Download from www.JbigDeaL.com JbiaDeal

Note: Ed-CET-2009 Test Questions along with key is given below, locate the question in your respective test book let series i.e.,(A,B,C,D) with key. Objections regarding key are invited, with written authentic proof to the Convener Ed-CET-2009, Osmania University latest by 23rd June 2009.

13

PART - C

MATHEMATICS

(Marks : 100)

51. A particular integral of $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = xe^{2x}$ is $\frac{d^2 y}{dx^2} - 4 \frac{dy}{dx} + 4 y = xe^{2x}$ కు ఒక (పల్యేక సమాకంని (1) $\frac{x^2}{2}e^{2x}$ (2) $\frac{x^3}{6}e^{2x}$ (3) $\frac{-x^3}{6}e^{2x}$ (4) $\frac{x^2}{3}e^{2x}$

52. The solution of
$$\left(y - \frac{1}{x}\right) dx + \frac{dy}{y} = 0$$
 is
 $\left(y - \frac{1}{x}\right) dx + \frac{dy}{y} = 0 \quad \text{(s)} \quad \text{inves}$
(1) $(x^2 - c) y = 2x$
(3) $(x^2 - c) y = -2x^3$

n,

(2) $(x^2 + c)y = 2x^2$ (Ans:1) (4) $(x^2 + c)y = -2x$

53. A particular integral of
$$\frac{d^2 y}{dx^2} + y = \sin x$$
 is
 $\frac{d^2 y}{dx^2} + y = \sin x$ so as added to be a size of the formula of the formul

54. The general solution of
$$x^2y'' = 2y'$$
 is
 $x^2y'' = 2y'$ to $\Im rooter $\Im rooter$
(1) $y = a + b \log x + cx$ (2) $y = a - b \log x - cx^3$ (Ans: 3)
55. $(2e^y - x)y' = 1$ is the differential equation of the family of curves.
 $(2e^y - x)y' = 1$ est extension in the family of curves.
 $(2e^y - x)y' = 1$ est extension is user extension in the family of curves.
 $(2e^y - x)y' = 1$ est extension is user extension in the family of curves.
 $(2e^y - x)y' = 1$ est extension is user extension in the family of curves.
 $(2e^y - x)y' = 1$ est extension is user extension is user extension.
(1) $x = ce^{-x} + e^y$ (2) $x = e^y + ce^{-y}$ (Ans: 2)
56. Integrating factor of $\frac{dy}{dx} = -\frac{3xy + y^2}{x^2 + xy}$ is
 $\frac{dy}{dx} = -\frac{3xy + y^2}{x^2 + xy}$ to interaction
(1) x^{-1} (2) x^{-2} (Ans: 4)
(3) $\log x$ (4) x
57. The general solution of $y' + y = \cosh x$ is
 $y' + y = \cosh x$ to $\Im rootersize$
(1) $y = c_1 \cos x + c_2 \sin x + \cos x$ (2) $y = c_1 \cos x + c_2 \sin x + \sin x$ (Ans: 4)
(3) $y = c_1 \cos x + c_2 \sin x + \sinh x$ (4) $y = c_1 \cos x + c_2 \sin x + \frac{1}{2} \cosh x$
58. A solution among the following satisfying $y' - y = \cosh x$ is
 $glowing'' y' - y = \cosh x$ to $glowing'' - y = \cosh x$ is
 $glowing'' y' - y = \cosh x$ to $glowing'' x + y = \cosh x$ is
 $glowing'' y' - y = \cosh x$ to $glowing'' x + y = \cosh x$ is
 $glowing'' y' - y = \cosh x$ to $glowing'' x + y = \cosh x$ is
 $glowing'' y' - y = \cosh x$ to $glowing'' x + y = \cosh x$ is
 $glowing'' y' - y = \cosh x$ to $glowing'' x + y = \cosh x$ is
 $glowing'' y' - y = \cosh x$ to $glowing'' x + y = \cosh x$ is
 $glowing'' x + y = \cosh x + \frac{x}{2} \sinh x$ (2) $y = \cos x + \frac{x}{2} \cosh x$ (Ans: 3)
(3) $y = \cosh x + \frac{x}{2} \sinh x$ (4) $y = \sin x + \sinh x$
A Minice the following satisfying $y' - y = \cosh x + \sinh x$ (5) $y = \cosh x + \frac{x}{2} \sinh x$ (6) $y = \sin x + \sinh x$$

_Download from www<mark>.JbigDeaL.com Powered By</mark> © JbigDeaL

59.
$$(2x + 1)^2 y' + 2(2x + 1)y' - y = 0$$
 is the differential equation of the family of curves.
 $(2x + 1)^2 y' + 2(2x + 1)y' - y = 0$ σδδ φοδ άφτε ελευσεποθ σάδαστο
(1) $y = a(2x + 1)^2 + \frac{b}{(2x + 1)^2}$ (2) $y = a(2x + 1) + b(2x + 1)^2$ (Ans: 3)
(3) $y = a\sqrt{2x + 1} + \frac{b}{\sqrt{2x + 1}}$ (4) $y = a(2x + 1) + b(2x + 1)^2$ (Ans: 3)
(6) The equation of the curve passing through the origin and satisfying the differential equation
 $(1 + x^2)y' + 2xy = 4x^2$ is
 $2x - a\sqrt{2x} + 1 + \frac{b}{\sqrt{2x + 1}}$ (4) $y = a(2x + 1) + \frac{b}{2x + 1}$
(6) The equation of the curve passing through the origin and satisfying the differential equation
 $(1 + x^2)y' + 2xy = 4x^2$ is
 $2x - a\sqrt{2x} + 1x + \frac{b}{\sqrt{2x + 1}}$ (4) $y = a(2x + 1) + \frac{b}{2x + 1}$
(6) The equation of the curve passing through the origin and satisfying the differential equation
 $(1 + x^2)y' + 2xy = 4x^2$ is
 $2x - a\sqrt{2x} + 1x^2 + 4x^3$ (Ans: 2)
(3) $\frac{1}{x}$ (4) $y (1 + x^2) = 4x^3$
(4) $y (1 + x^2) = 4x^3$
(5) The sum of coefficients in the expansion of $(1 + x)^n$ is
 $(1 + x)^n$ dusty, by origin there are always
(1) $\frac{2^n C_n}{2^n C_n}$ (2) 2^{n-1} (3) $n 2^{n-1}$ (4) 2^n (Ans: 4)
(5) If $A A B = (A - B) \cup (B - A)$ for any two sets, A, B , then $A \Delta B \Delta A = \frac{b}{2}$
 $b) 3 b coex (A \Delta B = (A - B) ∪ (B - A) (A - B) ∪ (B - A) (A - B) (A - B$

16	
----	--

65.	If p is a prime number that leaves remainder r : 6 పే భాగింపబడినపుడు ప్రధానసంఖ్య p శేషం $r \neq 1$ ఇచ్చే		then $r =$	
	(1) 2 (2) 3	(3) 4	(4) 5	(Ans: 4)
66.	The square of a natural number never ends in th ఏ సహజనంఖ్య పర్గమైనా దాని చివర ఈ ఆంకెను కలిగియ			
	(1) 1 (2) 4	(3) 9	(4) 2	(Ans: 4)
67.	In a triangle ABC, D is the mid point of BC su ఒక త్రభుజం ABC లో AD = BD = CD అయ్యేట్ల B			C =
	 (1) 60° (3) 90° 	(2) 75° (4) 120°		(Ans: 3)
68.	If α is a root of $x^2 + x + 1 = 0$ then $\alpha^{2008} + \alpha^2 + x^2 + x + 1 = 0$ కు α ఒక మూలమైతే $\alpha^{2008} + \alpha^{2009}$			
	(1) 1 (2) -1	(3) 0	(4) α	(Ans: 2)
69.	The sum of all two digit odd natural numbers i రెండంకెల బీసి సహజనంఖ్యల మొత్తం	s		
	(1) 2475 (2) 2450	(3) 2420	(4) 2480	(Ans: 1)
70.	Three cubes each of side 5 cm are joined end to cuboid, in square units, is ప్రతిదాని భుజం 5 సె.మీ. గా గల మూడు ఘనాలను ఒక ర ఆపుడు ఆ దీర్ణఘనం ఉపరితల వైశాల్యం చదరపు యూనిక	రాని పెంట ఒకటి చేర్చి ఒక దీ		
	(1) 350 (2) 450	(3) 500	(4) 550	(Ans: 1)
71.	In a triangle ABC, $\tan A + \tan B + \tan C =$ \textcircled{O} \$			
	(1) 0	(2) tan A tan B tan	С	
	(3) tan A tan B + tan B tan C + tan C tan A	(4) 1		(Ans: 2)
72.	$\sin \theta + \csc \theta = 2 \Longrightarrow \sin^2 \theta + \csc^2 \theta =$			- 19
	(1) 1 (2) 2	(3) 3	(4) 4	(Ans: 2)
A MS				

Download from www.Jbig lbiaDeal Deal .com

		1	7		
73.	tan 7° tan 23° tan 60° ta	an 67° tan 83° =			
	(1) 0	(2) 1	(3) $\sqrt{3}$	(4) 1	(Ans: 3)
74	$\sin^2 1^\circ + \sin^2 2^\circ + \dots +$	$\sin^2 m^0 =$			
74.					(Ans: 2)
	(1) 90	(2) 45.5	(3) 45	(4) 0	(AII5. Z)
75.	$\tan^{-1} x = \sin^{-1} \left(\frac{3}{5}\right) + \cos^{-1} \left(\frac{3}{5}\right$	$s^{-1}\left(\frac{12}{13}\right) \Rightarrow x =$			
	12	56	46	20	
	(1) $\frac{12}{11}$	(2) $\frac{56}{33}$	(3) $\frac{40}{33}$	(4) $\frac{38}{33}$	(Ans: 2)
76.	In a triangle ABC, unde	r usual notation, r r1 r	$r_2 =$		
	ΔABC లో, వాడుకలో సుస్న				
	(1) A^2			(4) 44	(Ans: 1)

(4) Δ^4

77. The general solution of $1 + \cos 2\theta = 0$ is $\theta =$ $1 + \cos 2\theta = 0$ కు సాధారణ సాధన $\theta =$ (Ans: 1)

(3) Δ^3

(1)
$$(2n\pm 1)\frac{\pi}{2}; n \in \mathbb{Z}$$
 (2) $n\pi \pm \pi, n \in \mathbb{Z}$ (3) $\left(2n\pm \frac{1}{2}\right)\pi, n \in \mathbb{Z}$ (4) $2n\pi \pm \frac{\pi}{3}, n \in \mathbb{Z}$

- 78. $\sinh x = 4 \Rightarrow x =$ (Ans: 1) (2) $\log (4 - \sqrt{17})$ (3) $\log (4 + \sqrt{15})$ (4) $\log (4 - \sqrt{15})$ (1) $\log(4 + \sqrt{17})$
- 79. $\cosh x = a \Rightarrow \sinh 2x \sinh x =$ (4) $a^2 + a$ (Ans: 3) (2) $a^3 + a$ (3) $2(a^3 - a)$ (1) $a^2 - a$
- 80. If w is a complex cube root of unity then the roots $27z^3 8 = 0$ are w అనేది ఏకకవు సంకీర్ణఘసమూలమైతే, 27z³ – 8 = 0 యొక్క మూలాలు

(2) Δ

(1) $\frac{2}{3}, \frac{2}{3}w, -\frac{2}{3}w^2$ (2) $-\frac{2}{3}, \frac{2}{3}w, \frac{2}{3}w^2$ (4) $\frac{2}{3}, \frac{2}{3}w, \frac{2}{3}w^2$ (Ans: 4) (3) $\frac{2}{3}$, $-\frac{2}{3}w$, $\frac{2}{3}w^2$

А

MS

(1) Δ^2

[P.T.O.

81. $\lim_{x \to \infty} \frac{5x^2}{x^2}$	$\frac{\sin 3x}{+10} =$			
$(1) = \frac{1}{10}$		(2)		
(3) 0		(4) 5	(A	ns: 4)
82. The sequen	cc 1, √2, ∛3, ∜4,,∛	\overline{n}, \dots converges to the following to the following the	lowing limit	
$1, \sqrt{2}, \sqrt[3]{3}, \frac{3}{3}$	∜4,, <i>∜n</i> , అపే అమ	క్రమం క్రింది ఆవధికి అభిసరిస్తుం		
(1) ∞		(2) 0	(A	ns: 3)
(3) 1		(4) -1		
83. $\lim_{x \to 0} \frac{ax^2 - b}{x^2 - b}$	$\frac{\tan^2 x}{\sin^2 x} = 1 \Longrightarrow a + b =$			
(1)_2		(2) -2		
(3) 1		(4) -1	(A)	ns: 1)
84. Supremum	of the set $\left\{1 + \frac{(-1)^n}{2n} : n\right\}$	$i \in N$ is		
నమితి {1+-	$\left(\frac{(-1)^n}{2n}:n\in N ight\}$ య్యుక్క క	నిష్ట ఎగువ హద్త	(A	ns: 2)
(1) $\frac{5}{6}$	(2) $\frac{5}{4}$	(3) $\frac{7}{8}$	(4) $\frac{9}{8}$	
greatest into x సు దాటని గ	ger not exceeding x the	n the limit of [x] + sgn x a ವರುನಗ್ x > 0 ಲೆದ್ x = 0 ಲೆದ	or $x < 0$ respectively and if $[x]$ at $x = 0$ is r x < 0 පොහරබායා sgn x පබ්ධ	
(1) 0	(2) - 2		(4) Does not exist	t
			వ్యవస్థితం కాదు	
				ns: 4)
IS				ns: 4)

_Download from www<mark>.JbigDeaL.com Powered By</mark> © JbigDeaL

			20			
	$f(x) = \frac{a^{x} + a^{-x}}{2} \Rightarrow$ (1) $f(x) f(y)$	f(x+y) + f(x-y)		2f(x)f(y)		(Ans: 2)
	(3) $f(x) + f(y)$		(4)	$2\left(f(x)+f(y)\right)$		()
	న్3, the symmetric gro మూడు ఆక్షరాలపై సోస్టపు	-				
	(1) a non-abelian gr බබනාරාරා හැබ බැ	-	(2)	a cyclic group పక్రీయ సమూహం		
	(3) an abelian group බබනාගර බබාලා		(4)	a simple group సరళ సమూహం		(Ans: 1)
	Let G be a group of of H is 15 తరగతిగా గల ఒక స					
		aco o c c, e c s n	1 (+ [t])		0	
	П 66%3 (1) 7	(2) 10	(3)	6	(4) 3	(Ans: 4)
95.	$H \in \mathcal{CAB}$ (1) 7 Let S_n be the symmet $\sigma \in S_n, \psi(\sigma)$ is 1 (homomorphism ψ is	tric group on <i>n</i> lette or - 1 according as	rs, G the multi s $σ$ is an even	iplicative group of n or odd permutat	integers {1, ion, then the	1}. If, to each kernel of the
95.	H తరగతి (1) 7 Let S_n be the symmet $\sigma \in S_n$, ψ (σ) is 1 o homomorphism ψ is n అక్షరాలపై సౌష్టపై సము	tric group on <i>n</i> lette or – 1 according at గాహం S _n , గుణకారం ల	rs, G the mult s σ is an eve රු.දි. {1, -1}	iplicative group of n or odd permutat పై సమూహం G అన	integers {1, ion, then the ාපි්රයී. බාම ර	1}. If, to each kernel of the $e \in S_n $ 払 σ おむ
95.	H తదగతి (1) 7 Let S_n be the symmet $\sigma \in S_n$, ψ (σ) is 1 o homomorphism ψ is n అక్షరాలపై సౌష్టన నములేదా బేసి (పెర్పెరమైనపుడ	tric group on <i>n</i> lette or – 1 according at గాహం S _n , గుణకారం ల	rs, G the mult s σ is an even රුබ් _{යි {} 1, -1} 1 විත -1 ක බ	iplicative group of n or odd permutat పై సమూహం G అన రిర్యచిస్తే, సమరూపత గ	integers {1, ion, then the ාපි්රයී. බාම ර	1}. If, to each kernel of the $e \in S_n మ రా సరితష్టం$
95.	H తదగతి (1) 7 Let S_n be the symmetry $\sigma \in S_n, \psi(\sigma)$ is 1 of homomorphism ψ is n అక్షరాలపై సౌష్టప సము లేదా బేసి (పర్పిరమైనపుడ (1) { e }	tric group on <i>n</i> lette or – 1 according at గాహం S _n , గుణకారం ల	rrs, G the mult s σ is an even దృష్టి {1, -1} 1 විසා -1 ක ් (2)	iplicative group of n or odd permutat పై సమూహం G అన	integers {1, ion, then the ుకోండి. (పలి o ψ యొక్క అం!	1}. If, to each e kernel of the $e \in S_n మ రా సరితర్థం(Ans: 3)$
95.	H తదగతి (1) 7 Let S_n be the symmetry $\sigma \in S_n, \psi(\sigma)$ is 1 of homomorphism ψ is n అక్షరాలపై సౌష్టప సము లేదా బేసి (పర్పిరమైనపుడ (1) { e }	tric group on <i>n</i> lette or – 1 according as గాహం S _n , గుణకారం ల ప పరసగా ψ (σ) ను ven permutations	rrs, G the mult s σ is an even దృష్టి {1, -1} 1 විසා -1 ක ් (2)	iplicative group of n or odd permutat ్ పై సమూహం G అన నిర్యచిస్తే, సమరూపత {1}	integers {1, ion, then the ఎకోండి. (పలి o ψ యొక్క అం d permutatio	1}. If, to each e kernel of the $e \in S_n మ \sigma సరితర్థం(Ans: 3)$
	H తరగతి (1) 7 Let S_n be the symmetry $\sigma \in S_n$, ψ (σ) is 1 of homomorphism ψ is n అక్షరాలపై సౌష్టన సము రేదా బేసి (సన్నిరమైనపుడ (1) { e } (3) The set of all en- సరిగ్రుప్రారాలన్నింటి If w (\neq 1) is a 37th roothe number of gener	tric group on <i>n</i> letter or -1 according at ూహం S_n , గుణకారం ల ఓ పరసగా ψ (σ) ను ven permutations సమితి ot of unity and if <i>G</i> rators of <i>G</i> is	ars, G the mult s σ is an even රුදිං _{යි} {1, -1} 1 විසං -1 කං ද (2) (4) is the cyclic g	iplicative group of n or odd permutat పై సమూహం <i>G</i> అన రిక్యచిస్తే, సమరూపత {1} The set of all od బేసి ధుస్తారాలన్నింటి group generated by	integers {1, ion, then the ఎకోండి. (పలి o ψ యొక్క అం d permutatio సమితి w under mult	1}. If, to each e kernel of the $r \in S_n \ge \sigma \times \delta$ මමූං (Ans: 3) ins
	H తదగతి (1) 7 Let S_n be the symmetry of $\sigma \in S_n$, ψ (σ) is 1 of homomorphism ψ is n లక్షరాలపై సౌష్ఠవ సము రేదా బేసి (pస్పరమైనపుడ (1) $\{e\}$ (3) The set of all e^{-1} సరిగ్రస్పారాలన్నింటి If w (\neq 1) is a 37th row	tric group on <i>n</i> letter or -1 according at ూహం S_n , గుణకారం ల ఓ పరసగా ψ (σ) ను ven permutations సమితి ot of unity and if <i>G</i> rators of <i>G</i> is	ars, G the mult s σ is an even దృవ్యేవ {1, -1} 1 లేదా -1 గా శి (2) (4) is the cyclic g మైన చక్రీయ మ	iplicative group of n or odd permutat పై సమూహం <i>G</i> అన రిక్యచిస్తే, సమరూపత {1} The set of all od బేసి ధుస్తారాలన్నింటి group generated by	integers {1, ion, then the ఎకోండి. (పలి o ψ యొక్క అం d permutatio సమితి w under mult	1}. If, to each kernel of the $f \in S_n \ge \sigma \times \delta$ $f \geqslant \sigma$ (Ans: 3) tiplication then
96.	H తరగతి (1) 7 Let S_n be the symmetry $\sigma \in S_n$, ψ (σ) is 1 of homomorphism ψ is n అక్షరాలపై సౌష్టన సము లేదా టేస్ ప్రస్పరమైనపుడ (1) {e} (3) The set of all en- సరిప్రస్పారాలన్నింటి If w (\neq 1) is a 37th roothe number of generry w (\neq 1) అనేది 1కి 375 (1) 1 The number of field	tric group on n letter or -1 according as ూహం S_n , గుణకారం ల ప పరసగా ψ (σ) ను ven permutations సమితి ot of unity and if G rators of G is 5 మూలమై, w చే జనిత (2) 2 ls of order 121 upto	rrs, G the mult s o is an even దృవ్యేవ {1, -1} 1 లేదా -1 గా శి (2) (4) is the cyclic g మైన చక్రీయ మ (3) o isomorphisn	iplicative group of n or odd permutat పై సమూహం G అన రిర్యచిస్తే, సమరూపత {1} The set of all od బేసి ప్రస్తారాలన్నింటి roup generated by మూహం G అయితే () 36	integers {1, ion, then the ఎకోండి. (పలి o ψ యొక్క అం d permutatio సమితి w under mult 7 కి గల జనక :	1}. If, to each kernel of the $f \in S_n \ge \sigma \times \delta$ $f \geqslant \sigma$ (Ans: 3) tiplication then
96.	H తదగతి (1) 7 Let S_n be the symmet $\sigma \in S_n$, ψ (σ) is 1 o homomorphism ψ is $n - లక్షరాలపై సౌష్టన సమురేదా బేస (pన్పిరమైనపుడ(1) {e}(3) The set of all erసరిగ్రుప్రాలన్నింటిIf w (\neq1) is a 37th ro-the number of generw (\neq1) కనేది 1కి 37న(1) 1The number of fieldతుల్యరూపతను లెక్కలోకి$	tric group on n letter or -1 according as ూహం S_n , గుణకారం ల ప పరసగా ψ (σ) ను ven permutations సమితి ot of unity and if G rators of G is 5 మూలమై, w చే జనిత (2) 2 ls of order 121 upto 8 తీసుకోకుంటే, 121 ల	rrs, G the mult s o is an ever ద్వాస్త్రా _{చ్} {1, -1} 1 లేదా -1 గా శి (2) (4) is the cyclic g మైన చక్రీయ ను (3) o isomorphisn తరగతిగా గల క్షేక	iplicative group of n or odd permutat పై సమూహం G అన రిర్యచిస్తే, సమరూపత {1} The set of all od బేసి ప్రస్తారాలన్నింటి roup generated by మూహం G అయితే () 36	integers {1, ion, then the ఎకోండి. (పలి o ψ యొక్క అం d permutatio సమితి w under mult 7 కి గల ఆనక : (4) 9	1}. If, to each kernel of the $i \in S_n కు రా సరితప్రం(Ans: 3)tiplication thenకమూలకాల సంఖ్య(Ans: 3)$
96.	H తరగతి (1) 7 Let S_n be the symmetry $\sigma \in S_n$, ψ (σ) is 1 of homomorphism ψ is n అక్షరాలపై సౌష్టన సము లేదా టేస్ ప్రస్పరమైనపుడ (1) {e} (3) The set of all en- సరిప్రస్పారాలన్నింటి If w (\neq 1) is a 37th roothe number of generry w (\neq 1) అనేది 1కి 375 (1) 1 The number of field	tric group on n letter or -1 according as ూహం S_n , గుణకారం ల ప పరసగా ψ (σ) ను ven permutations సమితి ot of unity and if G rators of G is 5 మూలమై, w చే జనిత (2) 2 ls of order 121 upto	rrs, G the mult s o is an ever ద్వాస్త్రా _{చ్} {1, -1} 1 లేదా -1 గా శి (2) (4) is the cyclic g మైన చక్రీయ ను (3) o isomorphisn తరగతిగా గల క్షేక	iplicative group of n or odd permutat పై సమూహం G అన రిక్యచిస్తే, సమరూపత {1} The set of all od బేసి ద్రస్తారాలన్నింటి group generated by మూహం G అయితే () 36 n is	integers {1, ion, then the ఎకోండి. (పలి o ψ యొక్క అం d permutatio సమితి w under mult 7 కి గల జనక :	1}. If, to each kernel of the $f \in S_n \ge \sigma \times \delta$ $f \geqslant \sigma$ (Ans: 3) tiplication then

- 21
- 98. If $\langle x^2 + 1 \rangle$ is the ideal generated by $x^2 + 1$ in the ring **R** [x], then $\frac{\mathbf{R}[x]}{\langle x^2 + 1 \rangle}$ is isomorphic to one of the following. పలయం $\mathbf{R}\left[x
 ight]$ లో x^2+1 చే జనితమైన ఆదర్యం (x^2+1) అయితే $\displaystyle \frac{\mathbf{R}\left[x
 ight]}{\langle x^2+1
 angle}$ అనేది కింది కాటిలో ఒక దానికి తుల్యరూపం (Ans: 2) (3) 0 (4) Z (1) **R** (2) C 99. An irreducible polynomial over Q among the following is: క్రిందివాటిలో Q పై ఒక అక్షీణ బహుపది (2) $r^3 - r^2 + r - 1$ (1) $x^4 - 4x^2 + 3$ (Ans: 3) (4) $x^4 + 2x^2 - 3$ (3) $x^3 - 6x + 3$ 100. The minimal polynomial of $\sqrt{2} + \sqrt{3}$ over Q is \mathbf{Q} ුං $\sqrt{2} + \sqrt{3}$ බොහේ, නොදුමරා සොංරස (Ans: 1) (1) $x^4 - 10x^2 + 1$ (2) $x^4 + 10x^2 + 1$ (3) $x^4 - 10x^2 - 1$ (4) $x^4 + 10x^2 - 1$ 101. $y = \tan^{-1}\left(\frac{\sqrt{1+x} + \sqrt{1-x}}{\sqrt{1+x} - \sqrt{1-x}}\right) \Longrightarrow \frac{dy}{dx} =$ (1) $\frac{1}{2\sqrt{1-x}}$ (2) $\frac{-1}{2\sqrt{1-x^2}}$ (3) $\frac{1}{\sqrt{1-x^2}}$ (4) $\frac{1}{2\sqrt{1-x^2}}$ (Ans: 2) 102. $x = a\cos^3 \theta$, $y = a\sin^3 \theta \Rightarrow \frac{dy}{dx} =$ (1) $\left(\frac{x}{y}\right)^{\frac{1}{3}}$ (2) $\left(\frac{y}{x}\right)^{\frac{1}{3}}$ (3) $-\left(\frac{x}{y}\right)^{\frac{1}{3}}$ (4) $-\left(\frac{y}{x}\right)^{\frac{1}{3}}$ (Ans: 4) 103. $y = x^{x^2} \rightarrow \frac{dy}{dx} =$ (1) $x^{x^2} \log ex^2$ (2) $x^{x^{2}+1} \log ex^2$ (3) $x^{x^2} (1 + \log ex^2)$ (4) $x^2 x^{x^2-1}$ (Ans: 2) А [P.T.O. MS

104.
$$x^3 + y^3 = 3axy = \frac{dy}{dx} =$$
 (Ans: 2)
(1) $-\frac{x+ay}{ay-x^2}$ (2) $-\frac{x^2-ay}{y^2-ax}$ (3) $\frac{x^2+ay^2}{ax+y}$ (4) $\frac{x^2-ax}{y^2-ay}$
105. $y - \left(x + \sqrt{1+x^2}\right)^4 \Rightarrow (1+x^2)y^* + xy' =$
(1) n^2 (2) n^2y (3) $-n^2y$ (4) $-n^2$ (Ans: 2)
106. $x = \sin^{-1}t$, $y = \sqrt{1-t^2} = \frac{d^2y}{dt^2}\Big|_{t=\frac{1}{2}} -$
(1) $\frac{\sqrt{3}}{2}$ (2) $\frac{1}{2}$ (3) $-\frac{1}{2}$ (4) $-\frac{\sqrt{3}}{2}$ (Ans: 4)
107. The rates of change in volume and in radius of a sphere are equal when the radius is
 $x = 5h^2xy$ (absolution to the curve $y = be^{\frac{-x}{a}}$ (4) $\frac{1}{2\sqrt{\pi}}$ (Ans: 4)
108. If the line $\frac{x}{a} + \frac{y}{b} = 1$ is a tangent to the curve $y = be^{\frac{-x}{a}}$ then the point of contact is
 $y = \frac{be^{\frac{x}{a}}}{x}xyz^{3/2}\frac{x}{a} + \frac{y}{b} = 1$ with two dyness $xyz^{3/2}yz^{3/2}yz^{3/2}$ (Ans: 4)
109. For $x > 0$, the maximum value of $f(x) = \frac{\log x}{x}$ is
 $f(x) = \frac{\log x}{x}$, $(x > 0) \le nzyz^{3/2}z^{3/2}$ (2) e (3) $\frac{1}{e}$ (4) $\frac{1}{2e}$ (Ans: 3)
A MS

24

115. The ratio in which YZ plane divides the join of the points (2, 4, 5) and (3, 5, -4) is (Ans: 3) బిందువులు (2, 4, 5), (3, 5, –4) లను కరిపీ రేఖా ఖండాన్ని YZ తలం విభజించే విష్యత్తి (1) 2:3(2) 3:2 (3) -2:3(4)4:-3116. The angle between the planes 2x - y + z = 6 and x + y + 2z = 7 is 2x - y + z = 6, x + y + 2z = 7 తలాల మధ్యకోణం (Ans: 2) (1) $\pi/6$ (2) $\pi/3$ (3) $\pi/4$ (4) $\pi/2$ 117. The equations of X-axis in its normal form are ఆభిలంబ రూపంలో X-అక్షం సమీకరణాలు (Ans: 4) (1) $\frac{x}{0} = \frac{y}{1} = \frac{z}{1}$ (2) $\frac{x}{1} = \frac{y}{0} = \frac{z}{1}$ (3) $\frac{x}{1} = \frac{y}{1} = \frac{z}{0}$ (4) $\frac{x}{1} = \frac{y}{0} = \frac{z}{0}$ 118. Volume of the sphere $2x^2 + 2y^2 + 2z^2 - 4x + 12y - 8z + 8 = 0$ (in cubic units) is approximately . గోళం $2x^2 + 2y^2 + 2z^2 - 4x + 12y - 8z + 8 = 0$ ఘనపరిమాణం (ఘనపు యూనిట్లలో) ఉజ్జాయింపుగా (1) $\frac{880\sqrt{10}}{21}$ (2) $\frac{440\sqrt{10}}{21}$ (Ans: 1) (3) $\frac{880}{21}$ $(4) \frac{440}{21}$ 119. The shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-5}{5}$ is సరళ రేఖలు $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}, \ \frac{x-2}{3} = \frac{y-3}{4} = \frac{z-5}{5}$ ల మధ్య కనిష్టదూరం (Ans: 2) (4) $\frac{1}{2\sqrt{6}}$ (2) $\frac{1}{\sqrt{6}}$ (3) $\frac{2}{3}$ (1) $\frac{2}{\sqrt{3}}$ 120. The general equation of the cone passing through the coordinate axes is నిరూపక అక్షాల గుండా పోయే శంకువు సమీకరణపు పాధారణ రూపం (1) $ax^2 + by^2 + cz^2 = 1$ (2) $ax^2 + by^2 + cz^2 = 0$ (Ans: 3) (3) fyz + gzx + hxy = 1(4) fyz + gzx + hxy = 0Λ MS

- 121. The equation of a straight line passing through the point of intersection of the lines x + 2y 19 = 0, x 2y 3 = 0 and is at a distance 5 units from the point (-2, 4) is బిందువు (-2, 4) నుండి 5 యూనిట్ల దూరంలో ఉంటూ సరళరేఖలు x + 2y - 19 = 0, x - 2y - 3 = 0 ల ఇండన బిందువు గుండా పోయీ ఒక సరళరేఖా సమీకరణం
 - (1) $y 4 = \frac{5}{12} (x 11)$ (2) $y + 4 = \frac{5}{12} (x - 11)$ (3) $y - 4 = \frac{5}{6} (x - 11)$ (4) $y + 4 = \frac{5}{6} (x - 11)$ (Ans: 1)
- 122. The orthocentre of the triangle, having the equations 2x y = 9, x + y = 9, 2y x = 9 as the equations of its sides, is
 - 2x y = 9, x + y = 9, 2y x = 9 ευ φύετε τουπ² Λει φθφύειου σομέσιμο (1) (4, 4) (2) (5, 5) (3) (6, 6) (4) (7, 7) (Ans: 2)

123. The distance between the parallel lines $9x^2 - 6xy + y^2 + 18x - 6y + 8 = 0$ is సమాంతర రేఖలు $9x^2 - 6xy + y^2 + 18x - 6y + 8 = 0$ ల మధ్య దూరం

(1) $\frac{1}{5}$ (2) $\frac{1}{2\sqrt{10}}$ (3) $\frac{1}{\sqrt{10}}$ (4) $\frac{2}{\sqrt{10}}$ (Ans: 4)

(Ans: 2)

124. If x + y - 1 = 0 and x + y + 3 = 0 are tangents to a circle S, then the radius of S is සේ කාමුං S හා x + y - 1 = 0, x + y + 3 = 0 හා කාර්ත්රිකයා සංකානි ප කාමුං කැටාරුං

(1) $2\sqrt{2}$ (2) $\sqrt{2}$ (3) $\frac{1}{\sqrt{2}}$ (4) $4\sqrt{2}$

 125. The equation of the chord of the circle $x^2 + y^2 = 25$ having (1, -1) as the mid point of the chord is

 $x^2 + y^2 = 25$ end symplet, (1, -1) such that $x = y^2$ and y = 25 end symplet, (1, -1) such that $x = y^2 = 25$ end symplet, (1, -1) such that $x = y^2 = 25$ end symplet, (1, -1) such that $x = y^2 = 25$ end symplet, (1, -1) such that $x = y^2 = 25$ end symplet, (1, -1) such that $x = y^2 = 25$ end simplet.

 (1) x - y + 2 = 0 (2) x + y - 2 = 0 (3) x - y - 2 = 0 (4) x - y - 4 = 0

- 126. If a coaxal system of circles has (0, 0) as one of its limiting points and x + y = 1 as the radical axis then the other limiting point is x + y = 1 ను మూలాక్షంగా గల ఒక సహాక్ష వృత్తనరణికి (0, 0) ఒక అపధి బిందువైతే, మరో అవధి బిందువు
 - (1) (1, 1) (2) (2, 2) (3) (3, 3) (4) (-1, -1) (Ans: 1) [P.T.O.
- A MS

127. The focus of the parabola
$$y^2 - x - 2y - 2 = 0$$
 is worknow $y^2 - x - 2y - 2 = 0$ dively $\pi \psi$
(1) $\left(1, \frac{5}{4}\right)$ (2) $\left(\frac{5}{4}, 1\right)$ (3) (1, 1) (4) $\left(\frac{5}{4}, \frac{5}{4}\right)$ (Ans: 2)
128. A circle is insertibed in an ellipse with the minor axis as the diameter of the circle. Then the eccentricity of the ellipse is gradient with the minor axis as the diameter of the circle. Then the eccentricity of the ellipse is (2) $\frac{1}{\sqrt{5}}$ (3) $\frac{1}{\sqrt{2}}$ (4) $\frac{1}{\sqrt{3}}$ (DELETED) (One Mark added To All)
129. The equation of a circle in polar coordinates is $r = 5 \cos \theta - 5\sqrt{3} \sin \theta$. Then its centre is equivable $\frac{\pi}{6}$ (2) $\left(5, \frac{\pi}{4}\right)$ (3) $\left(5, -\frac{\pi}{3}\right)$ (4) $\left(5, \frac{\pi}{2}\right)$ (Ans: 3)
(1) $\left(5, -\frac{\pi}{6}\right)$ (2) $\left(5, \frac{\pi}{4}\right)$ (3) $\left(5, -\frac{\pi}{3}\right)$ (4) $\left(5, \frac{\pi}{2}\right)$ (Ans: 1)
(1) $\left(1, (-1, 1)\right)$ (2) $\left(1, -1\right)$ (3) $\left(1, 1\right)$ (4) $\left(1, -1\right)$
130. The centre of the hyperbola $9x^2 - 16y^2 + 18x + 32y - 151 = 0$ is existence $9x^2 - 16y^2 + 18x + 32y - 151 = 0$ dively $\frac{5}{3} \log 5x$ (Ans: 1)
(1) $\left(-1, 1\right)$ (2) $\left(1, -1\right)$ (3) $\left(1, 1\right)$ (4) $\left(-1, -1\right)$
131. If A and B are square matrixes of order *n* and if r_1, r_2, r_3 are ranks of A, B, AB respectively then $r_2 \ge$
A, B ω in 5 bottle blocopisting $\frac{\pi}{2}$ shift A be its adjoint matrix. If rank of A is *n* then the rank of adj A is $n \otimes 0$ exclusion $\frac{\pi}{2}$ of $n - 1$ (Ans: 2)
132. Let A be a square matrix of order *n*. Adj A be its adjoint matrix. If rank of A is *n* then the rank of adj A is $n \otimes 0$ exclusion $\frac{\pi}{2}$ of $n - 1$ (3) n (4) $\left(-n - 1$ (Ans: 3)
133. If T: $\mathbb{R}^2 \to \mathbb{R}$ is the linear transformation given by T (1, 1) = 3, T (1, 2) = 1 then T (x, y) = T (1, 1) = 3, T (1, 2) = 1 et $\frac{\pi}{2}$ decended $\frac{\pi}{2}$ divelation $\frac{\pi}{2}$ divelation $\frac{\pi}{2}$ or $\frac{\pi}{2}$ (4) $\frac{\pi}{2} - 2y$ (3) $3x - 2y$ (4) $\frac{\pi}{2}$ (2) $3x - y$ (3) $5x - 2y$ (4) $\frac{\pi}{2}$ (Ans: 3)

Download from www.JbigDeaL.com bigDea

27

- 134. If $f: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation given by f(x, y) = (x 2y, y 2x) then the kernel of fis:
 - f(x,y)=(x-2y,y-2x) చే ఈయబడిన రేఖీయ పరివర్తన $f:\mathbf{R}^2 \to \mathbf{R}^2$ అయితే fయొక్క అంతట్టి
 - $(1) \{0\}$ $(2) = \{(0, 0)\}$
 - $(4) \quad \{(1, 1), (0, 0)\}$ $(3) \{(2, 1), (1, 2)\}$
- 135. If $T : \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation defined by T(x, y) = (x y, y + 2x) then the nullity of T is $\mathrm{T}:\mathbf{R}^2\to\mathbf{R}^2$ అనే రేఖీయ పరివర్తన $\mathrm{T}\left(x,\,y\right)=\left(x+y,\,y+2x\right)$ పే నిర్యచింపబడితే T యొక్క శూస్యత
 - (Ans: 3) $(2) = \{(0, 0)\}$ (3) 0(1) **R** (4) 1
- 136. If T (x, y) = (3x y, 2x + 4y, 5x 6y) defines a linear transformation from \mathbb{R}^2 into \mathbb{R}^3 then the matrix of linear transformation T with respect to the standard bases is ${f R}^2$ నుండి ${f R}^3$ కు T (x,y) = (3x - y, 2x + 4y, 5x - 6y) ఒక రేఖీయపరివర్తనను నిర్యచిస్తే, పరినర్తన T యొక్క చూత్రిక, ప్రామాణిక ఆధారాల దృష్ట్యా

(1)
$$\begin{pmatrix} 3 & 2 & 5 \\ -1 & 4 & 6 \end{pmatrix}$$
 (2) $\begin{pmatrix} 3 & -2 & 5 \\ -1 & -4 & 6 \end{pmatrix}$ (3) $\begin{pmatrix} 3 & -1 \\ -2 & -4 \\ 5 & 6 \end{pmatrix}$ (4) $\begin{pmatrix} 3 & -1 \\ 2 & 4 \\ 5 & -6 \end{pmatrix}$ (Ans: 4)

137. Eigen values of the linear operator $\mathbf{T}: \mathbf{R}^3 \to \mathbf{R}^3$ given by T(x, y, z) = (2x + y, y - z, 2y + 4z) are $\mathbb{T}(x, y, z) = (2x + y, y - z, 2y + 4z)$ చే నిర్యచితమైన రేఖీయ పరిపర్షన $\mathbb{T}: \mathbb{R}^3 \to \mathbb{R}^3$ యొక్కు ఐగెన్ విలువలు (3) 2, 2, 3 (1) 3, 3, 2 (Ans: 3) (2) 1, 2, 3 (4) 1, 1, 3

138. If $\lambda \neq -2$, and the system of equations

 $(1 - \lambda)x - 3y + 3z = 0$ $3x - (5 + \lambda)y + 3z = 0$ $6x - 6y + (4 - \lambda)z = 0$ has non-zero solutions then $\lambda =$ λ ≠ −2 అపుతూ సమీకరణాల వ్యవస్థ $(1-\lambda)x - 3y + 3z = 0$ $3x - (5 + \lambda)y + 3z = 0$ $6x - 6y + (4 - \lambda)z = 0$ కు సున్నా కాని పాధనలుంటే λ = (1) 3(2) 4

(3) -4

(4) -3

(Ans: 2)

(Ans: 2)

A

MS

[P.T.O.

$$139, A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \Rightarrow A^{4} - 6A^{3} + 9A^{2} = \begin{bmatrix} (1) & 4A & (2) & 3A & (Ans: 1) \\ (3) & 2A & (4) & A^{-1} & (Ans: 1) \end{bmatrix}$$

$$140. If T: R^{2} \to R^{3} is the linear transformation given by T (x, y) = (x - y, y - 2x, 2x - 3y) then the rank of T is the constraints of the transformation given by T (x, y) = (x - y, y - 2x, 2x - 3y) then the rank of T is the constraints of the transformation given by T (x, y) = (x - y, y - 2x, 2x - 3y) then the rank of T is the constraints of the term (x + 1)^{m} - x^{m} - 1 & (2) & 2 & (3) & 0 & (4) & 3 & (Ans: 2) \end{bmatrix}$$

$$141. The integers $m \ge 1$ such that $x^{2} + x + 1$ divides $(x + 1)^{m} - x^{m} - 1$ are of the form $(x + 1)^{m} - x^{m} - 1 & 5x^{2} + x + 1$ generic the term $(x + 1)^{m} - x^{m} - 1 & 5x^{2} + x + 1$ generic the term $(x + 1)^{m} - x^{m} - 1 & 5x^{2} + x + 1$ generic the term $(x + 1)^{m} - x^{m} - 1 & 5x^{2} + x + 1$ generic the term $(x + 1)^{m} - x^{m} - 1 & 5x^{2} + x + 1 & 9x^{2} & 5x^{2} & 5x^{2}$$$

MS

29

145.
$$\int \frac{x + 1}{x(xe^{3} - 1)} dx = \log |g(x)| + c \Rightarrow g(x) =$$
(1) $\frac{xe^{x}}{xe^{x} + 1}$
(2) $\frac{xe^{x} + 1}{xe^{x}}$
(3) $\frac{(x + 1)e^{x}}{x}$
(4) $\frac{e^{x} + 1}{x + 1}$
(Ans: 1)
(Ans: 1)
(14) $\frac{\pi}{2} \log 2$
(1) $\frac{\pi}{2} \log 2$
(2) $\frac{\pi}{4} \log 2$
(3) $\frac{\pi}{8} \log 2$
(4) $\frac{\pi}{16} \log 2$
(5) $\frac{\pi}{8} \log 2$
(6) $\frac{\pi}{8} \log 2$
(7) $\frac{\pi}{8} \log 2$
(7) $\frac{\pi}{16} \log 2$
(7) $\frac{\pi}{16} \log 2$
(8) $\frac{\pi}{8} \log 2$
(9) $\frac{\pi}{8} \log 2$
(9) $\frac{\pi}{16} \log 2$
(9) $\frac{\pi}{16} \log 2$
(9) $\frac{\pi}{16} \log 2$
(10) $\frac{1}{3}$
(11) $\frac{1}{3}$
(2) $\frac{1}{2}$
(3) 2
(3) $\frac{\pi}{8} \log 2$
(4) $\frac{\pi}{16} \log 2$
(5) $\frac{\pi}{16} \log 2$
(7) $\frac{\pi}{16} \log 2$
(7) $\frac{\pi}{16} \log 2$
(8) $\frac{\pi}{16} \log 2$
(9) $\frac{\pi}{16$

 $(4)^{+}\frac{7}{8}$

(3) $\frac{5}{8}$

A

MS

(Ans: 2)

[P.T.O.

30

149. The variance of the first n natural numbers is

మొదటి n సహజ సంఖ్యల విష్పతి

- (1) $\frac{n^2+1}{12}$
- (2) $\frac{n^2+1}{6}$
- (3) $\frac{n^2-1}{6}$

(4)
$$\frac{n^2 - 1}{12}$$

- 150. If two dice are thrown simultaneously then the probability of getting a total of 7 is రెండు పాచికంసు ఒకేసారి దార్లిస్తే, వాటిపై 7 మొత్తంగా వచ్చు సంభావ్యత
 - (1) $\frac{7}{36}$
 - (2) $\frac{1}{6}$
 - (3) $\frac{5}{36}$

(4) $\frac{1}{9}$

(Ans: 2)

(Ans: 4)