

VOL: 6

ISSUE: 2

ICAR - INDIAN AGRICULTURAL RESEARCH INSTITUTE, REGIONAL STATION, WELLINGTON - 643 231 TAMIL NADU

S.NO.	CONTENT	PAGE NO.
1	Pyramiding of stem rust resistance genes to develop durable and multiple disease resistance wheat varieties	01
2	Results of <i>AICW&BIP</i> trials and problems in their conduct in Southern Hill Zone, 2013-14 3.	04
3	Rusts resistance in wheat lines grown at Wellington	10
4	National Off season/Summer nursery at Indian Agricultural Research Institute, Regional Station, Wellington	10
5	Screening of wheat lines with leaf tip necrosis (LTN) against stripe rust	11

Editorial Board

Dr. M. Sivasamy, Pr. Sci & Head	: Chairman
Dr. V. K. Vikas	: Editor
Dr. P.Jayaprakash	: Co-editor
Dr. C. Uma Maheswari	: Member
Dr. P. Nallathambi	: Member
Shri. Mohan Lal Meena	: Member
Shri. Arvind	: Member

Dr. Jagdish Kumar

: Founder

Pyramiding of stem rust resistance genes to develop durable and multiple disease resistance wheat varieties

Rebekha Nisha¹, M. Sivasamy², V.K.Vikas², P.Jayaprakash², Gajalakshmi.K¹, Jagdish Kumar³ and P.Shajitha¹

¹P.S.G.RKrishnammal College for Women, Coimbatore.

²ICAR-Indian Agricultural Research Institute, Regional Station, Welington

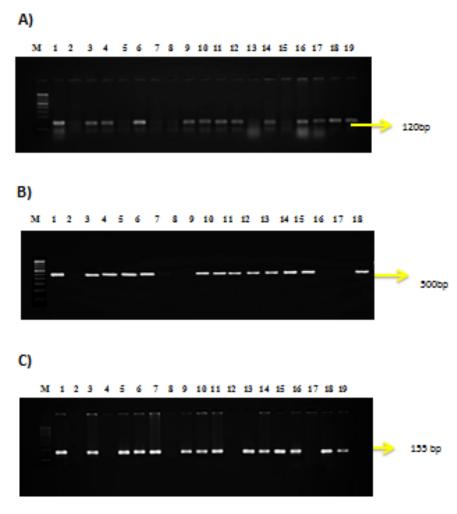
³ICAR-Indian Agricultural Research Institute, Regional Station, Shimla

Wheat (Triticum aestivum L.) is widely cultivated over large areas and is an important food crop worldwide.Wheat rusts (leaf, stem and stripe rust) are major foliar diseases of wheat, causing substantial yield losses. The ability of these rust pathogens to change and be dispersed over long distances pose a continual global threat. Annually, millions around the world are spent on fungicides in an attempt to control wheat rusts. Resistant cultivars have proven to be effective. economical the most and environmentally friendly form of rust control. Although many resistant cultivars developed have been and released worldwide carrying specific rust resistance genes, pyramiding of more and more race specific and race non-specific genes is the effective strategy in developing durable rust resistance varieties. The application of molecular markers and marker-assisted selection (MAS) strategies in breeding programmes can support plant breeders in accomplishing pyramiding of several rust resistant genes into new cultivars.

Of the, so far identified stem rust resistance genes, Sr2 is the only minor adult plant gene (APR) for stem rust resistance. Presence Sr2 alone is not adequate under heavy disease pressure but does provide adequate resistance in combination with other major genes. Pseudo-black chaff, a pigmentation around the stem dark internodes and glumes is closely associated with Sr2 and has been used as a useful morphological marker to fix the gene, although its expression is much influenced by genetic background and environment.

The Thinopyron ponticum-derived linked genes Sr24+Lr24 and Triticum timopheevii-derived linked genes Sr36+Pm6 which are major genes that provides effective rust resistance to leaf and stem rusts. Additionally the *Pm*6 give very effective protection against the powdery mildew. Although Sr24 was effective for some time, race 40-1 has overcome its resistance in India. The linked gene complexes of Lr24+Sr24 and Sr36+Pm6 though individually not effective against Ug99 pathotype and its variants but together confers very effective stem rust protection against Ug99 and also the occurring stem rust races in India. Though susceptible to Ug99 pathotype there have been no reports of virulence for Sr36 yet in India.

The aim of this study was to pyramid three rust resistance genes in the background of five wheat varieties using three microsatellite markers. The study focused on wheat rust resistance genes effective to the Indian pathotypes and to develop durable rust resistant varieties. Marker sequences obtained from the public domain were used for precise introgression and pyramiding Sr2, Sr24/Lr24, Sr36/Pm6 genes into a particular wheat background using MAS. In this study five wheat varieties Lok-1, Sonalika, Raj 4083, HSB6 and WTN 0164 already carrying minor adult plant stem rust resistance gene Sr2 were used as recurrent parents. The donor genotypes include a near isogenic line of Darf developed using TR 380-14*7/3Ag#14, as the source genotype for the major stem rust resistance gene *Sr24/Lr24*. The donor parent contributing for the stem rust resistance gene Sr36 was Indian hexaploid wheat stocks already introgressed with Sr36 gene-derived from an Australian cultivar 'Cook'. The major genes Sr24 and Sr36 were pyramided with Sr2using step wise and simultaneous transfer method in the background of these varieties. Selection after each cross was done using a MAS approach with microsatellite markers linked to the major resistance genes, SRT and field response(Table-1).


Before crosses were made, the presence of the expected rust resistance genes was confirmed in the parentaldonor lines using specific markers gwm533, stm733-2 and Sr24#12 linked to Sr2, Sr36 and Sr24 respectively. The presence of the minor APR gene Sr2 was also confirmed by the presence of the morphological marker pseudo black chaff (Pbc) on the glumes and lower internodes in addition to the. microsatellite marker gwm533 Most of the F1 plants were identified with *Pbc*. The F_1 plants were top crossed and then backcrossed with the respective recurrent parent. The resulting BC_1F_1s were screened with molecular markers gwm533, Sr24#12 and stm733-2 specific to Sr2, Sr24 and Sr36 respectively to confirm the presence of the rust resistance genes. Marker assisted selection was practiced in the subsequent F₂ and F₃ filial stages to identify the plants pyramided with resistance genes. The marker results showed that each plant segregated for the presence of the resistance gene combination.

Of the three markers used in the present study for the identification of plants carrying the resistance genes Sr24#12 linked to the major gene Sr24 is a dominant marker. The other two microsatellite markers *gwm533* and *stm733-2* linked to *Sr2* and *Sr36* were co – dominant markers and thus homozygous and heterozygous plants

could be distinguished. The microsatellite marker gwm533 amplified a 120bp PCR product pertaining to the presence of the gene Sr2 in the pyramided genotypes. A 500 bp allele was amplified by the dominant marker Sr24#12 linked to the major gene Sr24 while the marker stm733-2 amplified a 155bp product in the genotypes carrying the gene Sr36(Figure1-3). In each population of the five varieties, plants pyramided with all the three genes Sr2+Sr24+Sr36 and plants with two gene combinations Sr2+Sr24 and Sr2+Sr36 were also obtained.

The data on the various quantitative traits characters related to field resistance showed that the in the present study showed high degree of field resistance against leaf, stem and powdery mildew resistance with maximum recurrent parent genome recovery. Further studies on the effect of these genes on the end use quality is on. The varieties pyramided with the three gene combinations were in comparison to the respective recurrent parent for all the agronomic traits so far studied. Slight increase in the number of tillers per plant and 1000 grain weight were also observed.

The wheat lines developed in the present study, by virtue of possessing resistance to one or more type of rusts and powdery mildew have definite advantage over their susceptible recurrent parents. The combination of rust resistance genes Sr2, Sr24 and Sr36 in the genetic background of commercial wheat varieties is likely to provide durability of resistance which can be strategically deployed after testing for the vield potential. The pyramided lines may also serve as good genetic stock or donor in breeding program since there in the background of well adapted Indian commercial cultivars.

Screening of BC1F3 generation of Sonalika population for rust resistance genes Sr2, Sr24 and Sr36 with A) STM marker gwm 533 linked to Sr2 B) STS marker Sr24#12 linked to Sr24/Lr24 and C)STM marker stm733-2 linked to Sr36 Table-1: Seedling and adult plant response (under natural conditions with high disease pressure) of recurrent and constituted lines with pyramided genes

Varieties	dise	Plant respon ases under n bhytotic cond	atural	Seedling	Seedling response to brown rust races			Seed Respor Black ru	Powdery Mildew		
	Black	Brown	Yellow	17	77A	77-5	77-7	77-8	40A	40-1	Mixed Race (0-9 scale)
Lok-1	70S	80S	80S	3+	3	3	0	3	2+	3	6
Lines with <i>S2/Yr30</i> , <i>Sr24/Lr24</i> , <i>Sr36/Pm6</i>	F	F	60S	;,1	;1,1	;1	;1	1	0	0;	1
Raj 4083	30S	80S	40S	2	2	3+	2	2	2	1	4
Lines with <i>S2/Yr30</i> , <i>Sr24/Lr24</i> , <i>Sr36/Pm6</i>	F	F	40S	;,1	;1,1	;1	;1	1	0	0;	0
HSB6	30S	40S	208	2	2	3+	1	2	2	1	5
Lines with <i>S2/Yr30</i> , <i>Sr24/Lr24</i> , <i>Sr36/Pm6</i>	F	F	20S	;,1	;1,1	;1	;1	1	0	0;	1
WTN0164	F	F	F	;,1	;1,1	;1	;1	1	;1	;1	4
Lines with <i>S2/Yr30</i> , <i>Sr24/Lr24</i> , <i>Sr36/Pm6</i>	F	F	F	;,1	;1,1	;1	;1	1	0	0;	0
Sonalika	60S	80S	60S	2	2	3	1	2	2	2	4
Lines with <i>S2/Yr30</i> , <i>Sr24/Lr24</i> , <i>Sr36/Pm6</i>	F	F	60s	;,1	;1,1	;1	;1	1	0	0;	0

Results of *AICW&BIP* trials and problems in their conduct in Southern Hill Zone, 2013-14

Sivasamy. M **, P.Jayaprakash[@], V.K.Vikas#, P.Nallathambi* and U.C.Umamaheswari*

** = Principal Scientist & Head, IARI, Regional Station, Wellington and Zonal Co-ordinator, Southern Hill Zone

- * = Principal Scientists, IARI, Regional Station, Wellington
- @= Senior Scientist, IARI, Regional Station, Wellington

- Scientist, IARI, Regional Station, Wellington

Inroduction:

Southern Hill Zone (Comprising hill areas and adjoining hills) although area wise a small zone but strategically very important with respect to rust control programme since it is the focus area for leaf and stem rust in India(hot spot). Because of changing food habit and regular efforts in popularizing wheat cultivation in this zone the demand for wheat has gone up which is reflected in the increased seed demand for recently released rust resistant wheat varieties. Over the last six years sizable area has come under wheat cultivation under this zone during Rabi. In Southern hill zone the AICW&BIP yield trials viz., AVT, IVT (*Aestivum*), Spl.trial - *dicocccum* and agronomy trials for both *dicoccum* and aestivum are regularly conducted. Although area wise this zone is a small zone, this zone acts as source for spread of rust diseases to other parts of the country and while considering the rust control program in India it is strategically very important one.

Conduct of AICW&BIP trials 2013-14

The AICW&BIP yield trails under Southern Hill zone, AVT(TS/LS), IVT(TS/LS), Spl. trial on dicoccum and agronomy trials were proposed and conducted. The trial locations proposed were AVT-7/IVT-7/Spl.dicoccum-2 which include the locations viz.Wellington(TS), Wellington(LS), CSWRI, Mannavanur, Kodaikanal, CSWC&RI, Ooty, Yercaud and Paiyur (TNAU) in Tamilnadu and Mandya in Karnataka and the trials were conducted in all locations except at Yercaud. The Special trial on dicoccum was proposed and conducted Wellington and Mandyacentres. Agronomy trials for final year entries of dicoccum were conducted only at Wellington location.

Trial	No. trials proposed in workshop	No. trials conducted	Trials rejected/Not conducted/Not reported	Reasons / Remarks
AVT-MF-RIR	(Wellington-TS, Wellington-LS, Kodaikanal, Paiyur, Yercaud & Mandya) No. of Trials Proposed = 07	6	Not conducted (Yercaud)	Sowings couldn't be taken since wild animal protection was not provided
IVT-MF-RIR	(Wellington-TS, Wellington-LS, Kodaikanal, Paiyur, Yercaud& Mandya) No. of Trials Proposed = 07	6	Rejected-1 (Paiyur) Not conducted (Yercaud)	ID(Incomplete data)
Spl.trial - Dicoccum	2 (Wellington, and Mandya)	2	Nil	Nil
Agronomy-Dicoccum- Irrigation levels	1(Wellington)	1	Nil	Nil

Table-1: Conduct of IVT/AVT/agronomy/special trials in SHZ : 2013-14

Advance Varietal Trials

Table-2: Mean Grain Yield (q/ha): Rabi 2013-14

AVT-RI-TS/LS-TAS-SHZ, 2013-14 State and Zonal Mean Yield (q/ha)

C No. Vorista			Tam	ilnad	u	Karnataka			ZONAL		
S.No	Variety	Code	Yield	Rk	G	Yield	Rk	G	Yield	Rk	G
1.	UAS 358	AVT-SHZ-3	49.6	1	1	57.7	2	1	51.0	1	1
2.	MACS 6507	AVT-SHZ-4	47.1	2	0	59.6	1	1	49.2	2	1
3.	COW(W) 1 (C)	AVT-SHZ-1	45.9	4	0	56.9	3	1	47.8	4	0
4.	HW 5216 (C)	AVT-SHZ-2	46.7	3	0	56.2	4	0	48.3	3	0
5.	HW 2044 (C)	AVT-SHZ-5	40.8	5	0	46.6	5	0	41.8	5	0
	S.E. (M)		0.748			1.139			0.651		
	C.D.	<u></u>	2.1			3.4			1.8		

No. of Trials: Proposed = 07, Conducted = 06, Trials not Conducted (01): Yercaud

		RUST RESPONSE (HIGHEST SCORE AND ACI)								
SOUTH		So	outh			No	rth			
50011	ERN HILLS ZONE	ST	EM	LI	EAF.	F. LEAF		STRIPE		
Sr. No.	Variety	HS	ACI	HS	ACI	HS	ACI	HS	ACI	
1	MACS 6507	30S	9.2	40S	12.3	40S	21.0	80S	47.8	
2	UAS 358	20S	8.2	60S	15.6	20S	5.6	60S	35.7	
3	COW(W) 1 (C)	40S*	5.2	5MS	0.6	30MS	8.0	80S	62.9	
4	HW 5216 (C)	20MS	2.2	10MS	2.9	10MR	1.4	100S	50.6	
5	HW 2044 (C)	10S	2.3	5 S	1.3	20S	12.2	100S	56.1	

Table-3Adult plant response of AVT material against wheat rusts under fieldconditions (artificial inoculations) during 2013-14

The AVT trials were conducted with 2 test entries including three checks (Table 2). Both the test entries were in first non-significant group out yielding over the checks. However the test entry MACS 6507 can't be promoted further because of high ACI for brown rust.

Table -4: Promotion/retention of varieties in AVT trials in SHZ 2011-12 based on zonal mean yield and response to diseases

Response to rust	Grain Yield	Others	Remarks
More than 20S Susceptibility with ACI of 10.0 and above for one or more rusts are rejected which include the varieties as under	Numerically not at par with the checks other than the final year entries are rejected include the varieties	Varieties sowing Seg/Mix more than 10% and very late mature than Std. Check and high lodging score.	Rejected/
MACS 6507 (Leaf Rust -40S, ACI-21.0)	None	None	MACS 6507
Less than 20S with ACI 10.0 or less to one or more rusts	Numerically at par and above with the best check	Genetically pure	Retained/Promoted
UAS 358	UAS 358	Checks and all other test entries	UAS 358

Initial Varietal Trials(IVT)

The results of IVTzonal mean grain yields are presented in Table-5. The trial was conducted at 6 locations viz., Wellington(TS/LS), Ooty, Kodaikanal, Mandya and Paiyur during Rabi 2013-14.The results are statistically significant when it was tested with 14 test entries including three checks i.e. HW2044, CoW(W)1 and HW 5216. At zonal level the varieties HW 3620, HW 5801, HW5049, HW 3607, HW 3906, HW 4215-1 and HW5047 remained in the first non-significant group and will qualify for promotion to AVT based on their yield performance.

Table- 8 : The probable varieties constitute for AVT trials in SHZ Rabi 2014-15

Sr. No.	Name of the Varieties qualify for promotion/retention	Year of testing in AVT (2014-15) (Three years AVT for SHZ)
1	UAS 358	2
2	HW 3620	1
3	HW 5801	1
4	HW5049	1
5	HW 3607	1
6	HW 3906	1
7	HW 4215-1	1
8	HW5047	1
9	COW(W)1	1
10	HW 5216	1

Table – 5: Mean Grain Yield (q/ha): Rabi 2013-14

IVT -RI- TS/LS- TAS-SHZ, 2013-14 State and Zonal Mean Yield (q/ha)

S1.	Mariata	Colo	Та	milnad	lu	Ka	arnataka	ZC	NAL	
No.	Variety	Code	Yield	Rk	G	Yield	Rk G	Yield	l Rk G	
1.	HW 3620	IVT-SHZ-1	46.1	7	0	58.3	8 0	48.6	8	1
2.	HW 5801	IVT-SHZ-2	50.2	1	1	56.0	15 0	51.3	1	1
3.	HS 589	IVT-SHZ-3	44.9	10	0	54.5	17 0	46.8	11	0
4.	HW5049	IVT-SHZ-4	48.5	3	1	57.2	9 0	50.3	4	1
5.	UAS 368	IVT-SHZ-5	41.8	16	0	62.4	3 1	45.9	16	0
6.	HW3608	IVT-SHZ-6	43.1	15	0	60.3	6 1	46.5	14	0
7.	HW3627	IVT-SHZ-7	43.7	13	0	63.0	1 1	47.6	10	0
8.	HW 5802	IVT-SHZ-9	43.6	14	0	59.1	7 1	46.7	12	0
9.	HW 3607	IVT-SHZ-10	48.6	2	1	56.1	14 0	50.1	5	1
10.	HW 3906	IVT-SHZ-11	45.8	9	0	62.0	4 1	49.0	6	1
11.	UAS 367	IVT-SHZ-13	43.9	12	0	56.4	13 0	46.4	15	0
12.	HW 4215-1	IVT-SHZ-14	48.3	4	1	62.8	2 1	51.2	2	1
13.	HW5047	IVT-SHZ-15	46.6	6	0	56.9	11 0	48.7	7	1
14.	HW 5048	IVT-SHZ-16	41.7	17	0	57.0	10 0	44.8	17	0
15.	HW 2044 (C)	IVT-SHZ-8	43.9	11	0	56.8	120	46.5	13	0
16.	HW 5216 (C)	IVT-SHZ-12	45.9	8	0	55.5	160	47.8	9	0
17.	CoW (W) 1 (C)	IVT-SHZ-17	47.9	5	1	61.3	5 1	50.6	3	1
S.E.((M)		1.202			1.420		1.003		
C.D.			3.3			4.0		2.8		

No. of Trials: Proposed =07, Conducted =06, Trials not Conducted (01) : Yercaud Trials not reported (01) : Paiyur (ID)

 Table-6Adult plant response of IVT material against wheat rusts under field conditions(artificial inoculations) during 2013-14

	RUST RESPONSE (HIGHEST SCORE AND ACI)										
SOUTHERN HILLS ZONE			So	uth			No	orth			
		STI	EM	LF	EAF.	LE	LEAF STR				
Sr. No.	Variety	HS	ACI	HS	ACI	HS	ACI	HS	ACI		
1	HW3620	10MS	2.1	15MS	3.1	10MR	0.8	80S	31.8		
2	HW5801	15MS	2.4	10MS	1.9	10S	3.0	80S	34.0		
3	HS589	5MR	0.5	0	0.0	20S	5.6	100S	45.6		
4	HW5049	20MR	1.2	5S	1.5	30S	7.0	80S	66.7		
5	UAS368	5S	0.8	5S	1.8	10S	2.0	80S	40.0		
6	HW3608	5S	0.8	TMR	0.1	20S	5.0	80S	58.9		
7	HW3627	10MS	1.7	0	0.0	10S	3.0	90S	38.9		
8	HW5802	10MR	0.9	TR	0.0	20MS	3.2	60S	28.9		
9	HW3607	10MS	3.6	15MS	1.7	30S	7.0	20S	7.1		
10	HW3906	10S	2.6	5MS	0.6	10S	4.0	100S	58.4		
11	UAS367	20S	4.2	20S	3.0	10MR	0.8	100S	54.4		
12	HW 4215-1	10S	1.8	40S*	7.0	10MR	1.2	80S	38.9		
13	HW5047	5S	1.2	TS	0.1	10S	2.0	60S	32.2		
14	HW5048	5MR	0.4	5MS	0.6	20S	5.0	100S	38.3		

Under natural conditions all three rusts incidences were reported only from Wellington and from other centres the sporadic incidences of *Sclerotium* foot rot were reported.

Table-7: Promotion/retention of varieties from IVT trials SHZ 2011-12 based on zonal mean yield
and response to diseases

Response to rust	Grain Yield	Others	Remarks	
More than 20S Susceptibility with ACI of 10.0 and above for one or more rusts are rejected which include the varieties as under (For black and Brown South reaction)	ch ACI of 10.0 and above one or more rusts are ected which include the rieties as under (For black d Brown South reaction) checks other than the final year entries are rejected include the varieties as under		Rejected/	
None	None	None	None	
Less than 20S with ACI 10.0 or less to one or more rusts	Numerically at par and above with the best check as under	Genetically pure	Promoted	
HW 3620, HW 5801 ,HW5049 ,HW 3607, HW 3906, HW 4215-1, HW5047	HW 3620, HW 5801, HW5049, HW 3607, HW 3906, HW 4215-1, HW5047	HW 3620, HW 5801, HW5049, HW 3607, HW 3906, HW 4215-1, HW5047	HW 3620, HW 5801, HW5049, HW 3607 ,HW 3906, HW 4215 -1, HW5047	

Sl.No	Entry Name	Pedigree	
1	HW 3624-1	PBW 226*3//COOK*6/C80-1	
2	HW 3658	PBN51*3/RL6144//HW 4444	
3	HW 4205-2	HD 2402*3//COOK*6/C80-1	
4	HW 4206	HD2687*3//COOK*6/C80-1	
5	HW 4207	HS 240*3//COOK*6/C80-1	
6	HW 4305-2	HD 2329*7/CS 2A/2M 4/2*2//WH 542	
7	HW 4501	C 306*3//RL 6144	
8	HW 5245	HW 3083 // HD 2733	
9	HW 5246	HW 3083 // PBW 502	
10	HW 5247	HW 3083//UP 2338	
11	HW 5248	HW 3083 // PBW 226	
12	HS 609	WBM1975/HS 469	
13	HS 610	MANGO/CORYDON/FLW32	
14	UAS 376		
15	UAS 377		
16	NIAW 2613	PFAU/SERI.1B//AMD/3/INGALAB91*2/KUKUNA/4/WBLL1*2/KUKURU	
17	MACS 6670	SHA7/VEE#S/5/VEE#8//JUP/BJY/3/F3.71/TRM/4/2*WEAVER/6/KAUZ/PARUS//PARUS	
18	HW 2044#	PBW 226*5 // SUNSTAR*6 / C 80-1	
19	COW(W)1#	HD 2646 // HW 2002A / CPAN 3057	
20	HW 5216#	PBW 343//HW 3083	

Table -9: Proposed entries for IVT, SHZ Rabi 2014-15 and its details (based on CVT meeting of IARI, New Delhi)

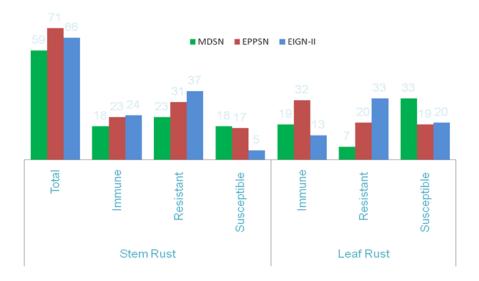
Other Trials

The special trial on *dicoccum* and agronomy trial for dates of sowing were were conducted at Wellington and at Mandya only yield trial was conducted.

1. Problems in conducting the trials

Problems encountered in constitution, conduction and monitoring of trials

The coding of trials faced with some difficulty and next time I request that scientists from UAS, Dharward may help in this matter.


2. Suggestions for Improvement

The trial centre at Yercaud, Kodaikanal may kindly be dropped. Instead the trials in the farms of progressive farmers/farmers who traditional grow wheat at Kenthorai and Thummanatti may be explored. Hence the trial centres for 2014-15 may include: Wellington (TS), Wellington(LS), CSWCR&TI, Ooty(TS), Kenthorai(TS), Thummanatti(TS), Paiyur(TS), Thiruvannamalai and Mandya(TS) for AVT and IVT trials. Dicoccum trials may be Wellington and Mandya(TS).

Rusts resistance in wheat lines grown at I.A.R.I., Regional Station, Wellington

P. Nallathambi, Jagadish Kumar, C. Uma Maheshwari, M. Sivasamy, P. Jayaprakash, V. K. Vikas and E. P. Venkatasalam.

A total of 196 lines of wheat comprising 59 from multiple diseases screening nursery (MDSN), 71 from elite plant pathological screening nursery(EPPSN) and 66 from elite international germplasm nursery (EIGN) have been systematically evaluated against leaf and stem rust resistance under natural and high level of infection under field conditions during Rabi season (2012-13) against the predominantly occurring pathotypes of leaf rust viz.,.77A, 77-5, 17, 77-7,77-8 and stem rust races viz., 40A and 40-1. Out of these, about 30 percentage of the lines irrespective of the nursery materials expressed immune reaction against both type of rusts. Similar proportion was also recorded against leaf rust. However, 46% of lines have shown resistant reaction to stem rust. Overall, the leaf rust susceptible lines were higher (36%) than stem rust (20%)Both rusts could infect the standard check line (Agra local) with a minimum mean of 60S. It implies that the genetic stocks which are immune to both rusts can be further evaluated and purified under known level of inoculum of both rust based on SRT and APR to understand the genetic basis of resistance.

National Off season/Summer nursery at Indian Agricultural Research Institute, Regional Station, Wellington

V. K. Vikas, M. Sivasamy, P. Jayaprakash, P. Nallathambi, C. Umamaheswari, Arun Kumar, R.K. Meena, M.L.Meena, K.Sivan, E. Punniakotti and B. Naveen Kumar

Off- season/Summer nursery for crops such as Wheat, barley, oats, mustard, linseed etc.

were successfully sown from the month of May, 2014 and the crops are in different stages of crop

growth. Nearly 20,000 lines of above mentioned crops belonging to various ICAR institutes (8) and SAUs(12) were sown for generation advancement, corrective crossing, rust disease scoring etc.

Sl. No.	Crops	Research Institutes			Total
		ICAR	SAUs	Others	
1	Wheat	10546	6039	1669	18254
2	Barley	100	270	-	370
3	Oats	-	96	-	96
4	Mustard	855	50	-	905
5	Linseed	-	-	200	200
Total		11501	6455	1869	19825

Table No. 1: Summer nursery participants at I.AR.I., Regional Station, Wellington, 2014.

Screening of wheat lines with leaf tip necrosis (LTN) against stripe rust

V. K. Vikas¹, M. Sivasamy¹, Jagdish Kumar², Dharam Pal², Madhu Patial², P. Jayaprakash¹,Arun Kumar¹, R.K. Meena¹, Srinivasan K³., Radhamani J³., Jacob S.R³., Kumar S³., Tyagi R.K³. andBansal K.C³.

¹I.A.R.I., Regional Station, Wellington

²I.A.R.I., Regional Station, Tutikandi, Shimla

³National Bureau of Plant Genetic Resources, New Delhi

In continuation of the research article published in cereal research communication titled "Phenotypic and molecular confirmation of durable adult plant leaf rust resistance (APR) genes Lr34+, Lr46+ and Lr67+ linked to leaf tip necrosis (LTN) in select registered Indian wheat (*T. aestivum*) genetic stocks ", where in thirty six lines with leaf tip necrosis (LTN) were screened at seedling and adult plant stage against stem and leaf rust pathotypes prevailing at Wellington which were later confirmed using molecular markers for the presence of three APR genes viz., *Lr*34+, *Lr*46+ and *Lr*67+. Twenty three lines and two checks were subjected to natural/field screening at I.A.R.I., Regional Station, Tutikandi centre, Shimla against stripe rust. All the lines showed resistant reaction (Table No. 1) except IC536136. Resistance based on minor/ APR genes are non-specific and are found to be durable. So these lines have considerable potential as a source of rust resistance and could enhance the existing gene pool of rust resistance.

S.No.	Genotype	Stripe rust reaction
1.	IC542574	20S
2.	IC536197	10MS
3.	IC536155	10MS
4.	IC542568	TMS
5.	IC542569	F
6.	EC573553	55
7.	IC536136	40S
8.	IC536178	20S
9.	IC536201	20S
10.	IC536210	20S
11.	IC536141	10MS
12.	IC536147	10S
13.	IC536186	55
14.	IC536204	55
15.	IC536167	10S
16.	IC536187	5S
17.	IC536196	10S
18.	IC536199	58
19.	EC573556	5S
20.	EC573589	5MS
21.	EC573562	F
22.	IC536140	F
23.	IC536144	TMS
24.	Agra Local (Check)	60S
25.	A-9-30-1 (Check)	80S

 Table 1: Response of LTN wheat lines for stripe rust reaction under natural condition at I.A.R.I., Regional Station, Tutikandi Centre, Shimla.

News

Dr. M. Sivasamy, Principal Scientist, assumed as Head of the station after ASRB selection with effect from 17.09.2014

Awards

Dr. M. Sivasamy, Principal Scientist was awarded the fellow of Society for advancement of wheat research (SAWR)