1 Vectors and 3-Dimensional Geometry

- We are used to graphing curves in the plane - given a function $f(x)$, we know how to produce the graph of the curve $y=f(x)$. We also know how to graph parametrically-defined functions, like the cycloid $x=t+\sin (t)$, $y=1+\cos (t)$. And we even know, more or less, how to graph implicitly-defined functions, like the circle $x^{2}+y^{2}=1$.
- Now we will talk about how to graph functions in three-dimensional space, which is often called 3 -space for short. We will then discuss some features of 3 -dimensional geometry and introduce vectors, which clarify a great deal of the concepts.

1.1 Surfaces in 3-Space

- Points in 3 -space are represented by a triplet of numbers (x, y, z).
- We have a distance formula, which is just the Pythagorean Theorem applied twice, which says that the distance between points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is given by $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}$.
- The simplest type of functions to graph is one of the form $z=f(x, y)$, where now f is a function of the two variables x and y. At the point (x, y) in the plane, this graph has the height $z=f(x, y)$; so we see that as (x, y) varies through the plane, the function $z=f(x, y)$ will trace out a surface.
- Some example of graphs are given below.
- Example: The graph $z=0$ is the $x y$-plane.
* Note more generally that any equation of the form $a x+b y+c z=d$ for some constants a, b, c, d will give a plane.
- Example: The graph $z=x^{2}+y^{2}$ is a paraboloid (i.e., a parabolic dish).
- Example: The graph $z=\sqrt{x^{2}+y^{2}}$ is a right circular cone opening upward, with vertex at the origin.

- Here are a few more unusual-looking graphs. You don't need to know any of this - it's just here so I have an excuse to make more pretty graphs.
- Example: The graph $z=x^{2}-y^{2}$ is called a hyperbolic paraboloid, or more colloquially, a saddle, since it curves upward along the x-direction but downward along the y-direction. [The hyperbolic paraboloid is called that because it looks like a hyperbola in one cross-section, and a parabola in two others.]
- Example: The graph $z=x^{3}-3 x y^{2}$ is called the "monkey saddle", as it has three depressions rather than the two for the regular saddle (one for each leg, and one for the tail).
Example: The graph $z=e^{3-\sqrt{x^{2}+y^{2}} / 12} \cdot \cos \left(\sqrt{x^{2}+y^{2}}\right)$ produces a surface that looks like ripples in a pool of water.

- We also can graph some functions defined implicitly.
- Example: From the distance formula, we can see that the set of points satisfying $x^{2}+y^{2}+z^{2}=1$ are precisely those which are at a distance of 1 from the origin. But this is just another way of describing the sphere of radius 1 centered at $(0,0,0)$. A graph of the sphere is below.

- Example: Again from the distance formula, we can see that the set of points satisfying $x^{2}+z^{2}=1$ are those which are at a distance of 1 from the y-axis. This describes a right circular cylinder of radius 1 , oriented along the y-axis. A graph of the cylinder is above.
- Surfaces can also be defined parametrically - however, since a surface is 2-dimensional, one must use 2 parameters rather than 1 . We won't cover parametric definitions of surfaces in this course - that is a topic for multivariable calculus.

1.2 Vectors and Vector-Valued Functions

- A vector is a quantity which has both a magnitude and a direction.
- This is in contrast to a scalar, which carries only a magnitude.
- We denote the n-dimensional vector from the origin to the point $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ as $\mathbf{v}=\left\langle a_{1}, a_{2}, \cdots, a_{n}\right\rangle$, where the a_{i} are scalars.
- We use the angle brackets $\langle\cdot\rangle$ rather than parentheses (\cdot) so as to underscore the difference between a vector and the coordinates of a point in space. We will, however, view coordinates of vectors and coordinates of points as essentially interchangeable.
- We also write vectors in boldface (\mathbf{v}, not v), so that we can tell them apart from scalars. When writing by hand, it is hard to differentiate boldface, so the notation \vec{v} is also sometimes used.
- The typical way to think of vectors is as "directed line segments": the length of the line segment gives the magnitude of the vector, and the direction the segment is pointing gives the direction of the vector.
- Note/Warning: Vectors are a little bit different from directed line segments, because we don't care where a vector starts: we only care about the difference between the starting and ending positions. Thus: the directed segment whose start is $(0,0)$ and end is $(1,1)$ and the segment starting at $(1,1)$ and ending at $(2,2)$ represent the same vector, $\langle 1,1\rangle$. This distinction is rarely necessary in most applications, however.
- We can add vectors (provided they are of the same dimension!) in the obvious way, one component at a time: if $\mathbf{v}=\left\langle a_{1}, \cdots, a_{n}\right\rangle$ and $\mathbf{w}=\left\langle b_{1}, \cdots, b_{n}\right\rangle$ then $\mathbf{v}+\mathbf{w}=\left\langle a_{1}+b_{1}, \cdots, a_{n}+b_{n}\right\rangle$.
- Similarly we can 'scale' a vector by a scalar, one component at a time: if r is a scalar, then we have $r \mathbf{v}=\left\langle r a_{1}, \cdots, r a_{n}\right\rangle$.
- Scaling a vector by a factor of $1 / 2$, for example, produces a new vector in the same direction, but with half the length as the original.
- Scaling a vector by -1 produces a new vector with the same length but pointing in the opposite direction from the original vector.
- Example: If $\mathbf{v}=\langle-1,2,2\rangle$ and $\mathbf{w}=\langle 3,0,-4\rangle$ then $2 \mathbf{w}=\langle 6,0,-8\rangle$, and $\mathbf{v}+\mathbf{w}=\langle 2,2,-2\rangle$. Furthermore, $\mathbf{v}-$ $2 \mathbf{w}=\langle-7,2,10\rangle$.
- We can also define functions that involve vectors:
- Definition: A vector-valued function $\mathbf{r}(t)$ is a function whose output is a vector, each of whose components is a function of the parameter t.
- Example: $\mathbf{r}(t)=\left\langle t^{2}, 2 t\right\rangle$.
- We add and scalar-multiply vector-valued functions in the same manner as normal vectors.
- Example: For $\mathbf{r}_{1}(t)=\left\langle e^{t}, \cos (t), t^{2}-1\right\rangle$ and $\mathbf{r}_{2}(t)=\left\langle t, 0,-t^{2}\right\rangle$ we have $\mathbf{r}_{1}(t)+\mathbf{r}_{2}(t)=\left\langle e^{t}+t, \cos (t),-1\right\rangle$ and $2 \mathbf{r}_{2}(t)=\left\langle 2 t, 0,-2 t^{2}\right\rangle$.
- We will primarily be interested in vector functions of the form $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ and $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$, which have a single input parameter t and output a vector with 2 or 3 coordinates. These functions trace out parametric curves in 2 or 3 -dimensional space (respectively).
- Example: The curve given by $(x(t), y(t), z(t))=(t, t, t)$ is a line passing through the origin.
- Example: The curve given by $(x(t), y(t), z(t))=(\sin (t), \cos (t), t)$ is a helix wrapping around the cylinder $x^{2}+y^{2}=1$. We can see that as t increases, the x and y parts just trace around a unit circle at constant speed, while z increases at constant speed. Here is a plot of the curve winding around the cylinder, for $0 \leq t \leq 8 \pi$:

- Example: The curve given by $(x(t), y(t), z(t))=(\cos (t), \sin (t), \cos (t))$ is an ellipse. We can see that this curve is an ellipse by observing that it is the intersection of the plane $z=x$ with the cylinder $x^{2}+y^{2}=1$ (above).

1.3 The Dot Product

- One thing we might naturally want to know about a vector is its length (or norm, or magnitude). If we think of a vector as just a directed line segment in n-dimensional space, we can just use the distance formula (which is just the Pythagorean Theorem applied a few times) to see that the length of the line segment from the origin to $\left(a_{1}, \ldots, a_{n}\right)$ is just $\sqrt{\left(a_{1}\right)^{2}+\cdots+\left(a_{n}\right)^{2}}$.
- Definition: We define the norm (length, magnitude) of the vector $\mathbf{v}=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ as $\|\mathbf{v}\|=\sqrt{\left(a_{1}\right)^{2}+\cdots+\left(a_{n}\right)^{2}}$.
- This is just an application of the distance formula: the norm of the vector $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is just the length of the line segment joining the origin $(0, \ldots, 0)$ to the point $\left(a_{1}, \ldots, a_{n}\right)$.
- Example: For $\mathbf{v}=\langle-1,2,2\rangle$ and $\mathbf{w}=\langle 3,0,-4\rangle$, we have $\|\mathbf{v}\|=\sqrt{(-1)^{2}+2^{2}+2^{2}}=3$, and $\|\mathbf{w}\|=$ $\sqrt{3^{2}+0^{2}+(-4)^{2}}=5$.
- If r is a scalar, we can see immediately from the definition that $\|r \mathbf{v}\|=|r|\|\mathbf{v}\|$, since we can just factor out a $\sqrt{r^{2}}=|r|$ from each term under the square root.
- From any nonzero vector we can find a unit vector (that is, a vector of norm 1) in the same direction of \mathbf{v} just by scaling \mathbf{v} by 1 over its norm. In other words, the vector $\vec{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector in the same direction as \mathbf{v}. This vector \vec{u} is sometimes called the normalization of \mathbf{v}.
- Example: For $\mathbf{v}=\langle-1,2,2\rangle$, we see that $\vec{u}_{1}=\left\langle-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right\rangle$ is a unit vector in the same direction as \mathbf{v}, and for $\mathbf{w}=\langle 3,0,-4\rangle$ we see that $\vec{u}_{2}=\left\langle\frac{3}{5}, 0,-\frac{4}{5}\right\rangle$ is a unit vector in the direction of \mathbf{w}.
- If we have two vectors, we now know how to find their lengths. But another thing we might want to know about two vectors is the angle θ between them. This motivates the definition of the dot product:
- Definition: The dot product of two vectors $\mathbf{v}_{1}=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and $\mathbf{v}_{2}=\left\langle b_{1}, \ldots, b_{n}\right\rangle$ is defined to be the scalar $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}$.
- Example: The dot product $\langle 1,2\rangle \cdot\langle 3,4\rangle$ is $(1)(2)+(3)(4)=14$.
- Example: The dot product $\langle-1,2,2\rangle \cdot\langle 3,0,-4\rangle$ is $(-1)(3)+(2)(0)+(2)(-4)=-11$.
- Remark: The dot product obeys several very nice properties reminiscent of standard multiplication. For any vectors $\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{w}$, and any scalar r, we can verify the following properties directly from the definition:
* Dot product is commutative: $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}$.
* Dot product distributes over addition: $\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right) \cdot \mathbf{w}=\left(\mathbf{v}_{1} \cdot \mathbf{w}\right)+\left(\mathbf{v}_{2} \cdot \mathbf{w}\right)$.
* Dot product is "sort of" associative with scalar multiplication: $(r \mathbf{v}) \cdot \mathbf{w}=r(\mathbf{v} \cdot \mathbf{w})$.
* Dot product of a vector with itself is the square of the norm: $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$.
- Theorem: For vectors \vec{v}_{1} and \vec{v}_{2} forming an angle θ between them, we have $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=\left\|\mathbf{v}_{1}\right\|\left\|\mathbf{v}_{2}\right\| \cos (\theta)$.
- Proof: To prove this statement, we use the Law of Cosines in the triangle formed by $\mathbf{v}_{1}, \mathbf{v}_{2}$, and $\mathbf{v}_{2}-\mathbf{v}_{1}$, which states that $\left\|\mathbf{v}_{2}-\mathbf{v}_{1}\right\|^{2}=\left\|\mathbf{v}_{1}\right\|^{2}+\left\|\mathbf{v}_{2}\right\|^{2}-2\left\|\mathbf{v}_{1}\right\|\left\|\mathbf{v}_{2}\right\| \cos (\theta)$. Now we know that the square of the norm is the dot product of a vector with itself so we can apply this and the other dot product properties to see that

$$
\begin{aligned}
\left\|\mathbf{v}_{2}-\mathbf{v}_{1}\right\|^{2} & =\left(\mathbf{v}_{2}-\mathbf{v}_{1}\right) \cdot\left(\mathbf{v}_{2}-\mathbf{v}_{1}\right) \\
& =\left(\mathbf{v}_{2} \cdot \mathbf{v}_{2}\right)-\left(\mathbf{v}_{1} \cdot \mathbf{v}_{2}\right)-\left(\mathbf{v}_{2} \cdot \mathbf{v}_{1}\right)+\left(\mathbf{v}_{1} \cdot \mathbf{v}_{1}\right) \\
& =\left\|\mathbf{v}_{2}\right\|^{2}-2\left(\mathbf{v}_{1} \cdot \mathbf{v}_{2}\right)+\left\|\mathbf{v}_{1}\right\|^{2}
\end{aligned}
$$

Now by comparing to the Law of Cosines expression, we see that everything cancels and leaves us precisely with the result we wanted.

- Definition: We say two vectors are orthogonal if their dot product is zero.
- From the Dot Product Theorem, since $\cos \left(\frac{\pi}{2}\right)=0$, we see that two nonzero vectors are orthogonal if the angle between them is $\frac{\pi}{2}$, which is to say, if they are perpendicular.
- Example: The vectors $\langle 2,-1,4\rangle$ and $\langle 3,2,-1\rangle$ are orthogonal, since their dot product is $(2)(3)+(-1)(2)+$ $\overline{(4)(-1)}=0$.
- Example: The vectors $\langle 2,2,-1\rangle$ and $\langle 3,0,-4\rangle$ have a dot product of 10 , as we computed earlier, and norms of 3 and 5 respectively. Therefore we see that the angle θ between them satisfies $10=3 \cdot 5 \cdot \cos (\theta)$, hence $\theta=\cos ^{-1}\left(\frac{2}{3}\right)$.

1.4 3-Space: Lines, Planes, and The Cross Product

- At this point, we will restrict ourselves to talking just about 3-dimensional space. Our primary reason for this is that most of the immediate applications of vectors (e.g., to physics) happen in 3-dimensional space.
- It will be useful to have a way to denote the "unit coordinate" vectors of 3-dimensional space. So we denote $\mathbf{i}=\langle 1,0,0\rangle, \mathbf{j}=\langle 0,1,0\rangle$, and $\mathbf{k}=\langle 0,0,1\rangle$.
- Before getting to vectors, we will take a brief excursion to talk about lines and planes.

1.4.1 Lines and Planes in 3-Space

- Proposition: Given distinct points $\mathbf{P}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and $\mathbf{P}_{1}=\left\langle x_{1}, y_{1}, z_{1}\right\rangle$, the points $\langle x, y, z\rangle$ on the line l through \mathbf{P}_{0} and \mathbf{P}_{1} are given parametrically by $\langle x, y, z\rangle=\mathbf{P}_{0}+t\left(\mathbf{P}_{1}-\mathbf{P}_{0}\right)$, as t varies through the real numbers.
- Proof: There is a unique line between two points, by the axioms of geometry. So we just need to check that this is a line, and that it goes through \mathbf{P}_{0} and \mathbf{P}_{1}.
* The parametric equation for l explicitly is tells us that $x=x_{0}+t\left(x_{1}-x_{0}\right), y=y_{0}+t\left(y_{1}-y_{0}\right)$, and $z=z_{0}+t\left(z_{1}-z_{0}\right)$, and these are all linear equations. So it's a line.
* We see l goes through \mathbf{P}_{0} because at $t=0$ we get \mathbf{P}_{0}. Similarly, at $t=1$ we get \mathbf{P}_{1}. So we're done.
- Note: This procedure works to find the parametrization of a line in any space, not just 3-space.
- Remark: We call the vector $\mathbf{v}=\mathbf{P}_{1}-\mathbf{P}_{0}$ the "direction vector" for the line l : it tells us in which direction the line is moving. The term \mathbf{P}_{0} in the sum $\mathbf{P}_{0}+t\left(\mathbf{P}_{1}-\mathbf{P}_{0}\right)$ specifies which, of all possible lines in that direction, is the line we want.
- Example: To find the line through the points $(1,2,3)$ and $(-1,2,-1)$ we just need to find the direction vector, which is $\mathbf{v}=\langle(-1)-1,2-2,(-1)-3\rangle=\langle-2,0,-4\rangle$. Then the line is given parametrically by $\langle x, y, z\rangle=\langle 1-2 t, 2,3-4 t\rangle$.
- Proposition: The plane defined by $a x+b y+c z=d$ is orthogonal to its normal vector $\mathbf{n}=\langle a, b, c\rangle$. In other words, every line lying in this plane is orthogonal to $\langle a, b, c\rangle$.
- Proof: Suppose l is a line in the plane. All we need to show is that its direction vector is orthogonal to n.
* So say the direction vector is $\mathbf{v}=\mathbf{P}_{2}-\mathbf{P}_{1}$, where both of the points $\mathbf{P}_{2}=\left\langle x_{2}, y_{2}, z_{2}\right\rangle$ and $\mathbf{P}_{1}=$ $\left\langle x_{1}, y_{1}, z_{1}\right\rangle$ lie in the plane.
* Then $\mathbf{P}_{1} \cdot \mathbf{n}=a x_{1}+b y_{1}+c z_{1}=d$ since \mathbf{P}_{1} lies in the plane, and similarly $\mathbf{P}_{2} \cdot \mathbf{n}=d$.
* But then we have $\mathbf{v} \cdot \mathbf{n}=\mathbf{P}_{2} \cdot \mathbf{n}-\mathbf{P}_{1} \cdot \mathbf{n}=d-d=0$, which is exactly what we wanted.
- Proposition: Given a vector $\mathbf{n}=\langle a, b, c\rangle$, there is a unique plane normal to that vector passing through a given point $\left(x_{0}, y_{0}, z_{0}\right)$.
- Proof: For the converse statement of the proof, clearly if $\mathbf{n}=\langle a, b, c\rangle$ then the equation of the plane must be $a x+b y+c z=\square$ for some value of \square, by the previous proposition. But if we are given a point that lies in the plane, we can plug in to see that $\square=a x_{0}+b y_{0}+c z_{0}$, and so we have uniquely determined the equation of the plane, and hence the plane.
- Now we have some basic facts about lines and planes. We know how to find the line passing through 2 points \mathbf{P}_{2} and \mathbf{P}_{1}, but if we're given 3 points $\mathbf{P}_{3}, \mathbf{P}_{2}$, and \mathbf{P}_{1} (not on a single line), how do we find the plane passing through all 3 ?
- We know how to produce two direction vectors $\mathbf{P}_{2}-\mathbf{P}_{1}$ and $\mathbf{P}_{3}-\mathbf{P}_{1}$ lying in the plane. (Conversely, it will turn out, any two nonparallel vectors will span a plane.)
- We also know a normal vector to the plane, along with any point in the plane (like \mathbf{P}_{1}), will specify the plane.
- Therefore, what we need to know to solve the problem is how to find a vector orthogonal to the two vectors $\mathbf{P}_{2}-\mathbf{P}_{1}$ and $\mathbf{P}_{3}-\mathbf{P}_{1}$.

1.4.2 The Cross Product

- Definition: The cross product of $\mathbf{v}_{1}=\left\langle x_{1}, y_{1}, z_{1}\right\rangle$ and $\mathbf{v}_{2}=\left\langle x_{2}, y_{2}, z_{2}\right\rangle$ is defined to be the vector $\mathbf{v}_{1} \times \mathbf{v}_{2}=\left\langle y_{1} z_{2}-y_{2} z_{1}, z_{1} x_{2}-z_{2} x_{1}, x_{1} y_{2}-x_{2} y_{2}\right\rangle$. It is orthogonal to both \mathbf{v}_{1} and \mathbf{v}_{2}.
- Important Note: The cross product is only defined for vectors with 3 components, and outputs another vector with 3 components. Contrast with the dot product, which is defined for vectors of any length, and outputs a scalar.
- A way to remember the cross product formula (aside from memorization) is the "determinant formula" $\mathbf{v}_{1} \times \mathbf{v}_{2}=\operatorname{det}\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2}\end{array}\right|=\left|\begin{array}{cc}y_{1} & z_{1} \\ y_{2} & z_{2}\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}x_{1} & z_{1} \\ x_{2} & z_{2}\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}x_{1} & y_{1} \\ x_{2} & y_{2}\end{array}\right| \mathbf{k}$, where $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are the standard unit vectors: $\mathbf{i}=\langle 1,0,0\rangle, \mathbf{j}=\langle 0,1,0\rangle$, and $\mathbf{k}=\langle 0,0,1\rangle$.
* It's a little unusual to have vectors inside a determinant, but it works out to the correct answer. Don't forget the minus sign on the middle term.
- We claim that this vector $\mathbf{v}_{1} \times \mathbf{v}_{2}$ is orthogonal to \mathbf{v}_{1} and to \mathbf{v}_{2}. To verify this, we can just evaluate the dot products $\mathbf{v}_{1} \cdot\left(\mathbf{v}_{1} \times \mathbf{v}_{2}\right)$ and $\mathbf{v}_{2} \cdot\left(\mathbf{v}_{1} \times \mathbf{v}_{2}\right)$ and check that they are both zero. For example we have $\mathbf{v}_{1} \cdot \mathbf{w}=x_{1}\left(y_{1} z_{2}-y_{2} z_{1}\right)+y_{1}\left(z_{1} x_{2}-z_{2} x_{1}\right)+z_{1}\left(x_{1} y_{2}-x_{2} y_{2}\right)$, which is zero because each term appears once with a + and once with a - .
- Unlike the dot product, the cross product is NOT commutative! Indeed, we can see from the definition that $\mathbf{v}_{1} \times \mathbf{v}_{2}=-\left(\mathbf{v}_{2} \times \mathbf{v}_{1}\right)$. In particular, we see that $\mathbf{v} \times \mathbf{v}=0$ for any vector \mathbf{v}.
- We still do have a distributivity property, like with the dot product: it is fairly easy to check from the definition that $\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right) \times \mathbf{w}=\left(\mathbf{v}_{1} \times \mathbf{w}\right)+\left(\mathbf{v}_{2} \times \mathbf{w}\right)$.
- We also have the same scalar multiplication "sort of associativity": $(r \mathbf{v}) \times \mathbf{w}=r(\mathbf{v} \times \mathbf{w})$.
- Theorem: If θ is the angle between \mathbf{v}_{1} and \mathbf{v}_{2}, then $\left\|\mathbf{v}_{1} \times \mathbf{v}_{2}\right\|=\left\|\mathbf{v}_{1}\right\|\left\|\mathbf{v}_{2}\right\| \sin (\theta)=A$, where A is the area of the parallelogram formed by \mathbf{v}_{1} and \mathbf{v}_{2}.
- Proof: We just need to show that $\left\|\mathbf{v}_{1} \times \mathbf{v}_{2}\right\|^{2}+\left(\mathbf{v}_{1} \cdot \mathbf{v}_{2}\right)^{2}=\left\|\mathbf{v}_{1}\right\|^{2}\left\|\mathbf{v}_{2}\right\|^{2}$, because we know that $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=$ $\left\|\mathbf{v}_{1}\right\|\left\|\mathbf{v}_{2}\right\| \cos (\theta)$ from the Dot Product Theorem.
* To check this we multiply everything out. So we need to see that $\left(y_{1} z_{2}-y_{2} z_{1}\right)^{2}+\left(z_{1} x_{2}-z_{2} x_{1}\right)^{2}+$ $\left(x_{1} y_{2}-x_{2} y_{2}\right)^{2}+\left(x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}\right)^{2}$ is equal to $\left[\left(x_{1}\right)^{2}+\left(y_{1}\right)^{2}+\left(z_{1}\right)^{2}\right] \cdot\left[\left(x_{2}\right)^{2}+\left(y_{2}\right)^{2}+\left(z_{2}\right)^{2}\right]$.
* When we expand the first thing, we get each of the 9 possible square terms $\left(\square_{1} \triangle_{2}\right)^{2}$ where \square and \triangle are each one of x, y, or z, and the "cross" terms like $2 x_{1} x_{2} y_{1} y_{2}$ will all cancel out.
* We get exactly the same sum of 9 square terms when we expand the second thing. So they are equal and we're done.
* For the statement about the area, we can just use geometry to see that the area of the triangle with sides \vec{v}_{1} and \vec{v}_{2} is $\frac{1}{2}\left\|\mathbf{v}_{1}\right\|\left\|\mathbf{v}_{2}\right\| \sin (\theta)$. The parallelogram's area is twice this.
- Remark: This quite nice property is one reason we chose the definition we did for the cross product.
- Example: Let us find an equation for the plane passing through $\mathbf{P}_{1}=(3,0,-1), \mathbf{P}_{2}=(1,2,2)$ and $\mathbf{P}_{3}=$ $(-2,1,4)$.
- We have $\mathbf{v}_{2}=\mathbf{P}_{3}-\mathbf{P}_{1}=\langle-5,1,5\rangle$ and $\mathbf{v}_{1}=\mathbf{P}_{2}-\mathbf{P}_{1}=\langle-2,2,3\rangle$.
- Then we can compute the normal vector to the plane, which will be given by the cross product. This gives us $\mathbf{n}=\mathbf{v}_{1} \times \mathbf{v}_{2}=\left|\begin{array}{ll}1 & 5 \\ 2 & 3\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}-5 & 5 \\ -2 & 3\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}-5 & 1 \\ -2 & 2\end{array}\right| \mathbf{k}=\langle-7,5,-8\rangle$. For a sanity check, we compute $\mathbf{n} \cdot \mathbf{v}_{1}=(-7)(-5)+(5)(1)+(-8)(5)=0$ and $\mathbf{n} \cdot \mathbf{v}_{2}=(-7)(-2)+(5)(2)+(-8)(3)=0$.
- Now we get that the plane's equation is $-7 x+5 y-8 z=d$, for some d.
- To find the constant we plug in the point \mathbf{P}_{1} to see $d=(-7)(3)+5(0)-8(-1)=-29$.
- Therefore the equation of the plane is $-7 x+5 y-8 z=-29$.
- For an additional error check, we could plug in all three points to ensure they really do lie on this plane, and they do.
- Theorem: The volume of the parallelepiped whose edges are the three vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} is given by the "scalar triple product" $V=\left|\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right)\right|$.
- Proof: The volume of the solid is its height times the area of its base.
* The area of the base (whose sides are \mathbf{v}_{2} and \mathbf{v}_{3}) is given by the magnitude of the cross product $\mathbf{v}_{2} \times \mathbf{v}_{3}$, while the height is equal to $\left\|\mathbf{v}_{1}\right\| \sin (\phi)$ where ϕ is the angle between \mathbf{v}_{1} and the plane that the base lies in.
* We can check with a diagram that $\sin (\phi)=\cos (\theta)$ where θ is the angle between \mathbf{v}_{1} and the normal \mathbf{n} to the plane of the base, since $\phi=\frac{\pi}{2}-\theta$.
* Now applying the Dot Product Theorem shows that $V=\left\|\mathbf{v}_{1}\right\|\left\|\mathbf{v}_{2} \times \mathbf{v}_{3}\right\| \cos (\theta)=\left|\mathbf{v}_{1} \cdot\left(\mathbf{v}_{2} \times \mathbf{v}_{3}\right)\right|$, as we claimed.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012. You may not reproduce or distribute this material without my express permission.

