ectron = 0.5 ht in vacuu ⁵ eV K ⁻¹	511MeV/c^2 m, c= 3 x 1	10 ⁸ m/s	
1.	An electric dipole is placed in a non-uniforma) a force but no torque c) a force and a torque			orm electric field. It experiences b) no force, no torque d) no force but a torque			
2.	A battery of emf 10 $^{\circ}$ $^$		stance of the		S	ltage across t d) 4 Ω	:he
3.	Which unit is appropra a) N C ⁻¹	riate for specif b) N C ⁻¹ m ⁻¹	ying magr	netic induc c) J C ⁻¹ m ⁻¹	tion? s	d) A m ²	
4.	Four masses of 1 kg α symmetrically in xy p velocity $\alpha = 2 \text{ rad s}^{-1}$ is	lane. The squ	are is set i	n rotation	around z-ax	kis with angu	lar
	a) 32	b) 16		8 (2)		d) 64	
5.	At what distance from potential energy for a a) A/2		nic oscilla			ergy equals t d)A/(2√2)	the
6.	If the tension along a a) increase by a factor c) increase by a factor	r 2	1	o) increase	ed of sount by a facto unchanged	r 4	11
7.	The kinetic energy of order of a) 10eV	Man Paton Vin h b)10 ⁻³ eV		h <mark>eld at te</mark> r c)10 ⁻⁶ eV		200° C is of a	the
8.	The resistivity of coplong and having circu	lar cross secti	on area 0.	1 mm ²	sistance of		cm
	a) 50 KΩ	b) 5 K Ω		c) 10 K Ω		d) 15 K Ω	
9.	An alpha particle is a acquired is	ccelerated by	a potential	difference	of 4 volt.	The energy	
	a) 6.4 eV	b) 4 eV	(c) 8 eV		d) 3.2 eV	
Ro	ough work	· -			_		

10.	O. A straight infinitely long thin wire along the z axis carries current 2 A. At a point (3,4,5) the magnitude of magnetic field intensity(H) in SI units is						
	a) $\frac{1}{5\pi}$	b) $\frac{2}{50\pi}$		c) $\frac{1}{25\pi}$		d) $\frac{1}{\sqrt{50}\pi}$	
11.	Twenty seven m combined to form each individual dre	a big drop.	of equal The ratio of	radii and the capac	having equitance of the	ual charges e bigger drop	are to
	a) 9:1	b)1:9		c) 3:1		d) 1:3	
12.	In its ground state, a) 6 electrons in 1p c) 4 electrons in 3c	state	has		rons in 3p st ectron in 3s s		
13.	Positions of two n $\mathbf{r_2}$ = -7i- 4j .All nur a) 1						
14.	A mass m is under 40 ms ⁻¹ around the period?	e orig <mark>in</mark> . At t=	=0 its positio	n coordina	y plane with ate is (6,8).	What is the ti	æd me
	a) π s	b)2π s		c) $\pi/2$ s		d) 20π/7 s	
15.	At t=0, a projection angle 30° with the a) 8.66 ms ⁻¹	le of mass 1 horizontal, The book of the bold of the b	kg i <mark>s</mark> project he x-compor	ted with spent of its of the control of its of the control of the	velocity at t=	and making =1 s is d) 7.07 ms ⁻¹	an
	The sides and mass accuracy ± 1%. The the formula D=M/I	e accuracy of	f its density				
		v.Þ)±2%ı	•	ata%.	com	d) ± 4%	
	Assume the earth acceleration due to a) 10 ms ⁻²				enter of the		he
18.	A unit charge is pl the point (4,0) is a	aced at point	(0,3) in xy J	,		•	at
	a) unit vector ic) unit vector (4i-3)	i)/5		•	ctor(i - j)/√2 ctor (-4i +3		
	, ,			Í	`	•	
	A charge Q is set i $\mathbf{v} = 4 \mathbf{i} + \mathbf{k}$. Its traje			netic induc	tion B= B k	with a veloci	ity
	a) straight line	b) circle		c) ellipse		d) helix	
Ro	ugh work		_				

20.	A proton and an alpha accelerations will be i a) 1:2	n the ratio	ed by a constant electri c) 4:1	c field. Their d) 2:1
21.		ss m and momentum p t, c. Its total energy is b) p ² /2m	o is moving with a vel approximately c) p ² /m	ocity very close d) pc
22.	Neutrino is a a) chargeless, fermio b) chargeless, massle c) massless, chargele d) massless fermion	ess, spinless boson ess fermion of spin 3/2		
23.	-	reases, the impedance	b) increases d) first increases and	
24.			ratio 2:1 are connected and them has the ratio c) 2:1	_
25.	Which of the following a) insulator c) semiconductor	g exhibits perfect diar	nagnetism? b) conductor d) superconductor	
26.	The critical angle for the velocity of light in a) 3 x 10 ⁸ ms ⁻¹ c) 2 x 10 ⁸ ms ⁻¹		b) 1.5 x 10 ⁸ ms ⁻¹ d) 1.732 x 10 ⁸ ms ⁻¹	r is 30°. What is
27.	Two interfering wave to the minimum inten-		mPapers.com he ratio 5:1. The ratio of	of the maximum
	a) 25:1	b) 4:9	c) 6:4	d) 9:4
28.	1 1	. The thickness of the		
	a)14 cm	b) 10 cm	c) 7.14 cm	d) 19.6 cm
29.	(in radians) for a wave	elength of 600nm?	er 10cm. What is its an	gular resolution d) 7.32 x 10 ⁻⁷
30.	,	•	is -13.6 eV. What is	,
	state energy of He ⁺ io a) -13.6 eV		c) -27.2 eV	d) -19.2 eV
Ro	ough work			

5

CHEMISTRY

31.	The electronic configuration of the eleme following is the most suitable formula for i	nt X is [Ar]4s ² 3d ¹⁰ ts oxide?	Which one of the
	a) X ₂ O b) X ₂ O ₃	c) XO	d) X ₂ O ₅
32.	In which of the following pairs does nitrespectively?	rogen exhibit a vale	ency of +1 and -1
	a) Nitrous oxide and nitric oxidec) Hydroxylamine and hydrazine	b) Nitrous oxide ad) Nitric oxide an	and hydroxylamine ad hydroxylamine
33.	Acetylene is dissolved in acetone at increa	ased pressure and is	transported. This is
	based on a) Boyle's law c) Henry's law	b) Charles' law d) Dalton's law.	
34.	200 mL of 1.0 N, 400 mL of 0.5 N and 40	00 mL of 0.25 N of a	a solution are mixed
	together. The normality of the resultant so a) 0.5 b) 1.0	c) 0.1	d) 0.25
35.	The volume of one molal solution of pota its temperature is raised from 25 to 30°C. Ta) increase by 1.5% c) increase by 3.0%	ssium chloride incre The molality of the se b) remain the san d) decrease by 1	olution will ne
36.	The increase in bond strength when fluoring a) $p\pi - p\pi$ bonding c) $p\pi \rightarrow d\pi$ donation	he is bonded to arsen b) $d\pi - d\pi$ bondin d) $d\pi \rightarrow p\pi$ donati	g
37.	For a zero order reaction, the unit for the e a) s ⁻¹ c) no unit www.PreviousExam	b) (mol/I) -1 e-1	is I
38.	Lanthanides and Actinides exhibit a comm a) + 2 b) + 5	non oxidation state o $c - 4$	f d) + 3
39.	The catalyst used in an automobile ca monoxide to carbon dioxide is		to oxidize carbon
	a) homogeneous typec) heterogeneous type	b) mixed typed) enzyme type	
40	. The percentage of empty space in a face of a) 2.6 b) 26	entered cubic (FCC) c) 74	unit cell is d) 7.4
Ro	ough work		

6

41.	By passing certain quantity of electricity to of copper is deposited on the cathode. The through brine solution in a divided cell. formed in the cathode compartment? At 63.5 and 23 respectively. a) 63.0 b) 6.3	he same quantity of What is the amount	f electricity is passed to of caustic soda in g
42.	A hydrocarbon of molecular formula C which gave compounds B and C. B on regave a primary alcohol C ₃ H ₈ O. C o hydrochloric acid gave a hydrocarbon reagent. What can be A? a) 2-methyl pent-2-ene c) hexene-2	duction with lithiur reduction with	n aluminium hydride zinc amalgam and respond to Tollen's
43.	22.4 mL of hydrogen gas combines with		at NTP. What is the
	number of molecules of water vapour form a) 22.4 b) 6.023 x 10 ²³	ned? c) 6.023 x 10 ²⁰	d) 6.023 x 10 ¹⁷
44.	Chlorine dioxide is formed when a) Chlorate ion reacts with a reducing ag b) Chlorate ion reacts with an oxidizing a c) Chlorate ion reacts with hypochlorite id d) Chlorite ion reacts with chlorine	agent	
45.	The correct order of crystal field splitting a) $H_2O < C_2O_4^{2-} < NH_3 < CN$ b) $NH_3 < C_2O_4^{2-} < H_2O < CN$ c) $C_2O_4^{2-} < H_2O < NH_3 < CN$ d) $N^- < NH_3 < C_2O_4^{2-} < H_2O$	energy of the follow	ving lig ands is
46.	m- dinitrobenzene on treatment with amm		
	a) m-diaminobenzenec) m-amino nitrosobenzene	b) m-nitroanilined) benzene)
47.	Reaction of ethyl benzene with N-br produces a) 1-bromo-1-phenyl ethane c) p-bromo ethyl benzene	romosuccinimide a b) 1-bromo-2-ph d) o-bromo ethyl	enyl ethane
48.	What is the emf of the following cell at 25 Ni (s) Ni ⁺⁺ Ni ⁺⁺ Ni (s) 0.05M 1.6M a) 44.4 mV b) 444 mV	-	d) 0.0 V
Ro	ough work	· · · · · · · · · · · · · · · · · · ·	

7

49. 4.0 liters of 0.8M sulphuric acid is p gravity 1.84 by dilution with water. solution? Equivalent weight of sulphua) 10.37 b) 1.037	what is the specific aric acid is 49. c) 0.1037	d) 0.01037
50. 70g of ammonium chloride is mixed mixture is made up to one liter with hydroxide is 1.8 x 10 ⁻⁵ at 25°C. At and 35.5 respectively. Density of literature is 1x10 ⁻¹⁴ . What is the pH of the a) 1.056 b) 3.44	th water. Ionization comic weights of nitrog quid ammonia is 0.8g	en and chlorine are 14
 51. Polymer Dispersity Index of a polyma a) ratio between number average and b) ratio between weight average and c) ratio between number average m d) ratio between viscosity average solution. 	d viscosity average mole I number average mole	ain length
52. Antacid (gelusil) contains a) sodium hydroxide and aluminium b) calcium hydroxide and magnesiu c) aluminium hydroxide and magne d) aluminium hydroxide and calciu	esium hydroxide m hydroxide	
53. Which one of the following is the coa) Nucleophilic aromatic substitution	on occurs selectively a	at para position to nitro
group. b) Nucleophilic aromatic substitut	ion occurs selectively a	at ortho position to nitro
group. c) Nucleophilic aformatic substitut	ion occurs at ortho and	para positions to nitro
group. d) Nitro group is substituted by the	e incoming group.	
54. Ethyl fluoride is formed by heating type of reaction is calleda) Finkelstein reactionc) Swarts reaction		rafts fluorination
 55. In methyl cyanide C-H bond is lor a) sp hybridization leads to the for b) sp³ hybridization leads to the for c) sp² hybridization leads to the for d) dsp² hybridization leads to the for 	mation of shorter and s rmation of shorter and rmation of longer and s	stronger bond stronger bond
Rough work		•

56.	The order of reactive temperature is a) HBr > HI > HCl c) HI > HBr > HCl	ity of hydrogen hal	ides for cleavage of b) HI > HCl > HBr d) HCl > HBr > HI	
57.	The coordinate compo a) tetrahedral c) octahedral	ound iron carbonyl has	the following structure b) square planar d) trigonal bipyramida	
	What will be the energement of helium gas? More respectively. One mu a) 23.44	asses of deuterium and	l helium are 2.014 m _u	and $4.003 \ m_u$
59.	The activation energy A + F The activation energy	$3 \leftrightarrow C + D + 400 \text{ kJ}$	_	
	a) 250 kJ	b) 400 kJ	c) 150 kJ	d) 650 kJ
60.	Concentrated sulphuria) lead containers c) polypropylene containers		nsported in b) PVC tanks d) mild steel tanks	
Rou	gh work			

www.PreviousExamPapers.com

MATHEMATICS

- 61. If $z = (\lambda + 3) + i\sqrt{5 \lambda^2}$, then the locus of z is
 - (a) $x^2 + y^2 = 25$

(b) $x^2 + v^2 = 9$

(c) $x^2 + y^2 - 6x + 4 = 0$

- (d) $x^2 + y^2 6x + 25 = 0$
- 62. If $\cos \theta + i \sin \theta$ is a root of the equation $a_0 x^n + a_1 x^{n-1} + \dots + a_n = 0$, then the value of $a_0 + a_1 \cos \theta + a_2 \cos 2\theta + \dots + a_n \cos n\theta$ is
 - (a) 0
- (b) n
- $(c)\cos(n+1)\theta$
- (d) $\sin(n+1)\theta$
- 63. If $\cos A + \cos B + \cos C = 0 = \sin A + \sin B + \sin C$, then the value of cos(A-B)+cos(B-C)+cos(C-A) is
 - (a) 1/2
- (b) = 3
- (c) 3/2
- (d) 3/2
- 64. Given that $\sin A$, $\cos A$ and $\tan A$ are in G.P., the value of $\cot^6 A \cot^2 A$ is
 - (a) -1

- (d) 2
- 65. If $\sin^{-1}\left(\frac{2a}{1+a^2}\right) \cos^{-1}\left(\frac{1-b^2}{1+b^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$, then 'x' is
 - (a) $\frac{a+b}{1+ab}$ (b) $\frac{a-b}{1+ab}$ (c) $\frac{a-b}{1-ab}$
- $(d) \frac{a+b}{1-ab}$

(c) $(x+y+z)^3$

- $(d) x^2 y^2 z^2 (x+y+z)$
- 67. The positive solution of the equation $\begin{vmatrix} 3-x & -6 & 3 \\ -6 & 3-x & 3 \\ 3 & 3 & -6-x \end{vmatrix} = 0 \text{ is}$
 - (a) 3
- (b) 9

(c) 12

(d) 6

68. If
$$A^{-1} = \begin{pmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{pmatrix}$$
, then Adj(A) is

$$(a)\begin{pmatrix} -2 & 0 & -1 \\ 9 & -2 & 3 \\ 6 & -1 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} 2 & 0 & -1 \\ -9 & 2 & 3 \\ -6 & 1 & 2 \end{pmatrix}$$

$$(b) \begin{pmatrix} 2 & 0 & 1 \\ -9 & -2 & -3 \\ -6 & -1 & -2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2 \end{pmatrix}$$

69. The system of equations x+2y-z=2; 5y-5z=3; $2x-y+\lambda z=\mu$ has infinitely many solutions if the pair $\{\lambda, \mu\}$ is

(a) $\{3, 1\}$

 $(b)\{1, 3\}$

 $(c)\{-3, 1\}$

 $(d) \{-1, 3\}$

70. It is given that x, y, z not all zero satisfy the equations x = cy + bz, y = az + cxand z = bx + ay, then $a^2 + b^2 + c^2$ is

(a) abc

(b) abc-1

(c)1-2abc

(d) 1 + 2abc

71. In a plane, a set of 15 parallel lines intersect another set of 20 parallel lines to form parallelograms. The number of such parallelograms formed is

(a) 19850

(b) 19750

(c) 19000

(d) 19950

72. If $|\overline{a}| = 5$, $|\overline{b}| = 7$ and $|\overline{a} - \overline{b}| = 12$, then $|\overline{a} + \overline{b}|$ is equal to

(a) 2

(c)12

(d) $\sqrt{74}$

73. If \bar{a} and \bar{b} are non collinear vectors, then $\frac{a}{|\bar{b}|} + \frac{a}{|\bar{b}|}$ is

(a) a unit vector

(b) in the plane of \bar{a} and \bar{b}

(c) perpendicular to \bar{a} and \bar{b}

(d) parallel to \overline{a} and \overline{b}

- 74. Forces acting on a particle having magnitudes 3, 2, 1 units act in the directions of the vectors $2\hat{i} + 4\hat{j} + 4\hat{k}$, $4\hat{i} - 4\hat{j} + 2\hat{k}$ and $4\hat{i} - 4\hat{j} - 2\hat{k}$ respectively. The work done by the forces in displacing the particle from the point A(2, -1, 6) to the point B(5, -1, 3) is
 - (a) 2 units
- (b) 4 units
- (c) 6 units
- (d) 3 units

- 75. Lt $4^{n-1} \sin\left(\frac{a}{4^n}\right)$ is equal to
 - (a) a
- (b) a/2
- (c) a/4
- (d) a/4
- 76. If f(x) is a continuous function satisfying $f(x)f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right)$ and
 - f(1) > 0, then $\underset{x \to 1}{Lt} f(x)$ is equal to

(c) 3

(d) 3/2

- (a) 2 (b) 1

 77. If $y = \log \sqrt{e \log x}$, $\frac{dy}{dx}$ at x = e is

 - $(a) \frac{1}{\sqrt{e \log e}} \qquad \qquad (b) \frac{1}{2e \log e}$
- $(d)\sqrt{e\log e}$
- 78. The derivative of $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ with respect to $\tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right)$ is
 - (d) 2/3
- 79. If α , β are the roots of the equation $x^2 3x + 7 = 0$, then the equation whose
- (d) $v^2 v 43 = 0$
- 80. If one of the roots of $ax^2 + bx + c = 0$ is the 4th power of the other, then the value of $(ac^4)^{1/5} + (a^4c)^{1/5}$ is
 - (a) 0
- (b) 1

(c) -b

(d) b

- 81. If $\log 2$, $\log(2^x 1)$, $\log(2^x + 3)$ are in arithmetic progression, then the value of 'x' is
 - $(a) \log_5 2$
- (b) 2
- $(c)\log_e 2$
- $(d) \log_2 5$
- 82. If a, b, c are in harmonic progression and if, $x = \frac{c}{a+b}$, $y = \frac{b}{a+c}$, $z = \frac{a}{c+b}$

then $\frac{1}{x} + \frac{1}{z}$ is

- $(a)\frac{2}{y}$ $(b)\frac{1}{y}$

 $(c)\frac{3}{v}$

- $(d)-\frac{1}{v}$
- 83. If $\sum_{r=1}^{n} (3r+2)(r-5) = an^3 + bn^2 + cn$, then the values of a, b, c are
 - (a) 1, -5, -16 (b) -5, 1, -16 (c) -16, 1, 5 (d) -5, -16, 1

- 84. If $z = (\cos 2 + i \sin 2 + 1)^n$, then |z| is
 - (a) $2^n \cos 1$
- (b) $2^n \cos n$
- (d) $2^n \cos^n 1$
- 85. The number of times the digit '5' will be written when listing the numbers from 1 to 1000 (assuming that a single digit number is written as 00x and a double digit number as 0xy) is
 - (a) 109
- (b) 300
- (c) 271
- (d) 250
- 86. If $\int \frac{dx}{\sqrt{x(1-4x)}} = K \sin^{-1}(8x-1) + C$, then K is equal to
 - (a) $1/\sqrt{2}$
- $(b)-1/\sqrt{2}$
- (c)-1/2
- (d) 1/2
- 87. Let $\frac{d}{dx}F(x) = \frac{d}{x}F(x) = \frac{d}{$ set of values of k and l is respectively
 - $(a) \frac{b-a}{2}, \frac{b+a}{2} \qquad (b) \frac{b+a}{2}, \frac{b-a}{2}$
- $(c)b^2, a^2$
- (d) a^2, b^2

88. The solution of the differential equation
$$e^{\log \frac{dy}{dx}} = e^{2x} + y - 1$$
, $y(0) = 1$ is

(a)
$$y = e^{2x} + e^x + 1$$

$$(b) y = e^{2x} - e^x$$

(c)
$$y = e^{2x} - e^x + 1$$

$$(d) y = e^{2x} + e^{-2x} + 1$$

89. The arithmetic mean of n observations is 'm'. If two observations 0 and m are added, then the new mean is

(a) m

$$(b)\frac{n}{m+1}$$

 $(c)\frac{mn}{n+2}$

$$(d)\frac{m(n+1)}{n+2}$$

90. Two events A and B have probabilities 0.20 and 0.40 respectively. The probability that both A and B occur simultaneously is 0.15. Then the probability that neither A nor B occurs is

(a) 0.60

(b) 0.40

(c)0.45

(d) 0.55

91. The equations ax + by + c = 0 and dx + ey - f = 0 represent the same straight

line if and only if

$$(a) a = d, b = e$$

 $(b)\frac{a}{d} = -\frac{c}{f}$

$$(c)\frac{a}{d} = \frac{b}{e}$$

(d)
$$\frac{a}{d} = -\frac{c}{f} = \frac{b}{e}$$

92. The straight line y = mx + c cuts the circle $x^2 + y^2 = a^2$ in real points if

 $(a) \sqrt{a^2(1+m^2)} < c$

$$(b) \sqrt{a^2(1-m^2)} < c$$

$$(c) \sqrt{a^2(1+m^2)} \geq c$$

$$(d) \sqrt{a^2(1-m^2)} \geq c$$

93. The foci of the ellipse $\frac{x^2}{12}$ and the hyperbola $\frac{x^2}{124} - \frac{y^2}{81} = \frac{1}{25}$ coincide.

Then the value of b^2 is

(a)1

(b) 5

(c)9

(d)7

cube root of unity, then the 94. If ω is the of $(1-\omega)(1-\omega^2)+(2-\omega)(2-\omega^2)+\dots+(n-\omega)(n-\omega^2)$ is

 $(a) \frac{n}{3} (n^2 + 3n - 5)$

$$(b)\frac{n}{3}(n^2-3n+5)$$

 $\left(c\right)\frac{n}{2}\left(n^2+3n+5\right)$

 $\left(d\right)\frac{n}{3}\left(n^2-3n-5\right)$

95.		$(C, \tan(A/2), \tan(B/2)$ by 5 and 9 units, then	2), $tan(C/2)$ are in H.P. the side 'h' is	and the sides 'a'
	(a) 6	(b) 8	(c) 7	(d) 11
96.	is at 10m distan tower starts flyir	ce from each of the bang at a constant speed a	agle of 120° at a point on the lases. A bird sitting at the lalong a straight path inclination in 5 sec. The speed of the	top of the higher and at an angle of
	(a) $\sqrt{6}$	(b) $2\sqrt{6}$	(c) $3\sqrt{6}$	(d) $4\sqrt{6}$
97.	The area bounde square units)	d by the curve $y^2 = 4a$	x and the line $y = 2a$ and	the y-axis is (in
	$(a)\frac{1}{3}a^2$	$(b)\frac{2}{3}a^2$	$(c)\frac{4}{3}a^2$	$(d) \frac{3}{4}a^2$
98.	A solution of the	equation $y \frac{dx}{dv} = x(\log x)$	$x - \log y + 1$ is	
	(a) $y = xe^{cx}$	$(b) x^2 = cy \log y$	$(c) x = y e^{cy}$	$(d) \log x = cy$
99.	The solution of (a) sec $y = C -$	$\frac{dy}{dx}\tan y = \sin(x+y) + \sin(x+y) + \sin(x+y)$ $2\cos x$	$\sin(x-y)$ is $(b) y = C - 2\cos x$	
	(c) $\tan y = C - s$		$(d)\cos y = C + 2\cos x$	
100		g factor of the linear d	ifferential equation (sin ²)	$y + x \cot y \frac{dy}{dx} = 1$
	$(a) \csc y \stackrel{\text{is}}{=}$	vww.Previous (b)sin y	examPapers.com	$(d)\cos y$
101		f the first n natural nun	r	
	(a) $\frac{n(n+1)(2n+1)}{12}$	$(b)\frac{n^2-1}{12}$	$(c)\sqrt{\frac{n^2-1}{12}}$	$(d)\sqrt{\frac{n^2+1}{12}}$
Rot	ugh work			

102.	_	ge is 7.5. Then the valu	variation is 22.5% and ue of the standard deviation (c) 2.5	
	(a) 2	(0)1.00	(c) 2.3	(a) 1
103.	The mean of 10	numbers is 6 and thei	r standard deviation is	2. Then the sum of
	the squares of the		()100	(4) 400
	(a) 600	(b) 300	(c)100	(d) 400
104.		obability that first two	students are selected a are boys and the third	
	$(a)\frac{2}{45}$	$(b)\frac{5}{91}$	$(c)\frac{15}{91}$	(d) $\frac{21}{91}$
	45	91	91	91
105.		e head appearing on th		
	$(a)\frac{1}{2}$	$(b)\frac{1}{8}$	$(c)\frac{7}{2}$	(d) $\frac{1}{16}$
	2			16
106.	If $P(X \le 4) = 0$.8 and $P(X = 4) = 0.3$ (b) 0.4	2, then $P(X \ge 4)$ is	
	(a) 0.2	(b) 0.4	(c) 0.5	(d) 0.6
107.	If in a Binomia	al distribution $n=4$	$P(X=0)=\frac{81}{625}, t$	hen $P(X = 4)$ is
	$(a)\frac{3}{5}$	$(b)\frac{2}{5}$	$(c)^{\frac{32}{2}}$	$(d) \frac{16}{625}$
	5	5.	625	625
108	The points (3, 3)	(-h, 0), (0, k) are c	ollinear if	
100.	, ,	• • • • • •		(n, 1, 1, -1)
	$(a) \frac{1}{h} + \frac{1}{k} = \frac{1}{2}$ ${}$	(b) - + - = -3 V.Previous Exar	$(c)\frac{1}{h} - \frac{1}{k} = \frac{1}{3}$ mPapers.com	$(d) \frac{1}{h} + \frac{1}{k} = \frac{-1}{3}$
109.	The foot of the p	erpendicular from the	point $(1, 2)$ upon $x + 1$	y = 1 is
	(a)(0,1/2)	(b)(0,1)	(c)(1,0)	(d) (1/2, 1/2)
110.	If a, b, c are in H	I.P., then the line $\frac{x}{a}$ +	$\frac{y}{b} - \frac{1}{c} = 0 \text{ always passe}$ $(c)(1, -2)$	es through the point
	(a)(-1,-2)	(b)(-1,2)	(c)(1,-2)	(d) (1,-1)
			<u></u> .	
KOUG	rh work			

111.		•	given by $x^2 - 2kxy + 9y$	$r^2 = 0$ is 6 times
	their product, then (a) 2	k has the value $(b)-2$	(c)-3	(d)3
112.	The equation of the	e circle, if its cent	re is (4, 5) and the circu	ımference passes

through the centre of the circle $x^2 + y^2 + 4x - 6y = 12$ is

$$(a) x^{2} + y^{2} - 8x - 10y + 1 = 0$$

$$(b) x^{2} + y^{2} + 8x - 10y + 1 = 0$$

$$(c) x^{2} + y^{2} - 8x + 10y + 1 = 0$$

$$(d) x^{2} + y^{2} - 8x - 10y - 1 = 0$$

- 113. The extremities of the diameter of a circle have coordinates (-4, 3) and (6, -2). Then the length of the intercept which the circle makes on the y-axis is (a) $\sqrt{124}$ (c)11 $(d)\sqrt{136}$
- 114. The eccentricity of the hyperbola $\frac{x^2}{5} \frac{y^2}{5} = \frac{1}{\sqrt{1999}}$ is (a)2 $(d) 2\sqrt{2}$
- 115. Let $\overline{a} = 2\hat{i} + \hat{k}$, $\overline{b} = \hat{i} + \hat{j} + \hat{k}$ and $\overline{c} = 4\hat{i} 2\hat{j} + 7\hat{k}$, then the vector \overline{r} such that $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a} = 0$ is (a) $\hat{i} + 7\hat{i} + 2\hat{k}$ (c) $7\hat{i} + \hat{j} + 2\hat{k}$
- 116. If $f(x) = |\cos x|$, then fis equal to $(a) - 1/\sqrt{2}$ $(b)1/\sqrt{2}$ (c)1(d) -1

Rough work

www.PreviousExamPapers.com

17

- 117. Let $f(x) = \sin^4 x + \cos^4 x$, $0 < x < \frac{\pi}{2}$. Then the minimum value of f(x) is
- (b)-1/2
- (c)1/4
- (d) does not exist

- 118. $\int \sqrt{x} \left(\sqrt[4]{1+x^{3/2}} \right) dx$ equals
 - (a) $\frac{4}{15}(1+x^{3/2})^{5/4}+C$

 $(b) \frac{8}{15} (1+x^{3/2})^{5/4} + C$

(c) $\frac{8}{15}(1+x^{3/2})^{5/2}+C$

- $(d) \frac{15}{4} (1+x^{3/2})^{5/4} + C$
- 119. $\int e^{\tan^{-1}x} \left(1 + \frac{x}{1+x^2}\right) dx$ is equal to
- (a) $xe^{\tan^{-1}x} + C$ (b) $\frac{x}{2}e^{\tan^{-1}x} + C$ (c) $\frac{1}{2}e^{\tan^{-1}x} + C$ (d) $e^{\tan^{-1}x} + C$

- 120. The value of $\int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$ is
- $(c)\pi/4$
- (d) 2π

Rough work

www.PreviousExamPapers.com

(Continued from the first page)

OMR ANSWER SHEET

- 11. Use the OMR answer sheet carefully; no spare sheet will be issued under any circumstance.
- 12. Do not fold or make any stray mark on the OMR sheet.
- 13. Use HB Pencil for shading the bubbles and black ball pen for writing.
- 14. In the OMR answer sheet, make the following entries
 - a. Write the Registration number, Question Booklet Number and Question Booklet Version code.
 - b. Fill the ovals corresponding to the Registration Number, Question Booklet Number and Question Booklet Version Code.
 - c. Write your Name and Sign in the column provided.
- 15. Rough work should not be done on the answer sheet.

ANSWERING AND EVALUATION

- 16. For each question, four answers are suggested of which only one is correct / most appropriate. Mark the correct / most appropriate answer by darkening the corresponding bubble using HB pencil.
- 17. In case the candidate wishes to change the choice already shaded, he/she may erase the marking completely and thereafter shade the alternative bubble.
- 18. If more than one bubble is darkened against a question, it will be treated as an incorrect answer.
- 19. For each correct answer, three marks will be awarded.
- 20. For each incorrect answer, one mark will be deducted from the total score.
- 21. If any smudge is left on the OMR sheet, evaluation will become imperfect.

www.PreviousExamPapers.com