Model Question Paper - 1

II P.U.C MATHEMATICS (35)

Time : $\mathbf{3}$ hours 15 minute

Max. Marks : 100

Instructions :

(i) The question paper has five parts namely A, B, C, D and E. Answer all the parts.
(ii) Use the graph sheet for the question on Linear programming in PART E.

PART-A

Answer All the questions:

$$
10 \times 1=10
$$

1. Operation * is defined by a * $\mathrm{b}=\mathrm{a}$. Is * is a binary operation on Z^{+}?
2. Write the principal value branch of $f(x)=\sin ^{-1} x$.
3. Define a diagonal matrix.
4. If $A=\left(\begin{array}{ll}4 & 7 \\ 6 & 5\end{array}\right)$ find $|3 \mathrm{~A}|$.
5. Write the points of discontinuity for the function $\mathrm{f}(\mathrm{x})=[x],-3<x<3$.
6. Evaluate $\int \operatorname{cosecx}(\operatorname{cosec} x-\cot x) d x$
7. Find the direction ratios of the vector, joining the points $P(2,3,0)$ and $Q(-1,-2,-3)$, direction from P to Q.
8. Find the equation of the plane with the intercept 2,3 and 4 on x, y and z axes respectively.
9. Define optimal solution in the linear programming.
10. If A and b are independent events with $P(A)=0.3$ and $P(B)=0.4$, find $P(A \cap B)$.

PART-B

Answer any Ten questions:

$10 \times 2=20$
11. Find the gof and fog if $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$
12. Write the function $\tan ^{-1}\left(\frac{\operatorname{cas} x-\sin x}{\cos x+\sin x}\right), 0<x<\pi$ in the simplest form.
13. Prove that $2 \sin ^{-1}\left(\frac{3}{5}\right)=\tan ^{-1}\left(\frac{24}{7}\right)$.
14. Find the area of a triangle whose vertices are $(1,3),(2,5)$ and $(7,5)$ using determinant.
15. Find $\frac{d y}{d x}$, if $2 x+3 y=\sin y$.
16. If $\mathrm{x}=a t^{2}, \mathrm{y}=2 a t$ show that $\frac{d y}{d x}=\frac{1}{t}$
17. Find the approximate change in the volume V of a cube of a side x meters caused byincreasing by 2%.
18. Evaluate $\int \sin ^{3} x d x$.
19. Evaluate $\int_{0}^{\frac{\pi}{2}} \cos 2 x d x$.
20. Find the order and degree of differential equation $\left(\frac{d s}{d t}\right)^{4}+3 s \frac{d^{2} s}{d t^{2}}=0$.
21. Find a vector in the direction of the vector $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}+\hat{k}$ that has magnitude 7 units.
22. If $\vec{a}=5 \hat{\imath}-\hat{\jmath}-3 \hat{k}$ and $\vec{b}=\hat{\imath}+3 \hat{\jmath}-5 \hat{k}$, then show that the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular.
23. Find the vector equation of the line, passing through the points $(-1,0,2)$ and $(3,4,6)$
24. Two coins are tossed once, find $P(E / F)$ where E : no tail appears, F : no head appears.

PART-C

Answer any Ten questions:

25. Show that the relation R in the set of real numbers \boldsymbol{R} defined as $R=$ $\left\{(a, b): a \leq b^{2}\right\}$ is neither reflexivenor symmetric nor transitive
26. Prove that $\tan ^{-1} x+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right),|x|<\frac{1}{3}$
27. Find the values of x, y and z in the following matrices

$$
\left(\begin{array}{cc}
x+y & 2 \\
5+z & x y
\end{array}\right)=\left(\begin{array}{ll}
6 & 2 \\
5 & 8
\end{array}\right)
$$

28. Differentiate $\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}}$ with respect to x .
29. If $y=\sin ^{-1}\left(\frac{2^{x+1}}{1+4^{x}}\right)$ find $\frac{d y}{d x}$
30. If $f(x)=2 x^{3}-3 x^{2}-36 x+7$ is (a) Strictly increasing (b) Strictly decreasing.
31. Evaluate $\int \frac{(1+\log x)^{2}}{x} d x$
32. Evaluate $\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x$
33. Find the area between the curves $y=x^{2}$ and $y=x$
34. Form the differential equation representing the family of curves $y=$ $\operatorname{asin}(x+b)$ where a and b arbitrary constants.
35. Find the area of a triangle having the points $A(1,1,1), B(1,2,3)$ and $C(2,3,1)$ as its vertices using vector method.
36. Prove that $[\vec{a}, \vec{b}, \vec{c}+\vec{d}]=[\vec{a}, \vec{b}, \vec{c}]+[\vec{a}, \vec{b}, \vec{d}]$.
37. Find the distance between parallel lines $\vec{r}=\hat{\imath}+2 \hat{\jmath}-4 \hat{k}+m(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})$ and $\overrightarrow{\mathrm{r}}=3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}+\mathrm{n}(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})$
38. Two cards are drawn successively with replacement from a well shuffled deck of 52 cards. Find the probability distribution of the number of aces.
39. Let $f: N \rightarrow R$ be a function defined by $\mathrm{f}(x)=4 x^{2}+12 x+5$. Show that $f: N \rightarrow S$, where S is the range of function f , is invertible. Find the inverse of f .
40. Verify $(A+B) C=A C+B C$,
if $A=\left(\begin{array}{ccc}0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0\end{array}\right), B=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right)$ and $C=\left(\begin{array}{r}2 \\ -2 \\ 3\end{array}\right)$
41. Solve the following system of equations by matrix method $x+y+z=6$, $x-y-z=-4$ and $x+2 y-2 z=-1$.
42. If $e^{y}(x+1)=1$, prove that $\frac{d y}{d x}=-e^{y}$ and hence prove that $\frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}$
43. The length of a rectangle is decreasing at the rate of $3 \mathrm{~cm} /$ minute and the width y is increasing at the rate of $2 \mathrm{~cm} /$ minute. When $\mathrm{x}=10 \mathrm{~cm}$ and $\mathrm{y}=6$ cm , find the rate of change of (i) the perimeter and (ii) the area of the rectangle
44. Find the integral of $\sqrt{x^{2}+a^{2}}$ w.r.t x and hence evaluate $\int \sqrt{x^{2}+4 x+6} d x$
45. Using integration find the area bounded by the triangle whose vertices are $A(2,0), B(4,5)$ and $C(6,3)$
46. Solve the differential equation $y d x-\left(x+2 y^{2}\right) d y=0 \backslash$
47. Derive equation of plane perpendicular to a given vector and passing through a given point both in the vector and Cartesian form.
48. There are 5% defective items in a large bulk of items. What is the probability that sample of 10 items will include not more than one defective item?

PART-E

Answer any One question:

49. (a) Prove that $\int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x$ when $f(2 a-x)=f(x)$ and hence evaluate $\int_{0}^{\pi}|\cos x| d x$
(b) Prove that $\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(x^{3}-1\right)^{2}$
(a) Solve the following linear programming problem graphically:

Maximize, $z=3 x+2 y$ subjected to the constraints:
$x+2 y \leq 10,3 x+y \leq 15, x \geq 0, y \geq 0$.
(b) Find the relationship between a and b so that the function f defined by $f(x)=\left\{\begin{array}{ll}a x+1, & \text { if } x \leq 3 \\ b x+3, & \text { if } x>3\end{array}\right.$ is continuous at $x=3$.

