1. Let A be a 2×2 nonzero real matrix. Which of the following is true?
(A) A has a nonzero eigenvalue.
(B) A^{2} has at least one positive entry.
(C) trace $\left(A^{2}\right)$ is positive.
(D) All entries of A^{2} cannot be negative.
2. Let A be a 3×3 real matrix with zero diagonal entries. If $1+i$ is an eigenvalue of A, the determinant of A equals
(A) 4 .
(B) -4 .
(C) 2 .
(D) -2 .
3. Let A be an $n \times n$ matrix and let b be an $n \times 1$ vector such that $A x=b$ has a unique solution. Let A^{\prime} denote the transpose of A. Then which of the following statements is false?
(A) $A^{\prime} x=0$ has a unique solution.
(B) $A^{\prime} x=c$ has a unique solution for any non-zero c.
(C) $A x=c$ has a solution for any c.
(D) $A^{2} x=c$ is inconsistent for some vector c.
4. Let A and B be $n \times n$ matrices. Assuming all the inverses exist,

$$
\left(A^{-1}-B^{-1}\right)^{-1}
$$

equals
(A) $\left(I-A B^{-1}\right)^{-1} B$.
(B) $A(B-A)^{-1} B$.
(C) $B(B-A)^{-1} A$.
(D) $B(A-B)^{-1} A$.
5. Let f be a function defined on $(-\pi, \pi)$ as

$$
f(x)=(|\sin x|+|\cos x|) \cdot \sin x .
$$

Then f is differentiable at
(A) all points.
(B) all points except at $x=-\pi / 2, \pi / 2$.
(C) all points except at $x=0$.
(D) all points except at $x=0,-\pi / 2, \pi / 2$.
6. The equation of the tangent to the curve $y=\sin ^{2}\left(\pi x^{3} / 6\right)$ at $x=1$ is
(A) $y=\frac{1}{4}+\frac{\sqrt{3} \pi}{4}(x-1)$.
(B) $y=\frac{\sqrt{3} \pi}{4} x+\frac{1-\sqrt{3} \pi}{4}$.
(C) $y=\frac{\sqrt{3} \pi}{4} x-\frac{1-\sqrt{3} \pi}{4}$.
(D) $y=\frac{1}{4}-\frac{\sqrt{3} \pi}{4}(x-1)$.
7. Let f be a function defined from $(0, \infty)$ to \mathbb{R} such that

$$
\lim _{x \rightarrow \infty} f(x)=1 \text { and } f(x+1)=f(x) \quad \text { for all } x
$$

Then f is
(A) continuous and bounded.
(B) continuous but not necessarily bounded.
(C) bounded but not necessarily continuous.
(D) neither necessarily continuous nor necessarily bounded.
8. The value of $\lim _{x \rightarrow \infty}(\log x)^{1 / x}$
(A) is e.
(B) is 0 .
(C) is 1 .
(D) does not exist.
9. The number of real solutions of the equation,

$$
x^{7}+5 x^{5}+x^{3}-3 x^{2}+3 x-7=0
$$

is
(A) 5 .
(B) 7 .
(C) 3 .
(D) 1 .
10. Let x be a real number. Then

$$
\lim _{m \rightarrow \infty}\left(\lim _{n \rightarrow \infty} \cos ^{2 n}(m!\pi x)\right)
$$

(A) does not exist for any x.
(B) exists for all x.
(C) exists if and only if x is irrational.
(D) exists if and only if x is rational.
11. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence such that $a_{1} \leq a_{2} \leq \cdots \leq a_{n} \leq \cdots$. Suppose the subsequence $\left\{a_{2 n}\right\}_{n \geq 1}$ is bounded. Then
(A) $\left\{a_{2 n}\right\}_{n \geq 1}$ is always convergent but $\left\{a_{2 n+1}\right\}_{n \geq 1}$ need not be convergent.
(B) both $\left\{a_{2 n}\right\}_{n \geq 1}$ and $\left\{a_{2 n+1}\right\}_{n \geq 1}$ are always convergent and have the same limit.
(C) $\left\{a_{3 n}\right\}_{n \geq 1}$ is not necessarily convergent.
(D) both $\left\{a_{2 n}\right\}_{n \geq 1}$ and $\left\{a_{2 n+1}\right\}_{n \geq 1}$ are always convergent but may have different limits.
12. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of positive numbers such that $a_{n+1} \leq a_{n}$ for all n, and $\lim _{n \rightarrow \infty} a_{n}=a$. Let $p_{n}(x)$ be the polynomial

$$
p_{n}(x)=x^{2}+a_{n} x+1,
$$

and suppose $p_{n}(x)$ has no real roots for every n. Let α and β be the roots of the polynomial $p(x)=x^{2}+a x+1$. Then
(A) $\alpha=\beta, \alpha$ and β are not real.
(B) $\alpha=\beta, \alpha$ and β are real.
(C) $\alpha \neq \beta, \alpha$ and β are real.
(D) $\alpha \neq \beta, \alpha$ and β are not real.
13. Consider the set of all functions from $\{1,2, \ldots, m\}$ to $\{1,2, \ldots, n\}$, where $n>m$. If a function is chosen from this set at random, what is the probability that it will be strictly increasing?
(A) $\binom{n}{m} / m^{n}$.
(B) $\binom{n}{m} / n^{m}$.
(C) $\binom{m+n-1}{m} / m^{n}$.
(D) $\binom{m+n-1}{m-1} / n^{m}$.
14. A flag is to be designed with 5 vertical stripes using some or all of the four colours: green, maroon, red and yellow. In how many ways can this be done so that no two adjacent stripes have the same colour?
(A) 576 .
(B) 120 .
(C) 324 .
(D) 432 .
15. Suppose x_{1}, \ldots, x_{6} are real numbers which satisfy

$$
x_{i}=\prod_{j \neq i} x_{j}, \quad \text { for all } i=1, \ldots, 6 .
$$

How many choices of $\left(x_{1}, \ldots, x_{6}\right)$ are possible?
(A) Infinitely many.
(B) 2 .
(C) 3 .
(D) 1 .
16. Suppose X is a random variable with $P(X>x)=1 / x^{2}$, for all $x>1$. The variance of $Y=1 / X^{2}$ is
(A) $1 / 4$.
(B) $1 / 12$.
(C) 1 .
(D) $1 / 2$.
17. Let $X \sim N\left(0, \sigma^{2}\right)$, where $\sigma>0$, and

$$
Y= \begin{cases}-1 & \text { if } X \leq-1 \\ X & \text { if } X \in(-1,1) \\ 1 & \text { if } X \geq 1\end{cases}
$$

Which of the following statements is correct?
(A) $\operatorname{Var}(Y)=\operatorname{Var}(X)$.
(B) $\operatorname{Var}(Y)<\operatorname{Var}(X)$.
(C) $\operatorname{Var}(Y)>\operatorname{Var}(X)$.
(D) $\operatorname{Var}(Y) \geq \operatorname{Var}(X)$ if $\sigma \geq 1$, and $\operatorname{Var}(Y)<\operatorname{Var}(X)$ if $\sigma<1$.
18. If a fair coin is tossed 5 times, what is the probability of obtaining at least 3 consecutive heads?
(A) $1 / 8$.
(B) $5 / 16$.
(C) $1 / 4$.
(D) $3 / 16$.
19. Let X and Y be random variables with mean λ. Define

$$
Z= \begin{cases}\min (X, Y) & \text { with probability } \frac{1}{2} \\ \max (X, Y) & \text { with probability } \frac{1}{2}\end{cases}
$$

What is $\mathrm{E}(Z)$?
(A) λ.
(B) $4 \lambda / 3$.
(C) λ^{2}.
(D) $\sqrt{3} \lambda / 2$.
20. A finite population has $N(\geq 10)$ units marked $\left\{U_{1}, \ldots, U_{N}\right\}$. The following sampling scheme was used to obtain a sample s. One unit is selected at random: if this is the i-th unit, then the sample is $s=$ $\left\{U_{i-1}, U_{i}, U_{i+1}\right\}$, provided $i \notin\{1, N\}$. If $i=1$ then $s=\left\{U_{1}, U_{2}\right\}$ and if $i=N$ then $s=\left\{U_{N-1}, U_{N}\right\}$. The probability of selecting U_{2} in s is
(A) $\frac{2}{N}$.
(B) $\frac{3}{N}$.
(C) $\frac{1}{(N-2)}+\frac{2}{N}$.
(D) $\frac{3}{(N-2)}$.
21. Suppose X_{1}, \ldots, X_{n} are i.i.d. observations from a distribution assuming values $-1,1$ and 0 with probabilities p, p and $1-2 p$, respectively, where $0<p<\frac{1}{2}$. Define $Z_{n}=\prod_{i=1}^{n} X_{i}$ and $a_{n}=P\left(Z_{n}=1\right)$, $b_{n}=P\left(Z_{n}=-1\right), c_{n}=P\left(Z_{n}=0\right)$. Then as $n \rightarrow \infty$,
(A) $a_{n} \rightarrow \frac{1}{4}, b_{n} \rightarrow \frac{1}{2}, c_{n} \rightarrow \frac{1}{4}$.
(B) $a_{n} \rightarrow \frac{1}{3}, b_{n} \rightarrow \frac{1}{3}, c_{n} \rightarrow \frac{1}{3}$.
(C) $a_{n} \rightarrow 0, b_{n} \rightarrow 0, c_{n} \rightarrow 1$.
(D) $a_{n} \rightarrow p, b_{n} \rightarrow p, c_{n} \rightarrow 1-2 p$.
22. Suppose X_{1}, X_{2} and X_{3} are i.i.d. positive valued random variables. Define $Y_{i}=\frac{X_{i}}{X_{1}+X_{2}+X_{3}}, i=1,2,3$. The correlation between Y_{1} and Y_{3} is
(A) 0 .
(B) $-1 / 6$.
(C) $-1 / 3$.
(D) $-1 / 2$.
23. Assume $\left(y_{i}, x_{i}\right)$ satisfies the linear regression model,

$$
y_{i}=\beta x_{i}+\epsilon_{i}, \quad \text { for } i=1, \ldots, n,
$$

where, $\beta \in \mathbb{R}$ is unknown, $\left\{x_{i}: 1 \leq i \leq n\right\}$ are fixed constants and $\left\{\epsilon_{i}: 1 \leq i \leq n\right\}$ are i.i.d. errors with mean zero and variance $\sigma^{2} \in$ $(0, \infty)$. Let $\widehat{\beta}$ be the least squares estimate of β and $\widehat{y}_{i}=\widehat{\beta} x_{i}$ be the predicted value of y_{i}. For each $n \geq 1$, define

$$
a_{n}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n} \operatorname{Cov}\left(y_{i}, \widehat{y_{i}}\right) .
$$

Then,
(A) $a_{n}=1$.
(B) $a_{n} \in(0,1)$.
(C) $a_{n}=n$.
(D) $a_{n}=0$.
24. Let X and Y be two random variables with $\mathrm{E}(X \mid Y=y)=y^{2}$, where Y follows $N\left(\theta, \theta^{2}\right)$, with $\theta \in \mathbb{R}$. Then $\mathrm{E}(X)$ equals
(A) θ.
(B) θ^{2}.
(C) $2 \theta^{2}$.
(D) $\theta+\theta^{2}$.
25. Suppose X is a random variable with finite variance. Define $X_{1}=X$, $X_{2}=\alpha X_{1}, X_{3}=\alpha X_{2}, \ldots, X_{n}=\alpha X_{n-1}$, for $0<\alpha<1$. Then $\operatorname{Corr}\left(X_{1}, X_{n}\right)$ is
(A) α^{n}.
(B) 1 .
(C) 0 .
(D) α^{n-1}.
26. Let X be a random variable with $P(X=2)=P(X=-2)=1 / 6$ and $P(X=1)=P(X=-1)=1 / 3$. Define $Y=6 X^{2}+3$. Then
(A) $\operatorname{Var}(X-Y)<\operatorname{Var}(X)$.
(B) $\operatorname{Var}(X-Y)<\operatorname{Var}(X+Y)$.
(C) $\operatorname{Var}(X+Y)<\operatorname{Var}(X)$.
(D) $\operatorname{Var}(X-Y)=\operatorname{Var}(X+Y)$.
27. Suppose X is a random variable on $\{0,1,2, \ldots\}$ with unknown p.m.f. $p(x)$. To test the hypothesis $H_{0}: X \sim \operatorname{Poisson}(1 / 2)$ against H_{1} : $p(x)=2^{-(x+1)}$ for all $x \in\{0,1,2, \ldots\}$, we reject H_{0} if $x>2$. The probability of type-II error for this test is
(A) $\frac{1}{4}$.
(B) $1-\frac{13}{8} e^{-1 / 2}$.
(C) $1-\frac{3}{2} e^{-1 / 2}$.
(D) $\frac{7}{8}$.
28. Let X be a random variable with

$$
P_{\theta}(X=-1)=\frac{(1-\theta)}{2}, P_{\theta}(X=0)=\frac{1}{2}, \text { and } P_{\theta}(X=1)=\frac{\theta}{2}
$$

for $0<\theta<1$. In a random sample of size 20 , the observed frequencies of $-1,0$ and 1 are 6,4 and 10 , respectively. The maximum likelihood estimate of θ is
(A) $1 / 5$.
(B) $4 / 5$.
(C) $5 / 8$.
(D) $1 / 4$.
29. Two judges evaluate n individuals, with (R_{i}, S_{i}) the ranks assigned to the i-th individual by the two judges. Suppose there are no ties and $S_{i}=R_{i}+1$, for $i=1, \ldots,(n-1)$, and $S_{i}=1$ if $R_{i}=n$. If the Spearman's rank correlation between the two evaluations is 0 , what is the value of n ?
(A) 7 .
(B) 11 .
(C) 4 .
(D) 5 .
30. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables with variance 2 . Then for all x,

$$
\lim _{n \rightarrow \infty} P\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n}(-1)^{i} X_{i} \leq x\right)
$$

equals
(A) $\Phi(x \sqrt{2})$.
(B) $\Phi(x / \sqrt{2})$.
(C) $\Phi(x)$.
(D) $\Phi(2 x)$.

