Directions (Q. Nos. 10-13) Choose the most suitable alternative to fill in the blank.
10. If a universal language really existed, people like tourists and businessmen would find it easier to \qquad with foreigners.
(a) transact
(b) communicate
(c) deal
(d) exchange
11. On account of his humiliating defeat in the recent elections, he appeared unusually \qquad when I called on him the other day.
(a) oppressed
(b) repressed
(c) depressed
(d) suppressed
12. You need \qquad shoes for walking in the hills.
(a) good
(b) comfortable
(c) satisfactory
(d) sturdy
13. Amongst the two brothers, Sammeer being worthier often \qquad the younger D sepak.
(a) dominates
(b) eclipses
(c) subdues
(d) overshadows

Directions (Q. Nos. 14-16) Choose the alternative which is an improvement upon the italicised part of the sentence. If the sentence is correct as it is, choose (d) as your answer.
14. He enjoys to tell stories to children.
(a) how to tell stories
(b) telling stories
(c) to narrate stories
(d) No improvement
15. Galileo said that the earth revolved around the Sun.
(a) has revolved
(b) has been revolving
(c) revolves
(d) No improvement
16. The matter must be considered in every point of view.
(a) with
(b) from
(c) at
(d) No improvement

Directions (Q. Nos. 17-20) Choose the alternative which is nearest in meaning to the word given in capital letters.
17. FOSTER
(a) Encourage
(b) Fabricate
(c) Foment
(d) Nurture
18. ENIGMA
(a) Elusive
(b) Clear
(c) Puzzle
(d) Praise
19. FILTHY
(a) Healthy
(b) Ugly
(c) Dirty
(d) Angry
20. NOSTALGIC
(a) Soothing
(b) Homesick
(c) Diseased

Manipal (Medical) Solved Paper 2011/13
Directions (Q. Nos. 21-25) In each of the following questions, there occurs a specific relations. Fill the vacant space (?) question mark according to that relation.
21. Door: Bang : : Chain : ?
(a) Clank
(b) Tinkle
(c) Thunder
(d) Clinch
22. Bread : Wheat : : Brick : ?
(a) Cement
(b) Building
(c) Clay
(d) Fire
23. Mouse : Cat : : Fly :?
(a) Horse
(b) Spider
(c) Rat
(d) Animal
24. Mirror : Reflection : : Water : ?
(a) Immersion
(b) Conduction
(c) Refraction
(d) Dispersion
25. Tennis : Court : : Boxing : ?
(a) Ring
(b) Course
(c) Pool
(d) Arena

Directions (Q. Nos. 26-30) In the following questions, choose the option which shows common feature in the relationship given in each question.
26. Sarnath : Kapilavastu : Sarchi
(a) These have ancient universities
(b) These are places having massive pillars
(c) These are linked with Lord Buddha
(d) These are famous for stone caves
27. Ebony: Rosewood : Mahogany
(a) These are hardwood trees.
(b) These are coniferous trees
(c) These yield good for fuel
(d) These are trees of temperature regions
28. Arjun Uddhav: Sudama
(a) They were all princes
(b) They were friends of Krishna
(c) They were Pandavas
(d) They were great warriors
29. Sherlock Holmes: James Bond : Hercules Poirot
(a) They are the only detective agents
(b) They are private detectives
(c) They are agents of CBI
(d) They are characters from detective fiction
30. Goose : Duck : Stork
(a) They are white
(b) They are water birds
(c) These species are disappearing
(d) They migrate to India from Siberia.

Powered By IITians

32. The members of Rajya Sabha are elected for a term of
(a) two years
(b) four years
(c) six years
(d) five years
33. Who was the first Governor-General of Bengal?
(a) Robert Clive
(b) Warren Hastings
(c) William Bentinck
(d) Cornwallis
34. Jnanpith Award is conferred to those in the field of
(a) Literature
(b) History
(c) Drama
(d) Dance
35. What was Lala Lajpat Rai demonstrating against when he succumbed to police brutality?
(a) Rowlatt Act
(b) Minto-Morley Reforms
(c) Simon Commission
(d) Pitts India Act

(c) Convertible Currency System
 (d) Minimum Reserve System

37. Garba is a dance form of
(a) Gujarat
(b) Rajasthan
(c) Odisha
(d) Asom
38. ATM stands for
(a) Automatic Teller Machine
(b) Automated Teller Machine
(c) Automatic Tally Machine
(d) Automated Tally Machanism
39. The first African National to become Secretary General of UNO was
(a) Kofi Annan
(b) Butros Gali
(c) Nelson Mandela
(d) Winni Mandela
40. Who was the first Indian woman to scale Mt Everest?
(a) Bachendri Pal
(b) Fu Dorji
(c) Aun Sang Suu Kyi
(d) Yoko Ono

Answers

Physies

1. (b)	2. (b)	3. (d)	4. (b)	5. (b)	6. (b)	7. (c)	8. (b)	9. (b)	10. (b)
11. (c)	12. (d)	13. (b)	14. (c)	15. (d)	16. (b)	17. (b)	18. (a)	19. (c)	20. (b)
21. (c)	22. (c)	23. (a)	24. (b)	25. (b)	26. (a)	27. (a)	28. (d)	29. (d)	30. (b)
31. (a)	32. (b)	33. (c)	34. (b)	35. (c)	36. (a)	37. (c)	38. (d)	39. (a)	40. (b)
41. (d)	42. (a)	43. (b)	44. (b)	45. (a)	46. (d)	47. (a)	48. (d)	49. (b)	50. (c)
51. (a)	52. (a)	53. (b)	54. (b)	55. (a)	56. (a)	57. (c)	58. (b)	59. (a)	60. (a)
Chemistry									
1. (b)	2. (c)	3. (c)	4. (b)	5. (b)	6. (a)	7. (d)	8. (c)	9. (b)	10. (c)
11. (b)	12. (b)	13. (a)	14. (c)	15. (a)	16. (c)	17. (c)	18. (d)	19. (d)	20. (b)
21. (a)	22. (a)	23. (a)	24. (d)	25. (c)	26. (b)	27. (b)	28. (a)	29. (c)	30. (a)
31. (b)	32. (d)	33. (d)	34. (a)	35. (d)	36. (b)	37. (c)	38. (d)	39. (b)	40. (b)
41. (d)	42. (d)	43. (a)	44. (c)	45. (a)	46. (d)	47. (c)	48. (b)	49. (c)	50. (b)
51. (a)	52. (b)	53. (b)	54. (a)	55. (b)	56. (b)	57. (a)	58. (a)	59. (a)	60. (c)

Biology

1. (c)	2. (d)	3. (b)	4. (a)	5. (a)	6. (b)	7. (b)	8. (a)	9. (b)	10. (d)
11. (a)	12. (c)	13. (c)	14. (a)	15. (d)	16. (c)	17. (a)	18. (c)	19. (c)	20. (a)
21. (d)	22. (a)	23. (b)	24. (c)	25. (d)	26. (c)	27. (d)	28. (c)	29. (d)	30. (b)
31. (b)	32. (b)	33. (b)	34. (c)	35. (a)	36. (c)	37. (b)	38. (d)	39. (a)	40. (a)
41. (a)	42. (a)	43. (a)	44. (d)	45. (d)	46. (d)	47. (d)	48. (a)	49. (b)	50. (c)
51. (d)	52. (a)	53. (a)	54. (a)	55. (d)	56. (b)	57. (d)	58. (b)	59. (b)	60. (a)
61. (b)	62. (a)	63. (d)	64. (d)	65. (b)	66. (c)	67. (c)	68. (d)	69. (d)	70. (a)
71. (b)	72. (b)	73. (b)	74. (b)	75. (b)	76. (a)	77. (a)	78. (c)	79. (b)	80. (a)

Manipal (Medical) - Solved Paper $2011 / 15$

English

1. (d)
2. (c)
3. (d)
4. (c)
5. (d)
6. (d)
7. (d)
8. (c)
9. (d)
10. (b)
11. (c)
12. (b)
13. (d)
14. (b)
15. (c)
16. (b)
17. (d)
18. (c)
19. (c)
20. (b)
21. (a)
22. (c)
23. (b)
24. (c)
25. (a)
26. (c)
27. (a)
28. (b)
29. (d)
30. (b)
31. (d)
32. (c)
33. (a)
34. (a)
35. (c)
36. (a)
37. (a)
38. (b)
39. (a)
40. (a)

Hints \& Solutions

Physics

1. For coincidence of bands

$$
\begin{array}{rlrl}
\text { or } & & \frac{n D \lambda_{1}}{d} & =\frac{(n+1) D \lambda_{2}}{d} \\
\text { or } & & n \lambda_{1} & =(n+1) \lambda_{2} \\
& & & \\
& \text { or } & n 00 n & =5200(n+1) \\
n & =2
\end{array}
$$

2. Hubble's law states that the redshift in light coming from distant galaxies is proportional to their distance from the earth

$$
y=H d
$$

where H Hubble's constant.
\therefore Dimension of $H=\frac{\text { Dimension of } v}{\text { Dimension of } d}$

$$
=\frac{\left[\mathrm{LT}^{-1}\right.}{[\mathrm{L}]}=\left[\mathrm{T}^{-1}\right]
$$

3. From Archimedes' principle

Weight of (boy $+\log$)

$$
=\text { weight of water displaced }
$$

$$
\left(60+V \times 0.6 \times 10^{3}\right) \mathrm{g}=\mathrm{V} \times 10^{3} \mathrm{~g}
$$

$$
\Rightarrow \quad 0.4 \times 10^{3} V=60
$$

$$
\Rightarrow \quad V=\frac{60}{0.4 \times 10^{3}}=\frac{60}{400}=\frac{3}{20} \mathrm{~m}^{3}
$$

5. When an atom comes down from some higher energy level to the second energy level $\left(n_{1}=2\right)$ and $n_{2}=3,4,5, \ldots$, then the lines of the spectrum are obtained in the visible part.

$$
\frac{1}{\lambda}=R\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right), \text { where } n=3,4,5, \ldots
$$

The shortest wavelength of the series corresponds to $n=\infty$ is $3646 \AA$.
6. From lens formula

$$
\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

If focal length of lens in air is f_{a} and in liquid is f_{l}, then

$$
\begin{aligned}
& \frac{1}{f_{a}}=\left(a_{a}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& \frac{1}{f_{e}}=\left(\mu_{g}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& \frac{f_{l}}{f_{a}}=\frac{\left(\mu_{a} \mu_{g}-1\right)}{\left(\mu \mu_{g}-1\right)} \\
& \frac{f_{l}}{20}=\left[\frac{3}{\frac{2}{4}-1} \frac{3}{3}-1\right] \\
& \\
& =\frac{3}{2} \\
& f_{l}
\end{aligned}
$$

7. At law pressure and high temperature real gases behaves like ideal gases.
8. Kinetic energy of satellite, $\mathrm{KE}=\frac{1}{2} m v^{2}$
where

$$
v=\sqrt{\frac{G M}{T}}
$$

Potential energy of satellite,

$$
\mathrm{PE}=\frac{-G M m}{r}=-m v^{2}
$$

\therefore Total energy $=\mathrm{KE}+\mathrm{PE}$

$$
=\frac{1}{2} m v^{2}-m v^{2}=-\frac{1}{2} m v^{2}
$$

9. When the intermolecular distance decreases due to compressive force, there is repulsive force between molecules.
$10 . F=\frac{m v^{2}}{r}$

$$
F=\frac{0.5 \times 4 \times 4}{0.4}
$$

Powered By IITians

11. Magnetic domains are oriented randomly in the unmagnetised state.
12. $g=\frac{G m}{R^{2}}$

$$
\therefore \quad g \propto \frac{1}{R^{2}}
$$

increase in value of g

$$
\begin{aligned}
& =2(\% \text { decrease in } R) \\
& =2 \times 1=2 \%
\end{aligned}
$$

13. $k \propto \frac{1}{l}$

Since, one-fourth length is cut away. So remaining length is $\frac{3}{4}$ th, hence k become $\frac{4}{3}$ times $i e, k^{\prime}=\frac{4}{3} k$.
14. Maximum acceleration

$$
\begin{array}{lc}
& \alpha=\omega^{2} y \\
\therefore & 0.5=\omega^{2} \times 0.02 \\
\text { or } & \omega^{2}=\frac{0.5}{0.02}=25 \\
\text { So, } & \omega=5
\end{array}
$$

Now, maximum velocity is

$$
v=a \omega=0.1 \times 5=0.5 \mathrm{~m} / \mathrm{s}
$$

15. Young's modulus of elasticity

$$
Y=\frac{F L}{A l}
$$

To double the length $l=L$

$$
\begin{aligned}
\therefore \quad Y & =\frac{F}{A} \Rightarrow F=Y A \\
& =2 \times 10^{11} \times 0.1 \times 10^{-4}=2 \times 10^{6} \mathrm{~N}
\end{aligned}
$$

16. Cohesive force is the intermolecular attraction between like molecules, whereas adhesive force is the intermolecular force between unlike molecules. In the given case cohesive force between mercury molecules is more than adhesive force between mercury molecules and glass rod, hence mercury does not stick to rod.
17. Gas molecules collides with walls of vessels due to which there occurs change in momentum of molecules due to which force is produced and thus pressure.

$$
\begin{aligned}
& d W=p d V \\
& \therefore \quad d W=p\left(V_{2}-V_{1}\right) \\
& =p\left(\frac{V}{2}-V\right) \quad\left(\because V_{1}=V, V_{2}=\frac{V}{2}\right) \\
& =-\frac{p V}{2}
\end{aligned}
$$

So, the work done by the gas is negative.
20. When X-ray passed through an absorption plate of thickness d, then transmitted intensity

$$
I=I_{0} e^{-\mu d}
$$

21. Here $C=2 \mu \mathrm{~F}, V=100$ volt

Heat produced $H=\frac{1}{2} C V^{2}$

$$
\begin{aligned}
& =\frac{1}{2}\left(2 \times 10^{-6}\right) \times(100)^{2} \\
& =1 \times 10^{-2} \mathrm{~J} \\
& =0.01 \mathrm{~J}
\end{aligned}
$$

22. Gauss is the unit of magnetic flux ϕ.
23. According to equation of motion, distance covered in nth sec.

$$
\begin{array}{rlrl}
& S_{n} & =u=\frac{a}{2}(2 n-1) \\
& & S_{n} & =\frac{a}{2}(2 n-1) \\
\therefore \quad & S_{1}: & S_{2}: S_{3} \\
& =\{2(1)-1\}:\{2(2)-1\}:\{2(3)-1\} \\
& =1: 3: 5
\end{array}
$$

24. $p^{2}=2 m K$

$$
K=\frac{p^{2}}{2 m}
$$

As given momentum p is same for both bodies

$$
\begin{aligned}
& \frac{K_{1}}{K_{2}}=\frac{m_{2}}{m_{1}}=\frac{2 m}{m} \\
& \frac{K_{1}}{K_{2}}=\frac{2}{1}
\end{aligned}
$$

25. $R \propto u^{2}$

$$
\begin{aligned}
& R=k u^{2} \\
& \frac{d R}{R}=2 \frac{d u}{u}=2 \times(1 \%)=2 \%
\end{aligned}
$$

26. Einstein explained the phenomenon of photoelectric effect on the basis of Planck's theory. According to which the kinetic energy of photoelectrons emitted from the metal surface is E and ϕ is the work function of the metal, then

$$
\begin{equation*}
E=h v-\phi \tag{i}
\end{equation*}
$$

where $h \nu$ is the energy of the photon absorbed by the electron in the metal. If for a given metal, the threshold frequency of light be v_{0} then an amount of energy $h v_{0}$ of the photon of light will be spent in ejecting the electron our of the metal.
$i e$,

$$
\begin{equation*}
\phi=h v_{0} \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii), we get

$$
\Rightarrow \quad \begin{aligned}
& E=h v-h v_{0} \\
& \Rightarrow \quad
\end{aligned} \quad=h\left(v-v_{0}\right)
$$

27. In line spectrum, bright coloured lines are observed on a dark background. These are called spectral lines. Each spectral line has a definise wavelength. Line spectrum is obtained per gases and metallic vapours, when they are in the atomic state. It means that line spectrum is related with the atomic state of matter.
28. $R=R_{0}\left(\frac{1}{2}\right)^{n}$

$$
\begin{aligned}
& \frac{R}{R_{0}}=\left(\frac{1}{2}\right)^{t / T_{1 / 2}} \\
& \left(\frac{1}{8}\right)=\left(\frac{1}{2}\right)^{t / T_{1 / 2}} \\
& \left(\frac{1}{2}\right)^{3}=\left(\frac{1}{2}\right)^{t / T_{1 / 2}} \\
& \frac{t}{T_{1 / 2}}=3 \\
& t=3 T_{1 / 2}=3 \times 8=24 \mathrm{yr}
\end{aligned}
$$

29. Approximate resistance of $p-n$ junction in forward bias, $R_{f}=10^{2} \Omega$
Approximate resistance of $p-n$ junction in reverse bias, $R_{r}=10^{6} \Omega$

$$
\begin{array}{ll}
\therefore & \frac{R_{f}}{R_{r}}=\frac{10^{2}}{10^{6}}=\frac{10^{-4}}{1} \\
\Rightarrow & R_{f}: R_{r}=10^{-4}: 1
\end{array}
$$

30. $r \propto \frac{n^{2}}{Z}$ and $v \propto \frac{Z}{n^{2}}$

Time period of revolution of an electron around the nucleus of charge $Z e$ is

$$
\begin{aligned}
& T=\frac{2 \pi r}{v}=2 \pi \frac{n^{2}}{Z} \cdot \frac{n}{Z} \\
\Rightarrow \quad & T \propto \frac{n^{3}}{z^{2}}
\end{aligned}
$$

32. Velocity of sound in air $v=336 \mathrm{~m} / \mathrm{s}$.

As we are quite well know that the lowest frequency of audible sound is 20 Hz . Hence maximum length of a closed pipe to produce just audible sound is given by

$$
\begin{aligned}
l & =\frac{336}{4 \times v}=\frac{336}{4 \times 20} \\
& =4.2 \mathrm{~m}
\end{aligned}
$$

33. The phenomena of rotation of plane polarised light is called optical activity.
34. Ionization energy $=R c h Z^{2}$

$$
Z=3 \text { for } \mathrm{Li}^{2+}
$$

Ionization energy $=(3)^{2}$ Rch

$$
=9 R c h
$$

37. Error in radius, $\frac{\Delta r}{r}=0.3 \%$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
\therefore Error in volume $=3 \times \frac{\Delta r}{r}$

$$
=(3 \times 0.3) \%=0.9 \%
$$

38. For a rectangular lamina, moment of inertia about a time passing through centre and parallel to longer side is minimum.
Hence, momentum of inertia about $E G$ will be minimum.
39. Maximum speed $v=\sqrt{2 g\left(h_{2}-h_{1}\right)}$

$$
\begin{aligned}
& =\sqrt{2 \times 10 \times(2-0.75)} \\
& =\sqrt{(20 \times 1.25)} \\
& =\sqrt{25}=5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

40. Oscillator is an amplifier with positive feed back ie, with feedback more than unity.
41. Relation (d) which is $x=\sqrt{a-b v^{2}}$ correctly represent the SHM because, velocity

$$
\begin{aligned}
& v=\omega \sqrt{a^{2}-x^{2}} \\
& \text { or } \quad x=\sqrt{a^{2}-v^{2} / \omega^{2}} \\
& \text { or } \quad x=\sqrt{a^{2}-b v^{2}} \\
& \text { where } b=\frac{1}{\omega^{2}}
\end{aligned}
$$

or slope $\propto r^{2}$
For thinnest wire slope is minimum.
ie, wire $O A$ is thinnest.
43. Time constant $=\frac{L}{R}=\frac{10}{5}=2 \mathrm{~s}$
$i e$, is 2 s , the current sizes to $\left(1-\frac{1}{e}\right)$
or $\left(1-e^{-1}\right)$ times.
44. Semiconductor can be used safely between temperature $0^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$.
45. From first law of thermodynamics,

	$d Q=d U+d W$	
we have	$d Q=d U$	$(a s d W=0)$
But.	$d Q$	<0
\therefore	$d U$	<0
		$N C_{V} \Delta T$

Hence, the temperature will decrease.
46. Refractive index of medium $n=\frac{\lambda_{a}}{\lambda_{m}}$

$$
=\frac{6000}{4000}=1.5
$$

47. The prism deviates the light rays towards its base.
48. There will be no force on electron due to magnetic field (because of parallel motion); but due to force applied by electric field, velocity of electron will decrease.
49. In case of transistor, constant α is current gain in common-base configuration and constant β is current gain in common-emitter configuration. Also α is always less than 1 while β is always greater than 1.
50. $\frac{\theta_{1}-\theta_{2}}{t}=K\left(\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right)$

$$
\begin{gathered}
\therefore \frac{80^{\circ}-60^{\circ}}{1}=K\left(\frac{80^{\circ}+60^{\circ}}{2}-30^{\circ}\right) \\
20=K \times 40 \Rightarrow K=\frac{1}{2}
\end{gathered}
$$

For next 1 min

$$
\frac{60^{\circ}-\theta}{1}=\frac{1}{2}\left(\frac{60^{\circ}+\theta}{2}-30^{\circ}\right)
$$

$$
\Rightarrow \quad \theta=\frac{\angle 4 U}{5}=48^{\circ} \mathrm{C}
$$

51. Hydrogen molecule behaves as diamagnetic as no net magnetic moment is associated with it.
52. In a DC circuit $X_{L}=\omega L=2 \pi f L=0$

Therefore $Z=R=10 \Omega$
53. Gasses cannot be liquified above critical temperature but at high pressure they can be.
54. For meter bridge

Unknown resistance

$$
R=\frac{l_{2}}{l_{1}} \times X=\frac{3}{2} \times 5=7.5 \Omega
$$

55. Fringe width, $\beta=\frac{D \lambda}{d}$

But here, $\quad \theta=\frac{d}{D} \Rightarrow d=D \theta$
$\therefore \quad \beta=\frac{D \lambda}{D \theta}=\frac{\lambda}{\theta}$
56. Mean kinetic energy of gas depends only on the temperature. Here temperature is given same, so ratio of kinetic energies will be $1: 1$.
57. Phase difference in R - L circuit

$$
\begin{aligned}
\phi & =\tan ^{-1}\left(\frac{X_{L}}{R}\right) \\
\tan 45^{\circ} & =\frac{X_{L}}{R} \\
X_{L} & =R
\end{aligned}
$$

58. The wire does not sink, so net force on it will be zero

$$
\begin{array}{lrl}
\therefore & m g=T \cdot 2 l \\
\Rightarrow & \pi r^{2} l d g & =T \cdot 2 l \\
\therefore & \cdots & =\sqrt{\frac{2 T}{\pi d g}}
\end{array}
$$

59. Musical interval produced between two notes of frequencies is given by

$$
\frac{320}{240}=1.33
$$

60. Tension, $T=m g$-buoyant force

$$
\begin{aligned}
& =V \rho g-V \sigma g=V(\rho-\sigma) g=l^{3}(\rho-\sigma) g \\
& =8 \times 10^{-6}(8920-820) \times 10 \\
& =0.648 \mathrm{~N}
\end{aligned}
$$

Chemistry

1. Polarity character is due to the difference in electronegativities of two atoms or molecules.
2. PF_{5} involves $s p^{3} d$ hybridisation and hence has trigonal bipyramidal structure.
3. Tetrahedral sites are double comparable to octahedral sites therefore ratio of X and Z is $2: 1$, hence formula of the compound should be $X_{2} Z$.
4. At $A \rightarrow$ temperature $=300 \mathrm{~K}$, volume $=10 \mathrm{~L}$, pressure $=p_{1}$
At $C \rightarrow$ temperature $=600 \mathrm{~K}$
Volume $=20$ L, Pressure $=p_{2}$
From $\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}$

$$
\frac{p_{1} \times 10}{300}=\frac{p_{2} \times 20}{600}
$$

or $\quad p_{1}=p_{2}$
i.e., process is isobaric.
5. During evaporation, molecules having high energy leave the surface of liquid. As a result average kinetic energy of liquid decreases.

$$
K E \propto T
$$

\therefore Temperature of liquid falls.
6. $\Delta E=Q+W=600+(-300)=300 \mathrm{~J}$
7. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})$

$$
\Delta H=-393.5 \mathrm{kJmol}^{-1}
$$

$\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$

$$
\Delta H=-283 \mathrm{kJmol}^{-1}
$$

On subtracting equation (ii) from equation (i), we get
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}(\mathrm{g}) ; \Delta H=-110.5 \mathrm{kJmol}^{-1}$
The enthalpy of formation of carbon monoxide per mole $=-110.5 \mathrm{kJmol}^{-1}$
8. K_{c} is a characteristic constant for the given reaction.
9. For first order reaction, $t_{1 / 2}$ is independent of initial concentration.
10. $\mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

In this reaction $\mathrm{H}_{2} \mathrm{O}$ acts as acid because it donate a proton.
11. $\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$

On adding $\mathrm{CH}_{3} \mathrm{COONa}$, due to common ion, $\left[\mathrm{H}^{+}\right]$decreases.
12. $\mathrm{X}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HX}+\mathrm{OH}^{-}$

$$
K_{h}=\frac{10^{-14}}{10^{-5}}
$$

So, degree of hydrolysis

$$
x=\sqrt{\frac{K_{h}}{C}}=\sqrt{\frac{10^{-9}}{10^{-1}}}=10^{-4}
$$

$\%$ degree of hydrolysis $=10^{-4} \times 100=0.01 \%$
13. Electron affinity value of Cl is higher than that of F as Cl belongs to 3rd period while F belongs to 2 nd period. In Cl , electron-electron repulsion forces are weaker than that of F.
14. IE of $\mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$ and Si are in the order

$$
\mathrm{Na}<\mathrm{Al}<\mathrm{Mg}<\mathrm{Si}
$$

15. NaCN is used as a depressant in the separation and concentration of ZnS and PbS ore. Here, NaCN acts as a depressant for ZnS but does not prevent PbS from forming the froth.
16. Malachite $\left[\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}\right]$ is an ore of copper.
17. P_{4} molecule,

Bond angle $=60^{\circ}$
Six $\mathrm{P}-\mathrm{P}=$ single bonds Lone pair $=4$

18. Xe is highly polar since the ionisation potential of xenon is quite close to the ionisation of oxygen.
19. Due to free electron, liquid ammonia becomes paramagnetic.
20. Ionic radii $\propto \frac{1}{\text { atomic number }}$, ionic radius decreases from left to right in a period.
21. Basic character of oxide decreases from left to right in a period of Preriodic Table.
Sc^{0+}

No unpaired electron so, will show diamagnetic character so will weights less when, weighted in magnetic field.
24. $2,4,6$-trinitrophenol is called picric acid.

25. Lucas reagent is used for distinction between primary, secondary and tertiary alcohols. Tertiary alcohol gives turbidity immediately with Lucas reagent. 2-hydroxy-2 methyl propane is a tertiary alcohol.
26.

27. Compound $A+\mathrm{NaOH} \longrightarrow$ alcohol + acid.

Hence, it is cannizzaro's reaction and A should be an aldehyde without α-hydrogen atom e.g., $\mathrm{HCHO}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$.
28. In the Stephen's reduction alkyl cyanide is reduced to aldehyde by $\mathrm{SnCl}_{2} / \mathrm{HCl}$.

$$
\mathrm{R}-\mathrm{C} \equiv \mathrm{~N}+2 \mathrm{H} \xrightarrow{\mathrm{SnCl}_{2} / \mathrm{HCl}}
$$

$\mathrm{RCH}=\mathrm{NH} \cdot \mathrm{HCl}$ alidime hydrochioride

$$
\xrightarrow{\mathrm{H}_{2} \mathrm{O}} \underset{\text { aldehyde }}{\mathrm{RCHO}}+\mathrm{NH}_{4} \mathrm{Cl}
$$

29. Cuprammonium salt is $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$. In water it gives two ions, $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ and SO_{4}^{2-}.
30. Potash alum is an example of double salt.
31. Metal carbonyl organometallic compounds possess both σ and π characters.

ง4. runme adu has - - - - (ancmyue) group. it reduces Tollen's reagent to silver mirror like other aldehydes.
33. $\mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{HNO}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}$

$$
+\mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \uparrow
$$

34. $\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Ca}(\mathrm{OH})_{2}$
(A)

35. Isobutene, $\mathrm{CH}_{3}-\mathrm{C}=\mathrm{CH}_{2}$ has minimum force of attraction due to steric hindrance hence, it has minimum boiling point.
36. The $\mathrm{C}-X$ bond energy is maximum in $\mathrm{CH}_{3} \mathrm{~F}$ hence, fluoride is less reactive to form the Grignard reagent with Mg.
37. In alkaline hydrolysis of a tertiary halide by aqueous alkali, if concentration of alkali is doubled, then the reaction will remain constant because t-alkyl halides with aqueous alkali give $\mathrm{S}_{\mathrm{N}} 1$ reaction and rate of $\mathrm{S}_{\mathrm{N}} 1$ reaction is not based upon the concentration of nucleophile (i,e, alkali).
38. Amino acids are bifunctional organic compounds, hence it contains both carboxylic group (-COOH) as well as amino group $\left(-\mathrm{NH}_{2}\right)$.
39. Glucose and manose are isomers, differ in configuration at C_{2}. Isomers which are differ at C_{2} position are known as epimers.
40. Dettol is a mixture of chloroxylenol and terpeneol in a suitable solvent.
41.

nitrobenzene

phenyl hydroxylamine
42. Due to resonance of electron pair in aniline, basic strength decreases while in benzylamine, electron pair do not involve in resonance hence, its basic strength is highest.
43.

$$
\underset{\text { acetanilide }}{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCOCH}_{3}}+\mathrm{HCl}
$$

44. $\mathrm{A}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{~A}+3 \mathrm{H}_{2} \mathrm{O}$
$0.1596 \mathrm{~g} \quad 0.006 \mathrm{~g}$
0.006 g of H_{2} reduces 0.1596 g of $\mathrm{A}_{2} \mathrm{O}_{3}$

6 g of H_{2} will reduces

$$
=\frac{0.01596 \times 6}{0.006}=159.6 \mathrm{~g} \mathrm{~A}_{2} \mathrm{O}_{3}
$$

Hence, molecular weight of $A_{2} \mathrm{O}_{3}=159.6 \mathrm{~g}$
Let molecular weight of $A=x$
$\therefore \quad 2 x \times 3 \times 16=159.6$
or $\quad 2 x=159.6-48$
or $\quad 2 x=111.6$
or $\quad x=55.8$
45. As electron moves away from the nucleus, its potential energy increases.
46.

No of exchanges $=5+4+3+2+1=15$
47. Oxidation state of P in $\mathrm{H}_{3} \mathrm{PO}_{4}$

$$
\begin{array}{r}
+3+x-8=0 \\
x-5=0 \\
x=+5
\end{array}
$$

48.

49. Acetaldehyde, $\mathrm{CH}_{3} \mathrm{CHO}$ is the rearrangement product of vinyl alcohol, $\mathrm{CH}_{2}=\mathrm{CHOH}$.
50. Allyl chloride show formation of very stable $\mathrm{CH}_{2}=\mathrm{CH}-\stackrel{+}{\mathrm{CH}} \mathrm{H}_{2}$ ion and rest two have partial double bond character in their $C-X$ bond.
51.

Meso tartaric acid is optically inactive due to the presence of molecular symmetry. It is optically inactive due to internal compensation i.e., the effect of one half of the molecule is neutralised by other.
52. IUPAC name of $\mathrm{CH}_{3} \mathrm{OC}_{2} \mathrm{H}_{5}$ is methoxy ethane.
53.

This reaction is governed by Saytzeffs rule. According to this rule, the elimination of β-hydrogen atom take place from the carbon having the less number of H-atoms or in other words, a stable alkene is formed (More substituted alkene is more stable)
54. Raoult's law is not applicable if the total number of particles of solute changes in the solution due to association or dissociation.
55. For $\mathrm{NaCl}, \mathrm{i}=2$

$$
\begin{aligned}
\Delta T_{f} & =2 K_{f} m=2 \times 1.86 \times 1=3.72 \\
T_{s} & =T-\Delta T_{f}=0-3.72=-3.72^{\circ} \mathrm{C}
\end{aligned}
$$

56. $W_{\text {metal }}=\frac{E i t}{96500}=\frac{E \times 3 \times 50 \times 60}{96500}$

$$
\begin{aligned}
& E=\frac{96500 \times W}{3 \times 50 \times 60} \\
& =\frac{96500 \times 1.8}{3 \times 50 \times 60}=19.3
\end{aligned}
$$

57. $E_{\text {cell }}=E_{\mathrm{cell}}^{\circ}-\frac{0.059}{2} \log \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}$

$$
\begin{aligned}
& =1.10-\frac{0.059}{2} \log \frac{0.1}{0.1} \\
& =1.10 \mathrm{~V}
\end{aligned}
$$

58. Purple of cassius is a colloidal solution of gold (Au).
59. Amount of substance adsorbed should increase with decrease in temperature.
60. In $\mathrm{Fe}_{3} \mathrm{O}_{4}$, let oxidation number of $\mathrm{Fe}=x$

$$
3 x+4(-2)=0 \text { or } x=\frac{8}{3}
$$

1. Louis Pasteur made this statement with reference to serendipity, discoveries by accident and sagacity.
2. Agar agar is used in preparing culture media to grow bacteria and other microorganisms. It is obtained from red algae such as Gracilaria and Gelidium. The clear transparent areas develop as bacteria are feeded by bacteriophages.
3. Species is a product of group of interbreeding organisms.
4. Most of the broad spectrum antibiotics like streptomycin, erythromycin, chloromycin, tetracycline, aureomycin, etc, are obtained from different species of Streptomyces which belong to Actinomycetes.
5. Plasmids of some bacterial cells have been used as vector for carrying foreign genes for genetic engineering and biotechnological experiments. Cyanophycean forms have not been used for these experiments.
6. Quinine is a white, bitter, crystalline alkaloid extracted from the bark of Cinchona, used in antimalarial medication.
7. Ephedra is a xeroplyte. Its leaves are highly reduced and scaly. The whole plant is used for extraction of ephedrine alkaloid.
8. Tornaria is the larva of Balanoglossus which belongs to the sub-phylum-Hemichordata.
9. Metabolism occurs in all living organisms.
10. Complete metamorphosis occurs in the insects belonging to the division-Endopterygota or Holometabola.
11. Horse (Equus) is an unguligrade animal running on one digit. The fect are most specialized, with only one digit (third), walton the hoof that covers the end of toe.
12. Janus green B is used for vital staining of mitochondria which contain cytochrome oxidase, an enzyme concerned with cellular: respiration.
13. Virus lacks the typical structure of a cell.
14. Energy from ATP cause confermational change in the solute carrier complex. From energy of one ATP, $3 \mathrm{Na}^{+}$pumped outside and two K^{+} taken in. This process of expelling out Na^{+}ions and drawing in K^{+}ions against the concentration gradient and electrochemical
gradient is called sodium-protassium exchange pump of the cell.

15. Haematin is a brown ferric iron containing substance obtained from oxyhaemoglobin or from dried blood.
16. Omnivores feed on all types of foods, hence contain maximum number of digestive enzymes.
17. Lethal means dealing with death of bearer.
18. Balbiani rings have a high content of RNA and show a rapid uptake and turnover of RNA precursors in polytene chromosomes.
19. In the double helical model of DNA proposed by Watson and Crick, the nitrogenous bases attached to the pentose sugar moity.
20. Retroviruses are exception to the central dogma.
21. Regular gene codes for a repressor protein in inducible system and a co-repressor in repressible system.
22. RNA synthesized in the nuclei of eukaryotes comprises heterogenous nuclear RNA (htr-RNA). This includes primary messenger RNA.
23.

24. Because the amino acids are organic monomers.
25. MSH (protein hormone) is secreted by pars intermedia of adenohypophysis.
26. Prof. Birbal Sahni (1891-1949) worked on class-Pentoxylae, gymnosperms of Jurassic period from Nipania Chert in Raj Mahal hills of Bihar.
algae).
58. Mycoplasma is obligate parasite and thus it divides and redivides only inside the body of living host.
59. It is believed to cause pyorrhoea. Which spread by kissing.
60. Gills of Agaricus produces hymenium layer to develop basidia and basidiospores for reproduction.
61. Number of microsporangia in monothecous anthers is only two while in dithecous anthers, four.
62. Terpentine oil is a liquid resin obtained from Pinus.
63. Most cells diameter are in the unit $\mu \mathrm{m}$.
64. It is the most important genus of Gram positive bacterium with many species of great medical importance.
65. The rope like arrangement of microtubules intermediate filaments is well suited for providing mechanical stability to the cell.
66. The cells which are metabolically active contain mitochondria in abundance.
67. Among leucocytes, neutrophils and monocytes are phagocytic.

English

21. Second is the sound made by the first.
22. Second is used to make the first.
23. Second feeds on the first.
24. As, light rays falling on mirror undergo reflection. Similarly, light rays falling on water undergo refraction.
25. As, 'Tennis' is played on 'Court'. Similarly, 'Boxing' is played on 'Ring'.
26. Crossing over or recombination of genes results in variations.
27. Ovum or sperm of human beings contains equal number of autosomes, ie, 22 each.
28. DNAse breaks DNA into nucleotides.
29. Puromycin is a structural analogue of the aminoacyl end of the t RNA. It reversibly reacts with the peptidyl $t \mathrm{RNA}$, thereby terminating protein synthesis.
30. A loreal pit between the eye and nostril is found in pit vipers like Ancistrodon and Crotalus (rattle snake) of North America.
31. Mammary glands are present in all mammals.
32. Irregular flowers are isobilaterally symmetrical.
33. Funnel-shaped style and stigma of Crocus sativus are used as saffron.
34. Papain is a protein digesting enzyme which occurs in the latex of Carica papaya.
35. Manometer is a device used for measuring root pressure.
36. PS-II is reduced by pulling electrons form water which leads to photolysis of water.
37. Efficiency of aerobic respiration is 40%.
38. Samath, Kapilavastu and Sanchi places are linked with Lord Buddha.
39. Ebony, Rosewood and Mahogany are hardwood trees.
40. Arjun, Uddhav and Sudama all were friends of Krishna.
41. Sherlock Holmes, James Bond and Hercules Poirot, all are characters from detective fiction.
42. Goose, Duck and Stork, all are water birds.
