IIT JEE Chemistry Model Paper - 1

Useful Data				
Gas Constant $\quad \mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$	1 Faraday		$=96500$	
$=0.0821 \mathrm{Lit} \mathrm{atm} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$	Coulomb			
$=1.987 \approx 2 \mathrm{Cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$	1 calorie	=		
Avogadro's Number $\mathrm{N}_{\mathrm{a}}=6.023 \times 10^{23}$	1 amu	=		10^{-27}
Planck's constant $\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$	kg			
$=6.625 \times 10^{-27} \mathrm{erg} \cdot \mathrm{s}$	$\begin{aligned} & 1 \mathrm{eV} \\ & 10^{-19} \end{aligned}$		=	$1.6 \times$

Atomic No: $\quad \mathrm{H}=1, \mathrm{D}=1, \mathrm{Li}=3, \mathrm{Na}=11, \mathrm{~K}=19, \mathrm{Rb}=37, \mathrm{Cs}=55, \mathrm{~F}=9, \mathrm{Ca}=20, \mathrm{He}=2, \mathrm{O}=8$, $\mathrm{Au}=79, \mathrm{Ni}=28$,
$\mathrm{Zn}=30, \mathrm{Cu}=29, \mathrm{Cl}=17, \mathrm{Br}=35, \mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{~S}=16, \mathrm{P}=15, \mathrm{C}=6$, $\mathrm{N}=7, \mathrm{Ag}=47$.

Atomic Masses: $\quad \mathrm{He}=4, \mathrm{Mg}=24, \mathrm{C}=12, \mathrm{O}=16, \mathrm{~N}=14, \mathrm{P}=31, \mathrm{Br}=80, \mathrm{Cu}=63.5, \mathrm{Fe}=56, \mathrm{Mn}=$ 55, $\mathrm{Pb} \quad=\quad 207$, $\mathrm{Au}=197$, $\mathrm{Ag}=108, \mathrm{~F}=19, \mathrm{H}=1, \mathrm{Cl}=35.5, \mathrm{Sn}=118.6, \mathrm{Na}=23, \mathrm{D}=2, \mathrm{Cr}=52, \mathrm{~K}=39, \mathrm{Ca}=$ 40, $\mathrm{Li} \quad=\quad$ 7, $\mathrm{Be} \quad=\quad 4$, $\mathrm{Al}=27, \mathrm{~S}=32.1$

SECTION - I

Straight Objective Type

This section contains 8 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONLY ONE is correct.

1. The elemental phosphorus is made from rock phosphate, $C a_{3}\left(P O_{4}\right)_{2}$ by making use of which one of the following reactions?
(A) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{C}+\mathrm{MgO} \xrightarrow{\Delta}$
(B) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{C}+\mathrm{SiO}_{2} \xrightarrow{\Delta}$
(C) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{C}+\mathrm{ZnO} \xrightarrow{\Delta}$
(D) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{C}+\mathrm{FeO} \xrightarrow{\Delta}$
2. At STP, $1 \mathbf{L}$ of a sample of air containing SO_{2} as impurity is treated with required ozonised air and then passed through water. The resultant solution requires 40 mL of $\mathbf{0 . 0 1 \mathrm { M } \mathrm { NaOH }}$ for complete neutralization. The \% of SO_{2} by volume in the air is
(A) 2.24
(B) 4.48
(C) 0.224
(D) 0.448
3. Consider the reaction $A \underset{2.0 s^{-1}}{\stackrel{0.5-1}{\rightleftharpoons}} B$. If the reaction is started with one molar solution of \mathbf{A}, then concentration of B at equilibrium is
(A) 0.2 M
(B) 0.25 M
(C) 0.5 M
(D) 0.75 M
4. The rate of dehydration (acid catalysed) and decarboxylation (base catalysed) are respectively faster in ...

(I)

(II)

(III)

(IV)
(A) III and I
(B) III and II
(C) IV and II
(D) IV and I
5. Identify the option which represents the correct products of the following reaction,

$$
\mathrm{PhCHO}+\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\mathrm{OH}^{-}}(\text {Aldols })
$$

(I)

(II) $\mathrm{PhCH}_{2}-\mathrm{OCOPh}$
(III)

(IV)

(A) I, II
(B) I, III
(C) II, III
(D) I, III, IV

6.

Product ' S ' is

(A)

(B)

(C)

(D)

7. Malonic acid on dehydration with $P_{4} O_{10}$ gives an oxide, which is
(A) Linear
(B) Bent V-shaped
(C) Planer
(D) Tetrahedral
8. An ammonia - ammonium chloride buffer has a $\mathbf{p H}$ of 9 with $\left[\mathrm{NH}_{3}\right]=0.25 \mathrm{M}$. The new $\mathbf{p H}$ of the buffer if 500 ml of $\mathbf{0 . 1} \mathbf{M ~ K O H}$ is added to $\mathbf{2 0 0} \mathbf{m l}$ of the buffer solution is [Given $p K_{b}=4.7$]
(A) 6.2
(B) 7.5
(C) 9.6
(D) 11.5

SECTION - II

Multiple Correct Answer Type

This section contains 4 Multiple correct answer(s) type questions. Each question has 4 choices (A), (B), (C) and (D), out of which ONE OR MORE
9. Which of the following are disproportionation reactions?

(B)

(C) $2 \mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\mathrm{OH}^{-}} \mathrm{CH}_{3}-\underset{\mathrm{OH}}{\mathrm{CH}}-\mathrm{CH}_{2} \mathrm{CHO}$

10. Which of the following can undergo thermal decomposition to yield the metals?
(A) $\mathrm{Ag}_{2} \mathrm{CO}_{3}$
(B) HgO
(C) $\mathrm{Ni}(\mathrm{CO})_{4}$
(D) CuS
11. Correct statements among the following?
(A) The higher crystal field splitting energy of CN^{-}compared to halides ions is due to the back bonding from metal to CN^{-}
(B) Transition metal halide complexes are usually of high-spin and tetrahedral structure
(C) The oxidation state of central metal in $\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ and $\mathrm{Cr}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}$ is zero
(D) Meso complexes are optically inactive but chiral
12. The radial distribution function $[P(r)]$ is used to determine the most probable radius which is used to find the electron in a given orbital. The $\frac{d[P(r)]}{d r}$ is given by $\frac{d[P(r)]}{d r}=\frac{4 z^{3}}{a_{0}^{3}}\left[2 r-\frac{2 Z r^{2}}{a_{0}}\right] e^{\frac{-2 Z r}{a_{0}}}$. Then, which of the following statements is/are correct?
(A) At the point of maximum value of radial distribution function $\frac{d[P(r)]}{d r}=0$, one antinode is present
(B) Most probable radius of $L i^{2+}$ is $\frac{a_{0}}{3} \mathrm{pm}$
(C) Most probable radius of He^{+}is $\frac{a_{0}}{2} \mathbf{~ p m}$
(D) Most probable radius of H^{+}is $a_{0} \mathbf{~ p m}$

SECTION - III

Linked Comprehension Type

This section contains 2 paragraphs. Based upon each paragraph, 3 multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

Paragraph for Questions Nos. 13 to 15

An organic compound ' A ' $\left(\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~N}\right)$ is insoluble in dil cold aqueous alkali but on warming gives a clear solution. ' \mathbf{A} ' when treated with dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives $\mathrm{B}\left(\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}\right)$ which when boiled with conc. HCl under reflux and cooled, a solid compound $\mathrm{C}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4}\right)$ is crystallized out. The mother liquor when separated and concentrated gives $D\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NCl}\right)$
13. Structure of compound ' A ' can be
(A)

(B)

(D) Both (A) and (B)
14. $\quad \mathrm{B} \xrightarrow[\Delta]{\text { Soda lime }}{ }^{\prime} \mathrm{M}^{\prime}$ ', $\operatorname{product}(\mathrm{M})$ is
(A)

(B)

(C)

(D)

15. Compound 'D' can be
(A) $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{3}^{+} \mathrm{Cl}^{-}$
(B) $\mathrm{PhCH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{3}^{+} \mathrm{Cl}^{-}$
(C) Ph. $\mathrm{NH}^{+}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Cl}^{-}$
(D) Both (A) and (B)

Paragraph for Questions Nos. 16 to 18

On dissolving a sparingly soluble salt in water, after some time an equilibrium is established when the rate of dissolution of ions from the solid equals the rate of precipitation of ions from the saturated solution at a particular temperature. For example, when solid AgCl is added to water, following equilibrium is found to exist.
$\mathrm{AgCl}(s) \rightleftharpoons \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(\mathrm{aq})$
$K_{e q}=\frac{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]}{[\mathrm{AgCl}]}$
$K_{s p}=K_{e q}[\mathrm{AgCl}]=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]$
$K_{\text {eq }}[\mathrm{AgCl}]$ is known as solubility product $\left(K_{s p}\right)$. The principle of solubility product applies all solution of slightly soluble materials whether they dissociate in one step or in several steps.
16. What concentration of NH_{3} must be present in $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ solution to prevent AgCl from precipitation when 5.85 g of NaCl are added to 250 mL of this solution.

$$
\mathrm{K}_{\operatorname{sp}(\mathrm{AgCl})}=2 \times 10^{-10} ; \quad \mathrm{K}_{\mathrm{f}}\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}=10^{7}
$$

(A) 16.8 M
(B) 20.2 M
(C) 11.5 M
(D) 25.8 M
17. Consider the following statements and select the correct option
(I) The concentration of Fe^{3+} will increase in a solution of $\mathrm{Fe}(\mathrm{OH})_{3}$ when $\left[\mathrm{H}^{+}\right]$decrease (Given $\mathrm{K}_{\text {sp }}$ of $\mathrm{Fe}(\mathrm{OH})_{3}$ is 4×10^{-18} at 298 K).
(II) In a mixture of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ in water, when a further amount of $\mathrm{NH}_{4} \mathrm{Cl}$ is added, the $\mathbf{p H}$ of mixture will decrease.
(III) an aqueous solution of $\mathrm{NH}_{4} \mathrm{I}$ and $\mathrm{HCO}_{2} \mathrm{~K}$ will be basic and acidic respectively.
(A) only (I) is correct
(B) only (II) is correct
(C) only (III) is correct
(D) (II) and (III) are correct
18. A salt, $\mathbf{M X}$ has $K_{s p}=1.6 \times 10^{-9}$. For a salt $M X_{3}$, to have the same molar solubility as that of MX, its $K_{\text {sp }}$ is to be
(A) 6.9×10^{-17}
(B) 4.85×10^{-16}
(C) 2.45×10^{-20}
(D) 1.32×10^{-19}

SECTION - IV

Matrix matching type

19. Match the Following:-

20. Match the following:-

	Column - I		Column - II
(A)	100% dissociated 0.1M NaCl aqueous solution is	(p)	hypotonic with 50\% dissociated aq 0.1M

www.sakshieducation.com

			$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(B)	$\mathbf{5 0 \%}$ dissociated 0.1 M aqueous ammonium formate solution is	(q)	isotonic with 25\% dissociated aq 0.1M $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(C)	$\mathbf{2 5 \%}$ dissociated 0.1M aqueous ammonium acetate solution is	(r)	hypertonic with 0.1M aq. urea solution.
(D)	$\mathbf{7 5 \%}$ dissociated 0.1 M aqueous sodium dihydrogen phosphate solution is	(s)	isotonic with 0.2 M aq
glucose solution.			

HINTS \& SOLUTIONS

PAPER - I

1.(B) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{SiO}_{2} \xrightarrow{\Delta} \mathrm{CaSiO}_{3}+\mathrm{P}_{2} \mathrm{O}_{5}$
$\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{C} \xrightarrow{\Delta} P+\mathrm{CO}$
2.(D) $\mathrm{SO}_{2}+\mathrm{O}_{3} \longrightarrow \mathrm{SO}_{3}+\mathrm{O}_{2}$
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
Meq of $\mathrm{NaOH}=40 \times 0.01=\mathbf{0 . 4}=\mathrm{Meq}$ of SO_{2}
Moles of $\mathrm{SO}_{2}=\frac{0.4 \times 10^{-3}}{2}=2 \times 10^{-4}$

$$
\begin{aligned}
& =2 \times 10^{-4} \times 22.4 \mathrm{~L} \\
& =4.48 \times 10^{-3} \mathrm{~L}
\end{aligned}
$$

$\therefore \%=0.448$
3.(A) $\frac{d_{A}}{d t}=-0.5[\mathrm{~A}]_{\mathrm{eq}}+2[\mathrm{~B}]_{\mathrm{eq}}=0$ at equilibrium
$=-0.5(1-x)+2 x=0$
$\therefore x=\frac{0.5}{0.5+2}=\frac{0.5}{2.5}=0.2 \mathrm{M}$

5.(B)
$\mathrm{PhCHO}+\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\bar{\theta} \mathrm{H}} \mathrm{Ph}-\mathrm{CH}-\mathrm{CH}_{3} \mathrm{CHO}$

6. (B)

7. (A)

8. (C) Meq of NH_{4}^{+}in 200 ml original buffer $=100 \mathrm{meq}$
9. (A, B) Fact.
10. (A, B, C) Fact.
11. (A, B) Conceptual.
12. $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ At antinode, $2 r-\frac{2 Z r^{2}}{a_{0}}=0 \Rightarrow r=\frac{a_{0}}{z} \mathrm{pm}$

For H^{+}, radius is radius of the nucleus only.
13-15 (13.D, 14. B, 15. D)

(A)

(C)
(B)

$$
+\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{3}^{+} \mathrm{Cl}^{-}
$$

(C)
(D)
16. (B) Moles of $\mathbf{N a C l}=0.1$ mole added per 250 mL
$\therefore\left[\mathrm{Cl}^{-}\right]=0.4$ molar

$$
\begin{equation*}
\underset{(\mathrm{x}-0.2)}{\mathrm{AgCl}_{(\mathrm{s})}+2 \mathrm{NH}_{3(\mathrm{aq})}} \rightleftharpoons \underset{(0.1)}{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]_{\mathrm{aq}}^{+}}+\underset{(0.4)}{\mathrm{Cl}_{\mathrm{aq}}^{-}} \tag{0.1}
\end{equation*}
$$

$\mathrm{K}_{\mathrm{eq}}=\mathrm{K}_{\mathrm{sp}} \times \mathrm{K}_{\mathrm{f}}=2 \times 10^{-10} \times 10^{7}=2 \times 10^{-3}$
$=\frac{0.1 \times 0.4}{x-0.2}$
Solving $\mathbf{x}=\mathbf{2 0 . 2} \mathbf{M}$
17. (B) Solubility of $\mathrm{Fe}(\mathrm{OH})_{3}$ decreases with increase in concentration of $\left[\mathrm{OH}^{-}\right]$or decrease in concentration of $\left[\mathrm{H}^{+}\right]$
Addition of further amount of $\mathrm{NH}_{4} \mathrm{Cl}$ will increase the concentration of NH_{4}^{+}and thus the ionization of $\mathrm{NH}_{4} \mathrm{OH}$ is suppressed. This lowers the $\left[\mathrm{OH}^{-}\right]$concentration and thus pOH increases or $\mathbf{p H}$ decrease
In $\mathrm{NH}_{4} \mathrm{I}$ solution, NH_{4}^{+}ion hydrolyses giving $\mathrm{H}_{3} \mathrm{O}^{+}$, thus making the solution acidic while in $\mathrm{HCO}_{2} \mathrm{~K}$ solution, HCO_{2}^{-}ion hydrolyses to give OH^{-}, thus solution is basic in nature.
18. (A)Solubility of $\mathbf{M X}, \sqrt{\mathrm{K}_{\mathrm{sp}}}=\sqrt{1.6 \times 10^{-9}}=4 \times 10^{-5}$

$$
\mathrm{K}_{\operatorname{sp}\left(\mathrm{MX}_{3}\right)}=27 \mathrm{~s}^{4}=27 \times\left(4 \times 10^{-5}\right)^{4}=6.9 \times 10^{-17}
$$

19. $\mathbf{A} \rightarrow \mathbf{p}, \mathbf{s , t} ; \quad \mathbf{B} \rightarrow \mathbf{q}, \mathbf{r}, \mathbf{t} \quad \mathbf{C} \rightarrow \mathbf{p}, \mathbf{s} ; \quad \mathbf{D} \rightarrow \mathbf{q}, \mathbf{r}, \mathbf{t}$
20.

$$
\begin{aligned}
& \mathbf{A} \rightarrow \mathbf{p}, \mathbf{r}, \mathbf{s} ; \quad \mathbf{B} \rightarrow \mathbf{p}, \mathbf{r} \quad \mathbf{C} \rightarrow \mathbf{p}, \mathbf{r} ; \quad \mathbf{D} \rightarrow \mathbf{p}, \mathbf{q}, \mathbf{r} \\
& \pi=\mathrm{iCRT} \\
& \pi_{\mathrm{a}}=0.2 \mathrm{RT} ; \pi_{\mathrm{b}}=0.15 \mathrm{Rt} ; \pi_{\mathrm{c}}=0.125 \mathrm{RT} ; \pi_{\mathrm{d}}=0.175 \mathrm{RT} \\
& \pi_{\mathrm{p}}=0.30 \mathrm{RT} ; \pi_{\mathrm{q}}=0.175 \mathrm{RT} ; \pi_{\mathrm{r}}=0.10 \mathrm{RT} ; \pi_{\mathrm{s}}=0.20 \mathrm{RT}
\end{aligned}
$$

By comparison we arrive at the key.

