CHEMISTRY 1

1.	The hybridiz	^	C atom in but (3) both two		cid is:	
2.	Which of the (1) n-pen (2) 2, 2-d (3) 2, 3-d	e following is	not a isomer o	· / I	:	
3.	The oxidatio (1) -2 and – 4		C atom in Ch ₂ and –4 (3) (pectively:
4.	Which of the (1) C ₆ H ₅		ssolves in loni (3) CCI ₄			
5.	The conjuga (1) S ⁻²		is: (3) both two	(4) non	e	
6.	titration as a (1) NH ₄ C (2) NH ₄ C (3) NH ₄ C	llein of pH rai suitable indi PH and HCI PH and HCOO PH and C ₂ H ₄ O I and C ₂ O ₄ H ₂	cator : H	sed in wh	ich of the fo	llowing type of
7.	Which of the (1) Malachite	_	iron are: Iernatite (3) S	Siderite	(4) Limonite	e
8.		NaCI and 200	of chloride ion ml. of 4.0 M (3) 5.0 M	BaCl ₂ will	be:	ation of 300
9.	Which of the (1) N ₂ ⁻²	e following ha	s least bond e (3) N ₂ ⁺	nergy : (4) N ₂		
10	. Which of the (1) O ₂ -2	e following sp (2) O ₂ ⁺	ecies has high (3) O ₂	est bond e	energy:	
11		yclobutene ne	mpound is no	t aromatic	2:	

Downloaded From www.previousexampapers.com

	(1) CCI ₂ F ₂ (2) CCI ₄ (3) CF ₄ (4) Acetor		pounu i	s useu as i	enigerai	н.	
	ich of the C ₆ H ₆	following is w (2) CH ₃ -C≡CH		(3) CH ₂ =C	H_2 (4)	CH ₃ -C≡C-	CH ₃
	•	y consist of the (2) Hydrogen		_	(4) B	utane	
15. The (1)	e solubility 2.5 x 10 ⁻⁵	product of Ca (2) 7 x	aCo ₃ is \$	5 x 10⁻⁹. Th (3) 2.5 x 10	e solubil) ⁻⁴	ity will be (4) 2.2 2	2 : x 10 ⁻⁹
16. The (1)	e outer ele nd ¹⁰	ctronic configu (2) ns ¹	(3) np ⁶	of alkali ea		als is :	
		f 2, 4, 6-trinitro (2) Basic	-		Weak ba	sic	
	ich of the -C ₆ H ₅	following grou (2)-OH	ip is sha (3) –CH	A	_	directive	:
v	(1) combu	nal distillation on	rocess h	ydrocarbo	ons are fo	ound from	petroleum :
		etroleum cont imethyl penta					
(1)	30%	(2) 60%	(3) 10%	(4)	70%		
res (1)	which of the onance : CH ₂ =CH-C C ₆ H ₅ Cl	ne following ha	(2) BrC (4) CH ₂	₆ H ₅	does no	t take par	t in
22. Wh	(1) 40% so (2) HCHC (3) The B. (4) The bo	following state olution HCHO is least reactive. P. of isovarelal oiling point of keep the expecte.	ement is is known re in its h dehyde i etones a	false: a as formalication as formalicat	s series n-varelal nan that o	•	es
		(2) 9					

	2Cl ₂ Ca(C			
24. A B	(2) Westron		compound C will be tetra chloride (4) E	
` '	. ,	. ,	` ,	
25. Which of th	_			
(1) BeCl ₂	$(2) MgCl_2$	(3) CaCl ₂	(3) BaCl ₂	
26. The laughin	o oas is :			
_	(2) NO	(3) N_2O	(4) N_2O_5	
27 The hydrog	on ion concents	ection of a colu	tion is 3.98 x 10 ⁻⁶ me	olo non liton. The
	this solution w		1000 18 3.70 X 10 100	oie pei iitei. Tiie
-		(3) 5.4	(4) 5.9	
28. The reaction			O	
(1) Butane	(2) Ethane	(3) Methane	(4) Propane	
20 Which of th	o following aci	de does not cou	ntain – COOH grou	a •
	e acid (2) Ba		italii – Coon grou	.
(3) Lactic ac		ccinnic acid		
(-)				
30. Which of th	e followin <mark>g</mark> con	npound of xen	one do <mark>es n</mark> ot exists :	
$(1) \text{ XeF}_6$	(2) XeF ₄	(4) XeF ₅	(4) XeF ₂	
31. FeSO ₄ , 7H ₂ O) is .			
,		triol (3) Gi	een vitriol (4) White	vitriol
(=) = = = = = = = =			(1)	,
		l. HCI when d	iluted with water wh	nite precipitate is
formed which				
(1) Bismith (oxychloride	(2) Bismith o	xide	
(3) Bismith	iyaroxiae i CV	(3) none of th	esepers.com	
33. The stronge	st acid is :			
(1) acetic				
` '	oroacetic acid			
(3) dichle	oracetic acid			
(4) mono	ochloroacetic ac	id		
24 The folgo sta	tomant vacand	ina alkana ia .		
34. The false sta	does not perform	_	on reaction	
	does not periori does not gives e	* *		
			ilute KMnO ₄ solution	1
	es not decolouris			
		_		
35. Which of th	_	_		
(1) C6H5NH2	(2) CI	H_3NH_2		

usexampapers.com

Downloade	d From www.previousexampapers.com
(3) NH ₃	(4) CH ₃ CONH ₂
easily:	ing aromatic compound gives sulphonation reaction very (2) Nitrobenzene (3) Toluene (4) benzene
37. The geometry of I3 -(1) Triangular	• is: (2) Linear (3) Tetrahedral (4) T-shape
560 days will becom	dio active element is 140 days. 1 gm. of this element after the : $\frac{1}{4}gm \qquad (3) \frac{1}{8}gm. \qquad (4) \frac{1}{2}gm.$
39. The volume concent	tration of hydrogen peroxide 6.8% concentration will be :
	.2 (3) 22.4 (4) 20
	ing on combustion give maximum energy: opane (3) Methane (4) Butane
41. C6H6 + CH3CL (1) Gattermann	C6H5CH3 + HCI The name of above reaction is: (2) Reimer-tiemann

(3) Friedel-Craft

(4) Cannizaro

42. The oxidation state of Cr in $K_2Cr_2O_7$ is:

(1) + 4 (2) + 3

(3) + 6

(4) + 5

43. The natural rubber is the polymer of :

(2) polyamide (3) isoprene (4) none of these (1) 1, 3- butadiene www.PreviousExamPapers.com

44. Nylone-66 is a:

(1) polyester (2) polyamide (3) polyacrylate

(4) none of these

45. $2NO(g) + CI_2(g) \rightarrow 2$ NOCI The equilibrium constant for this reaction is :

(1)
$$K_c = \frac{[NOCI]^2}{[NO]^2[CI_2]^2}$$
 (2) $K_c = \frac{[NOCI]^2}{[2NO]^2[CI_2]}$

(2)
$$K_c = \frac{[NOCI]^2}{[2NO]^2[CI_2]}$$

(3)
$$K_c = \frac{[NOCI]^2}{[NO]^2 [CI^2]}$$
 (4) $K_c = \frac{[2NOCI]}{[2NO][CI]}$

(4)
$$K_c = [2NOCI]$$

[2NO][CI]

A 46. $C_6H_6 + CO + HCI \longrightarrow C_6H_5CHO + HCI$ here A is:

(1) anhydrans ZnO (2) $V_2O_5/450^0$ C

(3) anhydrous AICO₃ (4) solid KOH

47.	C) respective (1) CH ₃ COO	ely. The st	rongest acid		em is :	a 1.75 x 10° (at 2	5 °		
48.	(2) CH ₃ C (3) CH ₃ C		I ₃) CH ₂ OH I ₃) CHOH ₂ CH ₂ OH	om (asterisl	k) is asym	metric :			
49.						AICI ₃ to form: (4) Chlorobenzene	;		
50.	Which of the	e following (2) HNO	_	0	C ₂ Cr ₂ O ₇				
51.	In which of mechanism i	s maximu	m:			SN ₁ reaction (4) CH ₃ CH ₂ CI			
52.	The energy (1) 28.2 MeV		realated to m			is: (4) none of these			
53.	The mole of (1) 5 x 10 ²		ion in 50 ml.	of 0.1 M H (3) 5 x 10 ³	CI solutio (4) 5 x	n will be : 10 ⁻²			
54.	54. Petroleum is mainly consist of: (1) Aliphatic alcohol (2) Aromatic hydrocarbon (3) Alipnetic hydrocarbon (4) None of these revious ExamPapers.com								
55. C ₆ : will be		<u>Δ</u> Δ	+	The pi	roducts in	the above reactio	n		
	(1) C_6H_5I+CI (3) C_6H_5OH+CI	-	, ,	I ₅ CH ₃ +HOI I ₆ +CH ₃ OI					
56	F3 is : (1) Bronsted	base (2	2) Lewis base	(3) Lewis a	acid (4) Br	onsted acid			
57. W	hich of the fol (1) Benzaldel	_	_	s violet colo (3) Nitrober		eCI ₃ solution: (4) Phenol			
58. Hy	po solution fo (1) Na ₅ [Ag(S			wing compl [Ag(S ₂ O ₃) ₂]	_	und with AgCI :			

	$(3) Na2{Ag(S)}$	$[2O_3)_2]$	(4) Na ₃	$[Ag(S_2($	$O_3)_3$]			
	olecular oxyge ro magnetic		etic	(3) para	a magne	etic	(4) non 1	magnetic
60. Bo	onds in acetyle (1) 2π bonds	ene are: (2) one π both	nd	(3) 3π t	onds	(4) nor	ne of thes	e
61. Tł	(2) It gives te(3) It gives se	ent for Griyn rtiary alcohol rtiary alcohol econdary alcoh rimary alcohol	with aceta with aceto ol with aceto	imide one cetaldeh				
62. W	hich of the fol (1) C ₂₀ H ₄₂	_		liquid s I ₁₈			al tempei	rature :
63. Th	(1) Potassium (2) AgNO ₃ so (3) Water (4) All above	n chloride solution		maxim	um in	6		
64. Th	ne weight of a (1) 78 gm.	benzene mole (2) 7.8 gm.		x 10 ⁻²³		(4) nor	ne of thes	e
65. Cı	ıFeS ₂ is :							
	(1) iorn pyrite	es (2) m	nalachite	(3) chal	lcosite	(4) cha	lcopyrite	S
66 Dr	imary halides	follow the fol	llowing r	ogation	maaha	nicm .		
00.11	(1) SN_1	(2) SN rev	(3) botl		(4) non		ese	
67. C	and Si belong (1) liquid	to the same g (2) gas	(3) soli	eriodic d	table, (4) non	CO ₂ is	a gas an ese	d SiO ₂ is a :
	(2) bond ener(3) the ioniza	sociation due gy of OH high tion potential on negativity of	to hydrogo of oxygen oxygen is	en bond is high s high		blo bo	nd goog t	o that
υ>. ``Ι	ne negauve pa	art or the moi	iccuie auc	ոուց ա ւ	ւսե ԱՕԱ	mie no	uu goes t	บ เมลเ

unsaturated asymmetric carbon atom which is linked to the least number of

hydrogen atoms." This statement is related to:

(1) Markownikoff's law(2) Peroxide effect

(3) Bayer's law of distortion

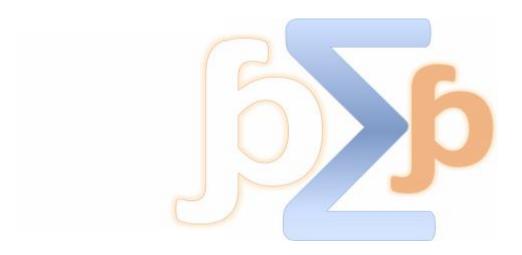
Downloaded From www.previousexampapers.com

Downloaded From www.previousexampapers.com (4) none of these e conjugate base of NH3 is:

70. T	he conjugate b (1) N ₂ H ₄				(4) NH ₂	+	
(1) N ₂ H ₄ (2) NH ₂ (3) NH ₄ (4) NH ₂ ⁺ 71. (a) N ₂ and (b) C ₂ H ₂ . The nos. of ππnd σφond in the molecules are respectively (1) (a) 2,2 (b) 2,2 (2) (a) 1,2 (b) 2,1 (3) (a) 2,1 (b) 2,3 (4) (a) 2,1 (b) 2,1 72. In which of the following compound there are maximum no. of sp ² hybrid C atoms: (1) Benzene (2) 1,3,5-hexatriene (2) 1,2,4-hexatriene (4) both 1 and 2 73. The shape of the molecule having hybrid orbitals of 20% character will be: (1) octahedral (2) tetrahedral (3) square planer (4) triangular bipyramidal 74. The pH of a solution is 5. If the dilution of this solution is increased by 100 time the pH value will be: (1) 5 (2) 7 (3) 9 (4) 8 75. The required amount of oxygen for combustion of 20 ml. of gaseous hydrocarbon is 50 ml. The hydrocarbon will be: (1) C ₂ H ₂ (2) C ₂ H ₄ (3) C ₂ H ₆ (4) C ₃ H ₄ 76. The formula of Celestine is: (1) SrSO ₄ (2) SrCO ₃ (3) SrO (4) SrCl ₂							
		followin	g com	pound there	are maxim	um no. of s	p ² hybrid C
awiii	(1) Benzene				9		
73. T	(1) octahedra	1	(2) te	trahedral		0% charac	ter will be :
	(3) square pla	aner	(4) tr	iangular bipyr	amidal)	
	H value will be	e:	-			n is increas	sed by 100 times
hydro	ocarbon is 50 i (1) C ₂ H ₂	ml. The (2) C_2	hydro H ₄	carbon will b (3) C ₂ H ₆	e :		ous
76					(4) SrCl		
78	(1) 4 faraday 8. Nitrogen do (1) The b (2) Vacco (3) N bel (4) There	es not for condener; ent d-orb ongs to V	orms New York Street Property	faraday (3) NF ₅ because: N≡N is very hi re not present p	faraday gh	(4) 3 faraday	
79	(1) lower (2) increa (3) lower (4) increa	red by 2 to a sed by 2 to ed by 10	times times times	:	by 10 ⁰ C, tl	ne rate of ro	eaction will be :
80). Which of th	e follow	ing gi	ves red preci	oitate with	ammonica	l cuprous

(3) Methane (4) Acetylene

chloride: (1) Propane


(2) Ethane

81.	$[Cu(NH_3)_4]^{2+}$ (1) dsp ²	snows the following $(2) \operatorname{sp}^3 d$	lowing hybrid (3) dsp ³				
82.	capable to pr	recipitate all o		s in it. Which of the added in this solution (4) Cu ²⁺			
83.	Fool's gold is	s: (2) FeS ₂	(3) Al ₂ O ₅	(4) CuFeS ₂			
84.	In which of to (1) OF ₂		compound the (3) XeF ₂	central atom is in sp (4) NH ₂ ⁺	p ² hybrid state :		
85.	The number (1) 7	of alkenyl gro		rom C ₄ H ₇ are : (4) 8			
87.	(1) Coolin (2) Anti k (3) Bleach (4) None of The alkaline (1) dehydroge The degree of (1) 6.71 x 10 ⁻³	nocking agent ning agent of these hydrolysis of nation (2) del	ester is known hydration (3) e	6	•		
89.	Haber proce (1) NH ₃	ss is used for 1	oroduction of (3) H ₂ SO ₄	which of the followi	ng:		
 90. The p_{ka} value of phenolphthalein is 9.1 and the pH range is 8-10. In which of the following titrations it can be used as an indicator: NH₄OHand HCI NH₄OH and CH₃COOH NaOH and HCI NH₄OH 							
91.	Number of e (1) pb ²⁺	lectrons in a o (2) Hg ²⁺	ne molecule of (3) Ba ²⁺	CO ₂ : (4) Cu ²⁺			
92.	Which of the (1) Mn ⁺⁶	e following spe (2) Ni ²⁺	ecies shows the	maximum magneti (4) Ag ⁺	c moment :		
93.	K sp value of	CaF ₂ is 3.75 x	10 ¹¹ The solu	bility will be :			

(1) 1.45x10 ⁻¹¹ mol/litre ⁻¹ (2) 3.45x10 ⁻⁴ mol/liter ⁻¹ (3) 2.05x10 ⁻⁴ mol/liter ⁻¹ (4) 3.75 x 10 ⁻¹¹ mol/liter ⁻¹
94. When Pb ₃ O ₄ is heated with dilute H N O ₃ it gives: (1) pbO ₂ and pb(NO ₃) ₂ (2) pbO and pb(NO ₃) ₂ (3) pbO ₂ (4) pbO
95. C-H bond length is least in : (1) Acetylene (2) Methane (3) Ethylene (4) Ethane
96. The minimum nos. of carbon atoms in ketones which will show chain isomerism will be:
(1) Seven (2) four (3) six (4) five
97. Which of the following organic compound could not be dried by anhydrou CaCI ₂ : (1) ethanol (2) benzene (3) chloroform (4) ethyl acetate
98. Which of the following compound forms white precipitate with bromine water: (1) Nitrobenzene (2) Phenol (3) Benzene (4) all above
99. Gypsum is: (1) CaSO ₄ .H ₂ O (2) CaSO ₄ . 2H ₂ O (3) 2CaSO ₄ . 2H ₂ O (4) CaSO ₄
100.Which of the following carbonium ion is most stable: WWW.Previous Exampapers.com
(1) CH_3 - C — CH_3 (2) CH_3CH_2
CH ₃ + +
(3) CH ₃ 0CH-CH ₃ (4) CH ₃

ANSWER SHEET

1.(2)	2.(3)	3.(3)	4.(2)	5.(2)	6.(4)	7.(1)	8.(3)	9.(1)	10.(4)	11.(1)
12.(1)	13.(2)	14.(4)	15.(2)	16.(4)	17.(3)	18.(2)	19.(2)	20.(2)	21.(1)	22.(2)
23.(3)	24.(4)	25.(4)	26.(3)	27.(3)	28.(3)	29.(2)	30.(3)	31.(3)	32.(1)	33.(2)
34.(3)	35.(2)	36.(3)	37.(2)	38.(1)	39.(4)	40.(4)	41.(3)	42(3)	43.(3)	44.(2)
45.(3)	46.(3)	47.(1)	48.(1)	49.(1)	50.(1)	51.(2)	52.(1)	53.(2)	54.(3)	55.(3)
56.(3)	57.(4)	58.(3)	59.(3)	60.(1)	61.(1)	62.(3)	63.(3)	64.(3)	65.(4)	66.(1)
67.(3)	68.(1)	69.(1)	70.(2)	71.(3)	72.(4)	73.(4)	74.(2)	75.(1)	76.(2)	77.(2)
78.(2)	79.(2)	80.(4)	81.(1)	82.(1)	83.(2)	84.(4)	85.(4)	86.(2)	87.(4)	88.(1)
89.(1)	90.(3)	91.(1)	92.(3)	93.(3)	94.(1)	95.(1)	96.(4)	97.(1)	98.(2)	99.(2)
100.(1)										

www.PreviousExamPapers.com