Bet Code :
$$\boxed{12}$$

Booklet Code :
$$\boxed{A}$$
30. $\frac{d}{dx} \left[\cos^{-1} \left(\frac{1-x^2}{1+x^2} \right) \right] =$
(1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$ (3) $\frac{2}{1+x^2}$ (4) $\frac{-2}{1+x^2}$
31. If $x = a^2$, $y = 2at$, then $\frac{dy}{dx} =$
(1) $\sqrt{\frac{y}{x}}$ (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{x}{a}}$ (4) $\sqrt{\frac{x}{y}}$
32. The derivative of e^x with respect to \sqrt{x} is
(1) $\frac{2\sqrt{x}}{e^x}$ (2) $2\sqrt{x}e^x$ (3) $\frac{e^x}{2\sqrt{x}}$ (4) $\sqrt{\frac{x}{y}}e^x$
33. The equation of the normal to the curve $y = 5x^4$ at the point (1, 5) is
(1) $x + 20y = 99$ (2) $x + 20y = 101$ (3) $x - 20y = 99$ (4) $x - 20y = 101$
34. The angle between the curves $y^2 = 4x$ and $x^2 + y^2 = 5$ is
(1) $\frac{\pi}{4}$ (2) $\tan^{-1}(2)$ (3) $\tan^{-1}(3)$ (4) $\tan^{-1}(4)$
35. If $u = x^3y^3$ then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$
(1) $6(x^3+y^3)$ (2) $6x^3y^3$ (3) $6x^3$ (4) $6y^3$
36. $\int \csc x \, dx =$
(1) $\log (\csc x + \cot x) + C$ (2) $\log (\cot x/2) + C$
(3) $\log (\tan x/2) + C$ (4) $-\csc x \cot x + C$

Set Code :
$$\boxed{12}$$

Booklet Code :
$$\boxed{A}$$
37.
$$\int_{0}^{\frac{\pi}{2}} \cos^{11} x \, dx =$$
(1) $\frac{256}{693}$ (2) $\frac{256\pi}{693}$ (3) $\frac{\pi}{4}$ (4) $\frac{128}{693}$
38.
$$\int f^{1}(x) [f(x)]^{n} \, dx =$$
(1) $\frac{[f(x)]^{n-1}}{n-1} + C$ (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$
39.
$$\int \frac{dx}{(x+7)\sqrt{x+6}} =$$
(1) $Tan^{-1}(\sqrt{x+6}) + C$
(2) $2Tan^{-1}(\sqrt{x+6}) + C$
(3) $Tan^{-1}(x+7) + C$
(4) $2Tan^{-1}(x+7) + C$
(5) $x^{2}Tan^{-1}x + C$
(7) $x^{2}Tan^{-1}x + C$
(8) $x^{2}Tan^{-1}x + C$
(9) $x^{2}Tan^{-1}x + C$
(9) $\log(1+e^{x}) + C$
(9) $\log(1+e^{x}) + C$
(10) $\log(1+e^{x}) + C$
(2) $\log(1+e^{x}) + C$
(3) $e^{x} + C$
(4) $e^{x} + C$
(5) $e^{x} + C$
(7) $(3) = 2$
(7) $(4) = -1$
(7) $(4) = -1$
(7) $(4) = -1$

Set Code :
12
Booklet Code :
13. Area under the curve
$$f(x) = \sin x \ln [0, \pi]$$
 is
(1) 4 sq. units (2) 2 sq. units (3) 6 sq. units (4) 8 sq. units
14. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} - 3y = x$ is
(1) 1 (2) 4 (3) 3 (4) 2
15. The degree of $\left[\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2\right]^2 = a \frac{d^2y}{dx^2}$ is
(1) 4 (2) 2 (3) 1 (4) 3
16. The family of straight lines passing through the origin is represented by the differential equation
(1) $ydx + xdy = 0$ (2) $xdy - ydx = 0$ (3) $xdx + ydy = 0$ (4) $xdx - ydy = 0$
17. The differential equation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + by + f}$ is called
(1) Homogeneous (2) Exact (3) Linear (4) Legender
18. The solution of differential equation $\frac{dy}{dx} = e^{-x^2} - 2xy$ is
(1) $ye^{-x^2} = x + c$ (2) $ye^x = x + c$ (3) $ye^{x^2} = x + c$ (4) $y = x + c$
19. The complementary function of $(D^2 + D^2 + D^2 + 1)y = 10$ is
(1) $C_1 \cos x + C_2 \sin x + C_2 e^x$ (2) $C_1 \cos x + C_2 \sin x + C_3 e^x$
(3) $C_1 + C_2 \cos x + C_3 \sin x$ (4) $(C_1 + C_2 x + C_3 x^2)e^x$
50. Particular Integral of $(D-1)^3y = e^x$ is
(1) $x^4 e^x$ (2) $\frac{x^4}{24}e^{-x}$ (3) $\frac{x^4}{12}e^x$ (4) $\frac{x^4}{24}e^x$

•

a .			Set Code : T2
			Booklet Code : A
	PHYSIC	CS	
51. Two quantities A and B are relat force. The dimensions of B wil	ed by the relation l be	A/B = m where m is	linear mass density and A
(1) same as that of latent heat	(2)	same as that of pro	esure
(3) same as that of work	(4)		
52. The dimensional formula of cap	acitance in terms	of M. L. Tand I is	× ,
(1) $[ML^2T^2I^2]$ (2) $[ML^2T^2I^2]$	- ² T ⁴ I ²] (3)) $[M^{-1}L^{-2}T^{4}]^{2}]$
53. If l , m and n are the direction co	sines of a vector,	then	
(1) $l+m+n=1$ (2) l^2+	$m^2 + n^2 = 1$ (3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$ (4)) $lmn = 1$
54. The angle between $i+j$ and $j+k$ is	(b)	· · · · ·	
(1) 0° (2) 90°		45° (4) 60° ·
55. A particle is moving eastwards v	with a velocity of	5 ms ⁻¹ . In 10 second	is the velocity changes to
5 ms ⁻¹ northwards. The average a	acceleration in th	is time is	
(1) $\frac{1}{\sqrt{2}}$ ms ⁻² towards north-wes			L
$\sqrt{2}$ ms towards form-wes	at (2)	zero	
(3) $\frac{1}{2}$ ms ⁻² towards north	2	1	6
2 ¹¹¹³ 10wards north	(4)	$\frac{1}{\sqrt{2}}$ ms ⁻² towards no	orth-east
56. The linear momentum of a particl correct?	e varies with tim	$e t as p = a + bt + ct^2 y$	which of the following is
(1) Force varies with time in a q	uadratic manner.		
(2) Force is time-dependent.	terre en recebble de manarés o actin d'Al Tra		
(3) The velocity of the particle	is proportional to	time.	
(1) The displacement of the		n na se para na fazi da la companya na se	

(4) The displacement of the particle is proportional to t.

57. A shell of mass *m* moving with a velocity v suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is

(1) v (2) 2v (3) 3v/4 (4) 4v/3

10-A

Set Code : T2 Booklet Code : A

- 58. The velocity of a freely falling body after 2s is (1) 9.8 ms^{-1} (2) 10.2 ms^{-1} (3) 18.6 ms^{-1} (4) 19.6 ms^{-1}
- 59. A large number of bullets are fired in all directions with the same speed u. The maximum area on the ground on which these bullets will spread is
 - (1) $\frac{\pi u^2}{g^2}$ (2) $\frac{\pi u^4}{g^2}$ (3) $\frac{\pi u^2}{g^4}$ (4) $\frac{\pi u}{g^4}$
- 60. The minimum stopping distance for a car of mass m, moving with a speed v along a level road, if the coefficient of friction between the tyres and the road is μ , will be

(1) $\frac{v^2}{2\mu g}$ (2) $\frac{v^2}{\mu g}$ (3) $\frac{v^2}{4\mu g}$ (4) $\frac{v}{2\mu g}$

- 61. When a bicycle is in motion, the force of friction excreted by the ground on the two wheels is such that it acts
 - (1) In the backward direction on the front wheel and in the forward direction on the rear wheel
 - (2) In the forward direction on the front wheel and in the backward direction on the rear wheel
 - (3) In the backward direction on both the front and the rear wheels
 - (4) In the forward direction on both the front and the rear wheels
- 62. In a perfectly inelastic collision, the two bodies
 - (1) strike and explode (2) explode without striking
 - (3) implode and explode (4) combine and move together
- 63. Under the action of a constant force, a particle is experiencing a constant acceleration, then the power is
 - (1) zero (2) positive
 - (4) increasing uniformly with time

(3) negative

11-A

Set Code : **Booklet Code :** 64. Consider the following two statements: A: Linear momentum of a system of particles is zero. B: Kinetic energy of a system of particles is zero. Then (1) A implies B & B implies A (2) A does not imply B & B does not imply A (3) A implies B but B does not imply A (4) A does not imply B but B implies A 65. An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg to a height of 40 m? (Given $g = 10 \text{ ms}^{-2}$) (4) 10s (1) 4s (2) 5s (3) 8s 66. If a spring has time period T, and is cut into n equal parts, then the time period will be (2) $\frac{T}{\sqrt{n}}$ T (3) nT (4) (1) $T\sqrt{n}$ TM 67. When temperature increases, the frequency of a tuning fork (1) increases (2) decreases (3) remains same (4) increases or decreases depending on the materials 68. If a simple harmonic motion is represented by $\frac{d^2x}{dy^2} + \alpha x = 0$, its time period is (3) $\frac{2\pi}{\sqrt{\alpha}}$ (2)2πα (1) $2\pi\sqrt{\alpha}$ 69. A cinema hall has volume of 7500 m³. It is required to have reverberation time of 1.5 seconds. The total absorption in the hall should be 0.825 w-m² (3) 8.250 w-m² 850 w-m² (2) 82.50 w-m^2 (4)

12-A

Download from www<mark>.JbigDeaL.com Powered By © JbigDeaL</mark>

					Set	Code :	T2
				3	Booklet	Code :	A
	To absorb the sound in a hall which of t	he followi	ng are used				e.
).		(2)	Carpets, cur	tains			
	(1) Glasses, stores	(4)	Platforms				
	(3) Polished surfaces						
	If N represents avagadro's number, the	n the num	ber of molecu	les in 6 gn	n of hyd	rogen at N	ITP is
		(3)	N	(4)	N/6		
	(-)				•		
	The mean translational kinetic energy	of a perfec	ct gas molecu	le at the te	emperati	ure T K is	
•						S.	
	(1) $\frac{1}{2}kT$ (2) kT	(3)	$\frac{3}{2}kT$	(4)	2kT	÷.	
	.2				5		
	The amount of heat given to a body wh	hich raises	its temperatu	re by 1°C			•
3.		(2)	thermal hea	at capacity	/		14 ₁₂
	(1) water equivalent	(4)					
	(3) specific heat				TM		
	During an adiabatic process, the pres	sure of a g	as is found to	be propo	rtional t	o the cube	e of its
4.	absolute temperature. The ratio Cp/C	v for gas is	5				
					5		÷.
	(1) $\frac{3}{2}$ (2) $\frac{4}{3}$	(3)	2	(4)	<u>5</u> 3		
	(1) 2						
	to the state of th	used to					
5.	Cladding in the optical fiber is mainly	v used to	2000		a:		
	(1) to protect the fiber from mecha	inical suce	5505			2	
	(2) to protect the fiber from corros	sion	ath				12
	(3) to protect the fiber from mecha						
	and C laster	magnotic	mudance	1.5			

(4) to protect the fiber from electromagnetic guidance

Set Code :[
Booklet Code :	A

CHEMISTRY

76.	The	e valency electro	onic co	nfiguration of	Phosph	orous atom (At.)	No. 15) is	
		3s ² 3p ³		3s1 3p3 3d1		3s ² 3p ² 3d ¹		3s ¹ 3p ² 3d ²	
77.	An	element 'A' of A	t.No.12	2 combines wi	th an ele	ment 'B' of At.N	0.17.	The compoun	d formed is
	(1)	covalent AB	(2)	ionic AB ₂		covalent AB ₂		ionic AB	
78.	The	number of neut	rons pi	resent in the at	om of	Ba ¹³⁷ is			
		56		137		193	(4)	.81	
79.	Hyd	lrogen bonding	in wate	r molecule is	responsi	ble for	1		e.
	(1)	decrease in its			(2)		degree	of ionization	n
	(3)	increase in its	boiling	point		decrease in its			
								TM	
80.	In th	ne HCl molecule	, the bo	onding betwee	n hydro	gen and chlorine	is	•	
	(1)				and strengt strengt	polar covalent		complex co	ordinate
81.	Pota	ssium metal and	l potas	sium ions					34
	(1)	both react with	-		(2)	have the same	numbe	rofprotone	
	(3)	both react with		ne gas	(4)				ation
	(-)			· Bus	(4)	nave the same (·	ane configura	ation
82.	stan	dard flask. 10 ml	ofthis	solution were p	pipetted	water and the so out into another f of the sodium chl	lask an	d made up wi	th distilled
		0.1 M	(2)	1.0 M		0.5 M		0.25 M	· .
83.	Con	centration of a 1	.0 M s	olution of pho	sphoric	acid in water is			
		0.33 N	(2)	1.0 N		2.0 N	(4)	3.0 N	•
84.	Whi	ch of the followi	ng is a	Lewis acid?					14
	(1)	Ammonia			(2)	Berylium chlor	ide	*	
	(3)	Boron trifluori	de		(4)	Magnesium oxi		·	
					14-A	0			

	Set	Code : T2
	Booklet	Code : A
85.	 Which of the following constitutes the components of a buffer solution? (1) Potassium chloride and potassium hydroxide (2) Sodium acetate and acetic acid (3) Magnesium sulphate and sulphuric acid (4) Calcium chloride and calcium acetate 	
86.	(1) Acetic acid (2) Glucose (3) Urea (4) Pyridin	
87.	87. Calculate the Standard emf of the cell, $Cd/Cd^{+2}//Cu^{+2}/Cu$ given that E ⁰ Cd/Cd E ⁰ Cu/Cu^{+2} = (-) 0.34 V. (1) (-) 1.0 V (2) 1.0 V (3) (-) 0.78 V (4) 0.78 V	$t^{2} = 0.44$ V and
88.	 88. A solution of nickel chloride was electrolysed using Platinum electrodes. After (1) nickel will be deposited on the anode (2) Cl₂ gas will be liberated at the (3) H₂ gas will be liberated at the anode (4) nickel will be deposited on the 	camode
89.	89. Which of the following metals will undergo oxidation fastest? (1) Cu (2) Li (3) Zinc (4) Iron	
90.	 90. Which of the following cannot be used for the sterilization of drinking water? (1) Ozone (2) Calcium Oxychloride (3) Potassium Chloride (4) Chlorine water 	·
91.	 91. A water sample showed it to contain 1.20 mg/litre of magnesium sulphate. There terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm (3) 0.60 ppm (4) 2.40 ppm 	
92.	 92. Soda used in the L-S process for softening of water is, Chemically. (1) sodium bicarbonate (2) sodium carbonate decahydration (2) sodium carbonate decahydration (3) sodium carbonate (4) sodium hydroxide (40%) 	le
93.	 93. The process of cementation with zinc powder is known as (1) sherardizing (2) zincing (3) metal cladding (4) electronic 	oplating
	. 15-A	

					14 A. 15	**		Set Code	: T2
		10 67					Be	ooklet Code	
0.4	0					*C			· A
94		rrosion of a me							
	(1)) rain-water	(2)	acidulated	water (3)	distilled water	(4) de	e-ionised wa	ter
95.	W	hich of the follo	wing is a	thermoset	polymer?	6			
	(1)	Polystyrene			(2)	PVC	4		8
,	(3)	Polythene			(4)	Urea-formaldel	hyde resin	n	
96.	Ch			•	23	÷	· -	<u>.</u>	
90.		emically, neopr							
	(1)	1 2 2			(2)	polyacetylene		ŧ	8 - N
2	(3)	polychloropr	ene		(4)	poly-1,3-butadio	eņe		8 e
97.	Vul	canization invo	lves heatir	ng of raw ru	bber with		-		
	(1)	selenium elei	nent	1	(2)	elemental sulphi	ur -		
	(3)	a mixture of S	se and eler	nental sulp		a mixture of sele	enium and	d sulphur dio	xide
						10 - 200 -	- 1	M .	
98.	Petr (1)	ol largely contained a mixture of u		l hydrocark					
	(2)	a mixture of b				juu			
	(3)	a mixture of s							~
1	(4)	a mixture of s	aturated h	vdrocarbon	C C	4			
			and the second	yarocaroon	13 C ₆ - C ₈				
99.	Whi	ch of the follow	ing gases	is largely r	esponsib	e for acid-rain?	2	2	
	(1)	SO2 & NO2				CO, & water vapo	our	~ •	
	(3)	CO2 & N2				N, & CO,		13	
100.	BOD	stands for							
	(1)	Biogenetic Ox	ygen Dem	and	(2)	Biometric Oxyger	n Deman	d	
	(3)	Biological Oxy	gen Dema	and		Biospecific Oxyg			
24									
					16-A	1. S			
					10-A			a <	

Set Code :	T2
Booklet Code :	A

ELECTRONICS AND COMMUNICATION ENGINEERING

101. In a pn junction diode, if the junction current is zero, this means that

- (1) there is no carriers crossing the junction.
- (2) the number of majority carriers crossing the junction equals the number of minority carriers crossing the junction.
- (3) the number of holes diffusing from the p-region equals the number of electrons diffusing from the n-region.
- (4) the potential barrier has disappeared.

102. The circuit shown in Fig.1 acts as

- (1) clamper
- (2) rectifier
- (3) comparator
- (4) clipper

103. The emitter region in the pnp junction transistor is more heavily doped than the base region so that

- (1) base current will be high
- (2) the flow across the base region will be mainly because of electrons
- (3) recombinations will be increased in the base region
- (4) the flow across the base region will be mainly because of holes
- 104. A field-effect transistor (FET)
 - (1) depends on minority-carrier flow
- (2) uses high concentration emitter junction

TM

- (3) has a very high input resistance
- (4) uses forward-biased pn junction

Fig

- 105. In a half wave rectifier, the load current flows for
 - (1) only for positive half cycle of input signal
 - (2) the complete cycle of the input signal
 - (3) more than half cycle but less than the complete cycle of input signal
 - (4) less than half cycle of input signal

17-A

				Set Code : T2 Booklet Code : A
		· · · · · · · · · · · · · · · · · · ·	te when	
106.		nsistor is said to be in a quiescent stat	te when	
		no currents are flowing emitter-junction bias is just equal to	collect	or-junction bias
	(2)	no signal is applied to the input	concet	or junement erne
	(3)	it is unbiased		
	(4)	It is unbiased		· ·
107.	Com	pared to CB amplifier, the CE amplif	ier has	
	(1)	higher current amplification	(2)	lower input resistance
	(3)	higher output resistance	(4)	lower current amplification
108.	The	negative output swing starts clipping	first who	en Q-point
03101403	(1)	is near saturation point	(2)	is near cut-off point
	(3)	has optimum value	(4)	is in the active region of the load line
109.	varia (1)	oducing a resistor in the emitter of C ations in only the β of the transistor only the temperature		ifier stabilizes the dc operating point against both temperature and β neither β nor temperature
	(3)	only the temperature		
110	Whi	ch of the following class of amplifier	rs has hi	ighest among of distortion?
110	(1)	class C (2) class AB	(3)	class B (4) class A
	(.)			т. Т
111	. Tun	ed voltage amplifiers are not used		10 a 10 a
10000000	(1)	in radio receivers		
121	(2)	where a band of frequencies is to be	e selecte	ed and amplified
	(3)	in television receivers		
	(4)	in a public-address systems		
112	. Fee	dback in a amplifier always helps to		
	(1)	increase its gain	(2)	stabilize its gain
	(3)	decrease its input impedance	(4)	control its output
	004 MS	S	18-A	(ECE)

			6	Set Code :	T2
	8 3			Booklet Code :	A
113.	Ani	deal OP-AMP has			
	(1)	infinite input resistance and infinite o	utput	resistance	
	(2)	infinite input resistance and zero outp	out res	sistance	
	(3)	zero input resistance and infinite outp	out res	sistance	
	(4)	zero input resistance and zero output	resista	ance	
114.	For	square wave generation	is us	sed.	
	(1)	bistable multivibrator	(2)	schmitt trigger	
	(3)	astable multivibrator	(4)	monostable multivibrator	
115.	Puls	e width of a collector coupled monosta	ble m	ultivibrator is given by	
	(1)	T = 0.69 RC (2) $T = 0.707 RC$	(3)	T = 1.69 RC (4) $T = 1.38 RC$	
116.	In se	eries resonance circuit, increasing induc	ctance	e to twice its value and reducing capacitan	ice to
		its value.		TM	
	(1)	will change the maximum value of cu	rrent		
	(2)	will change the resonance frequency			
	(3)	will increase the selectivity of the cir	cuit		
	(4)	will change the impedance at resonan	ce free	quency	
		a			
117.	A hi	gh Q coil has		•	
	(1)	low losses	(2)	flat response	
	(3)	high losses	(4)	large bandwidth	
		· · · · ·			
118.	Supe	erposition theorem is based on the con-			
	(1)	duality (2) reciprocity	(3)	linearity (4) non-linearity	
		m i i i i i i i V and			
119.		e Thevenin equivalent circuit, V _{th} equal		onen eirevit terminel voltage	
	(1)	short-circuit terminal voltage	(2)	open-circuit terminal voltage	
	(3)	net voltage available in the circuit	(4)	voltage of the source	

19-A

			-					Set C Booklet C	ode : T2 ode : A
120.	aver	ndependent volt age power to a lo	ad im	pedance 2	when			10	
	(1)	$Z_L = R_s$	(2)	$Z_{L} = jX_{s}$	(3)	$Z_L = R_s + jX_s$	(4)	$Z_L = R_S - j$	X _s
121.	The	minimum standi	ng wa	ves occui	where refle	ction coefficier	nt is		
	(1)	zero	(2)	unity	(3)	-1	(4)	. 00	× .
122.	Imp	edance matching	overv	wider-free	quency range	can be obtaine	d	-	
	(1)	singl stub			(2)	double stub			
	(3)	quarter wave tra	insfor	mer	(4)	balun			
123.	A lo	ssless line will b	e dist	ortionless	if the phase	shift	5 ×		
	(1)	is constant with	frequ	ency	(2)	varies inverse	ly with	frequency	
	(3)	varies directly v	vith fr	requency	(4)	has nothing to c	lo with d	listortion on a	lossless line
124.	Whi	ch of the following	ng me	thods can	be used for	measuring pow	er with	out using wa	attmeter?
	(1)	one voltmeter,	one ar	nmeter	(2)	two voltmeter	rs, tw <mark>o</mark>	ammeters	
	(3)	three voltmeter	s		(4)	three ammete	rs		-
125.		en large currents issed through a	are to	be meas	sured using	DC ammeter, t	he maj	or part of th	e current is
		capacitor	(2)	resistor	(3)	inductor	(4)	diode	
126.	The	shunt-type ohmn	neteri	is suited t	o the measur	ement of			
		high-value resis							
	(2)	medium-value	esista	nce					
	(3)	both medium an	d higl	n-value re	sistance		F.		
	(4)	low-value resist	ance						6 1
127.	Digi	tal instruments a	re pre	ferred to	other indicat	ing instruments	s becau	se of	
	(1)	narrow bandwid			(2)	better accurac			
	(3)	cost			(4)	better resolut	ion		
		4 - 160 B		3	20-A				(ECE)

Download from www<mark>.JbigDeaL.com Powered By © JbigDeaL</mark>

				Set Code : T2 Booklet Code : A
128	. Wit	hout a spectrum analyzer, it is not poss	ible to	determine
12	(1)	modulating frequency	(2)	antenna pattern
	(3)	pulse width	(4)	spurious signal strength and its location
129	. The	Q-meter is used to measure the electri	cal p	operties of
	(1)	resistors only	(2)	inductors only
	(3)	coils and capacitors	(4)	capacitors only
100				
130.		deflection sensitivity of a CRT depende		
	(1)	separation between Y plates	(2)	length of the vertical deflecting plates
	(3)	deflecting voltage	(4)	distance between screen and deflecting plates
131.	The	CRO is used to measure		
	(1)	power of the signal	(2)	time period of the signal only
	(3)	amplitude and time period of the signal	(4)	spectral components of the signal
132.		io frequency oscillators, operating roug	hly ir	Dool
	(1)	0 Hz to 20 Hz	(2)	1 Hz to 1-MHz
	(3)	1 KHz to 1000 KHz	(4)	20 Hz to 20 KHz
133.	A no	n-triggered oscilloscope is one which		
	(1)	has no sweep generator		
	(2)	can not produce a stable stationary scre	een di	splay
	(3)	has a continuously running time-base g	enera	tor
	(4)	can display a portion of the input signal	wave	eform
134.	After	firing an SCR, the gating pulse is remo	ved '	The current in the SCR will
				rise a little and then fall to zero

(3) rise up

•

- (2) rise a little and then fall to zero
 - (4) remain the same
- 21-A

Download from www.JbigDeaL.com lbiaDeal

								Se	t Code :	T2
		3						Bookle	t Code :	A
135.	AT	RIAC can be tr	iggered	into cond	luction by			8.53		
	(1)	only positive								
20	(2)	positive or ne	egative v	oltage at	gate					
	(3)	positive or ne	egative v	oltage at	gate and posi	tive or neg	ative voltag	ge at eith	er anode	
	(4)	only negative	e voltage	at either	anode					
			S.,							
136.	Ans	SCR conducts	apprecia	ble curren	nt when					
	(1)	anode is nega	ative and	gate is p	ositive with r	espect to c	athode			
	(2)	gate is negati	ive and a	node is p	ositive with r	espect to c	athode		6	
	(3)	anode and ga	te are bo	th positiv	ve with respec	ct to catho	de			
	(4)	anode and ga	te both n	egative v	with respect to	cathode				
	ţ.									
137.	In a	thyristor, the r	atio of h	olding cu	urrent to latch	ing curren	t is			
	(1)	0.4	(2)	2.5	(3)	1.0	(4)	4.0		

TM

138. In a 3-phase full converter, the output voltage pulsates at a frequency equal to

(1) supply frequency f

(3) 6f

139. In BJT, the relation between α and β is

(1)	$\beta = \frac{\alpha}{(\alpha+1)}$	(2)	$\beta = \frac{\alpha}{(\alpha - 1)}$	(3)	$\alpha = \frac{\beta}{(\beta+1)}$	(4)	$\alpha = \frac{(\beta + 1)}{\beta}$

140. In three-phase 180° mode bridge inverter, the lowest order harmonic in the line to neutral output voltage (fundamental frequency output = 50 Hz) is

(2) 3f 2f

(2) 150 Hz (3) 250 Hz (4) 200 Hz (1) 100 Hz

141. A single phase full bridge diode rectifier delivers a load current of 10A, which is ripple free. Average and RMS values of diode currents are respectively.

(1)	10A, 7.07A	* 10	(2)	5A, 7.07A
(3)	7.07A, 5A		(4)	5A, 10A

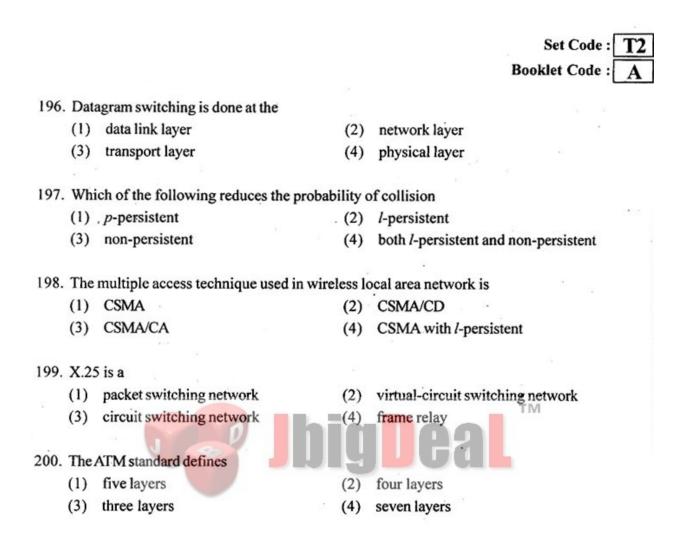
22-A

Set Code : **Booklet Code :** 142. Resonant mode power supplies in comparison to square mode ones (2) do not cause over voltages (1) have smaller component count (4) slower in control action (3) have negligible power loss 143. A delta-connected induction motor being fed by a 3-phase AC to DC inverter and operated in constant V/f control mode requires during starting a (2) no starter requires (1) star-delta starter (4) direct online starter (3) auto-transfer starter 144. The message signal contains three frequencies 2 KHz, 5 KHz and 10 KHz respectively. The bandwidth of the AM signal is (4) 10 KHz (3) 2 KHz (1) 20 KHz (2) 5 KHz 145. A carrier is simultaneously modulated by two sine waves with modulation indices of 0.3 and 0.4; the resultant modulation index is 0.5 (3) = 0.3(1) 0.7 (2) 0.4 146. Indicate which one of the following is not advantage of FM over AM. (2) better noise immunity is provided (1) lower bandwidth is required the transmitted power is more useful (4) (3) less modulating power is required 147. In a low-level AM system, amplifiers following the modulated stage must be (2) nonlinear devices harmonic devices class C amplifier (3) linear devices (4)148. A_c and A_m are peak amplitudes of carrier and modulating signal respectively. When $A_c = A_m$ modulation index is zero (1) modulation index is 100% (2)modulation index is above 100% (3) modulation index falls below 100% (4)149. In a SSB transmitter, one is most likely to find a class A R.F. output amplifier (1) class C audio amplifier (2)tuned modulator (4) (3) class B R.F. amplifier (ECE) 23-A

								Set Code Booklet Code	
150.		perheterodyne i uency is	receive	r with an I.F. of 4	450 KI	Hz is tuned to a si	ignal a	at 1200 KHz. Th	e image
	(1)	750 KHz	(2)	900 KHz	(3)	1650 KHz	(4)	2100 KHz	
151.	Ina	radio receiver w	vith sim	ple AGC					
	(1)	an increase in	signal	strength produce	es mor	eAGC			
	(2)	the faster the A	AGC ti	me constant, the	more	accurate the out	put		
	(3)	the highest AC	GC volt	age is produced	betwe	en stations	0	•	
	(4)	the audio stage	e gain i	s normally contr	olled	by the AGC			2
152	Ton	revent overload	ling of	the last I.F. ampl	ifier i	n a receiver, one	shoul	d use	
	(1)	double conver		,	(2)	variable selecti			
	(3)	variable sensit			(4)	squelch	-		
	(*)					2			
153.	One	of the main fur	octions	of R.F. amplifie	rinas	superheterodyne	receiv	ver is to	
	(1)	provide impro						TM	
	(2)			of the image fr	equen	cy			
	(3)		State of the second sec	t-channel reject					
	(4)			ange of the receiv	_				57
154.	Freq	juencies in the U	JHF ra	nge propagate by	y mear	ns of			
÷	(1)	sky waves	(2)	surface waves	(3)	ground waves	(4)	space waves	
155.	Whe	en electromagne	etic wa	ves travel in free	space	only one of the	follow	ving can happen	to the
	(1)	attenuation	(2)	reflection	(3)	refraction	(4)		
156.	In P	CM system, the	ouanti	zation noise dep	ends u	pon			
	(1)	the sampling r		•		21			12 ₁₁
	(2)			e and the numbe	rofqu	antization levels			
	(3)	the Nyquist ra	4						
	(4)	the number of		zation levels		8		1027	
	(.)				24-A	14			(ECE)
		1. L							

								Set Cod	
								Booklet Cod	e: A
157.		it rate of a digi		munication s	system is 3	6 Mbps, the r	nodulatio	on scheme is Q	PSK. The
		rate of the sys		(0) (1	(2)	36 Mbps	(4)	18 Mbps	
	(1)	72 Mbps	(2)	68 Mbps	(3)	30 Mops	(-)	Tomopo	
150	Whie	h multiplexing	techni	que transmit	s analog s	gnal		197	
158.		FDM		WDM	(3)	TDM	(4)	both FDM a	nd TDM
	(1)	1 Divi	(=)						
159.	Thes	tandard refere	nce ant	enna for the	directive	gain is the	54 		
100.01	(1)	half-wave dip			(2)	isotropic an	tenna		
	(3)	infinitesimal	dipole		(4)	elementary	doublet		
160.	Yagi	antenna contai						· · ·	
	(1)	one reflector			(2)			and one dire	ctor
	(3)	two directors	, no ret	lector	(4)	dipole and t	two direc	tors	
			6.			- Indeksi	norma	in length of di	nole
161		radiation resist	tance o	f a Hertizian		remains und		·	poie.
1	(1)	increases		d then falls	$\begin{array}{c} (2) \\ (4) \end{array}$	decreases	Alanged		17
	(3)	attains a maxi	mum a	nd then fails	(4)	- uccicases	2		
160	They	wavelength of	wave	in a waveouid	de				
102	(1)	is directly pro	nortio	nal to the gro	oup veloci	ty			
	(2)	is inversely p							
	(3)	is greater that							
	(4)	depends on th	e wave	length dimer	nsions and	the free space	e wavele	ngth	
50									
163	. The	guide wavelen	gth (λ_{g})) is related to	free space	$e(\lambda)$ wavelen	gth and c	ut-off wavele	ngth (λ_c) as
				2 63		St 12 H	- <u></u>		
	(1)	$\frac{1}{\lambda^2} = \frac{1}{\lambda^2} + \frac{1}{\lambda^2}$	_		(2)	$\frac{1}{\lambda_{\kappa}^2} = \frac{1}{\lambda^2} + \frac{1}{\lambda^2}$	λ_c^2		
			ĸ				5		*
	(2)	$\frac{1}{\lambda_c^2} = \frac{1}{\lambda_g^2} + \frac{1}{\lambda}$	2		. (4)	$\frac{1}{\lambda^2} = \frac{1}{\lambda_c^2} +$	$\frac{1}{2^2}$	3	
	(3)	$\lambda_c^2 \lambda_g^2 \lambda$	2			$\lambda^2 \lambda_c^2$	λg		(FCF)
					25-A				(ECE)

											5	Set Code	e : T2
											Book	let Code	: A
164	Ift wi	he peak i Il be incr	ransmit eased b	tted pov y a fac	wer in a rad tor of	lar system	ı is	increase	d by a f	actor o	of 16, the	emaxim	um range
×	(1)	8		(2)	4	. (3)	2		(4)	16		
165	. Th	e biggest	disadva	antage	of CW Dop	opler rada	ır is	that					0
	(1)				nge, but no								
	(2)				arget posit				8				
	(3)	it does	not giv	e the t	arget veloc	ity	8				, x		
	(4)	it does	not giv	e the ta	arget range								*
	24						14						
166	. Wh	ich of th	e follov	ving sy	stem is an	internatio	ona	l system			- 		2
	(1)			(2)	ATS-6		3)	MARIS		(4)	INTEL	SAT	
167.	Aty	pical op	tical fib	er has									
	(1)				core and lo	w refrac	tive	index c	ladding		TM		
	(2)				dex core su						dev clar	Iding	
	(3)	variabl	e refrac	tive ind	dex core wi	ith refract	tive	index in	creasi	ng fror	n low va	alue at th	e centre
	(4)				ore and hig				-				
					1911							22	
168.	The	GSM sta	indard is	S								1. A	
	(1)	first ge	neration	n cellul	ar network	as (2)	second	generat	ion ce	llular ne	etworks	
	(3)	third ge	eneratio	n cellu	lar networl	ks (4)	fourth g	enerati	on cel	lular net	works	
۰.		-				5							1
169.	The	2's com	olement	of 100	00_2 is					55			
	(1)	0111		(2)	0001	(3)	1000	90 e	(4)	0101		
170.	Whi	ch of the	followi	ing is n	ot an octal	number?	6						
	(1)			(2)		(3)		15		(4)	77		
)	(1)			
		•							10	14			
а ₂₁ ,		20 17											
						26-A							(ECE)


								Set Cod	e : T2
								Booklet Cod	e : A
171.	The	complete set of c	only th	ose logic gate	s design	ated as univer	sal gates	is	
	(1)	NOT, OR and A			(2)	XNOR, NOR			
	(3)	NOR and NAN) gate	s	(4)	XOR, NOR a	nd NAN	D gates	
172	The	gates required to	build	an half-adder	are				2.
172.		Ex-OR gate and			(2)	three NAND	gates		
	(3)	EX-OR gate and	1999 C		(4)	EX-OR and A	121101000000000000000000000000000000000	;	
172	Dea	d and write capab	ilities	are available i	'n				
175.	(1)	Both ROM and			(2)	RAM			. 1
	(3)	ROM	ICT LIVI		(4)	Latch			
	(5)	KOIVI			(1)	Luten		•	5
174.	An r	n-bit ADC using	V _R as	reference volta	age has a	resolution (in	n volts) o	f	
		$V_R/2^n$			(3)	$V_R/2^{n-1}$	(4)	V _R .n	
175.	In a The	4-bit weighted-r resistor value co	esisto	r D/A convert	er, the ro will be	esistor value o	correspon	nding to LSB	is 32 kΩ.
		16 kΩ		8 kΩ		4 kΩ	(4)	32 kΩ	
176.		minimum numbe jual to	rofN	AND gates req	uired to i	mplement the	Boolean	function A + A	AB + ABC
	(1)	5. S.	(2)	4	(3)	zero	(4)	7	
	19-19		ð 10						
177.	Whi	ch of the followi							
	(1)	Dual slope integ						<u></u>	:0
	(3)	Counter type of	ADC	65	(4)	Integrator ty	pe of AD	С	
178.	Whe	en two n-bit binar	y nun	nbers are adde	d then th	e sum will co	ntain at tl	he most	
		(n+2) bits		n bits	(3)	2n bits		(n+1) bits	9 - E
179.	The	8051 microcont	roller	has			÷		
		one bus		two buses	(3)	three buses	(4)	four buses	
	Горона 1910 го				27-A				(ECE)

								Set C Booklet C	ode : T2
180	. The	number of inter	rupts	available in 80	51 micr	ocontrolle	r.		
	(1)	five	(2)	six	(3)	eight	(4)	three	
181	. The	8051 is an		microcor	ntroller			20	
	(1)	16 bit	(2)	32 bit	(3)	64 bit	(4)	8bit	
182	. The	8051 microcont	roller	includes an in	structio	on set of	ope	ration codes	
×		245		255		250		260	
183.	The	8051 microcont	roller	consists of					
	(1)	256 bytes RAM	1		(2)	512 byte	s RAM		14.0
	(3)	128 bytes RAM	1		(4)	64 bytes		÷	1.85
184.	The	USART accepts	data c	haracters from	the CP	U			
	(1)	in parallel form					nuous serial	data stream	+ -
	(2)	in serial format							
	(3)	in parallel form						1 1 7 1	
	(4)	in serial format	and a	fter c <mark>ert</mark> ain del	ay trans	smits as a s	serial data st	ream	:
185.	The	peripheral interf	ace co	ontroller 8255	has	-	separately	accessible n	orts.
		three	(2)		(3)			eight	
186.	The	number of opera	ting m	odes of 8257 I	MA c	ontroller			<i>3</i> .
	(1)		(2)		(3)		(4)	3	
r 1944	10 52 232			2				5	
187.		number of addres	-						
	(1)	10	(2)	8	(3)	6	(4) ·	12	
188.	The a	8086 microproce	essor i	s a					
	(1)	8-bit processor			(2)	16-bit pr	ocessor		
	(3)	32-bit processo	r		(4)	64-bit pr	ocessor		17 20

28-A

29-A

