BLUE PRINT FOR MODEL QUESTION PAPER - 2
 SUBJECT : PHYSICS (33)
 CLASS : II PUC

曷		TOPICS (CHAPTERS)				$\begin{aligned} & \text { n } \\ & \text { N } \\ & \text { H゙ } \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { N } \\ & \text { Hun } \\ & \text { M } \end{aligned}$		
I	1	Electric Charges And Fields	9	8	\checkmark	\checkmark		\checkmark	
II	2	Electrostatic Potential And Capacitance	9	8			\checkmark		\checkmark
III	3	Current Electricity	15	13	$\sqrt{ }$	$\sqrt{ }$		$\sqrt{ }$	\checkmark
IV	4	Moving Charges And Magnetism	10	9	\checkmark		\checkmark	\checkmark	
V	5	Magnetism And Matter	8	6	\checkmark	\checkmark	\checkmark		
	6	Electromagnetic Induction	7	6	\checkmark	\checkmark	\checkmark		
VI	7	Alternating Current	8	8			\checkmark		\checkmark
	8	Electromagnetic Waves	2	2		\checkmark			
VII	9	Ray Optics and Optical instruments	9	8	\checkmark	\downarrow			\checkmark
VIII	10	Wave Optics	9	8			\checkmark	$\sqrt{ }$	
IX	11	Dual Nature Of Radiation And Matter	6	6	$\sqrt{ }$			V	
	12	Atoms	5	4	\checkmark		\checkmark		
X	13	Nuclei	7	6	\checkmark				\checkmark
	14	Semiconductor Electronics	12	10		\checkmark	\sqrt{V}	\checkmark	
	15	Communication System	4	3	\checkmark	\checkmark			
		Total Number of Questions	--	--	10	8	8	6	5
		TOTAL MARKS	120	105	20	16	24	30	25

MODEL QUESTION PAPER-2
 II P.U.C. PHYSICS (33)

Time: 3 hours 15 min .
Max. Marks: 70

General instructions:

a) All parts are compulsory.
b) Answers without relevant diagram/ figure/circuit wherever necessary will not carry any marks.
c) Direct answers to the Numerical problems without detailed solutions will not carry any marks.

PART - A

I. Answer ALL the following questions: $10 \times 1=10$

1. Two point charges are separated by some distance, repel each other with a force F. What will be the force if distance between them is halved?
2. In a Wheat stone's network four resistors with resistances P, Q, R and S are connected in a cyclic order. Write the balancing condition of the network.
3. A current flows in a conductor from west to east. What is the direction of the magnetic field at a point below the conductor?
4. State Gauss law in magnetism.
5. Name the phenomenon in which an emf is induced in a coil due to the change of current in the same coil.
6. What do you mean by dispersion of light?
7. How does the de-Broglie wavelength of a charged particle changes when accelerating potential increases?
8. What is the significance of the negative total energy of an electron orbiting round the nucleus?
9. A radioactive element ${ }_{92} \mathrm{X}^{238}$ emits one α-particle and one β^{+}particle in succession.

What is the mass number of new element formed?
10. What is sky wave propagation?

PART - B

II. Answer any FIVE of the following questions. $5 \times 2=10$
11. Write any two properties of electric field lines.
12. What are the limitations of ohm's law?
13. Mention the expression for time period of oscillation of small compass needle in a uniform magnetic field. Explain the terms.
14. Give two applications of eddy currents.
15. What is displacement current? Mention its need.
16. Write the two conditions for total internal reflection.
17. Give the circuit symbol and truth table for OR gate.
18. Draw the block diagram of $A M$ receiver.

III. Answer any FIVE of the following questions.

19. Obtain an expression for electric potential energy of a system of two point charges in the absence of external electric field.
20. Derive the expression for the magnetic force experienced by a current carrying conductor.
21. Write three properties of paramagnetic substances.
22. Obtain the expression for the magnetic energy stored in a coil (solenoid).
23. What is resonance in series LCR circuit? Derive the expression for resonant angular frequency.
24. Derive the expression for resultant displacement and amplitude when two waves having same amplitude and a phase difference ϕ superpose.
25. Give the de-Broglie's explanation of Bohr's second postulate.
26. Distinguish between extrinsic and intrinsic semiconductors.

PART - D

IV. Answer any TWO of the following questions. $2 \times 5=10$
27. Obtain the expression for the electric field at any point on the equatorial plane of an electric dipole.
28. Assuming the expression for drift velocity, derive the expression for conductivity of a material $\sigma=n \mathrm{n}^{2} \tau / \mathrm{m}$.
29. Using Biot Savart's law, derive the expression for magnetic field at a point on the axis of a circular current loop.
V. Answer any TWO of the following questions.
$2 \times 5=10$
30. Using Huygen's wave theory of light, derive Snell's law of refraction.
31. Write the five experimental observations of photoelectric effect.
32. Explain the working of semiconductor diode when it is forward biased.

Draw the I-V characteristics for both forward bias and reverse bias of semiconductor diode.
VI. Answer any THREE of the following questions. $3 \times 5=15$
33. A 600 pF capacitor is charged by a 200 V supply. Calculate the electrostatic energy stored in it. It is then disconnected from the supply and is connected in parallel to another uncharged 600 pF capacitor. What is the energy stored in the combination?
34. Two cells of emf 3 V and 2 V and internal resistances 1.5Ω and 1Ω respectively are connected in parallel across 3Ω resistor such that they tend to send current through resistor in the same direction. Calculate potential difference across 3Ω resistor.
35. A $60 \mathrm{~V}, 10 \mathrm{~W}$ lamp is to be run on $100 \mathrm{~V}, 60 \mathrm{~Hz}$ ac mains. Calculate the inductance of a choke coil required to be connected in series with it to work the bulb.
36. A convex lens of focal length 0.24 m and of refractive index 1.5 is completely immersed in water of refractive index 1.33 . Find the change in the focal length of the lens.
37. A given coin has a mass 3.0 gram, Calculate the nuclear energy that would be required to separate all the neutrons and protons from each other. Assume that the coin is entirely made of ${ }_{29} \mathrm{Cu}^{63}$ atoms of mass $=62.92960 \mathrm{u}$. Given Avogadro number $=6.023 \times 10^{23}$ mass of proton $m_{p}=1.00727 u$ and mass of neutron $m_{n}=1.00866 u$.

Work done in bringing charge q_{2} from infinity to the point \vec{r}_{2} is q_{2} times the potential at r_{2} due to q_{1} i.e., $\quad W=q_{2} V_{1}=q_{2}\left(\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{1}}{r_{12}}\right)$, Where r_{12} is the distance between q_{1} and q_{2}.

This work gets stored in the form of potential energy of the system.
Thus, the potential energy of a system of two charges q_{1} and q_{2} is $U=\frac{1}{4 \pi \varepsilon_{\mathrm{o}}}\left(\frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}_{12}}\right)$
20. Consider a rod of uniform cross-sectional area A and length l.

Let the number density of mobile charge carriers (of each charge q) in it be n.
Then the total number of mobile charge carriers in it is $n A l$.
For a steady current I in this conducting rod, each mobile carrier has an average drift velocity $\overrightarrow{v_{d}}$
In the presence of an external magnetic field \vec{B}, the force on these carriers is $\quad \vec{F}=(n A l) q\left[\overrightarrow{v_{d}} \times \vec{B}\right]$
But $n q \overrightarrow{v_{d}}=\vec{j}$, is the current density and $\left|\left(n q \overrightarrow{v_{d}}\right)\right| A=I$ is the current.
Thus, force on the conductor $\overrightarrow{\mathrm{F}}=\left[\left(\mathrm{nq} \overrightarrow{\mathrm{v}_{\mathrm{d}}}\right) \mathrm{A} l\right] \times \overrightarrow{\mathrm{B}}=[\overrightarrow{\mathrm{j}} \mathrm{A} l] \times \overrightarrow{\mathrm{B}}=\mathrm{I}(\vec{l} \times \overrightarrow{\mathrm{B}})$
Where \vec{l} is a vector of magnitude l, the length of the rod, and with a direction identical to the current I .
21. i) When placed in a non-uniform magnetic field, a piece of paramagnetic substance will tend to move from weak field to strong field. i.e., they get weakly attracted to a magnet.
ii) They get weakly magnetised when placed in an external magnetic field.
iii) The individual atoms (or ions or molecules) of a paramagnetic material possess a permanent magnetic dipole moment of their own.
iv) Paramagnetic substances do not possess net magnetisation.
v) The magnetisation of a paramagnetic material is inversely proportional to the absolute temperature T .
vi) χ is small and positive for paramagnetic materials.
(any three, one mark each)
22. When a current is established in a solenoid (coil), work has to be done against the back emf.

This work done is stored in the form of magnetic energy in the coil.
For a current I in the coil, the rate of work done (power) is: $\mathrm{P}=\frac{\mathrm{dW}}{\mathrm{dt}}=|\varepsilon| \mathrm{I} \quad$ (since power $\mathrm{P}=\mathrm{V}$ I)
But we know that, $\varepsilon=\mathrm{L} \frac{\mathrm{dI}}{\mathrm{dt}}$
Therefore, $\frac{\mathrm{dW}}{\mathrm{dt}}=\mathrm{LI} \frac{\mathrm{dI}}{\mathrm{dt}} \Rightarrow \mathrm{dW}=\mathrm{L} \mathrm{I} \mathrm{dI}$
Therefore, the total work done in establishing a current I is given by $\mathrm{W}=\int \mathrm{dW}=\int_{0}^{1} \mathrm{LIdI}=1 / 2 \mathrm{LI}^{2}$
This work is stored in the coil in the form of magnetic potential energy, $\mathrm{U}=\frac{1}{2} \mathrm{LI}^{2}$
23. In a series LCR circuit for a particular frequency of the applied ac the current in the circuit becomes maximum. This is known as electrical resonance.
At resonance, inductive reactance $\left(X_{L}\right)=$ capacitive reactance $\left(X_{C}\right)$

$$
\Rightarrow \quad \omega_{\mathrm{o}} \mathrm{~L}=\frac{1}{\omega_{\mathrm{o}} \mathrm{C}}
$$

Thus, resonant angular frequency $\omega_{0}=\frac{1}{\sqrt{\mathrm{LC}}}$
24. Let the displacement produced by source S_{1} is given by $y_{1}=a \cos (\omega t)$ that by S_{2} be $y_{2}=a \cos (\omega t+\phi)$ where ϕ is the phase difference between the waves.
The resultant displacement: $y=y_{1}+y_{2}=[a \cos (\omega t)+a \cos (\omega t+\phi)]=a[\cos (\omega t+\phi)+\cos (\omega t)]$

$$
\begin{aligned}
& =2 \mathrm{a} \cos \left(\frac{2 \omega \mathrm{t}+\phi}{2}\right) \cos \left(\frac{\phi}{2}\right) \quad\left[\mathrm{U} \operatorname{sing} \cos \mathrm{C}+\cos \mathrm{D}=2 \cos \left(\frac{\mathrm{C}+\mathrm{D}}{2}\right) \cos \left(\frac{\mathrm{C}-\mathrm{D}}{2}\right)\right] \\
& =2 \mathrm{a} \cos \left(\frac{\phi}{2}\right) \cos \left(\omega \mathrm{t}+\frac{\phi}{2}\right)
\end{aligned}
$$

The amplitude of the resultant displacement is $=2 \mathrm{a} \cos \left(\frac{\phi}{2}\right)$
25. For an electron moving in $\mathrm{n}^{\text {th }}$ circular orbit of radius r_{n}, the total distance is $=2 \pi r_{n}$

Circumference of a stationary Bohr orbit of radius r_{n} is equal to integral multiple of wavelength of matter waves $2 \pi r_{n}=n \lambda$
The de Broglie wavelength of the electron moving in the $\mathrm{n}^{\text {th }}$ orbit: $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$
1
1
From equn(1) and (2), $2 \pi r_{n}=\frac{n h}{m v} \quad$ i.e., $m v r_{n}=\frac{n h}{2 \pi}$
But, angular momentum of the electron is $L=m v r_{n}$. Hence $L=\frac{n h}{2 \pi}$
26.

INTRINSIC SEMICONDUCTOR	EXTRINSIC SEMICONDUCTOR	
Semiconductor without doping (pure form)	Semiconductor doped with impurity atoms (impure form)	1
Number of free electrons $\left(n_{e}\right)$ is equal to the number of holes $\left(n_{h}\right)$	Number of free electrons $\left(n_{e}\right)$ and number of holes $\left(n_{h}\right)$ are unequal.	1
Conductivity is low	Conductivity is high	1
Conductivity is due to both electrons and holes	Conductivity is mainly due to majority charge carriers	
Conductivity depends only on temperature.	Conductivity depends on both temperature and impurity added (doping).	

PART - D

LABELLED DIAGRAM

Let a point P be at a distance r from the centre of the dipole (O). Dipole length $\mathrm{AB}=2 \mathrm{a}$,
Using Pythagoras theorem, the distance of the point P from the charges is, $A P=B P=d=\sqrt{r^{2}+a^{2}}$
Using, the expression for electric field due to a charge q at a distance d from it, $\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{d}^{2}}$,
The magnitude of the electric field at P due to the charge $+q$ is $\mathrm{E}_{+\mathrm{q}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}+\mathrm{a}^{2}}$
The magnitude of the electric field at P due to the charge ' $-q$ ' is $\quad \mathrm{E}_{-\mathrm{q}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}+\mathrm{a}^{2}}$
The total field at $P, \overrightarrow{\mathrm{E}}_{+q}$ and $\overrightarrow{\mathrm{E}}_{-q}$ are resolved in to components parallel to \vec{p} and perpendicular to \vec{p}. The direction of $\vec{p}($ or p$)$ is from -q to +q .
The components normal to the dipole axis $\left(\mathrm{E}_{+\mathrm{q}} \sin \theta\right)$ and $\left(\mathrm{E}_{-\mathrm{q}} \sin \theta\right)$ cancel out as they are equal in magnitude and opposite in direction.
The components along the dipole axis $\left(\mathrm{E}_{+\mathrm{q}} \cos \theta\right)$ and $\left(\mathrm{E}_{-\mathrm{q}} \cos \theta\right)$ add up.
The total electric field is $\vec{E}=-\left(E_{+q}+E_{-q}\right) \cos \theta \hat{p}$

$$
\begin{aligned}
& =-\left(\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}+\mathrm{a}^{2}}+\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}+\mathrm{a}^{2}}\right) \cos \theta \hat{\mathrm{p}} ; \quad \cos \theta=\frac{\mathrm{a}}{\sqrt{\mathrm{r}^{2}+\mathrm{a}^{2}}} \\
& =-2\left(\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}+\mathrm{a}^{2}}\right) \frac{\mathrm{a}}{\sqrt{\mathrm{r}^{2}+\mathrm{a}^{2}}} \hat{\mathrm{p}} \\
\overrightarrow{\mathrm{E}} & =\frac{-\mathbf{2 q \mathbf { a }}}{\mathbf{4 \pi \varepsilon _ { 0 } (\mathbf { r } ^ { 2 } + \mathbf { a } ^ { 2 }) ^ { 3 / 2 }} \hat{\mathbf{p}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{-\overrightarrow{\mathbf{p}}}{\left(\mathbf{r}^{2}+\mathbf{a}^{2}\right)^{3 / 2}} ; \quad \text { since } \overrightarrow{\mathrm{p}}=2 \mathrm{aq} \mathrm{p}}
\end{aligned}
$$

Drift velocity: $\overrightarrow{\mathrm{v}}_{\mathrm{d}}=\left(-\frac{\mathrm{e} \overrightarrow{\mathrm{E}}}{\mathrm{m}}\right) \tau$ and $\left|\overrightarrow{\mathrm{v}}_{\mathrm{d}}\right|==\frac{\mathrm{e}|\overrightarrow{\mathrm{E}}| \tau}{\mathrm{m}}$
The amount of charge crossing the area A of a conductor in time $\Delta \mathrm{t}$ is $\quad \Delta \mathrm{q}=+\mathrm{ne} \mathrm{A}\left|\overrightarrow{\mathrm{v}}_{\mathrm{d}}\right|(\Delta \mathrm{t})$
Also $\Delta \mathrm{q}=\mathrm{I}(\Delta \mathrm{t})$; where I is current.
Thus, $\mathrm{I}(\Delta \mathrm{t})=+\mathrm{ne} \mathrm{A}\left|\overrightarrow{\mathrm{v}}_{\mathrm{d}}\right|(\Delta \mathrm{t}) ; \quad \operatorname{Using}(1)$ in (2), $\mathrm{I}=\left(\frac{\mathrm{e}^{2} \mathrm{~A} \tau \mathrm{n}}{\mathrm{m}}\right)|\overrightarrow{\mathrm{E}}|$ Magnitude of current density: $|\vec{j}|=\frac{I}{A}=\left(\frac{n e^{2} \tau}{m}\right)|\vec{E}|$
In the vector form, $\vec{j}=\left(\frac{n e^{2} \tau}{m}\right) \vec{E}$, but $\vec{j}=\sigma \vec{E}$
Thus, conductivity: $\sigma=\frac{\mathrm{ne}^{2} \tau}{\mathrm{~m}}$
29.

LABELLED DIAGRAM,

(θ is angle between r and R)

Let a circular loop with its centre at the origin O , radius R carrying a steady current I and having axis as X -axis. Let x be the distance of P from the centre O of the loop.

Consider a conducting element $\mathrm{d} \vec{l}$ of the loop.

The magnitude of the magnetic field dB due to $\overrightarrow{\mathrm{d} l}$ is given by Biot-Savart's law,

$$
|\overrightarrow{\mathrm{dB}}|=\left(\frac{\mu_{0}}{4 \pi}\right)\left(\frac{\mathrm{I}|\overrightarrow{\mathrm{~d} l} \times \overrightarrow{\mathrm{r}}|}{\mathrm{r}^{3}}\right) \text { and we have } \mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{R}^{2} .
$$

Any element of the loop will be perpendicular to the displacement vector from the element to the axial point. i.e., $\mathrm{d} \vec{l} \perp \overrightarrow{\mathrm{r}}$. Hence $|\overrightarrow{\mathrm{d} l} \times \overrightarrow{\mathrm{r}}|=\mathrm{r} \mathrm{d} l$.

Thus, $\quad \mathrm{dB}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{Ird} l}{\mathrm{r}^{3}}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{Id} l}{\mathrm{r}^{2}}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{Id} l}{\left(\mathrm{x}^{2}+\mathrm{R}^{2}\right)}$
The direction of magnetic field $(\mathrm{d} \overrightarrow{\mathrm{B}})$ is perpendicular to the plane containing $\mathrm{d} \vec{l}$ and $\overrightarrow{\mathrm{r}}$.
$\mathrm{d} \overrightarrow{\mathrm{B}}$ has a X -component dB_{x} and a component perpendicular to x-axis dB_{\perp} (in XZ plane).
When the components perpendicular to the X -axis are summed over a complete loop, they cancel out.
Thus, only the X -component $\mathrm{dB} \cos \theta$ remains.
The net magnetic field along X-direction can be obtained by integrating (summing) $\mathrm{dB}_{\mathrm{x}}=\mathrm{dB} \cos \theta$
From equations (1) and (2), $\quad \mathrm{dB}_{\mathrm{x}}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{Id} l}{\left(\mathrm{x}^{2}+\mathrm{R}^{2}\right)} \cos \theta ; \quad$ But $\cos \boldsymbol{\theta}=\frac{\mathbf{R}}{\mathbf{r}}=\frac{\mathbf{R}}{\left(\mathbf{x}^{2}+\mathbf{R}^{2}\right)^{1 / 2}}$

$$
\therefore \quad \mathrm{dB}_{\mathrm{x}}=\frac{\mu_{0} \mathrm{I} \mathrm{dl}}{4 \pi} \frac{\mathrm{R}}{\left(\mathrm{x}^{2}+\mathrm{R}^{2}\right)^{3 / 2}}
$$

The summation of elements $\mathrm{d} l$ over the loop gives $2 \pi \mathrm{R}$, the circumference of the loop. i.e., $\sum \mathrm{d} l=2 \pi \mathrm{R}$
Thus, the magnetic field at P due to the entire circular loop is $\overrightarrow{\mathbf{B}}=\mathbf{B}_{\mathrm{x}} \hat{\mathbf{i}}=\frac{\boldsymbol{\mu}_{0}}{4 \pi} \frac{2 \pi \mathbf{I} \mathbf{R}^{2}}{\left(\mathbf{x}^{2}+\mathbf{R}^{2}\right)^{3 / 2}} \hat{\mathbf{i}}=\frac{\boldsymbol{\mu}_{0} \mathbf{I} \mathbf{R}^{2}}{2\left(\mathbf{x}^{2}+\mathbf{R}^{2}\right)^{3 / 2}} \hat{\mathbf{i}}$

DIAGRAM

Let PP^{\prime} represent the surface separating medium-1 and medium-2. Let v_{1} and v_{2} be the speed of light in medium-1 and medium-2 respectively. Consider a plane wave front $A B$ incident in medium-1 at angle ' i ' on the surface $P P^{\prime}$.
According to Huygens principle, every point on the wave front $A B$ is a source of secondary wavelets.
Let the secondary wavelet from B strike the surface $P P^{\prime}$ at C in a time τ. Then $B C=v_{1} \tau$.
The secondary wavelet from A will travel a distance $v_{2} \tau$ as radius; draw an arc in medium 2.
The tangent from C touches the arc at E. Then $A E=v_{2} \tau$ and $C E$ is the tangential surface touching all the spheres of refracted secondary wavelets. Hence, CE is the refracted wave front. Let r be the angle of refraction.
In the above figure, $\quad \angle \mathrm{BAC}=\mathrm{i}=$ angle of incidence and $\angle \mathrm{ECA}=\mathrm{r}=$ angle of refraction $B C=v_{1} \tau \quad$ and $\quad A E=v_{2} \tau$
From triangle $B A C, \sin i=\frac{B C}{A C}$ and from triangle $E C A, \sin r=\frac{A E}{A C}$ $\therefore \quad \frac{\sin \mathrm{i}}{\sin \mathrm{r}}=\frac{\mathrm{BC} / \mathrm{AC}}{\mathrm{AE} / \mathrm{AC}}=\frac{\mathrm{BC}}{\mathrm{AE}}=\frac{\mathrm{v}_{1} \tau}{\mathrm{v}_{2} \tau}=\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}$
Since v_{1} is a constant in medium-1 and v_{2} is a constant in medium- $2, \frac{\sin i}{\sin r}=\frac{v_{1}}{v_{2}}=$ constant.........(*)
Now, refractive index (n) of a medium: $\mathrm{n}=\frac{\mathrm{c}}{\mathrm{v}}$ or $\mathrm{v}=\frac{\mathrm{c}}{\mathrm{n}}$, where $\mathrm{c}-$ speed of light in vacuum.
For the first medium: $\mathrm{v}_{1}=\frac{\mathrm{c}}{\mathrm{n}_{1}}$ and for the second medium: $\mathrm{v}_{2}=\frac{\mathrm{c}}{\mathrm{n}_{2}} \Rightarrow \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}$
(*) becomes $\frac{\sin \mathrm{i}}{\sin \mathrm{r}}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}$ or $\mathrm{n}_{1} \sin \mathrm{i}=\mathrm{n}_{2} \sin \mathrm{r}$. This is the Snell's law of refraction.
31. (i) For a given photosensitive material and frequency of incident radiation (above the threshold frequency), the photoelectric current is directly proportional to the intensity of incident light.
(ii) For a given photosensitive material and frequency of incident radiation, saturation current is proportional to the intensity of incident radiation but stopping potential is independent of its intensity.
(iii) For a given photosensitive material, there exists a certain minimum cut-off frequency of the incident radiation called the threshold frequency, below which no photoelectrons emission
(iv) Above the threshold frequency, the stopping potential or the maximum kinetic energy of the emitted photoelectrons increases linearly with the frequency of the incident radiation, but is independent of its intensity.
(v) The photoelectric emission is an instantaneous process.

(v) The photoelectric emission is an instantaneous proces

I - V CHARACTERISTIC CURVE

When an external voltage V is applied across a semiconductor diode such that p-side is connected to the positive terminal of the battery and n-side to the negative terminal it is said to be forward biased.

The direction of the applied voltage (V) is opposite to the built-in potential V_{0} in the semiconductor diode. As a result, the width of depletion layer decreases and the barrier height is reduced.

If the applied voltage is small, the barrier potential will be reduced only slightly below the equilibrium value, the current will be small. If the applied voltage increase to large value, the barrier height will be reduced, the current increases.
33. Energy stored initially in the capacitor: $\mathrm{U}=\frac{1}{2} \mathrm{CV}^{2}=\frac{1}{2}\left(600 \times 10^{-12}\right)(200)^{2}=12 \times 10^{-6} \mathrm{~J}$

Initial charge on the single capacitor is $\mathrm{Q}=\mathrm{CV}=12 \times 10^{-8}$ coulomb.
When other (second) uncharged capacitor connected parallel to the first, charge is distributed among them.
Capacitors are having equal capacitances, hence charges on each capacitor are equal $=\mathrm{Q}_{1}=\mathrm{Q} / 2=6 \times 10^{-8} \mathrm{C}$
Now, energy stored in each capacitor: $\mathrm{U}_{1}=\frac{1}{2} \frac{\mathrm{Q}_{1}{ }^{2}}{\mathrm{C}}=\frac{1}{2} \frac{\left(6 \times 10^{-8}\right)^{2}}{\left(600 \times 10^{-12}\right)}=3 \times 10^{-6} \mathrm{~J}$
Therefore, the total energy of the combination $=6 \times 10^{-6} \mathrm{~J}$
Equivalent internal resistance of the combination: $\mathrm{r}_{\mathrm{eq}}=\frac{\mathrm{r}_{1} \mathrm{r}_{2}}{\mathrm{r}_{1}+\mathrm{r}_{2}}=\frac{1.5 \times 1}{1.5+1}=0.6 \Omega$
Equivalent emf of the combination: $\frac{\varepsilon_{\mathrm{eq}}}{\mathrm{r}_{\mathrm{eq}}}=\frac{\varepsilon_{1}}{\mathrm{r}_{1}}+\frac{\varepsilon_{2}}{\mathrm{r}_{2}} \Rightarrow \frac{\varepsilon_{\mathrm{eq}}}{0.6}=\frac{3}{1.5}+\frac{2}{1} \Rightarrow \varepsilon_{\mathrm{eq}}=2.4 \mathrm{~V}$
Current through the 3Ω resistor (external resistor), $I=\frac{\varepsilon_{\text {eq }}}{R+r_{e q}}=\frac{2.4}{3+0.6}=\frac{2}{3} \mathrm{~A}$
Potential difference across 3Ω resistor, $\mathrm{V}=\mathrm{IR}=(2 / 3)(3)=2 \mathrm{~V}$
(with unit)
ALTERNATE METHOD: Applying Kirchhoff's rules also this problem can be solved.
35. Resistance of Lamp $=R=V^{2} / P=(60 \times 60) / 10=360 \Omega$

Current, $I_{\text {rms }}=P / V=10 / 60=1 / 6 \mathrm{~A}$
Impedance: $Z=\frac{V_{\text {rms }}}{\mathrm{I}_{\mathrm{rms}}}=\frac{100}{(1 / 6)}=600 \Omega$
$\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}{ }^{2}} \Rightarrow \mathrm{~L}=\frac{\sqrt{\mathrm{Z}^{2}-\mathrm{R}^{2}}}{2 \pi \mathrm{f}}$
$\mathrm{L}=\frac{\sqrt{600^{2}-360^{2}}}{2(3.142)(60)}=1.273 \mathrm{H}$
(with unit)
36. Lens in air, $\quad \frac{1}{\mathrm{f}_{\mathrm{g}}}=\left(\mathrm{n}_{\mathrm{g}}-1\right)\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right)$;
($\mathrm{f}_{\mathrm{g}}-$ focal length in air)

$$
\begin{equation*}
\frac{1}{0.24}=(1.5-1)\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right) \tag{1}
\end{equation*}
$$

Lens in water, $\frac{1}{\mathrm{f}_{\mathrm{gw}}}=\left(\frac{\mathrm{n}_{\mathrm{g}}}{\mathrm{n}_{\mathrm{w}}}-1\right)\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right)$;
($\mathrm{f}_{\mathrm{gw}}-$ focal length of lens in water)

$$
\begin{equation*}
\frac{1}{\mathrm{f}_{\mathrm{gw}}}=\left(\frac{1.5}{1.33}-1\right)\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right) \tag{2}
\end{equation*}
$$

Dividing equation (1) by (2), $\mathrm{f}_{\mathrm{gw}}=0.939 \mathrm{~m}$
\therefore Change in focal length $=0.699 \mathrm{~m}$
(with unit)
37. Mass defect in each copper nucleus $=29 \mathrm{~m}_{\mathrm{p}}+34 \mathrm{~m}_{\mathrm{n}}-\mathrm{M}_{\mathrm{Cu}}$

$$
\begin{aligned}
& =(29 \times 1.00727)+(34 \times 1.00866)-62.92960 \\
\Delta \mathrm{~m} & =0.57567 \mathrm{u}
\end{aligned}
$$

Energy required to separate all neutrons and protons in one nucleus (is binding energy)

$$
\begin{aligned}
& =\Delta \mathrm{m} \times 931.5 \mathrm{MeV} \\
\mathrm{E}_{\mathrm{b}} & =0.57567 \times 931.5=536.2 \mathrm{MeV}
\end{aligned}
$$

Number of atoms in the copper coin: $\mathrm{N}=\frac{6.023 \times 10^{23} \times 3}{63}=2.868 \times 10^{22}$
\therefore Total energy required to separate all neutrons and protons in the coin

$$
\begin{aligned}
& =\mathrm{E}_{\mathrm{b}} \times \mathrm{N} \\
& =536.2 \times 2.868 \times 10^{22}=1.538 \times 10^{25} \mathrm{MeV}
\end{aligned}
$$

