BRILLIANT'S MOCK TEST 4 FOR STUDENTS OF OUR ONE/TWO-YEAR POSTAL COURSE TOWARDS
 BITSAT, 2008

BITSAT 2008 MTP 4/QNS

Test Booklet Code

Time: 3 Hours

Read the following instructions carefully:

1. Immediately fill in the particulars on the Answer Book with Blue/Black Ball Point Pen.
2. The Answer Sheet is kept inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully.
3. The candidate should write their Enrolment No. only in the space provided on the Test Booklet/Answer Sheet.
4. For each correct response, the candidate will get 3 marks. For each incorrect response, one mark will be deducted from the total score. No deduction from the total score, however, will be made if no response is indicated for an item in the Answer Sheet.
5. The test is of 3 hours duration.
6. The test consists of 150 questions.
7. The maximum marks are 450
8. Use Blue/Black Ball Point Pen only for writing particulars/marking responses on Side - 1 and Side - 2 of the Answer Sheet
9. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
10. Do not fold or make any stray marks on the Answer Sheet.
11. Use of Electronic/Manual Calculator is prohibited.

Name of the Candidate (in Capitals):
Enrolment Number: \square

PART I: MATHEMATICS

1. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}+3 \hat{j}+4 i$ and $\vec{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}$ are linearly dependent vectors and $|\vec{c}|=\sqrt{3}$, then
(1) $\alpha=1, \beta=-1$
(2) $\alpha=1, \beta= \pm 1$
(3) $\alpha=-1, \beta= \pm 1$
(4) $\alpha= \pm 1, \beta=1$
2. Let $h(x)=f(x)-(f(x))^{2}+(f(x))^{3}$ for every real number x. Then
(1) h is increasing whenever f is increasing
(2) h is increasing whenever f is decreasing
(3) h is decreasing whenever f is increasing
(4) nothing can be said in general
3. Let n be an odd integer.

If $\sin n \theta=\sum_{r=0}^{n} b_{r} \sin ^{r} \theta$,
for every value of θ, then
(1) $b_{0}=1, b_{1}=3$
(2) $b_{0}=0, b_{1}=n$
(3) $b_{0}=-1, b_{1}=n$
(4) $b_{0}=0, b_{1}=n^{2}-3 n+3$
4. Number of divisors of the form $4 n+2(n \geq 0)$ of the integer 240 is
(1) 4
(2) 8
(3) 10
(4) 3
5. Let $h(x)=\min \left\{x, x^{2}\right\}$, for every real number of x. Then
(1) h is not continuous
(2) h is differentiable for all x
(3) $h^{\prime}(x)=0$ for all $x>1$
(4) h is not differentiable at two values of x
6. If in a triangle $P Q R, \sin P, \sin Q, \sin R$ are in A.P., then
(1) the altitudes are in A.P.
(1) the altitudes are in H.P.
(3) the medians are in G.P.
(4) the medians are in A.P.
7. If $f(x)=\frac{x^{2}-1}{x^{2}+1}$, for every real number x, then the minimum value of f
(1) does not exist because f is unbounded
(2) is not attained even though f is bounded
(3) is equal to 1
(4) is equal to - 1
8. Seven white balls and three black balls are randomly placed in a row. The probability that no two black balls are placed adjacently equals
(1) $\frac{1}{2}$
(2) $\frac{7}{15}$
(3) $\frac{2}{15}$
(4) $\frac{1}{3}$
9. If $a_{n}=\sum_{r=0}^{n} \frac{1}{{ }^{n} C_{r}}$, then $\sum_{r=0}^{n} \frac{r}{{ }^{n} C_{r}}$ equals
(1) $(n-1) a_{n}$
(2) $n a_{n}$
(3) $\frac{1}{2} n a_{n}$
(4) None of the above
10. The number of common tangents to the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}-6 x-8 y=24$ is
(1) 0
(2) 1
(3) 3
(4) 4
11. If ω is an imaginary cube root of unity, then $\left(1+\omega-\omega^{2}\right)^{7}$ equals
(1) 128ω
(2) -128ω
(3) $128 \omega^{2}$
(4) $-128 \omega^{2}$
12. If $\int_{0}^{x} f(t) d t=x+\int_{x}^{1} t f(t) d t$. then the value of $f(1)$ is
(1) $\frac{1}{2}$
(2) 0
(3) 1
(4) $-\frac{1}{2}$
13. If $P(1,2), Q(4,6), R(5,7)$ and $S(a, b)$ are the vertices of a parallelogram $P Q R S$, then
(1) $a=2, b=4$
(2) $a=3, b=4$
(3) $a=2, b=3$
(4) $a=3, b=0$
14. For three vectors $\vec{u}, \vec{v}, \vec{w}$ which of the following expressions is not equal to any of the remaining three?
(1) $\vec{u} \cdot(\vec{v} \times \vec{w})$
(2) $(\vec{v} \times \vec{w}) \cdot \vec{u}$
(3) $\vec{v} \cdot(\vec{u} \times \vec{w})$
(4) $(\vec{u} \times \vec{v}) \cdot \vec{w}$
15. If $f(x)=3 x-5$, then $f^{-1}(x)$
(1) is given by $\frac{1}{3 x-5}$
(2) is given by $\frac{x+5}{3}$
(3) does not exist because f is not oneone
(4) does not exist because f is not onto
16. If from each of the three boxes containing 3 white and 1 black, 2 white and 2 black, 1 white and 3 black balls, one ball is drawn at random, then the
probability that 2 white and 1 black ball will be drawn is
(1) $\frac{13}{32}$
(2) $\frac{1}{4}$
(3) $\frac{1}{32}$
(4) $\frac{3}{16}$
17. Let T_{r} be the $r^{\text {th }}$ term of an A.P., for $r=1,2,3, \ldots$. If for some positive integers m, n, we have $T_{m}=\frac{1}{n}$, $T_{n}=\frac{1}{m}$, then $T_{m n}$ equals
(1) $\frac{1}{m n}$
(2) $\frac{1}{m}+\frac{1}{n}$
(3) 1
(4) 0
18. If $g(f(x))=|\sin x|$ and

$$
f(g(x))=(\sin \sqrt{x})^{2} \text {, then }
$$

(1) $f(x)=\sin ^{2} x, g(x)=\sqrt{x}$
(2) $f(x)=\sin x, g(x)=|x|$
(3) $f(x)=x^{2}, g(x)=\sin \sqrt{x}$
(4) fand g cannot be determined

SPACE FOR ROUGH WORK

19. If $\left|\begin{array}{ccc}6 i & -3 i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i\end{array}\right|=x+i y$, ther
(1) $x=3, y=1$
(2) $x=1, y=3$
(3) $x=0, y=3$
(4) $x=0, y=0$
20. An n-digit number is a positive number with exactly n digits. Nine hundred distinct n-digit numbers are to be formed using only the three digits 2,5 and 7 . The smallest value of n for which this is possible is
(1) 6
(2) 7
(3) 8
(4) 9
21. If \bar{E} and \bar{F} are the complementary events of events E and F respectively and if $0<P(F)<1$, then
(1) $P(E \mid F)+P(\bar{E} \mid F)=1$
(2) $P(E \mid F)+P(E \mid \bar{F})=1$
(3) $P(\bar{E} \mid F)+P(E \mid \bar{F})=1$
(4) $P(E \mid F)+P(\bar{E} \mid \bar{F})=1$
22. Let $f(x)=x-(x)$, for every real number x, where (x) is the integral part of x. Then $\int_{-1}^{1} f(x) d x$ is
(1) 1
(2) 2
(3) 0
(4) $\frac{1}{2}$
23. It the circle $x^{2}+y^{2}=a^{2}$ intersects the hyperbola $x y=c^{2}$ in four points $P\left(x_{1}, y_{1}\right)$, $Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right), S\left(x_{4}, y_{4}\right)$, then which of the following is not true?
(1) $x_{1}+x_{2}+x_{3}+x_{4}=0$
(2) $y_{1}+y_{2}+y_{3}+y_{4}=1$
(3) $x_{1} x_{2} x_{3} x_{4}=c^{4}$
(4) $y_{1} y_{2} y_{3} y_{4}=c^{4}$
24. There are four machines and it is known that exactly two of them are faulty. They are tested, one by one, in a random order till both the faulty machines are identified. Then the probability that only two tests are needed is
(1) $\frac{1}{3}$
(2) $\frac{1}{6}$
(3) $\frac{1}{2}$
(4) $\frac{1}{4}$
25. The value of the sum $\sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right.$, where $\mathrm{i}=\sqrt{-1}$, equals
(1) i
(2) $\mathrm{i}-1$
(3) -i
(4) 0
26. Which of the following expressions are meaningful?
(1) $\vec{u} \cdot(\vec{v} \times \vec{w})$
(2) $(\vec{u} \times \vec{v}) \cdot \vec{w}$
(3) $(\vec{u} \cdot \vec{v}) \times \vec{w}$
(4) $\vec{u} \times(\vec{v} \cdot \vec{w})$
27. If E and F are events with $P(E) \leq P(F)$ and $P(E \cap F)>0$, then
(1) occurrence of $\mathrm{E} \Rightarrow$ occurrence of F
(2) occurrence of $\mathrm{F} \Rightarrow$ occurrence of E
(3) non-occurrence of $E \Rightarrow$ non-occurrence of F
(4) none of the above implications holds
28. A fair coin is tossed repeatedly. If tail appears on first four tosses, then the probability of head appearing on fifth toss equals
(1) $\frac{1}{2}$
(2) $\frac{1}{32}$
(3) $\frac{31}{32}$
(4) $\frac{1}{5}$
29. The number of values of c such that the straight line $y=4 x+c$ touches the curve $\frac{x^{2}}{4}+y^{2}=1$ is
(1) 0
(2) 1
(3) 2
(4) infinite
30. The order of the differential equation whose general solution is given by $y=\left(C_{1}+C_{2}\right) \cos \left(x+C_{3}\right)+C_{4} e^{\left(x+C_{5}\right)}$ where $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$ are arbitrary constants, is
(1) 5
(2) 4
(3) 3
(4) 2
31. The diagonals of a parallelogram $P Q R S$ are along the lines $x+3 y=4$ and $6 x-2 y=7$. Then PQRS will be a
(1) rectangle
(2) square
(3) cyclic quadrilateral
(4) rhombus
32. In a college of 300 students, every students reads 5 news papers and every news paper is read by 60 students. Then the number of news papers is
(1) at least 30
(2) at most 20
(3) exactly 25
(4) none of the above
33. Let $A_{0} \quad A_{1} \quad A_{2} \quad A_{3} \quad A_{4} A_{5}$ be a regular hexagon inscribed in a circle of unit radius. Then the product of the line segments $A_{0} A_{1}, A_{0} A_{2}$ and $A_{0} A_{4}$ is
(1) $\frac{3}{4}$
(2) $3 \sqrt{3}$
(3) 3
(4) $\frac{3 \sqrt{3}}{2}$
34. If $P=(x, y), F_{1}=(3,0), F_{2}=(-3,0)$ and $16 x^{2}+25 y^{2}=400$, then $P F_{1}+P F_{2}$ equals
(1) 8
(2) 6
(3) 10
(4) 12
35. The number of values of x where the function $f(x)=\cos x+\cos (\sqrt{2} x)$ attains its maximum is
(1) 0
(2) 1
(3) 2
(4) infinite
36. $\operatorname{Lim}_{x \rightarrow 1} \frac{\sqrt{1-\cos 2(x-1)}}{x-1}$
(1) exists and it equals $\sqrt{2}$
(2) exists and it equals $-\sqrt{2}$
(3) does not exist because $x-1 \rightarrow 0$
(4) does not exist because left hand limit is not equal to right hand limit.
37. If $x>1, y>1, z>1$ are in G.P., then $\frac{1}{1+\ln x}, \frac{1}{1+\ln y}, \frac{1}{1+\ln z}$ are in
(1) A.P.
(2) H.P.
(3) G.P.
(4) None of the above
38. The number of values of x in the interval| $0,5 \pi \mid$ satisfying the equation $3 \sin ^{2} x-7 \sin x+2=0$ is
(1) 0
(2) 5
(3) 6
(4) 10
39. If the vertices P, Q, R of a triangle $P Q R$ are rational points, which of the following point of the triangle $P Q R$ may not be a rational point?
(1) Centroid
(2) Incentre
(3) Circumcentre
(4) Orthocentre
(A rational point is a point both of whose co-ordinates are rational numbers.)
40. Which of the following number (s) is/are rational?
(1) $\sin 15^{\circ}$
(2) $\cos 15^{\circ}$
(3) $\sin 15^{\circ} \cos 15^{\circ}$
(4) $\sin 15^{\circ} \cos 75^{\circ}$
41. $\int_{0}^{\pi^{2}} \sin \sqrt{x} d x=$
(1) π
(2) 2π
(3) $2 \pi^{2}$
(4) π^{2}
42. For the ellipse $3 x^{2}+4 y^{2}=5$, if $y+3 x=0$ is one diameter, the conjugate diameter is (Note: Two diameters of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are said to be conjugate when each bisects all chords parallel to the other).
(1) $4 y-x=0$
(2) $4 y+x=0$
(3) $y-4 x=0$
(4) $y+4 x=0$
43. A solution of the differential equation $p^{2} y+p(x-y)-x=0$ is
(1) $x^{2}-y^{2}=c$
(2) $y^{2}=2 x+c$
(3) $y=x+c$
(4) $x^{2}+y^{2}=c^{2}$
44. In the binomial expansion $(a-b)^{n}, n \geq 5$, the sum of the $5^{\text {th }}$ and $6^{\text {th }}$ terms is zero. Then $\frac{n b-5 a}{b}=$
(1) 14
(2) 7
(3) 4
(4) 1
45. Equation of the plane containing the line $\frac{x-3}{2}=\frac{y-4}{3}=\frac{z-!}{4}$ is
(1) $4 x+4 y-5 z=3$
(2) $2 x+3 y-4 z+5=0$
(3) $4 x+6 y+8 z+13=0$
(4) $x+2 y+z=0$

PART II: PHYSICS

46. For a short wave radio link between two stations via the ionosphere, the ratio of the maximum usable frequency to the critical frequency
(1) is always less than 1
(2) is always greater than 1
(3) may be $\frac{\leq}{>} 1$ depending on the distance between the two stations
(4) does not depend on the distance between the two stations
47. A plane electromagnetic wave travelling along the + z-direction, has its electric field given by

$$
\begin{aligned}
& E_{x}=2 \cos (\omega t) \text { and } \\
& E_{y}=2 \cos \left(\omega t+90^{\circ}\right)
\end{aligned}
$$

The wave is
(1) linearly polarised
(2) right circularly polarised
(3) left circularly polarised
(4) elliptically polarised
48. It is proposed to increase the Q of a coil. This can be done best by
(1) operating at low frequency.
(2) increasing the diameter of wire.
(3) increasing the diameter of coil.
(4) adding a core of magnetic material in compressed powder form.
49. In Compton effect, photons of wavelength λ and frequency v scatter at angle ϕ with modified wavelength λ^{\prime} and frequency v^{\prime} which of the following is true?
(1) $\lambda^{\prime}-\lambda$ varies with ϕ and also with the scatter
(2) $v-v^{\prime}$ is independent of the scattering material
(3) $\lambda^{\prime}-\lambda$ varies with ϕ in proportion to $(1+\cos \phi)$
(4) $\lambda^{\prime}-\lambda$ is independent of the scatterer but varies with ϕ
50. In a laser source the emission from various atoms/molecules are coherent
(1) in phase only
(2) in direction of emission only
(3) in phase, direction and polarization
(4) in phase and polarization only
51. A cycle is shown in the $\mathrm{p}-\mathrm{V}$ diagram.

The corresponding representation in a
$T-S$ diagram will be
(1)
(2)

(3)

(4)

52. Given the truth table relating Y to A, B,

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0
Then Y is given by		
(1) $A+B$ (2) $A B$ (3) $\overline{A B}$ (4) $\overline{A+B}$		

SPACE FOR ROUGH WORK
53. In the circuit shown, X, Y are inputs and Z is the output. The values of inputs for which the output $Z=0$ are

(1) $X=0, Y=0$
(2) $X=0, Y=1$
(3) $X=1, Y=1$
(4) $X=1, Y=0$
54. The frequency f_{y} of the Lissajous figure is

(1) $f_{y}=1.5 f_{x}$
(2) $f_{y}=2 f_{x}$
(3) $f_{y}=f_{x}$
(4) $f_{t}=3 f_{x}$
55. A satellite in a stable orbit contains two closed vessels; one of these is filled with hot steam and the other with water.
(i) The water exerts very little pressure on its container.
(ii) The steam exerts almost the same pressure as it would on Earth.
(iii) The water exerts the same pressure as it would on Earth.
(iv) The steam exerts very little pressure on its container.
(1) (i) and (ii) are correct
(2) (iii) and (iv) are correct
(3) only (ii) is correct
(4) All but (i) are correct
56. If the impedances of the series and parallel combination of the coil with its internal resistance are equal then

(1) $R_{s}=\frac{1}{R_{p}}, X_{s}=\frac{1}{X_{p}}$
(2) $R_{s}+X_{L_{s}}=R_{p}+X_{L_{F}}$
(3) $R_{p}=R_{s}\left(1+Q_{s}^{2}\right), X_{p}=X_{s}\left(1+Q_{s}^{2}\right)$
(4) $R_{p}=R_{s}\left(1+Q_{s}^{2}\right), X_{p}=X_{s}\left(1+\frac{1}{Q_{s}^{2}}\right)$
57. A solid right-circular cylinder is placed on a rough plane of inclination α to the horizontal. The least coefficient of friction between the cylinder and the plane so that the cylinder rolls down (without sliding) is
(1) $\tan \alpha$
(2) $\sin \alpha$
(3) $\frac{1}{3} \tan \alpha$
(4) $\frac{3}{2} \tan \alpha$
58. A capacitor remains connected to a battery and a dielectric slab is slipped between the plates. The energy will increase due to
(1) increase of potential difference
(2) increase of electric field strength
(3) increase of capacitance
(4) none of the above
59. When an electron in a hydrogen atom moves from an orbit to another orbit of longer radius, which of the following decreases?
(1) potential energy
(2) total energy
(3) angular momentum
(4) rotational speed
60. Newton's law of cooling can be deduced from
(1) Wien's displacement law
(2) Stefan-Boltzmann law
(3) The law of equipartition of energy
(4) Joule-Thomson effect
61. The probability of electrons being captured by the nucleus is maximum for
(1) K shell electrons
(2) L shell electrons
(3) M shell electrons
(4) same for all shells
62. In a plane transmission grating

$a=b$, then
(1) the second order spectrum will be absent
(2) first order spectrum will be absent
(3) spectra up to third order can be obtained
(4) no spectrum will be obtained
63. In the de Broglie hypothesis, waves are
(1) associated with particle at rest
(2) associated with a particle in motion
(3) associated with a medium
(4) not at all involved
64. In Rutherford's scattering formula, the scattering cross section for angle θ is proportional to
(1) $\sin ^{4}\left(\frac{\theta}{2}\right)$
(2) $\sin ^{-4}\left(\frac{\theta}{2}\right)$
(3) $\sin ^{2}\left(\frac{\theta}{2}\right) \cos ^{2}\left(\frac{\theta}{2}\right)$
(4) $\cot ^{4}\left(\frac{\theta}{2}\right)$
65. A p-type silicon sample has conductivity compared to an n-type sample having the same dopant concentration
(1) higher
(2) zero
(3) infinite
(4) less

SPACE FOR ROUGH WORK
66. Silicon is not suitable for fabrication of light emitting diodes because it is
(1) an indirect band gap semiconductor
(2) a direct band gap semiconductor
(3) a wide band gap semicoductor
(4) a narrow band gap semiconductor
67. Match the waveforms and the form factors (FFs).

Waveforms

A.

B.

C.

2. 1.15
3. 1.11
4. 1.57

Codes

	A	B	C	D
(1)	1	2	3	4
(2)	3	4	2	1
(3)	3	4	1	2
(4)	4	3	2	1

68. Consider the following statements on negative feedback.
(i) It reduces the gain
(ii) It enhances noise and distortion
(iii) It decreases the input impedance
(iv) It increases the bandwidth

Choose the correct statements from above:
(1) (i), (iii) and (iv)
(2) (i) and (iv)
(3) (ii) and (iii)
(4) only (iv)
69. In a transofrmer if the transfer of energy occurs at the same voltage, then the transformer is
(1) current transformer
(2) potential transformer
(3) isolating transformer
(4) step-up transformer
70. In post office box, the graph of galvanometer deflection versus resistance R (pulled out of resistance box) for the ratio 100: 1 is given as shown (due to unsuitable values of R, galvanometer shows deflection). The two consecutive values of R are shown in the Figure:

The value of unknown resistance would be
(1) 3.2Ω
(2) 3.24Ω
(3) 3.206Ω
(4) 3.2375Ω
71. Given two statements for resonance tube method:
$\mathbf{S}_{\mathbf{1}}$: Lower frequency tuning fork will require large tube to obtain two successive resonance positions.
\mathbf{S}_{2} : Higher frequency fork gives resonance positions for relatively small length of air column.
(1) S_{1} only true
(2) S_{2} only true
(3) Both $\mathrm{S}_{1}, \mathrm{~S}_{2}$ are true
(4) Neither S_{1} nor S_{2} is true
72. A 100 MHz carrier wave is frequency modulated by a 10 kHz signal. The peak frequency deviation is 60 kHz

Column I

(a) Maximum carrier frequency (MHz)
(b) Minimum carrier frequency (MHz)
(c) Frequency swing (kHz)
(d) Modulation index (iv) 100.06 (rad)
Then match them
(1) (a-iv) (b-i) (c-iii) (d-ii)
(2) (a-i) (b-ii) (c-iii) (d-iv)
(3) $(a-i i)(b-i i i)(c-i v)(d-i)$
(4) (a-iii) (b-iv) (c-ii) (d-i)

SPACE FOR ROUGH WORK
73. In the measurement of three quantities A, B, C it is stated as $A=2 \pm 0.005$, $B=1 \pm 0.001, C=4 \pm 0.01$. Then, the percentage error in $P=\frac{A}{B}$ is
(1) ± 0.35
(2) ± 0.6
(3) ± 1.05
(4) ± 0.7
74. Given two statements about a faulty physical balance:
\mathbf{S}_{1} : If the masses of the left and right pans are m_{1} and m_{2} and if M_{1} and M_{2} are measured masses of a block placed successively in left and right pan then actual mass is $M=\sqrt{M_{1} M_{2}}$.
S_{2} : If ℓ_{1} and ℓ_{2} are lengths of left and right arm of the balance, then
$M=\frac{M_{1}+M_{2}}{2}$
(1) only S_{1} is correct
(2) only S_{2} is correct
(3) both S_{1} and S_{2} are correct
(4) neither S_{1} nor S_{2} is correct
75. Which of the following has 3 significant figures?
(1) 15.7
(2) 1040
(3) 1.57
(4) all of above
76. Which of the following relations correctly represent the work done under the indicator diagram shown?

(1) $W_{P}>W_{Q}>W_{R}>W_{S}$
(2) $W_{Q}>W_{R}>W_{P}>W_{S}$
(3) $W_{P}<W_{Q}>W_{R}>W_{S}$
(4) $W_{Q}>W_{R}>W_{P}<W_{S}$
77. Induction furnace is based on the heating effect of
(1) magnetic field
(2) eddy current
(3) electric field
(4) electrostatic field
78. Match the following.

Column I

(a) The current gain of a BJT will be increased if
(b) The current gain of a BJT gain of a BJT will be reduced if
(c) The break-
down
voltage of a
BJT will be reduced if

Column II

(i) The collector doping concentration is increased
(ii) The base width is reduced
(iv) The base doping concentration is increased keeping the ratio of the emitter doping concentration to base doping concentration constant
(1) (a-i) (b-iii) (c-i)
(2) (a-ii) (b-iii) (c-i)
(3) (a-iii) (b-i) (c-ii)
(4) (a-ii) (b-ii) (c-iii)
79. During a negative β-decay
(1) an electron which is already present within the nucleus is ejected
(2) a neutron in the nucleus decays emitting an electron
(3) a part of the binding energy of the nucleus is converted into an electron
(4) an atomic electron is ejected

SPACE FOR ROUGH WORK
80. An audio signal given by $15 \sin 2 \pi(2000 t)$ amplitude modulates a sinusoidal carrier wave $60 \sin 2 \pi(100,000) t$. The modulation index is
(1) 1
(2) 0.25
(3) 0.5
(4) 0.33
81. A force of $\vec{F}=3 \hat{i}+c \hat{j}+2 \hat{k}$ acting on a particle causes a displacement of $\vec{s}=-4 \hat{i}+2 \hat{j}+3 \hat{k}$ in its own direction. If the work done is $6 \hat{j}$, then the value of c is
(1) 0
(2) 1
(3) 6
(4) 12
82. Two rods each of mass m and length ℓ are joined at centre to form a cross. The moment of inertia of this cross about an axis passing through the common centre of the rods and perpendicular to the plane formed by them, is
(1) $\frac{m \ell^{2}}{12}$
(2) $\frac{m \ell^{2}}{6}$
(3) $\frac{m \ell^{2}}{3}$
(4) $\frac{m \ell^{2}}{2}$
83. A uniform cube is subjected to volume compression. If each side is increased by 0.01%, then bulk strain is
(1) 0.01
(2) 0.06
(3) 0.02
(4) 0.03
84. Shown are 3 lens systems

a

b

C

All curved surfaces have same radii of curvature. The equivalent focal lengths are in ratio $f_{a}: f_{b}: f_{c}$ as
(1) $1: 2: 3$
(2) $3: 2: 1$
(3) $1: 1: 1$
(4) $2: 1: 1$
85. A silver voltmeter of resistance 2Ω and a 3Ω resistor are connected in series across a cell. If a resistance of 2Ω is connected in parallel with the silver voltmeter, then the rate of deposition of silver will
(1) decrease by 37.5%
(2) decrease by 73%
(3) increase by 50%
(4) decrease by 50%

PART III: CHEMISTRY

86. Which of the following statement is wrong?
(1) Two p-orbitals always overlap laterally.
(2) A sigma bond has no free rotation around its axis.
(3) There can be more than one sigma bond between two atoms.
(4) All of these.
87. The compound having a tetrahedral geometry is
(1) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{-2}$
(2) $\left[\mathrm{Pd}(\mathrm{CN})_{4}\right]^{-2}$
(3) $\left[\mathrm{PdCl}_{4}\right]^{-2}$
(4) $\left[\mathrm{NiCl}_{4}\right]^{-2}$
88. At its boiling point, a liquid is in equilibrium with its vapours. On an average, the molecules in the two phases have equal
(1) kinetic energies
(2) potential energies
(3) intermolecular forces
(4) total energies
89. The terminal velocity of a small sized spherical body of radius ' r ' falling vertically in a viscous liquid varies with
(1) $\frac{1}{r^{2}}$
(2) $\frac{1}{r}$
(3) r
(4) r^{2}
90. Zinc and aluminium metals produces hydrogen gas with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$. The ratio of moles of H_{2} produced when 1 mole of each reacts with excess dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ will be
(1) $1: 1.5$
(2) $3: 1$
(3) $1: 3$
(4) $1: 2$
91. For the redox reaction
$\mathrm{xMnO}_{4}^{-1}+\mathrm{yC}_{2} \mathrm{O}_{4}^{-2}+\mathrm{zH}^{+} \longrightarrow$ $\mathrm{Mn}^{+2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$, the correct stoichiometric coefficients x, y and z are respectively
(1) $2,5,16$
(2) $16,5,2$
(3) $5,16,2$
(4) $2,16,5$
92. For a reaction to be spontaneous at all temperatures
(1) ΔG and ΔH should be negative
(2) $\Delta G=\Delta H=0$
(3) ΔG and ΔH should be positive
(4) $\Delta G=\Delta H$
93. Which of the following is correct for the equilibrium of the following reaction?
$\mathrm{C}_{(\text {graphite })}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2(\mathrm{~g})}$
(l) $\mathrm{pH}_{2} \propto \mathrm{pH}_{2} \mathrm{O}$
(2) $\mathrm{pH}_{2} \propto \sqrt{\mathrm{pH}_{2} \mathrm{O}}$
(3) $\mathrm{pH}_{2} \propto \mathrm{p}^{2} \mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{pH}_{2} \propto \mathrm{p}^{2} \mathrm{H}_{2} \mathrm{O} / \mathrm{pCO}$.
94. The chemical reaction,
$2 \mathrm{O}_{3(\mathrm{~g})} \longrightarrow 3 \mathrm{O}_{2(\mathrm{~g})}$ proceeds as given below
$\mathrm{O}_{3(\mathrm{~g})} \rightleftharpoons \mathrm{O}_{2(\mathrm{~g})}+(\mathrm{O})$ fast,
$2(\mathrm{O})+\mathrm{O}_{2} \longrightarrow 2 \mathrm{O}_{2(\mathrm{~g})}$ slow.
The rate law expression is
(1) rate $=\mathrm{k}\left[\mathrm{O}_{3}\right]^{2}$
(2) rate $=\mathrm{k}\left[\mathrm{O}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]^{+}$
(3) rate $=\mathrm{k}\left[\mathrm{O}_{3}\right]\left[\mathrm{O}_{2}\right]$
(4) rate $=\mathrm{k}\left[\mathrm{O}_{3}\right]^{-2}$
95. Which one is zero order reaction among the following?
(1)

$$
+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}
$$

(2) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11(\mathrm{aq})} \xrightarrow{\mathrm{H}^{+}}$Glucose + Fructose
(3) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{NaOH} \longrightarrow$ $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(4) $\mathrm{NH}_{3(\mathrm{~g})} \xrightarrow[\text { Powder }]{\mathrm{Au}} \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}$
96. The oxidation numbers of oxygen in $\mathrm{KO}_{2}, \mathrm{OF}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}$ are respectively
(1) $-2,-2,-2$
(2) $+2,-1,+1$
(3) $-1 / 2,+2,-1$
(4) $-1,+2,+1$
97. Among the following anions, the strongest Bronsted base is
(1) ClO^{-1}
(2) ClO_{2}^{-2}
(3) ClO_{3}^{-1}
(4) ClO_{4}^{-1}
98. Which is a false statement?
(1) Work is a state function.
(2) Work appears at the boundary of the system.
(3) Temperature is a state function.
(4) Enthalpy is an extensive property.
99. Which of the following statements is wrong for a zero order reaction?
(1) The rate is independent of the concentration of the reactants.
(2) The half-life of the reaction depends on the concentrations of the reactants.
(3) The rate is independent of the temperature of the reaction.
(4) The rate constant has the unit of $\mathrm{mol}^{-1} \mathrm{~s}^{-1}$.
100. In the following galvanic cell,
($\mathrm{m}=$ concentration (1 m))
(1) cations migrate to the cathode and are reduced on the cathode surface.
(2) anions migrate to the cathode and are reduced on the anode.
(3) Zn and Cu dissolved as a result of reaction.
(4) Zn^{+2} and Cu^{+2} ions react with each other to give complex ions.
101. The cause of Brownian movement is due to
(1) heat change in liquid state.
(2) convectional current.
(3) the collision of the molecules of the dispersion medium with dispersed particles.
(4) the attractive forces between the colloidal particles and molecules of the dispersion medium.
102. In a body-centred cubic packing of equal sized spheres, the maximum radius of a sphere that can fit into the void is
(1) 0.154 R
(2) 0.225 R
(3) 0.414 R
(4) 0.747 R

SPACE FOR ROUGH WORK
103. An inorganic substance liberates $\mathrm{O}_{2(\mathrm{~g})}$ on heating, turns acidified $\mathrm{KI}_{(\mathrm{aq})}$ to brown colour solution and decolorise acidified KMnO_{4} solution. The substance may be
(1) $\mathrm{K}_{2} \mathrm{CrO}_{4}$
(2) $\mathrm{H}_{2} \mathrm{O}_{2}$
(3) Cl_{2}
(4) KClO_{3}
104. When borax $\left(\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}\right)$ dissolved in water,
(1) only $\mathrm{B}(\mathrm{OH})_{3}$ is formed.
(2) only $\left[\mathrm{B}(\mathrm{OH})_{4}\right]^{-}$is formed.
(3) both $\mathrm{B}(\mathrm{OH})_{3}$ and $\left[\mathrm{B}(\mathrm{OH})_{4}\right]^{-}$are formed.
(4) both $\mathrm{B}(\mathrm{OH})_{3}$ and $\mathrm{B}_{2} \mathrm{O}_{3}$ are formed.
105. The carbon atoms in diamond are bonded to each other in
(1) a linear configuration
(2) a planar configuration
(3) an octahedral configuration
(4) a tetrahedral configuration
106. Which of the following statements is wrong?
(1) The molecular formula of tetramethyl silane is $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{SiH}_{4}$.
(2) SiCl_{4} undergoes hydrolysis due to the presence of empty d-orbitals in Si.
(3) Fluorosilicic acid $\left(\mathrm{H}_{2} \mathrm{SiF}_{6}\right)$ is a strong acid, exist only in solution.
(4) The octahedral SiF_{6}^{-2} ion is the only halogen complex of silicon which involves $s p^{3} d^{2}$ hybridisation.
107. Which of the following statements is correct?
(1) $\mathrm{N}_{2} \mathrm{O}_{5}$ solid exist as $\mathrm{NO}_{2}^{+} \mathrm{NO}_{3}^{-}$ (nitronium nitrate).
(2) The nitronium ion $\left(\mathrm{NO}_{2}^{+}\right)$is isoelectronic with CO_{2} and are isostructural (V shape).
(3) The nitrate ion $\left(\mathrm{NO}_{3}^{-}\right)$has a T-shaped structure.
(4) The NO_{2}^{-}ion has a pyramidal structure.
108. The metallic sulphide with highest solubility product value (K_{sp}) in water at 278 K is
(1) PbS
(2) CuS
(3) $\mathrm{Ag}_{2} \mathrm{~S}$
(4) ZnS
109. A greenish yellow poisonous gas reacts with alkali metal hydroxide to form a halate $\left[\mathrm{XO}_{3}^{-}\right]$which is used in firework and safety matches. The gas and the halate respectively are
(1) Br_{2} and KBrO_{3}
(2) Cl_{2} and KClO_{3}
(3) I_{2} and KIO_{3}
(4) Cl_{2} and KClO_{4}
110. The XeF_{6} molecule is
(1) tetrahedral with one lone pair of electrons.
(2) octahedral with one lone pair of electrons.
(3) capped octahedral with one lone pair of electrons.
(4) capped octahedral with two lone pair of electrons.
111. Hypo solution is used in photography for fusing films. Its function is to undecomposed
(1) remove the the reduced silver metal by forming a soluble complex.
(2) remove the undecomposed AgBr by forming a soluble complex.
(3) remove bromine forming a soluble salt.
(4) decompose AgBr to metal Ag and bromine.
112. Calcium cyanamide is produced by heating
(1) calcium carbide in an electric furnace in nitrogen atmosphere at $1100^{\circ} \mathrm{C}$.
(2) quick lime with nitrogen at $1000^{\circ} \mathrm{C}$.
(3) gypsum with coke and nitrogen in electric furnace.
(4) limestone with NH_{3} and coke at $2000^{\circ} \mathrm{C}$.
113. ZnSO_{4} on boiling with NaHCO_{3} solution produces
(1) ZnCO_{3}
(2) $\mathrm{Zn}(\mathrm{OH})_{2}$
(3) $\mathrm{ZnCO}_{3} \cdot \mathrm{Zn}(\mathrm{OH})_{2}$
(4) $\mathrm{Na}_{2} \mathrm{ZnO}_{2}$
114. Which of the following statements is wrong?
(1) Lead salts are poisonous to living system.
(2) Metal lead is used in lead accumulation.
(3) Lead is corroded by water in presence of dissolved oxygen is known as plumbo solvency.
(4) Lead is a good conductor of electricity.
115. Stainless steel contains
(1) $\mathrm{Fe}, \mathrm{Cr}, \mathrm{Ni}, \mathrm{C}$
(2) Fe, Al
(3) $\mathrm{Fe}, \mathrm{Mn}, \mathrm{Cr}$
(4) $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$
116. The IUPAC name of $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ is
(1) hexaamminecobalt (III),
hexacyanochromium (VI)
(2) hexaamminecobalt (III),
hexacyanochromate (III)
(3) hexacyanochromium (III), hexaamminecobalt (III)
(4) hexacyanochromium cobalt hexaammine (VI)
117. The IUPAC name of the insecticide represented by the structural formula

is
(1) dichloro diphenyl trichloroethane
(2) trichloromethyl-bis-(4-chlorophenyl) methane
(3) 1, 1, 1-trichloro-2, 2-bis-(4-chlorophenyl) ethane
(4) 2, 2, 2-trichloro-1, 1-bis-(4-chlorophenyl) ethane
118. Ethylenedichloride and ethylidene dichloride are
(1) geometrical isomers
(2) nuclear isomers
(3) position isomers
(4) anomers
119. The products of the following reaction
A, B and C are respectively $\mathrm{C} \stackrel{\mathrm{AgCN}}{\longleftrightarrow} \mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{I} \xrightarrow{\text { alc. } \mathrm{KOH}} \mathrm{A}$ $\underset{\text { (2) } \Delta}{\substack{\text { (1) } \mathrm{CH}_{3} \mathrm{ONa} \\ \text { B }}}$
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NC}$
(3) $\mathrm{CH}_{2}=\mathrm{CH}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NC}$
(4) $\mathrm{CH} \equiv \mathrm{CH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{3}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$
120. The products A, B and C of the following reactions are respectively

(1) $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{BrCOOH}$,
$\mathrm{CH}_{2} \mathrm{ClCOOH}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{BrCOOH}$,
$\mathrm{CH}_{3} \mathrm{COCl}$
(3)

(4) $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{BrCOOH}, \mathrm{CH}_{3} \mathrm{COCl}$
121. The products A, B and C of the following reactions are respectively

(1) $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{NH}_{2}$
(2) $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{NH}_{2}$
(3) $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{NH}_{2}$
(4) $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{NH}_{2}$
122. The products A, B and C of the following reactions are respectively

(1) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
(2) $\mathrm{CH}_{3} \mathrm{COONa}$

B
(1)

(2)

(3)

(4)

123. Match the List I with List II and select the correct answers from the codes given below the list:

List I

List II
A. Insecticide P.

B. Germicide
Q. $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COONa}$
C. Miscelle
R. AgNO_{3}
D. Lyophobic
S. $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}_{6}$ sol
T. Colloidal gold

Codes

	A	B	C	D
(1)	S	T	Q	P
(2)	S	P	Q	T
(3)	S	R	Q	P
(4)	P	S	Q	R

124. Match the List I with List II and select the correct answers using the codes given below the list:

List I

List II

A. Pyrene
P. $\quad \mathrm{CCl}_{3} \mathrm{NO}_{2}$
B. Calgon
Q. $\mathrm{Na}_{2}\left(\mathrm{Na}_{4}\left(\mathrm{PO}_{3}\right)_{6}\right)$
C. Chloropicrin
R. $\quad \mathrm{CCl}_{4}$
D. Hypnotic
S. $\quad \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}_{6}$
T. Barbituric acid derivatives

Codes

	A	B	C	D
(1)	R	Q	T	P
(2)	S	R	Q	P
(3)	R	Q	P	T
(4)	S	Q	T	P

125. Match the List I with List II and select the correct answer from the codes given below the list:

Codes

	A	B	C	D
(1)	P	S	T	Q
(2) S	P	P	Q	
(3) S	T	P	Q	
(4) S	P	T	Q	

PART IV: ENGLISH PROFICIENCY AND LOGICAL REASONING

(a) ENGLISH PROFICIENCY

Directions for questions 126 to 128: Read the following passage carefully and answer the questions that follow.

The young are those to whom we look for future strength and for future good; and the longer we live, the more anxious we become that they who are to be the fresh recruits should be morally of right stature. Around them are peculiar temptations and trials, witching, cunning, insidious and forceful and we are obliged to see thousands falling by the way, whose fall seems and needless. They like ourselves, are to have but one chance in life. We who are somewhat advanced in years, seeing how many perils there are round about that one chance, feel an earnest desire that every advantage should be given to those who are coming onto fill our places. We can live but once, and life is usually moulded and takes its shape very early.
126. Which one of the following is correct? The author looks upon the young as
(1) handsome and healthy.
(2) an embodiment of possibilities.
(3) strong and hard working.
(4) a group of boys and girls who are obedient and dutiful.
127. What does the phrase "morally of right stature" mean?
(1) Being highly educated
(2) Having a good personality
(3) Having rectitude
(4) Feeling superior to others
128. Which one of the following is correct? The failure of many a young men and women is
(1) well deserved
(2) unwarranted
(3) fortuitous
(4) sad

Directions for questions 129 to 133: Each question below has a word capitalised followed by four words or phrases numbered 1 to 4. Choose the word that has nearly the same meaning as the capitalised word.
129. USURP
(1) to be lazy
(2) to climb
(3) to seize power or position illegally
(4) to yield
130. MERCURIAL
(1) mechanical
(2) heavy
(3) clownish
(4) quick-changing
131. ALLEVIATE
(1) to release
(2) to lessen
(3) to deprive
(4) to deceive
132. EXTENUATE
(1) to lessen in degree
(2) to express
(3) suggest
(4) object
133. RECTITUDE
(1) refuse
(2) integrity
(3) reaching out
(4) revenge

Direction for questions 134 to 136: Each of the following sentence has a mistake in grammar usage or idiom. Each sentence is broken up into four parts sequentially 1, 2, 3 and 4. Choose that part which has an error and mark accordingly.
134. (1) The carpet was badly stained
(2) to such an extent
(3) that you could n't tell
(4) its original colour
135. (1) It is greatly to tom's credit
(2) that he gave back
(3) the money he found
(4) his honesty does for him credit
136. (1) A terrific hue and cry
(2) was raised
(3) at the new tax proposals
(4) no error

SPACE FOR ROUGH WORK

Directions for questions 137 and 138: Each sentence below has a blank space indicating that something has been left out. Following each sentence four words are given. Choose the word that makes the sentence meaningful.
137. In the $20^{\text {th }}$ century, physicists have made their greatest discoveries about the characteristics of objects like the atom and its parts.
(1) infinitesimal
(2) infinite
(3) microscopic
(4) kaleidoscope
138. His moral decadence was marked by his \qquad from the ways of integrity and honesty.
(1) declivity
(2) obsession
(3) opprobrium
(4) departure

Directions for questions 139 and 140: In each of the following questions, out of the four alternatives given, choose the one which can be substituted for the given words or sentence.
139. A person, such as a teacher, army officer etc., who believes in and enforces strict discipline.
(1) maudlin
(2) martinet
(3) maverick
(4) malthusian
140. A person who believes that ideas have value only in terms of their practical consequence and that practical results are the sole test of the truth or validity of beliefs.
(1) realist
(2) optimist
(3) pragmatist
(4) utopian

(b) LOGICAL REASONING

Directions for questions 141 to 144: In each of the following questions a pair of words with certain relationship between them is given followed by four pairs numbered 1 to 4. Select the pair wherein the words have closest relationship to the original pair.
141. EDUCATION : DEVELOPMENT ::
(1) Man : Speech
(2) Nutrition : Health
(3) Game : Play
(4) Child : Growth
142. HOUSE : ROOM ::
(1) Struggle : Fight (2) Transport : Car
(3) School : College (4) Boy : Girl

SPACE FOR ROUGH WORK
143. GILL : FIN ::
(1) Salad: Rice
(2) Sea : Fish
(3) Kill : Bomb
(4) Question : Team
144. BREAK : PIECE ::
(1) Writer : Pen
(2) Bread: Bake
(3) Kick : Football
(4) Muddy : Unclear

Directions for questions 145 to 147: In each question you find a set of sentences arranged in a haphazard way. Choose the correct arrangement of sentences as indicated by the number to make a coherent paragraph.
145. A. Indian films, cuisine and yoga have always been popular in China.
B. 33 year old Jin Shan Shan, a Jawaharlal University alumnus is actively promoting Bharatnatyam among her compatriots.
C. She has established a school for Bharatnatyam in China.
D. It has always been a passion for her to become an exponent of Bharatnatyam.
E. Around 50 Chinese children attend classes every week to learn the intricacies of the classical dance.
F. Now classical Indian dance has caught the imagination of the Chinese.
(1) AFBDCE
(2) ECDFBA
(3) ABFDCE
(4) EDCBFA
146. A. Our leaders decided to move towards progress through five year plans.
B. In the years that followed Independence, India had to tackle many problems.
C. We have decided to be a democracy and we have continued to remain so.
D. This path was laid down in the constitution we gave ourselves.
E. Sixty years have gone by and we have grown as a nation in many ways.
F. Leaders like Nehru and Ambedkar set the course our country was to take.
(1) EFDCBA
(2) BEACDF
(3) BEDAFC
(4) BDEACF
147. A. However, there may be times when enforcement of norms and limits leads to conflicts.
B. Norms and limits help children learn mutual respect, responsibility and cooperation.
C. Conflict resolution tools which can be used include decision-making, communication skills, managing aggressive behaviour and forgiveness.
D. Therefore, we need to understand conflicts and learn how to resolve them effectively.
E. Understanding conflicts is important when trying to comprehend concepts of positive discipline and physical and psychological punishment.
F. Conflict is a part of everybody's life.
(1) EFDCAB
(2) CBDFEA
(3) DACFBE
(4) BADCFE

Direction for question 148: In the following question, four out of the five alternatives are similar and form a group. Find the odd one that does not belong to the group.
148. (1) Rectangle
(2) Rhombus
(3) Square
(4) Circle
(5) Trapezium

Direction for question 149: Select the figure which does not belong to the group.

150. Choose the figure from the five alternatives 1, 2, 3, 4 and 5 that can be formed by joining the figures given in box marked (X).

SPACE FOR ROUGH WORK

BRILLIANT'S
 FOR STUDENTS OF OUR ONE/TWO-YEAR POSTAL COURSE

TOWARDS

BITSAT, 2008

SOLUTIONS

PART I: MATHEMATICS

1. (4) $|\bar{c}|=\sqrt{3} \Rightarrow 1+\alpha^{2}+\beta^{2}=$ i

$$
\Rightarrow \alpha^{2}+\beta^{2}=2
$$

$\bar{a}, \bar{b}, \bar{c}$ are linearly dependent
$\Rightarrow \overline{\mathrm{c}}=x \overline{\mathrm{a}}+\mathrm{y} \overline{\mathrm{b}}$
$\Rightarrow \hat{i}+\alpha \widehat{j}+\beta \vec{k}$
$=x(\vec{i}+\vec{j}+\vec{k})+y(4 \vec{i}+3 \vec{j}+4 \vec{k}$
$x+4 y=1)$
$x+3 y=\alpha$
$x+4 y=\beta$
$\Rightarrow \beta=1$ and $\alpha^{2}=2-\beta^{2}=2-1=1$

$$
\alpha= \pm 1
$$

2. (1) $h(x)=y-y^{2}+y^{3}$ where $y=f(x)$

$$
\begin{aligned}
\frac{d h}{d y} & =3 y^{2}-2 y+1 \\
& =3\left(y-\frac{1}{3}\right)^{2}+\frac{2}{3}>C
\end{aligned}
$$

$\therefore \mathrm{h}$ increases with y or h is increasing whenever $f(x)$ is increasing or equivalently h is decreasing whenever $f(x)$ is decreasing.
3. (2) $\sin \theta=$ Imaginary part of

$$
\begin{gathered}
(\cos \theta+i \sin \theta)^{n} \\
={ }^{n} C_{1} \cos ^{n-1} \theta \sin \theta \\
-{ }^{n} C_{3} \cos ^{n-3} \theta \sin ^{3} \theta+\ldots
\end{gathered}
$$

$$
=n\left(1-\sin ^{2} \theta\right)^{\frac{n-1}{2}} \sin \theta
$$

$$
{ }^{n} C_{3}\left(1-\sin ^{2} \theta\right)^{\frac{n-3}{2}} \sin ^{3} \theta+\ldots
$$

$=n \sin \theta+a \sin ^{3} \theta+b \sin ^{5} \theta+\ldots$
$=b_{0}+b_{1} \sin \theta+b_{2} \sin ^{2} \theta+\ldots$

Comparison gives $\mathrm{b}_{0}=0$ and $\mathrm{b}_{1}=\mathrm{n}$
4. (1) $240=2^{4} \times 3 \times 5$

Factors of 240 are the terms of $\left(1+2+2^{2}+2^{3}+2^{4}\right)(1+3)(1+5)$ $4 n+2=2(2 n+1)=2 \times$ odd number.

Such factors are $2 \times 1,2 \times 3,2 \times 5$, 2×15

These are four in number.
5. (4) $h(x)=\min \left\{x, x^{2}\right\}$ for all x implies
$h(x)=\left\{\begin{array}{l}x \text { for }-\infty<x \leq 0 \\ x^{2} \text { for } 0 \leq x \leq 1 \\ x \text { for } 1 \leq x<\infty\end{array}\right.$
$h(x)$ is continuous at 0 and 1 and hence for all x.
$h(x)$ is not differentiable at $x=0$ and at $x=1$

$h^{\prime}(0-)=1$ and $h^{\prime}(0+)=0$
$h^{\prime}(1-)=2$ and $h^{\prime}(1+)=1$
Also $h^{\prime}(x)=1$ for all $x>1$
6. (2) If the sides of the Δ are p, q, r then $\sin P, \sin Q, \sin R$ are in $A . P \Rightarrow p, q, r$ are in A.P. (since $p \propto \sin P$ etc.)
$\Rightarrow \frac{\Delta}{\mathrm{PD}}, \frac{\Delta}{\mathrm{QE}}, \frac{\Delta}{\mathrm{RF}}$ are in A.P.
since $\frac{1}{2} p \cdot P D=\frac{1}{2} q \cdot Q E$

$$
=\frac{1}{2} r \cdot R F=\Delta
$$

$\Rightarrow \frac{1}{P D}, \frac{1}{Q E}, \frac{1}{R F}$ are in A.P.
\Rightarrow altitudes are in H.P.
7. (4) $f(x)=\frac{x^{2}-1}{x^{2}+1}=1-\frac{2}{x^{2}+}$.
$\min f(x) \longleftrightarrow \max \frac{2}{x^{2}+1} \longrightarrow$
$\min \left(x^{2}+1\right)$ which corresponds to $x=0$
\therefore minimum $f(x)=-1$
8. (2) First arrange the seven white (all different) balls in a row in $\lfloor 7$ ways and then arrange the three black balls in 8 (6 interspaces plus two outside spaces) in ${ }^{8} P_{3}$ ways
$\mathrm{p}=\frac{\left\lfloor 7 \times{ }^{8} \mathrm{p}_{3}\right.}{\lfloor 10}=\frac{7}{15}$
9. (3) It is given that

$$
\begin{aligned}
& a_{n}=\frac{1}{{ }^{n} C_{0}}+\frac{1}{{ }^{n} C_{1}}+\cdots+\frac{1}{{ }^{n} C_{n}} \\
& \text { Let } S=\sum_{r=0}^{n} \frac{r}{{ }^{n} C_{r}} \\
& =\frac{0}{{ }^{n} C_{0}}+\frac{1}{{ }^{n} C_{1}}+\frac{2}{{ }^{n} C_{2}} \\
& +\cdots+\frac{n}{{ }^{n} C_{n}} \\
& =\frac{n}{{ }^{n} C_{0}}+\frac{n-1}{{ }^{n} C_{1}}+\frac{n-2}{{ }^{n} C_{2}} \\
& +\cdots+\frac{0}{{ }^{n} C_{n}} \\
& 2 S=\frac{n}{{ }^{n} C_{0}}+\frac{n}{{ }^{n} C_{1}}+\cdots+\frac{n}{{ }^{n} C_{1}} \\
& \Rightarrow S=\frac{n}{2} \cdot a_{n} \\
& \Rightarrow S=\frac{n}{2} \cdot a_{n}
\end{aligned}
$$

10. (2) $x^{2}+y^{2}=2^{2}$ and $(x-3)^{2}+(y-4)^{2}=7^{2}$ touch internally, $d=r_{1}-r_{2}=5$

Number of common tangents $=1$
11. (4) $\left(1+\omega-\omega^{2}\right)^{7}=\left(-2 \omega^{2}\right)^{7}=-128 \omega^{14}$

$$
=-128 \omega^{2}
$$

12. (1) $\int_{0}^{x} f(t) d t=x+\int_{x}^{1} t f(t) d t$

Differentiating w.r.t.x by Leibnitz rule
$1\{f(x)\}=1-\{x f(x)\} 1$
$\therefore f(x)=\frac{1}{1+x}$ and $f(1)=\frac{1}{2}$
13. (3) Equating slopes of $P Q$ and $R S$, $\frac{b-7}{a-5}=\frac{4}{3}$ or $4 a-3 b=-1$. Equating slopes of $P S$ and $R Q$, $\frac{b-2}{a-1}=\frac{1}{1}$ or $a-b=-1$
$\therefore a=2$ and $b=3$
14. (3) A, B, D are all equal as they represent box product $[\bar{u} \bar{v} \bar{w}]$ whereas $c \rightarrow \bar{v} \cdot(\bar{u} \times \bar{w})=-[\bar{u} \bar{v} \bar{w}]$
15. (2) Let $y=3 x-5$; Then $x=\frac{y+5}{3}$; Interchanging x and y, we get $\mathrm{y}=\frac{\mathrm{x}+5}{3} \therefore \mathrm{f}^{-1}(\mathrm{x})=\frac{\mathrm{x}+5}{3}$
16. (1) Case I ; W W B

$$
p_{1}=\frac{3}{4} \times \frac{2}{4} \times \frac{3}{4}
$$

Case II ; W B W

$$
p_{2}=\frac{3}{4} \times \frac{2}{4} \times \frac{1}{4}
$$

Case III ; B W W

$$
P_{3}=\frac{1}{4} \times \frac{2}{4} \times \frac{1}{4}
$$

$\therefore \mathrm{p}=\mathrm{p}_{1}+\mathrm{p}_{2}+\mathrm{p}_{3}=\frac{26}{64}=\frac{12}{32}$
17. (3) $T_{n}=\frac{1}{m} \Rightarrow \frac{1}{m}=a+(n-1) c$
$T_{m}=\frac{1}{n} \Rightarrow \frac{1}{n}=a+(m-1) c$

Solving $a=\frac{1}{m n}$ and $d=\frac{1}{m n}$
$\therefore \mathrm{T}_{\mathrm{mn}}=\mathrm{a}+(\mathrm{mn}-1) \mathrm{d}$

$$
=\frac{1}{m n}+(m n-1) \frac{1}{m n}=1
$$

18. (1) If $f(x)=\sin ^{2} x$ and $g(x)=\sqrt{x}$
$f(g(x))=f(\sqrt{x})=(\sin \sqrt{x})^{2}$
$g(f(x))=g\left(\sin ^{2} x\right)=\sqrt{\sin ^{2} x}=\mid \sin x$
3 and 2 do not fit, on verification.
19. (4) $\left|\begin{array}{rrr}6 i & -3 i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i\end{array}\right|=\left\lvert\, \begin{array}{rrr}6 i+4 & 0 & 0 \\ 4 & 3 i & -1 \\ 20 & 3 & i\end{array}\right.$

$$
=(6 i+4)\left(3 i^{2}+3\right)=0
$$

$\therefore \mathrm{x}+\mathrm{iy}=0 \Rightarrow \mathrm{x}=0, \mathrm{y}=0$
20. (2) Each digit can be any one of $2,5,7$, thus each digit can have 3 values. Hence there are 3^{n}, distinct n digit numbers. $3^{n}>900 \Rightarrow n \geq 7$ since, $3^{6}=729$.
21. (1) $(F \cap E) \cup(F \cap \bar{E})=F \cap(E \cup \bar{E})=F \cap X=F$

Also $F \cap E$ and $F \cap \bar{E}$ are disjoint.
$\therefore P(F \cap E)+P(F \cap \bar{E})=P(F)$
$\therefore \frac{P(F \cap E)}{P(F)}+\frac{P(F \cap \bar{E})}{P(F)}=1$
(i.e.) $P\left(\frac{E}{F}\right)+P\left(\frac{\bar{E}}{F}\right)=1$

Similar result is true if F is replaced by $\overline{\mathrm{F}}$.
22. (1) If $f(x)=x-(x)$
then $f(x)=x-(-1)=x+1$ in $(-1,0)$

$$
=x-0=x \text { in }(0,1)
$$

$\therefore \int_{-1}^{1} f(x) d x=\int_{-1}^{0}(x+1) d x$

$$
+\int_{0}^{1} x d x
$$

$$
=\left[\frac{x^{2}}{2}+x\right]_{-1}^{0}+\left[\frac{x^{2}}{2}\right]_{0}^{1}=1
$$

23. (2) Any point on $x y=c^{2}$ is $\left(c t, \frac{c}{t}\right)$

Point of intersection are given by
$c^{2} t^{2}+\frac{c^{2}}{t^{2}}=a^{2}$
$c^{2} t^{4}-a^{2} t^{2}+c^{2}=0$ with roots t_{1}, t_{2}, t_{3}, t_{4}
$\therefore \Sigma t_{1}=0, \Sigma t_{1} t_{2}=-a^{2} ; \Sigma t_{1} t_{2} t_{3}=0$;
$t_{1} t_{2} t_{3} \dagger_{4}=1$
$\therefore \sum x_{1}=c \sum t_{1}=0$
$\sum \mathrm{y}_{1}=\mathrm{c} \sum \frac{1}{\dagger_{1}}=\frac{c}{\dagger_{1} \dagger_{2} \dagger_{3} \dagger_{4}} \sum t_{1} t_{2} t_{3}=0$
$x_{1} x_{2} x_{3} x_{4}=c^{4} \cdot t_{1} t_{2} t_{3} \dagger_{4}=c^{4}$
$y_{1} y_{2} y_{3} y_{4}=\frac{c^{4}}{t_{1} t_{2} \dagger_{3} \dagger_{4}}=c^{4}$
24. (2) Since only two tests are needed, one faulty machine should be caught in the first test and the other one in the second test
$\therefore p=\frac{2}{4} \times \frac{1}{3}=\frac{1}{6}$
25. (2) $\sum_{n=1}^{13} i^{n}+\sum_{n=1}^{13} i^{n+1}$

$$
\begin{aligned}
& =\frac{i\left(1-i^{13}\right)}{1-i}+\frac{i^{2}\left(1-i^{13}\right)}{1-i} \\
& =\frac{\left(i+i^{2}\right)(1-i)}{(1-i)}=-1+
\end{aligned}
$$

26. (1) $\overline{\mathrm{u}} \cdot(\overline{\mathrm{v}} \times \overline{\mathrm{w}})$ is meaningful.
27. (4) The first three choices demand either $\mathrm{E} \subset \mathrm{F}$ or $\mathrm{F} \subset \mathrm{E}$ which are not implied by $\mathrm{P}(\mathrm{E}) \leq \mathrm{P}(\mathrm{F})$ and $\mathrm{P}(\mathrm{E} \cap F)>0$
28. (1) Each toss is independent of the earlier tosses and hence the probability of "head" appearance in the fifth toss $=\frac{1}{2}$
29. (3) $y=m x+c$ touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ if $c= \pm \sqrt{a^{2} m^{2}+b^{2}}$. This is only a numerical example.
30. (3) $y=A \cos (x+B)+C e^{x}$ where $C_{1}+C_{2}$ $=A$ and $C_{4} e^{C_{5}}=C$. Thus there are only three arbitrary constants and hence the differential equation will be of $3^{\text {rd }}$ order.
$y^{\prime}=-A \sin (x+B)+C e^{x}$
$y^{\prime \prime}=-A \cos (x+B)+C e^{x}$
$y^{\prime \prime \prime}=A \sin (x+B)+C e^{x}$
$\therefore \frac{y+y^{\prime \prime}}{y^{\prime}+y^{\prime \prime \prime}}=\frac{2 C e^{x}}{2 C e^{x}}=1$
or $y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=0$ is the differential equation.
31. (4) Slope of $P R \times$ slope of $Q S$

$$
=-\frac{1}{3} \times \frac{6}{2}=-1
$$

Diagonals are at right angles \Rightarrow parallelogram is a rhombus.
32. (3) Number of newspapers

$$
=\frac{300 \times 5}{60}=25
$$

33. (3) $A_{1} A_{0} A_{2}=30^{\circ}$
$\therefore A_{0} A_{2}=2 \cdot 1 \cdot \cos 30^{\circ}=\sqrt{3}$

$A_{0} A_{4}=A_{0} A_{2}=\sqrt{3}$
$\therefore\left(A_{0} A_{1}\right)\left(A_{0} A_{2}\right)\left(A_{0} A_{4}\right)$

$$
=1 \cdot(\sqrt{3})(\sqrt{3})=3
$$

34. (3) $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ is the ellipse with $a=5$,
$b=4, e=\frac{3}{5}$
\therefore ae $=3$
$\therefore(3,0)$ and $(-3,0)$ are the foci.
$\therefore \mathrm{PF}_{1}+\mathrm{PF}_{2}=2 \mathrm{a}=10$
35. (2) $f(x)=\cos x+\cos (\sqrt{2} x)$ attains its maximum value 2 when $x=0$; If $x=2 \pi$ or any even multiple of π, $\sqrt{2} x=2 \sqrt{2} n \pi$ and $\cos (2 \sqrt{2} n \pi) \neq 1$. Similarly, if $\sqrt{2} x=2 m \pi, x=\sqrt{2} m \pi$ and $\cos x \neq 1$. The only value of x for which $f(x)$ is maximum is $x=0$.
36. (4) $\lim _{x \rightarrow 1} \frac{\sqrt{1-\cos 2(x-1)}}{x-1}$
$=\lim _{y \rightarrow 0} \frac{\sqrt{2 \sin ^{2} y}}{y}$
$=\lim _{y \rightarrow 0} \frac{\sqrt{2}|\sin y|}{Y}$
$=\left\{\begin{array}{c}\sqrt{2} \text { if } y \rightarrow 0+ \\ -\sqrt{2} \text { if } y \rightarrow 0-\end{array}\right.$
Hence the left hand and right hand limits are unequal and therefore limit does not exist.
37. (2) x, y, z in G.P.
$\Rightarrow y^{2}=x z$
$\Rightarrow 2 \log y=\log x+\log z$.
$\Rightarrow \ln x, \ln y, \ln z$ are in A.P.
$\Rightarrow 1+\ln x, 1+\ln y, 1+\ln z$ are in A.P.
\Rightarrow their reciprocals are in H.P.
38. (3) $3 \sin ^{2} x-7 \sin x+2=0$
$\Rightarrow(3 \sin x-1)(\sin x-2)=0$
$\Rightarrow \sin x=\frac{1}{3}$ only. Hence $x=\alpha$
$=\sin ^{-1} \frac{1}{3} ; \pi-\alpha, 2 \pi+\alpha, 3 \pi-\alpha$,
$4 \pi+\alpha, 5 \pi-\alpha$, satisfy $\sin x=\frac{1}{3} ;$ six values.
39. (2) (i) Centroid $=\left(\frac{x_{1}+x_{2}+x_{3}}{3}\right.$. $\left.\frac{y_{1}+y_{2}+y_{3}}{3}\right)$ is a rational point.
(ii) Equations of altitudes will contain only rational coefficient and hence the orthocentre will also be a rational point.
(iii) Similar argument gives the circumcentre to be a rational point.
(iv) The length of the sides a, b, c may not be rational and hence the incentre may not be a rational point.
40. (3) $\sin 15^{\circ} \cos 15^{\circ}=\frac{1}{2} \sin 30^{\circ}=\frac{1}{4}$.

The other three are $\sin 15^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}, \cos 15^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}$
and $\sin 15^{\circ} \cdot \cos 75^{\circ}=\sin ^{2} 15^{\circ}$
$=\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)^{2}=\frac{2-\sqrt{2}}{4}$
are irrational.
41. (2) $\int_{0}^{\pi^{2}} \sin \sqrt{x} d x=\int_{t=0}^{\pi} 2 t \sin t d t$,
by putting $x=t^{2}$
$=2\{t(-\cos t)\}_{0}^{\pi}-\int_{0}^{\pi}(-\cos t)(+1) d t$
$=2\left[\pi+(\sin t)_{0}^{\pi}\right]=2 \pi$
42. (1) $\frac{x^{2}}{\frac{5}{3}}+\frac{y^{2}}{\frac{5}{4}}=1$

$$
m_{0}=-3, m_{1} m_{0}=-\frac{b^{2}}{a^{2}}
$$

$\Rightarrow m_{1}=-\frac{b^{2}}{a^{2} m_{0}}=-\frac{\frac{5}{4}}{\left(\frac{5}{3}\right)(-3}$

$$
=\frac{1}{4} .
$$

Hence the equations of the conjugate diameter is $y=\frac{1}{4} x$.
i.e., $4 y-x=0$
43. (4) $p^{2} y+p(x-y)-x=0$
$\Rightarrow p=\frac{y-x \pm \sqrt{(x-y)^{2}+4 x y}}{2 y}$

$$
\begin{array}{ll}
& =\frac{y-x \pm(x+y)}{2 y}=1 \text { or } \left.-\frac{x}{y} \right\rvert\,
\end{array} \quad \Rightarrow a^{n-5} b^{4}\left\{\frac{n(n-1)(n-2)(n-3)}{24}\right\}
$$

PART II: PHYSICS

46. (2)
47. (3)
48. (4)
49. (3)
50. (3)
51. (2)
52. (4)
53. (3)
54. (1)
55. (1)
56. (4)
57. (3)
58. (3)
59. (4)
60. (2)
61. (1)
62. (1)
63. (2)
64. (2)
65. (4)
66. (1)
67. (2)
68. (2)
69. (3)
70. (2) For post office box (Wheatstone bridge), under balanced conditions
$\frac{P}{Q}=\frac{R}{S}$, where S is unknown resistance
$S=\frac{Q}{P} \times R\left[\right.$ Here,$\frac{P}{Q}=100$ given $]$
From the given graph the galvanometer shows zero deflection at $-R=323.75=324 \Omega$ [upto 3 significant digits].

So, $S=3.24 \Omega$
71. (3)
72. (1) (a) $f_{\max }=100 \mathrm{MHz}+60 \mathrm{kHz}$
$=100.06 \mathrm{MHz}$
$f_{\text {min }}=100 \mathrm{MHz}-60 \mathrm{kHz}$
$=99.94 \mathrm{MHz}$
(b) Frequency swing $=2 \times 60$

$$
=120 \mathrm{kHz}
$$

(c) $m_{f}=60 / 10=6 \mathrm{rad}$
73. (1) $\frac{\Delta \mathrm{P}}{\mathrm{P}} \times 100= \pm\left[\frac{\Delta \mathrm{A}}{\mathrm{A}} \times 100+\frac{\Delta \mathrm{B}}{\mathrm{B}} \times 100-\right.$

$$
\begin{aligned}
& = \pm[0.25+0.1] \\
& = \pm 0.35
\end{aligned}
$$

74. (4) For S_{1} : Unequal Weight of Pan

Let m_{1} and m_{2} be the masses of the left and right pans of the balance. If M_{1} and M_{2} are the measured mass of a block, which is successively placed in the left and right pan of the balance, then from the condition of equilibrium, we get,

$$
\begin{equation*}
m_{1}+M=m_{2}+M_{1} \tag{i}
\end{equation*}
$$

and $m_{1}+M_{2}=m_{2}+M$
where M is the actual mass of the block.

Subtracting equation (ii) from (i), we get, $M-M_{2}=M_{1}-M$
or $M=\frac{M_{1}+M_{2}}{2}$

For S_{2} : Unequal Lengths of Arm

Let ℓ_{1} and ℓ_{2} be the lengths of the left and right arm of the physical balance. If M_{1} and M_{2} are the measured mass of the block, which is successively placed in the left and right pans of the balance, then from the condition of equilibrium, we get

$$
\begin{align*}
\ell_{1} \mathrm{M} & =\ell_{2} \mathrm{M}_{1} \tag{iii}\\
\text { and } \ell_{1} \mathrm{M}_{2} & =\ell_{2} \mathrm{M} \tag{iv}
\end{align*}
$$

where M is the actual mass of the block.

Dividing equation (iii) and (iv), we get

$$
\begin{aligned}
& \frac{M}{M_{2}}=\frac{M_{1}}{M} \\
& M=\sqrt{M_{1} M_{2}}
\end{aligned}
$$

75. (4)
76. (2)
77. (2)
78. (2)
79. (2)
80. (2) $m=\frac{E_{m}}{E_{s}}=\frac{15}{60}=0.25$
81. (3) $W=\vec{F} \cdot \vec{S}$
$\Rightarrow 6=(3 \hat{i}+c \hat{j}+2 \hat{k}) \cdot(-4 \hat{i}+2 \hat{j}+3 \hat{k}$
$\Rightarrow 6=-12+2 c+6$
$\Rightarrow c=6$
82. (2)
83. (4) $V=L^{3}$
$\frac{\Delta V}{V} \times 100=\frac{3 \Delta \mathrm{~L}}{\mathrm{~L}} \times 100$
$\Rightarrow \frac{\Delta V}{V}=0.03 \%$
84. (3) $f_{p}=$ focal length of each planoconvex lens
$\frac{1}{F_{a}}=\frac{1}{f_{p}}+\frac{1}{f_{p}}$
$\Rightarrow F_{a}=\frac{f_{p}}{2}$
Similarly, $F_{b}=\frac{f_{p}}{2}, F_{c}=\frac{f_{p}}{2}$
85. (1) $I=\frac{E}{2+3}=\frac{E}{5} \mathrm{amp}$
$\mathrm{m}=\mathrm{ZI} \dagger=\frac{E Z}{5} \mathrm{gm} / \mathrm{s}$, where $\mathrm{Z} \Omega$ is included so,
effective resistance $=\frac{2 \times 2}{2+2}+3=4 \Omega$
$\Rightarrow I^{\prime}=\frac{E}{4} \Rightarrow m^{\prime}=\frac{Z E}{8} \mathrm{gm} / \mathrm{s}$
$\Delta m=\frac{m-m^{\prime}}{m}=\frac{300 \times 5}{40}$ = 37.5\% (decrease)

PART III: CHEMISTRY

86. (4)
87. (4)

CN^{-}makes Ni^{+2} electrons to pair up.

No pairing of electrons.
88. (2)
89. (4)
90. (1) $\mathrm{Zn}_{\text {(s) }}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \longrightarrow \mathrm{ZnSO}_{4(\mathrm{aq})}$ $+\mathrm{H}_{2(\mathrm{~g})}-1$ mole $_{2}$
$\mathrm{Al}+\frac{3}{2} \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \frac{1}{2} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ $+\frac{3}{2} \mathrm{H}_{2(\mathrm{~g})}$

Ratio of moles H_{2} formed by
1 mole of Zn : 1 mole of Al

$$
=1: \frac{3}{2} \text { i.e., } 1: 1.5
$$

92. (1)
93. (2) $\mathrm{C}_{\text {(graphite) }}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{CO}_{(\mathrm{g})}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{p}}=\frac{[\mathrm{pCO}]\left[\mathrm{pH}_{2}\right]}{\left[\mathrm{pH}_{2} \mathrm{O}\right]} \\
& {\left[\mathrm{pH}_{2}\right][\mathrm{pCO}]=\mathrm{K}_{\mathrm{p}}\left[\mathrm{pH}_{2} \mathrm{O}\right]} \\
& {\left[\mathrm{pH}_{2}\right]=[\mathrm{pCO}]} \\
& \therefore\left[\mathrm{pH}_{2}\right]^{2}=\mathrm{K}_{\mathrm{p}}\left[\mathrm{pH}_{2} \mathrm{O}\right] \\
& {\left[\mathrm{pH}_{2}\right] \propto \sqrt{\mathrm{pH}_{2} \mathrm{O}}}
\end{aligned}
$$

94. (2)
95. (4)
96. (3)
97. (1) $\mathrm{HOCl} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OCl}^{-}$

Weakest Strongest
acid Bronsted base
98. (2)
91. (1) $2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+3 \mathrm{H}_{2} \mathrm{O}+5[\mathrm{O}]$

$$
\frac{5\left[\mathrm{H}_{2}^{+} \mathrm{C}_{2} \mathrm{O}_{4}^{-2}+[\mathrm{O}] \longrightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}\right]}{2 \mathrm{KMnO}_{4}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{MnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}}
$$

$$
2 \mathrm{MnO}_{4}^{-1}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{-2}+16 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Mn}^{+2}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{array}{lll}
x & z & y
\end{array}
$$

99. (3)
100. (1)
101. (3)
102. (1)
103. (2)
104. (3)
105. (4)
106. (3)
107. (1)
108. (4)
109. (2)
110.(3)
110. (2) $\mathrm{AgBr}_{(\mathrm{s})}+2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{aq})} \longrightarrow$ $\mathrm{Na}_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]_{(\mathrm{aq})}+\mathrm{NaBr}(\mathrm{aq})$
111. (1) $\mathrm{CaC}_{2(\mathrm{~s})}+\mathrm{N}_{2(\mathrm{~g})} \frac{\Delta}{\text { electric }} \mathrm{CaNCN}$ furnace
$+\mathrm{C}_{\text {(graphite) }}$
112. (1) $\mathrm{ZnSO}_{4(a q)}+2 \mathrm{NaHCO}_{3(\mathrm{aq})}$

$$
\begin{aligned}
\longrightarrow & \mathrm{ZnCO}_{3(\mathrm{~s})}+ \\
+\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})} & +\mathrm{H}_{2} \mathrm{O}_{(\ell)} \\
+ & \mathrm{CO}_{2(\mathrm{~g})}
\end{aligned}
$$

114. (4)
115. (1)
116. (2)
117. (3)
118. (3)
119. (3)
120. (2)
121. (1)
122. (1)
123. (2)
124. (3)
125. (3)

PARTIV: ENGLISH PROFICIENCY AND LOGICAL REASONING

(a) ENGLISH PROFICIENCY

126. (3)
127. (3)
128. (3)
129. (3)
130. (4)
131. (2)
132. (1)
133. (2)
134. (1) 'The carpet was stained' in place of 'The carpet was badly stained.
135. (4) 'his honesty did him credit' in place of 'his honesty does for him credit'.
136. (1) 'A big hue and $c r y$ ' in place of ' A terific hue and cry'.
137. (3)
138. (4)
139. (2)
140. (3)

(b) LOGICAL REASONING

141. (2) Nutrition is a cause for health.
142. (2) Car is a part of transport system.

143 (1) Salad and rice are part of food.
144. (3) 'kick' is an action that makes the football move.
145. (1)
146. (1)
147. (4)
148. (4)
149. (2) All other figures can be rotated into each other.
150. (3)

