

Module
1

Introduction to Software
Engineering

Version 2 CSE IIT, Kharagpur

Lesson
2

Structured
Programming

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student will be able to:

• Identify the important features of a structured program.
• Identify the important advantages of structured programming over

unstructured ones.
• Explain how software design techniques have evolved over the last 50

years.
• Differentiate between exploratory style and modern style of software

development.

Important features of a structured program.

A structured program uses three types of program constructs i.e. selection,
sequence and iteration. Structured programs avoid unstructured control flows by
restricting the use of GOTO statements. A structured program consists of a well
partitioned set of modules. Structured programming uses single entry, single-exit
program constructs such as if-then-else, do-while, etc. Thus, the structured
programming principle emphasizes designing neat control structures for
programs.

Important advantages of structured programming.

Structured programs are easier to read and understand. Structured programs are
easier to maintain. They require less effort and time for development. They are
amenable to easier debugging and usually fewer errors are made in the course
of writing such programs.

Evolution of software design techniques over the last 50
years.

During the 1950s, most programs were being written in assembly language.
These programs were limited to about a few hundreds of lines of assembly code,
i.e. were very small in size. Every programmer developed programs in his own
individual style - based on his intuition. This type of programming was called
Exploratory Programming.

The next significant development which occurred during early 1960s in the
area computer programming was the high-level language programming. Use of
high-level language programming reduced development efforts and development
time significantly. Languages like FORTRAN, ALGOL, and COBOL were
introduced at that time.

Version 2 CSE IIT, Kharagpur

 As the size and complexity of programs kept on increasing, the
exploratory programming style proved to be insufficient. Programmers found it
increasingly difficult not only to write cost-effective and correct programs, but also
to understand and maintain programs written by others. To cope with this
problem, experienced programmers advised other programmers to pay particular
attention to the design of the program’s control flow structure (in late 1960s). In
the late 1960s, it was found that the "GOTO" statement was the main culprit
which makes control structure of a program complicated and messy. At that time
most of the programmers used assembly languages extensively. They
considered use of "GOTO" statements in high-level languages were very natural
because of their familiarity with JUMP statements which are very frequently used
in assembly language programming. So they did not really accept that they can
write programs without using GOTO statements, and considered the frequent
use of GOTO statements inevitable. At this time, Dijkstra [1968] published his
(now famous) article “GOTO Statements Considered Harmful”. Expectedly, many
programmers were enraged to read this article. They published several counter
articles highlighting the advantages and inevitably of GOTO statements. But,
soon it was conclusively proved that only three programming constructs –
sequence, selection, and iteration – were sufficient to express any programming
logic. This formed the basis of the structured programming methodology.

 After structured programming, the next important development was
data structure-oriented design. Programmers argued that for writing a good
program, it is important to pay more attention to the design of data structure, of
the program rather than to the design of its control structure. Data structure-
oriented design techniques actually help to derive program structure from the
data structure of the program. Example of a very popular data structure-oriented
design technique is Jackson's Structured Programming (JSP) methodology,
developed by Michael Jackson in the1970s.

 Next significant development in the late 1970s was the development
of data flow-oriented design technique. Experienced programmers stated that to
have a good program structure, one has to study how the data flows from input to
the output of the program. Every program reads data and then processes that
data to produce some output. Once the data flow structure is identified, then from
there one can derive the program structure.

 Object-oriented design (1980s) is the latest and very widely used
technique. It has an intuitively appealing design approach in which natural
objects (such as employees, pay-roll register, etc.) occurring in a problem are
first identified. Relationships among objects (such as composition, reference and
inheritance) are determined. Each object essentially acts as a data hiding entity.

Version 2 CSE IIT, Kharagpur

Exploratory style vs. modern style of software development.
An important difference is that the exploratory software development style is
based on error correction while the software engineering principles are primarily
based on error prevention. Inherent in the software engineering principles is the
realization that it is much more cost-effective to prevent errors from occurring
than to correct them as and when they are detected. Even when errors occur,
software engineering principles emphasize detection of errors as close to the
point where the errors are committed as possible. In the exploratory style, errors
are detected only during the final product testing. In contrast, the modern practice
of software development is to develop the software through several well-defined
stages such as requirements specification, design, coding, testing, etc., and
attempts are made to detect and fix as many errors as possible in the same
phase in which they occur.

In the exploratory style, coding was considered synonymous with software
development. For instance, exploratory programming style believed in developing
a working system as quickly as possible and then successively modifying it until it
performed satisfactorily.

In the modern software development style, coding is regarded as only a
small part of the overall software development activities. There are several
development activities such as design and testing which typically require much
more effort than coding.

A lot of attention is being paid to requirements specification. Significant effort is
now being devoted to develop a clear specification of the problem before any
development activity is started.

Now there is a distinct design phase where standard design techniques are
employed.

Periodic reviews are being carried out during all stages of the development
process. The main objective of carrying out reviews is phase containment of
errors, i.e. detect and correct errors as soon as possible. Defects are usually not
detected as soon as they occur, rather they are noticed much later in the life
cycle. Once a defect is detected, we have to go back to the phase where it was
introduced and rework those phases - possibly change the design or change the
code and so on.

Today, software testing has become very systematic and standard testing
techniques are available. Testing activity has also become all encompassing in
the sense that test cases are being developed right from the requirements
specification stage.

Version 2 CSE IIT, Kharagpur

There is better visibility of design and code. By visibility we mean production of
good quality, consistent and standard documents during every phase. In the
past, very little attention was paid to producing good quality and consistent
documents. In the exploratory style, the design and test activities, even if carried
out (in whatever way), were not documented satisfactorily. Today, consciously
good quality documents are being developed during product development. This
has made fault diagnosis and maintenance smoother.

Now, projects are first thoroughly planned. Project planning normally includes
preparation of various types of estimates, resource scheduling, and development
of project tracking plans. Several techniques and tools for tasks such as
configuration management, cost estimation, scheduling, etc. are used for
effective software project management.

Several metrics are being used to help in software project management and
software quality assurance.

The following questions have been designed to test the
objectives identified for this module:

1. Identify the problem one would face, if he tries to develop a large
software product without using software engineering principles.

Ans.: - Without using software engineering principles it would be difficult to

develop large programs. In industry it is usually needed to develop large
programs to accommodate multiple functions at various levels. The
problem is that the complexity and the difficulty levels of the programs
increase exponentially with their sizes as shown in fig. 1.3.

Fig. 1.3: Increase in development time and effort with problem size

Version 2 CSE IIT, Kharagpur

For example, a program of size 1,000 lines of code has some
complexity. But a program with 10,000 LOC is not 10 times more difficult
to develop, but may be 100 times more difficult unless software
engineering principles are used. Software engineering helps to reduce
the programming complexity.

2. Identify the two important techniques that software engineering uses to
tackle the problem of exponential growth of problem complexity with its
size.

Ans.: - Software engineering principles use two important techniques to reduce

problem complexity: abstraction and decomposition.

3rd abstraction

2nd abstraction

1st abstraction

Full Problem

 Fig. 1.4: A hierarchy of abstraction

The principle of abstraction (in fig.1.4) implies that a problem can be
simplified by omitting irrelevant details. Once simpler problem is solved
then the omitted details can be taken into consideration to solve the next
lower level abstraction. In this technique any random decomposition of a
problem into smaller parts will not help. The problem has to be
decomposed such that each component of the decomposed problem
can be solved in solution and then the solution of the different
components can be combined to get the full solution.

Version 2 CSE IIT, Kharagpur

Fig. 1.5: Decomposition of a large problem into a set of smaller
problems.

In other words, a good decomposition as shown in fig.1.5 should
minimize interactions among various components.

3. State five symptoms of the present software crisis.

Ans.: - Software engineering appears to be among the few options available to

tackle the present software crisis. To explain the present software crisis
in simple words, it is considered the following that are being faced. The
expenses that organizations all around the world are incurring on
software purchases compared to those on hardware purchases have
been showing a worrying trend over the years (as shown in fig.1.6).

Fig. 1.6: Change in the relative cost of hardware and software over time

Version 2 CSE IIT, Kharagpur

Organizations are spending larger and larger portions of their budget on
software. Not only are the software products turning out to be more
expensive than hardware, but they also present a host of other problems
to the customers: software products are difficult to alter, debug, and
enhance; use resources non-optimally; often fail to meet the user
requirements; are far from being reliable; frequently crash; and are often
delivered late. Among these, the trend of increasing software costs is
probably the most important symptom of the present software crisis.

4. State four factors that have contributed to the making of the present
software crisis.

Ans.: - There are many factors that have contributed to the making of the

present software crisis. Those factors are larger problem sizes, lack of
adequate training in software engineering, increasing skill shortage, and
low productivity improvements.

5. Suggest at least two possible solutions to the present software crisis.

Ans.: - It is believed that the only satisfactory solution to the present software

crisis can possibly come from a spread of software engineering practices
among the engineers, coupled with further advancements in the software
engineering discipline itself.

6. Identify at least four basic characteristics that differentiate a simple
program from a software product.

Ans.: - Programs are developed by individuals for their personal use. They are

therefore, small in size and have limited functionality but software
products are extremely large. In case of a program, the programmer
himself is the sole user but on the other hand, in case of a software
product, a large number of users who are not involved with the
development are attached. In case of a program, a single developer is
involved but in case of a software product, a large number of developers
are involved. For a program, user interface may not be so important
because programmer is the sole user. On the other hand, for a software
product, user interface must be very important because developers of
that product and users of that product are totally different. In case of a
program, very little documentation is expected but a software product
must be well documented. A program can be developed according to the
programmer’s individual style of development but a software product
must be developed using software engineering principles.

7. Identify two important features of that a program must satisfy to be
called as a structured program.

Version 2 CSE IIT, Kharagpur

Ans.: - First, a structured program uses three type of program constructs i.e.
selection, sequence and iteration. Structured programs avoid
unstructured control flows by restricting the use of GOTO statements.
Secondly, structured program consists of a well partitioned set of
modules. Structured programming uses single entry, single-exit program
constructs such as if-then-else, do-while, etc. Thus, the structured
programming principle emphasizes designing neat control structures for
programs.

8. State three important advantages of structured programming.

Ans.: - Structured programs are easier to read and understand. Structured

programs are easier to maintain. They require less effort and time for
development. They are amenable to easier debugging and usually fewer
errors are made in the course of writing such programs.

9. Explain exploratory program development style.

Ans.: - The exploratory software development style is based on error correction

while the software engineering principles are primarily based on error
prevention. Inherent in the software engineering principles is the
realization that it is much more cost-effective to prevent errors from
occurring than to correct them as and when they are detected. Even
when errors occur, software engineering principles emphasize detection
of errors as close to the point where the errors are committed as
possible. In the exploratory style, errors are detected only during the final
product testing.

 In the exploratory style, coding was considered synonymous with
software development. For instance, the naïve way of developing a
software product (which is called the exploratory programming style)
believed in developing a working system as quickly as possible and then
successively modifying it until it performed satisfactorily.

10. Show at least three important drawbacks of the exploratory
programming style.

Ans.: - As the size and complexity of programs kept on increasing, the
exploratory programming style proved to be insufficient. The exploratory
programming style proved to be insufficient because -

Version 2 CSE IIT, Kharagpur

• People wanted more sophisticated things to be done by software and as
a result the size and complexity of programs increased. Exploratory style
proved to be insufficient for developing large and complex programs.

• Programmers found that it was very difficult to write cost effective and
correct programs using the exploratory style.

• Programmers also found that it was very difficult to understand and
maintain the programs which were written by others.

11. Identify at least two advantages of using high-level languages over
assembly languages.

Ans.: - Assembly language programs are limited to about a few hundreds of lines

of assembly code, i.e. are very small in size. Every programmer
develops programs in his own individual style - based on intuition. This
type of programming is called Exploratory Programming.

 But use of high-level programming language reduces development
efforts and development time significantly. Languages like FORTRAN,
ALGOL, and COBOL are the examples of high-level programming
languages.

12. State at least two basic differences between control flow-oriented and
data flow-oriented design techniques.

Ans.: - Control flow-oriented design deals with carefully designing the program’s
control structure. A program's control structure refers to the sequence, in which
the program's instructions are executed, i.e. the control flow of the program. But
data flow-oriented design technique identifies:

• Different processing stations (functions) in a system

• The data items that flows between processing stations

13. State at least five advantages of object-oriented design techniques.

Ans.: - Object-oriented techniques have gained wide acceptance because of it’s:

• Simplicity (due to abstraction)

• Code and design reuse

• Improved productivity

• Better understandability

Version 2 CSE IIT, Kharagpur

• Better problem decomposition

• Easy maintenance

14. State at least three differences between the exploratory style and
modern styles of software development.

Ans.: - An important difference is that the exploratory software development style
is based on error correction while the software engineering principles are
primarily based on error prevention. Inherent in the software engineering
principles is the realization that it is much more cost-effective to prevent errors
from occurring than to correct them as and when they are detected. Even when
errors occur, software engineering principles emphasize detection of errors as
close to the point where the errors are committed as possible. In the exploratory
style, errors are detected only during the final product testing. In contrast, the
modern practice of software development is to develop the software through
several well-defined stages such as requirements specification, design, coding,
testing, etc., and attempts are made to detect and fix as many errors as possible
in the same phase in which they occur.
 In the exploratory style, coding was considered synonymous with
software development. For instance, the naïve way of developing a software
product (which is called the exploratory programming style) believed in
developing a working system as quickly as possible and then successively
modifying it until it performed satisfactorily.
 In the modern software development style, coding is regarded as only
a small part of the overall software development activities. There are several
development activities such as design and testing which typically require much
more effort than coding.

A lot of attention is being paid to requirements specification. Significant effort is
devoted to develop a clear specification of the problem before any development
activity is started.

Now there is a distinct design phase where standard design techniques are
employed.

Periodic reviews are being carried out during all stages of the development
process. The main objective of carrying out reviews is phase containment of
errors, i.e. detect and correct errors as soon as possible. Defects are usually not
detected immediately after when they occur, rather they are noticed much later in
the life cycle. Once a defect is detected we have to go back to the phase where it
was introduced and rework those phases - possibly change the design or change
the code and so on.

Today, software testing has become very systematic and standard testing
techniques are available. Testing activity has also become all encompassing in

Version 2 CSE IIT, Kharagpur

the sense that test cases are being developed right from the requirements
specification stage.

There is better visibility of design and code. By visibility we mean production of
good quality, consistent and standard documents during every phase. In the
past, very little attention was paid to producing good quality and consistent
documents. In the exploratory style, the design and test activities, even if carried
out (in whatever way), were not documented satisfactorily. Today, consciously
good quality documents are being developed during product development. This
has made fault diagnosis and maintenance far more smoother.

Now, projects are first thoroughly planned. Project planning normally includes
preparation of various types of estimates, resource scheduling, and development
of project tracking plans. Several techniques and tools for tasks such as
configuration management, cost estimation, scheduling, etc. are used for
effective software project management.

Several metrics are used to help in software project management and software
quality assurance.

Mark the following as either True or False. Justify your
answer.

1. All software engineering principles are backed by either scientific
basis or theoretical proof.

Ans.: - False.

Explanation: - Many software engineering principles are just thumb rules
and lack any scientific basis or theoretical proof.

2. There are well defined steps through which a problem is solved

using an exploratory style.

Ans.: - False.

Explanation: - The exploratory software development style is based on
error correction while the software engineering principles are primarily
based on error prevention. Inherent in the software engineering principles
is the realization that it is much more cost-effective to prevent errors from
occurring than to correct them as and when they are detected. Even when
errors occur, software engineering principles emphasize detection of
errors as close to the point where the errors are committed as possible. In

Version 2 CSE IIT, Kharagpur

the exploratory style, errors are detected only during the final product
testing.

For the following, mark all options which are true.

1. Which of the following problems can be considered to be contributing to
the present software crisis?

□ large problem size √
□ lack of rapid progress of software engineering √
□ lack of intelligent engineers
□ shortage of skilled manpower √

2. Which of the following are essential program constructs (i.e. it would not

be possible to develop programs for any given problem without using the
construct)?

□ sequence √
□ selection √
□ jump
□ iteration √

Version 2 CSE IIT, Kharagpur

	Introduction to Software Engineering
	Structured Programming
	Specific Instructional Objectives
	Important features of a structured program.
	Important advantages of structured programming.
	Evolution of software design techniques over the last 50 years.
	Exploratory style vs. modern style of software development.
	questions
	True or False
	Mark true

