Physics 2

1. In Bohr's theory the potential of an electron at a position is constant, then the quantized energy of the electron in nth orbit:

(1) $\operatorname{nh}\left(\frac{\mathbf{k}}{\mathbf{m}}\right)$

(2) $nh \left[\frac{k}{m}\right]^{\frac{1}{2}}$ (3) $nh \left[\frac{m}{k}\right]$ (4) $nh \left[\frac{m}{k}\right]$

2. To reduce the de-Broglies wave length of an electron from 100 pm to 50 pm, the required increase in energy is:

(1) 150 eV

(2) 300 eV

(3) 450 eV (4) 600 eV

3. The angular width of fringes in Young's hislit experiment is 0.20° with the wavelength 5890 Å. If the whole apparatus is dipped in water, the angular width will be:

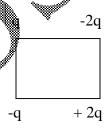
 $(1) 0.30^{0}$

 $(2) 0.22^{0}$

 $(3) 0.00^0$ $(4) 0.11^0$

4. Resistance of a 10 m. long wire of potentio meter is 1 Ω m. A cell of 2.2 volt emf. and HRB is connected in series with the wire. How much resistance must be applied to get 2.2 mv gradient:

mt


(1) 1000Ω

(2) 990 Ω

(3) 810Ω

(4) 790Ω

5. Four charges are placed in corners of a square, having side of 5 cm., if q is one coulomb then electric field intensity at the centre will be:

(1) 1.02×10^7 N/c upwards

(2) 2.04×10^7 N/c upwards

 $(3) 2.04 \times 10^7 \text{ N/c down}$

(4) 1.02×10^7 N/c down

6. Capacitance of a capacitor made by a thin metal foil is $2 \mu \mathbf{F}$. If the foil is filded with paper of thickness 0.15 mm. and dielectric constant of paper is 2.5, width of paper is 40 mm. then length of foil will be:

(1) 33.9 mm.

(2) 13.4 mm.

(3) 1.33 mm (4) 0.34 mm.

7. An electron and an $\alpha\alpha$ particle are accelerated with v volt voltage. If the masses are m_e and m_α , then the ratio of momentum is:

8. Ultra sonic sound can be observed by :

(1) Telephone

(2) Hebb method

(3) Quincke tube (4) Lundit tube

9. Which two of the given transverse waves will give stationary wave when get super imposed:

 $z_1 = a \cos(kx - \omega t)$

 $z_2 = a \cos(kx _\cot) \dots B$

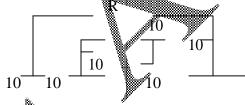
 $z_3 = a \cos(ky - \omega t)$ C

(1) A and B

(2) A and C

..... A

(3) **B** and C


10. For what value of R the net resistance of the circuit will be 18 ohms:

 $(1)24\Omega$

 $(2) 16 \Omega$

(3) 10Ω

 $(4) 8 \Omega$

11. For a medium retractive indices for violet, red and yellow are 1.62, 1.52 and 1.55 resp. then dispersive power of medium will be :

2.0.18

(3) 0.22

(4) 0.65

12. The temperature at which the rms speed of hydrogen molecule is equal to escape velocity on earth surface will be:

(1) 10059 K (2) 8270 K

(3) 5030 K

(4) 1060 K

The temperature of a liquid drops from 365 K to 361 K in 2 minutes. Find The time during which temperature of the liquid drops from 344 K to 342 K. Room temp. is 294 K.

(1) 60 sec.

(2) 66 sec.

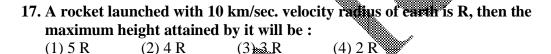
(3) 72 sec.

(4) 84 sec.

14. Venturimeter is used to measure:

(1) surface teusion of liquid

(2) rate of flow of liquid


(3) density of liquid

(4) pressure of liquid

www.jobsalert.in
15. A rod is fixed between two points at 20^{0} C, coefficient of linear expansion of material of rod is 1.1×10^{-5} / 0 C and Young's modulus is 1.2×10^{11} N/m. Find
the force developed in the rod it temp. of rod becomes $10^0 \mathrm{C}$:
(1) $1.1 \times 16^6 \text{ N/m}^2$
(2) $1.1 \times 10^{15} \text{ N/m}^2$
(3) $1.2 \times 10^7 \text{ N/m}^2$
(4) $1.32 \times 10^8 \text{ N/m}^2$
16. If an air hubble of radius 1 mm, moves up with uniform valocity 100

16. If an air bubble of radius 1 mm. move		
cm/s. in a liquid column of density 14.	$7 \times 10^3 \text{ kg./m}^3$. If $g = 10 \text{ m/sec.}$ then	å
coefficient of viscosity will be:		ÿ
(1) $10.0 \text{ m} = \text{sec.}^{2}$	///	

	$10.0 \text{ m}=\text{sec.}^2$
(2)	9.78 m-sec. ⁻²
(3)	9.62 m-sec. ⁻²
(4)	9.86 m-sec. ⁻²

18. A block of 2 kg. mass and body of 1 kg. mass are connected with the two ends of a string. The string is passing through a pulley. The block is put on a horizontal table and the body is hanging. The table is friction less then

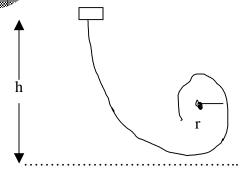
```
(1) 4.38 ms<sup>-2</sup>, 9.86 N
(2) 4.38 ms<sup>-2</sup>, 6.4 N
(3) 3.27 ms<sup>-2</sup>, 6.54 N
(4) 3.27 ms<sup>-2</sup>
```

acceleration and force of tension are:

19. A mass in performs oscillations of period T, when hanged by spring of force constant k, If spring is cut in two parts and arranged in parallel, If same mass is oscillated by them, new time period will be:

20. In a triode amplifier μ pt 70, gm= 1600 μ mho and R_L = 0.1 M Ω If input of 1v (rms) is given then power gained in load will be:

21. Moment of inertia a rectangular thin plate having mass m, length u width b, about an axis passing through its centre and perpendicular to the plane is:


(1)
$$\underline{M\iota^2}$$
 (2) $\underline{Mb^2}$ (3) $\underline{M(\iota^2+b^2)}$ (4) $\underline{M(\iota^2+b^2)}$ 12

22. In a triode circuit for a given plate voltage, plate current will be maximum when:

www.jobsalert.in

- (1) V_g Positive and V_p negative
- (2) V_g and V_p both positive
- (3) $V_g = 0$ and V_p positive
- (4) V_g negative and V_p positive
- 23. In p-n function avalanche current flows in circuit when be maximum when:
 - (1) excess
- (2) zero
- (3) reverse
- (4) forward
- 24. Half life of a radioactive element is 10 days. The time during which quantity remains 1/10 of initial mass will be:
 - (1) 16 days
- (2) 33 days
- (3) 50 days
- (4) 100 days
- 25. Resistance of semiconductor at OK is:
 - (1) small
- (2) large
- (3) infinity
- (4) zero
- 26. αeparticle of 400 KeV energy are bombarded on nucleus of 82 pb. In scattering of α particles, its minimum distance from nucleus will be :
 - (1) 0.59 pm (2) 5.9 pm
- (3) 0.59 nm
- $(4)\ 0.59 \text{ Å}$
- 27. If the uncertainty in the position of an electron is 2Å then the uncertainty in the energy is (about):
 - (1) 94 eV
- (2) 9.0 eV
- (3) 1.0
- (4) 0.1 eV

- 28. Wrong statement is:
 - (1) Nuclear force is produced by the exchange of poins
 - (2) Nuclear force increases with increase in no. of nucleous
 - (3) Range of nuclear forces is very small
 - (4) Nuclear forces are strongest
- 29. The inductance required to connect bulb in series of 1:
 - (1) 1.62 mH
- (2) 16.2 mH (3) 2.42 mH (4) 1.27 mH
- 30. A block follows the path as shown in the figure from height h. If radius of circular path is r, then relation holds good to complete full circle is

(1)									
	$h \geq$	<u>5r</u>							
		2							
	h >								
(3)	$h \propto$ $h =$	<u>5r</u>							
(4)	h –	∠ 5r							
(+)	11 —	$\frac{31}{2}$							*
31	A ha	allow ent	nere has 6.4	m radius	minim	um valo	city rogui	rad kon a m	elict of
J1.		_	mplete circ			uiii veio	city requi	i eu any a cy	mast at
	DOLL	(1) 16 r	ns ⁻¹	ic will be	•		غ.		,00000
		(2) 12.4	1 ms ⁻¹						۶
		(2) 12.4 (3) 10.2	2 ms^{-1}					' . ' '	
		(4) 8 m	s^{-1}		,				
		· /			/				
32.	A bl	lock is ly	ing on an ir	nclined pl	ane whi	ch mak	es 60 ⁰ wit	h the horiz	ontal. If
	coef	ficient of	f friction be	etween bl	ock and	plane is	0.25 and	$g = 10 \text{ ms}^3$	² . The
	acce	eleration	of block wl					e :	
	(1)	86 m/sec	. (2)) 99 m/se	. (3) 12	4 m/sec	, ⁴ (4	4) 172 m/se	ec.
33.	A ch	narge mo	ves in a cir	cle perpe	ndicular	· to a ma	agnetic fie	ld. The tin	ne period
			ı is indepen		***		0		•
			i io illuopell	ueni oi :	- %				
	(1) v	elocity) mass	(3) ch	narge	(4) magn	etic field	
	(1) v				(3) ch	narge	(4) magn	etic field	
34.		elocity) mass		C	, ,		l to
34.	A co	velocity oil of 40 G neter of 1	(2) Ofesistance 160 dhm re) mass e has 100 i	turns an Coil is pl	d radiu laced pe	s 6 mm. is	connected ar to the n	nagnetic
34.	A co amn field	velocity oil of 40 S neter of 1	(2) Ofesistance 160 ahm se coil is taken) mass chas 100 stance. (a out of the	turns an Coil is pl e field 3	d radiu laced pe	s 6 mm. is	connected ar to the n	nagnetic
34.	A co amn field int	velocity oil of 40 9 neter of 1 l. When one of 1	(2) Ofesistance 160 ohm re coil is taken nagnetic fic) mass chas 100 is stance. (n out of the late will be	turns an Coil is pl e field 3	d radiu laced pe 2 μαcha	s 6 mm. is erpendicul arge flows	connected ar to the n	nagnetic
34.	A co amn field int	velocity oil of 40 9 neter of 1 l. When one of 1	(2) Ofesistance 160 ahm se coil is taken) mass chas 100 is stance. (n out of the late will be	turns an Coil is pl e field 3	d radiu laced pe 2 μαcha	s 6 mm. is erpendicul arge flows	connected ar to the n	nagnetic
	A co amn field inte	velocity oil of 40 g neter of 1 l. When one of 1 solve of 1 solve of 1 solve of 1	(2) Ofesistance 160 ahm se coil is taken manetic fic (2) ().655	has 100 to the has 100 to the has 100 to the had will be to 100 t	turns an Coil is pl e field 3	id radiu laced pe i2 μαcha (4) 6.5	s 6 mm. is erpendicul arge flows	connected ar to the n through i	nagnetic t. The
35.	A coamn field inter	velocity oil of 40 9 neter of 1 l. When onsity of 1 566 T	(2) Ofesistance 160 ohm re coil is taken nagnetic fic	has 100 to the has 100 to the has 100 to the had will be to 100 t	turns an Coil is place field 3 E: 6.66 T	id radiu laced pe 2 μαcha (4) 6.5	s 6 mm. is erpendicul arge flows 55 T	connected ar to the n through i	nagnetic t. The
35.	A coamn field inter	velocity oil of 40 g neter of 1 l. When on 1 1 566 T noke coul	(2) Offesistance 160 thm re- coil is taken magnetic fie (2) 1.655	has 100 to the has 100 to the has 100 to the had will be to 100 t	turns an Coil is place field 3 c: 6.66 T and 12 G c power	id radiu laced pe 2 μαcha (4) 6.5	s 6 mm. is erpendicul arge flows 55 T ance. If it i vill be:	connected ar to the n through i	nagnetic t. The
35.	A co amn field into (4) A ch	velocity oil of 40 g neter of 2 l. When onsity of 3 1.566 T noke coil itternation	(2) Offesistance 160 thm re- coil is taken manetic fic (2) ().655 ' of 0.1 H ind ing current s (2) ().28	has 100 to the ductance (3) 0	turns an Coil is place field 3 c: .666 T and 12 G e power	d radiu laced pe 2 μαcha (4) 6.5 ΩΩesista factor v (4) 0.3	s 6 mm. is erpendicularge flows 55 T nnce. If it i vill be:	connected ar to the n through i	nagnetic t. The ed to 60
35.	A coamn field inter(1) A ch	velocity oil of 40 g neter of 1 l. When onsity of 1 1566 T noke cost upernation.24 2 gas C _v	Offesistance 160 ahm secoil is taken takenetic fic (2) 0.655 of 0.1 H inc ng current s (2) 0.28 = 4.96 cal/1	has 100 to the had will be T (3) 5 ductance source the (3) 0 mole-K, v	turns an Coil is place field 3 c: 	d radiu laced pe 2 μαcha (4) 6.5 ΩΩesista factor v (4) 0.3	s 6 mm. is erpendicularge flows 55 T nnce. If it i vill be:	connected ar to the n through i	nagnetic t. The ed to 60
35.	A co amn field inte (1) A ch Hz (1) 0	velocity oil of 40 G neter of 1 l. When nsity of 1 366 T noke coll liternath 0.24 a gas C _v ncrease i	(2) Offesistance 160 thm re- coil is taken manetic fic (2) ().655 ' of 0.1 H ind ing current s (2) ().28	has 100 to the thick will be to the thick will be to the total will be total will be to the total will be to the total will be to the t	turns an Coil is place field 3 c: 6.66 T and 12 G e power 0.30	id radiu laced pe 32 μαcha (4) 6.5 ΩΩesista factor v (4) 0.3	s 6 mm. is erpendicularge flows 55 T ance. If it is will be: 32 is heated	connected ar to the n through i	nagnetic t. The ed to 60
35.	A coamn field internal (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	velocity oil of 40 g neter of 1 l. When one trip of 66 T noke coll dernath 0.24 a gas C _v ncrease i 0.92 cal.	(2) 2	has 100 to the late will be a cource the (3) 0 cmole-K, we hergy is a cal. (3) 1	turns an Coil is place field 3 c: 6.66 T and 12 9 e power 0.30 when 2 m : 9.84 cal.	d radiu laced pe 2 μαcha (4) 6.5 Ω r esista factor v (4) 0.3 nole gas	s 6 mm. is erpendicularge flows 55 T ance. If it is vill be: 32 is heated	connected ar to the n through i is connected	nagnetic t. The ed to 60
35.	A coamn field interest (1) C	velocity oil of 40 g neter of 1 l. When nsity of 1 second like real like rea	ΩΩesistance 160 ahm secoil is taken coil is taken (2, 1).655 of 0.1 H inc (2) 0.28 = 4.96 cal/n n internal e (2) 13.90 catensity for	has 100 to the late will be to the source the source the cal. (3) 1 a bulb of	turns and Coil is place field 3 and 12 se power 0.30 when 2 m are 9.84 cal.	id radiu laced pe i2 μαcha (4) 6.5 ΩΩesista factor v (4) 0.3 nole gas (4) 27.4	s 6 mm. is erpendicularge flows 55 T ance. If it is vill be: 32 is heated .80 cal.	connected ar to the n through i s connected from 340 k	nagnetic t. The ed to 60
35.	A coamn field into (4) A ch Hz (1) (0) Lum dista	velocity oil of 40 G neter of 1 l. When onsity of 1 166 T noke will thernath 0.24 a gas C _v ncrease i 0.92 cal. ninous in ance at w	(2) 2	has 100 to the late will be a source the cource the cource the cource is a cal. (3) 1 a bulb of sity of illu	turns and Coil is place field 3 and 12 se power 0.30 when 2 m are 9.84 cal.	id radiu laced pe i2 μαcha (4) 6.5 ΩΩesista factor v (4) 0.3 nole gas (4) 27.4	s 6 mm. is erpendicularge flows 55 T nnce. If it is vill be: 32 is heated .80 cal. V is 11.01 nmen/mt² v	connected ar to the n through i s connected from 340 k	nagnetic t. The ed to 60
35. 36. 37.	A confield interest (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	velocity oil of 40 g neter of 1 l. When onsity of 1 see a second of the control o	(2) Offesistance 160 ahm secoil is taken coil is taken (2) 0.655 of 0.1 H inc (2) 0.28 = 4.96 cal/n n internal e (2) 13.90 contensity for which intensity (2) 18.78 m	has 100 to the thick will be to the total t	turns and Coil is place field 3 and 12 Ge power 0.30 when 2 m and 12 Ge power 0.30 and 13 Ge power 0.30 and 14 Ge power 0.30 and 15 Ge	id radiu laced pe i2 μαcha (4) 6.5 ΩΩesista factor v (4) 0.3 nole gas (4) 27.4 at 110 V n is 5 lu (4) 4.4	s 6 mm. is erpendicularge flows 55 T ance. If it is will be: 32 is heated .80 cal. V is 11.01 amen/mt² v 40 m	connected ar to the m through i s connected from 340 K lumen/wa will be:	nagnetic t. The ed to 60 a to 342 tt. The
35. 36. 37.	A co amn field into (1) 0 A ch Hz (1) 0 Lum dista (1) 4	velocity oil of 40 g neter of 1 l. When onsity of 1 see a see it of 2 cal. oil one at w 44.04 m one one of the control of the	(2) Offesistance 160 chm recoil is taken manetic fie (2) 0.655 of 0.1 H inc ng current s (2) 0.28 = 4.96 cal/n n internal e (2) 13.90 c atensity for which intens (2) 18.78 m	has 100 to the late will be to the source the cal. (3) 1 a bulb of sity of illum (3) 9 s 1 cm. where the cal. (3) 9 s 1 cm. where the cal. (3) 1 a bulb of sity of illum (3) 9 s 1 cm. where the cal. (3) 1 a bulb of sity of illum (3) 9 s 1 cm. where the cal. (3) 1 a bulb of sity of illum (3) 9 s 1 cm. where the call of	turns an Coil is place field 3 e: 6.66 T and 12 G e power 0.30 when 2 m : 9.84 cal. 40 watt minatio 0.39 m	d radiu laced pe 2 µacha (4) 6.5 Ofesista factor v (4) 0.3 nole gas (4) 27. at 110 v n is 5 lu (4) 4.4	s 6 mm. is erpendicularge flows 55 T nnce. If it is vill be: 32 is heated .80 cal. V is 11.01 men/mt² vill men/mt² vill men/mt² vill m	connected ar to the m through i s connected from 340 K lumen/wa will be:	nagnetic t. The ed to 60 a to 342 tt. The
35. 36. 37.	A co amn field inter (1) 0 A ch Hz (1) 0 Lum dista (1) 4 A 2r 0.8 r	velocity oil of 40 g neter of 1 l. When onsity of 1 see a see it of 2 cal. oil one at w 44.04 m one one of the control of the	(2) Offesistance 160 ahm secoil is taken coil is taken (2) 0.655 of 0.1 H inc (2) 0.28 = 4.96 cal/n n internal e (2) 13.90 contensity for which intensity (2) 18.78 m	has 100 to the late will be to the source the cal. (3) 1 a bulb of sity of illum (3) 9 s 1 cm. where the cal. (3) 9 s 1 cm. where the cal. (3) 1 a bulb of sity of illum (3) 9 s 1 cm. where the cal. (3) 1 a bulb of sity of illum (3) 9 s 1 cm. where the cal. (3) 1 a bulb of sity of illum (3) 9 s 1 cm. where the call of	turns and Coil is place field 3 act in the field 3 act in the field 3 act in the field in the fi	d radiu laced pe 2 µacha (4) 6.5 Ofesista factor v (4) 0.3 nole gas (4) 27. at 110 v n is 5 lu (4) 4.4	s 6 mm. is expendicularge flows 55 T ance. If it is vill be: 32 is heated .80 cal. V is 11.01	connected ar to the m through i s connected from 340 K lumen/wa will be:	nagnetic t. The ed to 60 a to 342 tt. The

39	_		0	horizontal. It a or and reflected	vertical ray strikes
	$(1) 90^0$	(2) 60^0	$(3) 45^0$	(4) 30^0	iay.
40	same materia	al. The free en rod is given a	d of small rod	is fixed to a rigic twist angle at the	L2 and radius r/2 of id base and the free ne joint will be:
41	. At NTP one	mole of diator	mic gas is com	pressed adiabati	cally to half of its
			(3) 1610 J		
42	. An achroma	tic combinatio	on is made wit	h a lens of f foca	length and W
		ower with a le			2ത ി he work done
	(1) - 2f	(2) - <u>f</u> 2	(3) <u>f</u>	(4) 21	
12	An alaatwan	and nucton le	ing 10 mg ass		electrostatic force
43			tween them wi	ill be.	electrostatic force
			(3) 10	$(4) 10^{19}$	
44	. Two wires A	and B of sam	ie material ha	ve radius 2r r. If	resistance of B will
	be:		gr.		
	$(1) 17 \Omega$	(2):68 \(\Omega\)	$(3) 272 \Omega$	(4) 544 \(\Omega\)	
45		ch is moving t			initial distance of an ne plate, if it is having
			(3) 3.51 mm	. (4) 1.77 mm.	
46	. A sphere of 1	adius 1 cm. h	as potential of	f 8000 V then the	e energy density near
	its surface w (1) 2.83 Jm ⁻³		m^{-3} (3) 3	2 Jm ⁻³ (4) 64 2	x 105 Jm ⁻³
47	_			_	of 5 T. If direction of orce acting on it will
P	$(1) 1.6 \times 10^{-6}$	N (2) 1.	.6 x 10 ⁻¹⁰ N	(3) 0	$(4) 3.2 \times 10^{-8} \text{ N}$
48	$. If V_{AB} = uv i$	n given figure	then resistance 10Ω	ce X will be :	
	(1) 20 (2) 15	_			

(3) 10	A	2 V	X	В
(4) 5			·~~	7

49. A charged water drop whose radius is 0.1 μ m is equilibrium in an electric field. If charge on it is equal to charge of an electron will be (g= 10 ms⁻²):

(1) 1610 NC^{-1} (2) 262 NC^{-1} (3) 26.2 NC^{-1} (4) 1.61 NC^{-1}

50. The charge on 500 ml. water due to protons will be :

(1) 1.67×10^{23} (2) 1.67×10^{26} (3) 6.0×10^{27} (4) 6×10^{22}

51. A piece of cloud having area 25x10⁶ m² and electric potential of 10⁵ volt. If the height of cloud is 0.75 km. then the energy density of electric field between earth and cloud will be:

(1) 1475 J (2) 1225 J (3) 750 J 250 J

52. 1 Farad in esu is:

(1) $\frac{1}{3}$ x 10^{-6} (2) 9 x 10^{11} (3) 3×10^{10} $\frac{1}{9}$ x 10^{-1}

53. Electric potential is given by : $V = 6x^2 - 8xy^2 - 8y + 6yz - 4z^2$ then the electric force acting on 2 coulomb point charge placed on origin will be :

 $(1) 2 N \qquad (2) 6 N \qquad (3) 8 N \qquad (4) 20 N$

54. The wavelength of K, lines given by Molybdenum (At No. 42) is 0.7078 Å then wavelength of K_{α} for zinc (At no. 30) will be:

(1) 0.3541 (2) 1.3873 A (3) 0.9425 Å (4) 1.2547 Å

55. A plane wave front of 7000 Å fallson an aperture. The area of half period zone of the diffraction pattern on screen 1 meter away from the aperture will

(1) $28 \times 10^{-7} \text{ m}^2$ (2) $44 \times 10^{-7} \text{ m}^2$ (3) $22 \times 10^{-7} \text{ m}^2$ (4) $14 \times 10^{-7} \text{ m}^2$

50 Young's double slit experiment 62 fringes are seen in visible region for sodium light of wavelength 5893 Å. If violet light of wave length 4358 Å is used in place of sodium light then number of fringes seen will be:

(1) 84 (2) 74 (3) 64 (4) 54

57. Average wavelength of light emitted by a 100 watt bulb is 5000 Å. The no. of emitted photons per second :

(1) 5×10^{17} (2) 2.5×10^{22} (3) 3×10^{23} (4) 2.5×10^{19}

58. To see first 20 lines of Balmer series distinctly minimum resolving power of instrument should be:

(1) 1040 (2) 983 (3) 920 (4) 878

59.		-		•	me as diffraction
					electron beam is :
	(1) 0.4 keV	(2) 1 ke V	(3) 4 ke V	(4) 50 ke V	
60.	Two parallel	pillars are 11	km. away fror	n an observer.	The minimum
	distance betw	veen the pillars	s so that they o	an be seen sep	arately will be :
	(1) 183 m.		(3) 20.8 m.		
61.	The focal len	gth of objectiv	e and eyepiece	e of a telescope	are 100 cm. and 5
	cm. Final ima	age is formed a	at least distanc	e of distinct vi	sion. The
	magnification	n of telescope i	s :		
	(1) 20	(2) 24	(3) 30	(4) 36	
62.					nce of the plant from
	the sum is 1.5 planet is :	588 times than	that of earth	from sun . The	time period of the
	-	(2) 1.89 yrs.	(3) 1.59 yrs.	(4) 1.25 yrs.	
63.	Time period	of a brass pend	dulum is I sec.	at 20 ⁰ C. Line	ear expansion coeff is
	$1.93 \times 10^{-5} (^{0}$	C) ⁻¹ . At 30 ⁰ C t	emp. now mu	h the clock wi	ll be back in a week
	(1) 504s	(2) 224s	(3) 5 s	(4) 8s	
	(1) 50 15	(2) 22 15	(3) 3	(11) 05	
64	Mass and rad	dius of the ear	th is M and R	Wrok done to	bring a 1 kg. mass
04.		to the infinity	V-1000	WIOK dolle to	bring a r kg. mass
	(1) <u>GM</u>	(2) M	$(3) \sqrt{GM}$	(4) $\sqrt{2}$	OCM
	2R	(2) <u>termin</u> D	(3) V <u>OM</u> 2R	(4) \ <u>1</u>	R
		N.			
65.		ing reaction w		ues of A,B,C,I	and E:
	92U → FhA	$^{1B}\rightarrow _{10}Pa^{C1}\rightarrow _{92}$	U^{234}		
	$(\mathbf{A},\mathbf{A}=$	234, B = 90, C	= 234, D = 93,	$E = \alpha$	
	(2) A	238, B = 93, C	= 234, D = 91,	$E = \beta$	
d		234, B = 90, C		•	
	333333	234, B = 90, C			
		254, B = 70, C	– 234, D – 71,	L – p	
66.	A bomb of 12	2 kg. divides in	two parts rati	io of masses is	1:3. If kinetic energy
.	of smaller pa	rt is 216 J, the	n the momenti	um of bigger p	art in kg-m/sec. is :
	(1) 108	(2) 72	(3) 36	(4) Data is inc	complete
67.	Weight of 1 k of moon will		6 on moon, if 1	radius of moon	is 1.768 x 10 ⁶ . Mass
	$(1) 7.65 \times 10^2$	2 kg. (2) 7.56 x	10^{26} kg. (3) 5	$.98 \times 10^{24} \text{ kg}.$	$(4) 1.99 \times 10^{30} \text{ kg}.$
68.		-		_	ec. and due to other meously new period

www.jobsalert.in

(1) 0.36 sec. (2) 0.48 sec. (3) 0.72 sec. (4) 0.64 sec.

69. A wave is given by $y = 3 \sin 20$ $\left(\frac{1}{0.04} - \frac{x}{0.01}\right)$ where y in cm.

frequency of wave and maximum acceleration will be:

- (1) 25 Hz, $7.5 \times 10^4 \text{ cm.-sec}^{-2}$
- (2) 25 Hz, 4.7×10^4 cm.-sec.⁻²
- (3) 50 Hz, 7.5×10^3 cm.-sec.⁻²
- $^{(4)}$ 100 Hz, 4.7 x 10^3 cm.-sec.⁻²

70.Two forces of 5 and 10 dynes resp. are acting on a particle, the resultant force never can be:

- (1) 8 dyne
- (2) 5 dyne
- (3) 12 dyane
- (4) 4 dyne

A. boggy of uniformly moving train is suddenly detached from train and stops after covering some distance. The distance covered by the boggy and distance covered by the train in the same time has relation:

- (1) no definite ratio
- (2) first will be \(^1\)4 of second
- (3) first will be ½ of second
- (4) both will be equal

72. π mesons can be:

- (5) π^+, π^-, π^0
- (6) π^+ and π^-
- (7) π^+, π^0
- (8) π^{-} and π^{0}

73.In helium nucleus there are:

- (9, 2 positron, 2 neutrons
- (10) 2 protons, 2 neutrons
- 2 protons, 2 neutrons, 2 electrons
- () 2 protons, 2 electrons

74. Quivalent energy of 1 amu is :

- (13) 9.31 MeV
- (14) 931 KeV
- (15) 93.1 MeV
- (16) 931 Mev

75.Density of nucleus is related to mass no. by :

(1)
$$\rho \propto \frac{1}{A}$$
 (2) $\rho \propto \sqrt{A}$ (3) $\rho \propto A$ (4) $\rho = constant$

76. The particles emitted by radio active decay are deflected by magnetic field. The particles will be :

www.jobsalert.in	
(17)	electron and α-particle
(18)	electron, proton and neutron
(19)	electron, proton and α
(20)	proton and α
77.At 0 ⁰ K Fermi	level for metals :
(21)	depends on metal
(22)	lies between empty levels
(23)	lies between filled levels
(24)	separate empty and filled levels

78.If quantity of a radioactive element remains	<u>1</u> of in	itial one in	30 yrs. Half lif
of this element will be :	16		

(1) 24 yrs.

(2) 18 yrs

(3) 7.5 yrs

(4) 1.9 yrs

79. The second's hand of a watch has length 6 cm. speed of end point and magnitude of difference of velocities at two perpendicular positions will be :

(25) 6.2 and 8.8 mm-sec.⁻¹

8.88 and 6.28 mm se

(27) 8.88 and 4.44 mm-sec.

(28) 6.28 and zero mm-sec.⁻¹

80.A meter scale is standing straight vertically on a table. The velocity of upper end, when it strikes the table. When lower end is fixed will be:

 $(1) 1.7 \text{ ms}^{-1}$

 $(2) 5.4 \,\mathrm{ms}^{-1}$

 $(3) 8.7 \,\mathrm{ms}^{-1}$

(4) 10.9 ms⁻¹

81. Fundamental frequency an open pipe is :

(1) 15 Hz

(2) 20 Hz

(3) 30 Hz

(4) 10 Hz

82. The cause of Fraunhoffer's lines is:

(1) diffraction

(2) interference

(3) emission (40 obsorption

83. Wavelength of third line of Balmer series for H ion is 108.5 mm. The binding energy of electron in the ion is:

(1) 122 eV (2) 54.4 eV

(3) 13.6 eV

(4) 3.4 eV

84. Wavelengths of extreme lines of Paschen series for hydrogen is :

(29) $2.27 \, \mu m$ and $7.43 \, \mu m$

(30) $1.45 \, \mu m$ and $4.04 \, \mu m$

 $0.818 \, \mu m$ and $1.89 \, \mu m$ (31)

 $0.365 \, \mu m$ and $0.656 \, \mu m$ (32)

85.An ionic atom is equivalent to hydrogen atom has wavelength equal to \(^{1}\!4\) of the wavelengths of hydrogen lines. The ion will be:

(1) He⁺

(2) Li^{++}

(3) Ne^{++}

(4) Na+¹⁰

86.An observer standing at station observes frequency 219 when a train approaches and 184 when train goes away from him. If velocity of sound in air is 340 m/sec., then velocity of train and actual frequency of whistle will be:

- (33) 32.5 ms-1, 205 Hz
- (34) 29.5 ms-1, 205 Hz
- (35) 25.5 ms-1, 200 Hz
- (36) 29.5 ms-1, 200 Hz

87. The kinetic energies of two bodies of 4 kg. and 16 kg. mass is same the ratio of their momentum is:

- (1) 4:1
- (2) 1 : 2
- (3) 2 : 1
- (4) 1 : 4

88. Wave length of light emitted by a star is shifting towards the recent, then the star:

- (37) moving towards earth
- (38) moving far from earth
- (39) nothing can be said
- (40) is stationery

89.In the following diagram a rectangular coil is placed in 0.25 T uniform magnetic field, the area is $96 \times 10^{-4} \text{ N}^2$ and no at turns is 50, 2 amp current is flowing then the torque is :

4 N-m (2) 0.96 N-m (3) 0.36 N-m (4) 0.48 N-m

90 Plate resistances of two triode values is 4 k Ω and 8 k Ω and amplification coeff. If 40. If used as amplifiers with these load resistances then the ratio of voltage gains is :

- $(1)\ 10$
- $(2)^{3/4}$
- (3) 16/9
- (4) 4/3

91.Two particles of same mass are moving in the circular paths r_1 and r_2 radius, the ratio of their centripetal forces is :

- (1) $\sqrt{\mathbf{r}_2}$: $\sqrt{\mathbf{r}_1}$
- $(2) \sqrt{\mathbf{r}_1:} \sqrt{\mathbf{r}_2}$
- $(3) r_1 : r_2$
- (4) $r_2: r_1$

92.In an AC circuit R = 100 $\Omega\Omega$ = 800 mH and E = 200 sin 300t then the peak value current is :

- (1) 1.17 A
- (2) 0.83 A
- (3) 0.59 A
- (4) 1.70 A

93.Length of wire of potentio meter is 100 cm. and resistance is 0.005 $\Omega\Omega$ m. A battery of 2.0 volt emf and 1.5 $\Omega\Omega$ ternal resistance is connected at the ends of the wire then the value of potential gradient is :						
$(1) 4 \times 10^{-4} \text{ v/m}$	(2) 0.005 v/m	(3) 0.05 v/m	(4) 0.5 v/m			
94.RMS velocity of a velocity of a gas, of w the first gas, is: (1) 150 m/sec. 95.Two cars are movi uniform speeds of 72	(2) 300 m/sec. ng on two perpendicukm/hr. and 36 km/hr	t is double and term (3) $300 \sqrt{2}$ m/se that roads towards. If first car blows	(4) 600 m/sec. a crossing with horn of 280 Hz			
frequency, then the fr joining the cars 450 a	ngle with the roads w	ill be:	car when line			
$(1) 280 \mathrm{Hz}$ $(2) 2$	289 Hz (3) 298 Hz	(4) 121 Hz	80*			
96.A disc of 1/3 m rad rail. Period of oscillat (1) 10.0 m-sec ⁻² (2		of g by this experi				
97. Two masses of 5 l		height 10 m., by v	which 2 kg. water is			
stirred. The rise is ter $(1) \ 0.12^0$ $(2) \ 0.12^0$	0.32 ⁰ (3) 1.2 (4)	2.6°				
98.A circular road of speed of a car having						
tyre and road is 0.5. (1) 10 msec.	(2) 99 m/sec.	(3) 124 m/sec.	(4) 172 m/sec.			