
Calculus II (part 6a): Vectors and 3D Geometry (by Evan Dummit, 2012, v. 1.50)

1 Vectors and 3-Dimensional Geometry

• We are used to graphing curves in the plane � given a function f(x), we know how to produce the graph of the
curve y = f(x). We also know how to graph parametrically-de�ned functions, like the cycloid x = t+ sin(t),
y = 1 + cos(t). And we even know, more or less, how to graph implicitly-de�ned functions, like the circle
x2 + y2 = 1.

• Now we will talk about how to graph functions in three-dimensional space, which is often called 3-space for
short. We will then discuss some features of 3-dimensional geometry and introduce vectors, which clarify a
great deal of the concepts.

1.1 Surfaces in 3-Space

• Points in 3-space are represented by a triplet of numbers (x, y, z).

• We have a distance formula, which is just the Pythagorean Theorem applied twice, which says that the
distance between points (x1, y1, z1) and (x2, y2, z2) is given by

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

• The simplest type of functions to graph is one of the form z = f(x, y), where now f is a function of the two
variables x and y. At the point (x, y) in the plane, this graph has the height z = f(x, y); so we see that as
(x, y) varies through the plane, the function z = f(x, y) will trace out a surface.

• Some example of graphs are given below.

◦ Example: The graph z = 0 is the xy-plane.

∗ Note more generally that any equation of the form a x+ b y+ c z = d for some constants a, b, c, d will
give a plane.

◦ Example: The graph z = x2 + y2 is a paraboloid (i.e., a parabolic dish).

◦ Example: The graph z =
√
x2 + y2 is a right circular cone opening upward, with vertex at the origin.

• Here are a few more unusual-looking graphs. You don't need to know any of this � it's just here so I have an
excuse to make more pretty graphs.

◦ Example: The graph z = x2 − y2 is called a hyperbolic paraboloid, or more colloquially, a saddle, since
it curves upward along the x-direction but downward along the y-direction. [The hyperbolic paraboloid
is called that because it looks like a hyperbola in one cross-section, and a parabola in two others.]

◦ Example: The graph z = x3− 3xy2 is called the �monkey saddle�, as it has three depressions rather than
the two for the regular saddle (one for each leg, and one for the tail).

◦ Example: The graph z = e3−
√

x2+y2/12 · cos
(√

x2 + y2
)
produces a surface that looks like ripples in a

pool of water.



• We also can graph some functions de�ned implicitly.

◦ Example: From the distance formula, we can see that the set of points satisfying x2 + y2 + z2 = 1 are
precisely those which are at a distance of 1 from the origin. But this is just another way of describing
the sphere of radius 1 centered at (0, 0, 0). A graph of the sphere is below.

◦ Example: Again from the distance formula, we can see that the set of points satisfying x2 + z2 = 1 are
those which are at a distance of 1 from the y-axis. This describes a right circular cylinder of radius 1,
oriented along the y-axis. A graph of the cylinder is above.

• Surfaces can also be de�ned parametrically � however, since a surface is 2-dimensional, one must use 2
parameters rather than 1. We won't cover parametric de�nitions of surfaces in this course � that is a topic
for multivariable calculus.

1.2 Vectors and Vector-Valued Functions

• A vector is a quantity which has both a magnitude and a direction.

◦ This is in contrast to a scalar, which carries only a magnitude.

• We denote the n-dimensional vector from the origin to the point (a1, a2, · · · , an) as v = 〈a1, a2, · · · , an〉,
where the ai are scalars.

◦ We use the angle brackets 〈·〉 rather than parentheses (·) so as to underscore the di�erence between
a vector and the coordinates of a point in space. We will, however, view coordinates of vectors and
coordinates of points as essentially interchangeable.

◦ We also write vectors in boldface (v, not v), so that we can tell them apart from scalars. When writing
by hand, it is hard to di�erentiate boldface, so the notation ~v is also sometimes used.

• The typical way to think of vectors is as �directed line segments�: the length of the line segment gives the
magnitude of the vector, and the direction the segment is pointing gives the direction of the vector.



◦ Note/Warning: Vectors are a little bit di�erent from directed line segments, because we don't care where
a vector starts: we only care about the di�erence between the starting and ending positions. Thus: the
directed segment whose start is (0, 0) and end is (1, 1) and the segment starting at (1, 1) and ending at
(2, 2) represent the same vector, 〈1, 1〉. This distinction is rarely necessary in most applications, however.

• We can add vectors (provided they are of the same dimension!) in the obvious way, one component at a time:
if v = 〈a1, · · · , an〉 and w = 〈b1, · · · , bn〉 then v +w = 〈a1 + b1, · · · , an + bn〉.

◦ Similarly we can 'scale' a vector by a scalar, one component at a time: if r is a scalar, then we have
r v = 〈ra1, · · · , ran〉.
◦ Scaling a vector by a factor of 1/2, for example, produces a new vector in the same direction, but with
half the length as the original.

◦ Scaling a vector by −1 produces a new vector with the same length but pointing in the opposite direction
from the original vector.

• Example: If v = 〈−1, 2, 2〉 andw = 〈3, 0,−4〉 then 2w = 〈6, 0,−8〉 , and v+w = 〈2, 2,−2〉 . Furthermore,v−

2w = 〈−7, 2, 10〉 .

• We can also de�ne functions that involve vectors:

• De�nition: A vector-valued function r(t) is a function whose output is a vector, each of whose components is
a function of the parameter t.

◦ Example: r(t) =
〈
t2, 2t

〉
.

• We add and scalar-multiply vector-valued functions in the same manner as normal vectors.

◦ Example: For r1(t) =
〈
et, cos(t), t2 − 1

〉
and r2(t) =

〈
t, 0,−t2

〉
we have r1(t)+r2(t) = 〈et + t, cos(t),−1〉

and 2r2(t) =
〈
2t, 0,−2t2

〉
.

• We will primarily be interested in vector functions of the form r(t) = 〈x(t), y(t)〉 and r(t) = 〈x(t), y(t), z(t)〉,
which have a single input parameter t and output a vector with 2 or 3 coordinates. These functions trace out
parametric curves in 2 or 3-dimensional space (respectively).

• Example: The curve given by (x(t), y(t), z(t)) = (t, t, t) is a line passing through the origin.

• Example: The curve given by (x(t), y(t), z(t)) = (sin(t), cos(t), t) is a helix wrapping around the cylinder
x2+y2 = 1. We can see that as t increases, the x and y parts just trace around a unit circle at constant speed,
while z increases at constant speed. Here is a plot of the curve winding around the cylinder, for 0 ≤ t ≤ 8π:

• Example: The curve given by (x(t), y(t), z(t)) = (cos(t), sin(t), cos(t)) is an ellipse. We can see that this curve
is an ellipse by observing that it is the intersection of the plane z = x with the cylinder x2 + y2 = 1 (above).



1.3 The Dot Product

• One thing we might naturally want to know about a vector is its length (or norm, or magnitude). If we think
of a vector as just a directed line segment in n-dimensional space, we can just use the distance formula (which
is just the Pythagorean Theorem applied a few times) to see that the length of the line segment from the
origin to (a1, . . . , an) is just

√
(a1)2 + · · ·+ (an)2.

• De�nition: We de�ne the norm (length, magnitude) of the vector v = 〈a1, . . . , an〉 as ||v|| =
√

(a1)2 + · · ·+ (an)2 .

◦ This is just an application of the distance formula: the norm of the vector 〈a1, . . . , an〉 is just the length
of the line segment joining the origin (0, . . . , 0) to the point (a1, . . . , an).

◦ Example: For v = 〈−1, 2, 2〉 and w = 〈3, 0,−4〉, we have ||v|| =
√

(−1)2 + 22 + 22 = 3 , and ||w|| =√
32 + 02 + (−4)2 = 5 .

◦ If r is a scalar, we can see immediately from the de�nition that ||r v|| = |r| ||v||, since we can just factor

out a
√
r2 = |r| from each term under the square root.

• From any nonzero vector we can �nd a unit vector (that is, a vector of norm 1) in the same direction of v just

by scaling v by 1 over its norm. In other words, the vector ~u =
v

||v||
is a unit vector in the same direction

as v. This vector ~u is sometimes called the normalization of v.

◦ Example: For v = 〈−1, 2, 2〉, we see that ~u1 =

〈
−1

3
,
2

3
,
2

3

〉
is a unit vector in the same direction as v,

and for w = 〈3, 0,−4〉 we see that ~u2 =

〈
3

5
, 0,−4

5

〉
is a unit vector in the direction of w.

• If we have two vectors, we now know how to �nd their lengths. But another thing we might want to know
about two vectors is the angle θ between them. This motivates the de�nition of the dot product:

• De�nition: The dot product of two vectors v1 = 〈a1, . . . , an〉 and v2 = 〈b1, . . . , bn〉 is de�ned to be the scalar

v1 · v2 = a1b1 + a2b2 + · · ·+ anbn .

◦ Example: The dot product 〈1, 2〉 · 〈3, 4〉 is (1)(2) + (3)(4) = 14 .

◦ Example: The dot product 〈−1, 2, 2〉 · 〈3, 0,−4〉 is (−1)(3) + (2)(0) + (2)(−4) = −11 .

◦ Remark: The dot product obeys several very nice properties reminiscent of standard multiplication.
For any vectors v,v1,v2,w, and any scalar r, we can verify the following properties directly from the
de�nition:

∗ Dot product is commutative: v ·w = w · v .

∗ Dot product distributes over addition: (v1 + v2) ·w = (v1 ·w) + (v2 ·w) .

∗ Dot product is �sort of� associative with scalar multiplication: (r v) ·w = r (v ·w) .

∗ Dot product of a vector with itself is the square of the norm: v · v = ||v||2 .

• Theorem: For vectors ~v1 and ~v2 forming an angle θ between them, we have v1 · v2 = ||v1|| ||v2|| cos(θ) .

◦ Proof: To prove this statement, we use the Law of Cosines in the triangle formed by v1, v2, and v2−v1,
which states that ||v2 − v1||2 = ||v1||2+ ||v2||2−2 ||v1|| ||v2|| cos(θ). Now we know that the square of the
norm is the dot product of a vector with itself so we can apply this and the other dot product properties
to see that

||v2 − v1||2 = (v2 − v1) · (v2 − v1)

= (v2 · v2)− (v1 · v2)− (v2 · v1) + (v1 · v1)

= ||v2||2 − 2(v1 · v2) + ||v1||2 .



Now by comparing to the Law of Cosines expression, we see that everything cancels and leaves us precisely
with the result we wanted.

• De�nition: We say two vectors are orthogonal if their dot product is zero.

◦ From the Dot Product Theorem, since cos
(π
2

)
= 0, we see that two nonzero vectors are orthogonal if

the angle between them is
π

2
, which is to say, if they are perpendicular.

◦ Example: The vectors 〈2,−1, 4〉 and 〈3, 2,−1〉 are orthogonal, since their dot product is (2)(3)+(−1)(2)+
(4)(−1) = 0.

◦ Example: The vectors 〈2, 2,−1〉 and 〈3, 0,−4〉 have a dot product of 10, as we computed earlier, and
norms of 3 and 5 respectively. Therefore we see that the angle θ between them satis�es 10 = 3 ·5 · cos(θ),

hence θ = cos−1

(
2

3

)
.

1.4 3-Space: Lines, Planes, and The Cross Product

• At this point, we will restrict ourselves to talking just about 3-dimensional space. Our primary reason for
this is that most of the immediate applications of vectors (e.g., to physics) happen in 3-dimensional space.

• It will be useful to have a way to denote the �unit coordinate� vectors of 3-dimensional space. So we denote
i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, and k = 〈0, 0, 1〉.

• Before getting to vectors, we will take a brief excursion to talk about lines and planes.

1.4.1 Lines and Planes in 3-Space

• Proposition: Given distinct points P0 = 〈x0, y0, z0〉 and P1 = 〈x1, y1, z1〉, the points 〈x, y, z〉 on the line l

through P0 and P1 are given parametrically by 〈x, y, z〉 = P0 + t (P1 −P0) , as t varies through the real

numbers.

◦ Proof: There is a unique line between two points, by the axioms of geometry. So we just need to check
that this is a line, and that it goes through P0 and P1.

∗ The parametric equation for l explicitly is tells us that x = x0 + t(x1 − x0), y = y0 + t(y1 − y0), and
z = z0 + t(z1 − z0), and these are all linear equations. So it's a line.

∗ We see l goes through P0 because at t = 0 we get P0. Similarly, at t = 1 we get P1. So we're done.

◦ Note: This procedure works to �nd the parametrization of a line in any space, not just 3-space.

◦ Remark: We call the vector v = P1−P0 the �direction vector� for the line l: it tells us in which direction
the line is moving. The term P0 in the sum P0+ t (P1 −P0) speci�es which, of all possible lines in that
direction, is the line we want.

◦ Example: To �nd the line through the points (1, 2, 3) and (−1, 2,−1) we just need to �nd the direction
vector, which is v = 〈(−1)− 1, 2− 2, (−1)− 3〉 = 〈−2, 0,−4〉. Then the line is given parametrically by

〈x, y, z〉 = 〈1− 2t, 2, 3− 4t〉 .

• Proposition: The plane de�ned by a x+ b y + c z = d is orthogonal to its normal vector n = 〈a, b, c〉. In other
words, every line lying in this plane is orthogonal to 〈a, b, c〉.

◦ Proof: Suppose l is a line in the plane. All we need to show is that its direction vector is orthogonal to
n.

∗ So say the direction vector is v = P2 − P1, where both of the points P2 = 〈x2, y2, z2〉 and P1 =
〈x1, y1, z1〉 lie in the plane.

∗ Then P1 · n = a x1 + b y1 + c z1 = d since P1 lies in the plane, and similarly P2 · n = d.

∗ But then we have v · n = P2 · n−P1 · n = d− d = 0, which is exactly what we wanted.



• Proposition: Given a vector n = 〈a, b, c〉, there is a unique plane normal to that vector passing through a
given point (x0, y0, z0).

◦ Proof: For the converse statement of the proof, clearly if n = 〈a, b, c〉 then the equation of the plane must
be a x+ b y + c z = � for some value of �, by the previous proposition. But if we are given a point that
lies in the plane, we can plug in to see that � = ax0 + by0 + cz0, and so we have uniquely determined
the equation of the plane, and hence the plane.

• Now we have some basic facts about lines and planes. We know how to �nd the line passing through 2 points
P2 and P1, but if we're given 3 points P3, P2, and P1 (not on a single line), how do we �nd the plane passing
through all 3?

◦ We know how to produce two direction vectors P2 −P1 and P3 −P1 lying in the plane. (Conversely, it
will turn out, any two nonparallel vectors will span a plane.)

◦ We also know a normal vector to the plane, along with any point in the plane (like P1), will specify the
plane.

◦ Therefore, what we need to know to solve the problem is how to �nd a vector orthogonal to the two
vectors P2 −P1 and P3 −P1.

1.4.2 The Cross Product

• De�nition: The cross product of v1 = 〈x1, y1, z1〉 and v2 = 〈x2, y2, z2〉 is de�ned to be the vector

v1 × v2 = 〈y1z2 − y2z1, z1x2 − z2x1, x1y2 − x2y2〉 . It is orthogonal to both v1 and v2.

◦ Important Note: The cross product is only de�ned for vectors with 3 components, and outputs another
vector with 3 components. Contrast with the dot product, which is de�ned for vectors of any length,
and outputs a scalar.

◦ A way to remember the cross product formula (aside from memorization) is the �determinant formula�

v1 × v2 = det

∣∣∣∣∣∣
i j k
x1 y1 z1
x2 y2 z2

∣∣∣∣∣∣ =
∣∣∣∣ y1 z1
y2 z2

∣∣∣∣ i− ∣∣∣∣ x1 z1
x2 z2

∣∣∣∣ j+ ∣∣∣∣ x1 y1
x2 y2

∣∣∣∣k , where i, j, k are the stan-

dard unit vectors: i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, and k = 〈0, 0, 1〉.
∗ It's a little unusual to have vectors inside a determinant, but it works out to the correct answer.
Don't forget the minus sign on the middle term.

◦ We claim that this vector v1× v2 is orthogonal to v1 and to v2. To verify this, we can just evaluate the
dot products v1 · (v1 × v2) and v2 · (v1 × v2) and check that they are both zero. For example we have
v1 ·w = x1(y1z2 − y2z1) + y1(z1x2 − z2x1) + z1(x1y2 − x2y2), which is zero because each term appears
once with a +and once with a −.
◦ Unlike the dot product, the cross product is NOT commutative! Indeed, we can see from the de�nition

that v1 × v2 = −(v2 × v1) . In particular, we see that v × v = 0 for any vector v.

◦ We still do have a distributivity property, like with the dot product: it is fairly easy to check from the

de�nition that (v1 + v2)×w = (v1 ×w) + (v2 ×w) .

◦ We also have the same scalar multiplication �sort of associativity�: (r v)×w = r (v ×w) .

• Theorem: If θ is the angle between v1 and v2, then ||v1 × v2|| = ||v1|| ||v2|| sin(θ) = A , where A is the area

of the parallelogram formed by v1 and v2.

◦ Proof: We just need to show that ||v1 × v2||2+(v1 · v2)
2
= ||v1||2 ||v2||2, because we know that v1 ·v2 =

||v1|| ||v2|| cos(θ) from the Dot Product Theorem.

∗ To check this we multiply everything out. So we need to see that (y1z2 − y2z1)2 + (z1x2 − z2x1)2 +
(x1y2 − x2y2)2 + (x1x2 + y1y2 + z1z2)

2
is equal to

[
(x1)

2 + (y1)
2 + (z1)

2
]
·
[
(x2)

2 + (y2)
2 + (z2)

2
]
.



∗ When we expand the �rst thing, we get each of the 9 possible square terms (�142)
2 where � and

4 are each one of x, y, or z, and the �cross� terms like 2x1x2y1y2 will all cancel out.

∗ We get exactly the same sum of 9 square terms when we expand the second thing. So they are equal
and we're done.

∗ For the statement about the area, we can just use geometry to see that the area of the triangle with

sides ~v1 and ~v2 is
1

2
||v1|| ||v2|| sin(θ). The parallelogram's area is twice this.

◦ Remark: This quite nice property is one reason we chose the de�nition we did for the cross product.

• Example: Let us �nd an equation for the plane passing through P1 = (3, 0,−1), P2 = (1, 2, 2) and P3 =
(−2, 1, 4).

◦ We have v2 = P3 −P1 = 〈−5, 1, 5〉 and v1 = P2 −P1 = 〈−2, 2, 3〉.
◦ Then we can compute the normal vector to the plane, which will be given by the cross product. This

gives us n = v1 × v2 =

∣∣∣∣ 1 5
2 3

∣∣∣∣ i − ∣∣∣∣ −5 5
−2 3

∣∣∣∣ j + ∣∣∣∣ −5 1
−2 2

∣∣∣∣k = 〈−7, 5,−8〉. For a sanity check, we

compute n · v1 = (−7)(−5) + (5)(1) + (−8)(5) = 0 and n · v2 = (−7)(−2) + (5)(2) + (−8)(3) = 0.

◦ Now we get that the plane's equation is −7x+ 5y − 8z = d, for some d.

◦ To �nd the constant we plug in the point P1 to see d = (−7)(3) + 5(0)− 8(−1) = −29.

◦ Therefore the equation of the plane is −7x+ 5y − 8z = −29 .

◦ For an additional error check, we could plug in all three points to ensure they really do lie on this plane,
and they do.

• Theorem: The volume of the parallelepiped whose edges are the three vectors v1, v2, and v3 is given by the

�scalar triple product� V = |v1 · (v2 × v3)| .

◦ Proof: The volume of the solid is its height times the area of its base.

∗ The area of the base (whose sides are v2 and v3) is given by the magnitude of the cross product
v2×v3, while the height is equal to ||v1|| sin(φ) where φ is the angle between v1 and the plane that
the base lies in.

∗ We can check with a diagram that sin(φ) = cos(θ) where θ is the angle between v1 and the normal

n to the plane of the base, since φ =
π

2
− θ.

∗ Now applying the Dot Product Theorem shows that V = ||v1|| ||v2 × v3|| cos(θ) = |v1 · (v2 × v3)|,
as we claimed.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012. You may not reproduce or distribute this material
without my express permission.


