VTU-NPTEL-NMEICT

Project Progress Report

The Project on Development of Remaining Three Quadrants to NPTEL Phase-I under grant in aid NMEICT, MHRD, New Delhi

Subject Matter Expert Details

SME Name :

Dr.A.R.ANWAR KHAN
Dept of Mechanical Engineering
Applied Thermgaynamics
Type of the Course

Module

DEPARTMENÍ OF MECHANICAL ENGINEERING, GHQUSIA COLLEGE OF ENGINEERING, RAMANARA -562159

CONTENTS

MODULE-VI

RECIPROCATING COMPRESSOR

OUADRANT-2

Animations

1) http://www.youtube.com/watch?v=E6_jw841vKE
2) http://www.youtube.com/watch?v=ITCu7gNMicc
3) http://bin95.com/swf/air-compressor-review.swf
4) http://www.machinerylubrication.com/Read/488/compressor-lubricants
5) http://www.slideshare.net/julsaez/compressor-basis-10733805
6) http://www.egpet.net/library/reciprocating-compressor-compressom-animation-2video_06b782a66.html
7) http://www.brighthubengineering.com/hvac/51688-principle-a-working-of-refrigeration-reciprocating-compressors/
8) http://www.training-classes.com/programs/05/73/5738_air_compressor_training.php

Videos

http://www.4shared.com/video/Fyu2XA3ONrouTube_-_Reciprocating_Compre.htm http://www.yourepeat.com/watch/?y-h/GCRR_FETs
http://youviddy.com/video/wkw_\&2YrwPs/reciprocating-compressor-an-introduction-tovibration.html
http://www.metacafe con/satch/3374356/simple_reciprocating_pump/
http://wn.com/rotars ${ }^{\text {vs_reciprocating_air_compressors }}$
http://www.savevid.com/video/reciprocating-commercial-electrolux-and-tecumsehcompressors.html
http://www.vidoevo.com/yvideo.php?i=N0JLN1ZKcWuRpRDhZT1k\&how-a-two-stage-air-pressor-works
http://www.vidoevo.com/yvideo.php?i=NEdWOFA2cWuRpbmpOaEE\&final-pressoranimation

ILLUSTRATIONS

INTRODUCTION TO COMPRESSOR:

Compressors are work absorbing devices which are used for increasing pressure of fluid at the expense of work done on fluid. The compressors used for compressing air are called air compressors. Compressors are invariably used for all applications requiring high pressure air. Some of popular applications of compressor are, for driving pneumatic tools and air operated equipments, spray painting, compressed air engine, supercharging in internal combustion engines, material handling (for transfer of material), surface cleaning, tofrigeration and air conditioning, chemical industry etc. Compressors are supplied with pressure air (or any fluid) at inlet which comes out as high pressure air (or any fluid) a@tiet. Work required for increasing pressure of air is available from the prime mever driving the compressor. Generally, electric motor, internal combustion engine or steam engine, turbine etc. are used as prime movers. Compressors are similar to fans and blowers but differ in terms of pressure ratios. Fan is said to have pressure ratio up to 1 and blowers have pressure ratio between 1.1 and 4 while compressors hafe pressure ratios more than 4.

CLASSIFICATIONOF COMPRESSORS:

Compressors can be classified in the following different ways.
(a) Based on principle of operation: Based on the principle of operation compressors can be classified as,
(i) Positive displacement compressors
(ii) Non-positive displacement compressors

In positive displacement compressors the compression is realized by displacement of solid boundary and preventing fluid by solid boundary from flowing back in the direction of pressure gradient. Due to solid wall displacement these are capable of providing quite large
pressure ratios. Positive displacement compressors can be further classified based on the type of mechanism used for compression. These can be Reciprocating and Rotary Compressor
(i) Reciprocating type positive displacement compressors
(ii) Rotary type positive displacement compressors

Reciprocating compressors generally, employ piston-cylinder arrangement where displacement of piston in cylinder causes rise in pressure. Reciprocating compressors are capable of giving large pressure ratios but the mass handling capacity is limited or small. Reciprocating compressors may also be single acting compressor or double acting compressor. Single acting compressor has one delivery stroke per revolution while in double acting there are two delivery strokes per revolution of crank shaft. Notary compressors employing positive displacement have a rotary part whose boulary causes positive displacement of fluid and thereby compression. Rotary compressos this type are available in the names as given below;
(i) Roots blower
(ii) Vaned type compressors

Rotary compressors of above type are caparie of running at higher speed and can handle large mass flow rate than reciprocatins vompressors of positive displacement type. Nonpositive displacement compressor anso called as steady flow compressors use dynamic action of solid boundary for Mealizing pressure rise. Here fluid is not contained in definite volume and subsequent tolatione reduction does not occur as in case of positive displacement compressors. Non-psitive displacement compressor may be of 'axial flow type' or 'centrifugal type' copending upon type of flow in compressor.
(b) Based on number of stages: Compressors may also be classified on the basis of number of stages. Generally, the number of stages depends upon the maximum delivery pressure. Compressors can be single stage or multistage. Normally maximum compression ratio of 5 is realized in single stage compressors. For compression ratio more than 5 the multi-stage Compressors are used. Typical values of maximum delivery pressures generally available from different types of compressor are,
(i) Single stage compressor, for delivery pressure up to 5 bar
(ii) Two stage compressor, for delivery pressure between 5 and 35 bar
(iii) Three stage compressor, for delivery pressure between 35 and 85 bar
(iv) Four stage compressor, for delivery pressure more than 85 bar
(c) Based on capacity of compressors: Compressors can also be classified depending upon the capacity of compressor or air delivered per unit time. Typical values of capacity for different compressors are given as;
(i) Low capacity compressors, having air delivery capacity of $0.15 \mathrm{~m}^{3} / \mathrm{s}$ or less
(ii) Medium capacity compressors, having air delivery capacity between 0.15 and $5 \mathrm{~m}^{3} / \mathrm{s}$.
(iii) High capacity compressors, having air delivery capacity more than $5 \mathrm{~m}^{3} / \mathrm{s}$.
(d) Based on highest pressure developed: Depending upon the maximum pressure available from compressor they can be classified as low pressure, medium pressure high pressure and super high pressure compressors. Typical values of maximum pressuraeveloped for different compressors are as under;
(i) Low pressure compressor, having maximum pressure up to bar
(ii) Medium pressure compressor, having maximum pressure from 1 to 8 bar
(iii) High pressure compressor, having maximum ressure from 8 to 10 bar
(iv) Super high pressure compressor, having mathum pressure more than 10 bar.

THERMODYNAMIC ANALYSIS ON COMPRESSOR:

Compression of air in compressor may be carried out following number of thermodynamic processes such as isothermal donpression, polytropic compression or adiabatic compression. Figure shows the thermodyamic cycle involved in compression. Theoretical cycle is shown neglecting clearance vorume but in actual cycle clearance volume can not be negligible. Clearance volume in necessary in order to prevent collision of piston with cylinder head, accommodating valve mechanism etc. Compression process is shown by process $1-2,1-2$, $1-2$ " following adiabatic, polytropic and isothermal processes.

On p-V diagram process $4-1$ shows the suction process followed by compression during 1-2 and discharge through compressor is shown by process $2-3$. Air enters compressor at pressure p 1 and is compressed up to p 2 . Compression work requirement can be estimated from the area below the each compression process. Area on $\mathrm{p}-\mathrm{V}$ diagram shows that work requirement shall be minimum with isothermal process $1-2^{\prime}$. Work requirement is maximum with process 1-2 i.e. adiabatic process. As a designer one shall be interested in a compressor having minimum compression work requirement. Therefore, ideally compression should occur isothermally for minimum work input. In practice it is not possible to have isothermal
compression because constancy of temperature during compression cannot be realized. Generally, compressors run at substantially high speed while isothermal compression requires compressor to run at very slow speed so that heat evolved during compression is dissipated out and temperature remains constant. Actually due to high speed running of compressor the compression process may be assumed to be near adiabatic or polytropic process following law of compression as $\mathrm{PV}{ }^{\mathrm{n}}=\mathrm{C}$ with value of ' n ' varying between 1.25 and 1.35 for air. Compression process following three processes is also shown on T-s diagram. It is thus obvious that actual compression process should be compared with isothermal compression process. A mathematical parameter called isothermal efficiency is defined for quantifying the degree of deviation of actual compression process from ideal compression process. Isothermal efficiency is defined by the ratio of isothermal work and actuay indicated work in
reciprocating compressor.

Isothermal efficiency = Isothermal work/Actual indicated work
Practically, compression process is attempted to be closed to isothermal process by air/water cooling, spraying cold water during compression process. In case of multistage compression process the compression in different stages is accompanied by intercooling in between the stages. Mathematically, for the compression work following polytropic process, $\mathrm{PV}^{\mathrm{n}}=\mathrm{C}$. Assuming negligible clearance volume the cycle work done,
$\mathrm{Wc}=$ Area on $\mathrm{p}-\mathrm{V}$ diagram

$$
=\left[P_{2} V_{2}+\left(\frac{P_{2} V_{2}-P_{1} V_{1}}{n-1}\right)\right]-P_{1} V_{1}
$$

$$
\begin{gathered}
=\left(\frac{n}{n-1}\right)\left[P_{2} V_{2}-P_{1} V_{1}\right] \\
=\left(\frac{n}{n-1}\right) P_{1} V_{1}\left[\frac{P_{2} V_{2}}{P_{1} V_{1}}-1\right] \\
w_{c}=\left(\frac{n}{n-1}\right) P_{1} V_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\left(\frac{n-1}{n}\right)}-1\right] \\
w_{c}=\left(\frac{n}{n-1}\right) m R T_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\left(\frac{n-1}{n}\right)}-1\right] \\
w_{c}=\left(\frac{n}{n-1}\right) m R\left[T_{2}-T_{1}\right]
\end{gathered}
$$

In case of compressor having isothermal compression process, n , i.e. $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{1}$ V_{2} $\mathrm{W}_{\mathrm{c}, \text { iso }}=\mathrm{P}_{2} \mathrm{~V}_{2}+\mathrm{P}_{1} \mathrm{~V}_{1} \ln \mathrm{r}-\mathrm{P}_{1} \mathrm{~V}_{1}$
$\mathrm{W}_{\mathrm{c} \text {, iso }}=\mathrm{P}_{1} \mathrm{~V}_{1} \ln \mathrm{r}$, where $\mathrm{r}=\frac{V_{1}}{V_{2}}$
In case of compressor having adiabatic compresion process, $\mathrm{n}=\gamma$

$$
\begin{gathered}
w_{c \text { adiabatic }}=(-1) m R\left[T_{2}-T_{1}\right] \\
w_{c \text { adiabatic }}-C_{p} m\left[T_{2}-T_{1}\right] \\
w_{\text {Gadiabatic }}=\left[h_{2}-h_{1}\right] \\
P_{1} V_{1} \ln r \\
\left(\frac{n}{n-1}\right) P_{1} V_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\left(\frac{n-1}{n}\right)}-1\right]
\end{gathered}
$$

The isothermal effir iency of a compressor should be close to 100% which means that actual complession should occur following a process close to isothermal process.

Considering clearance volume: With clearance volume the cycle is represented on Fig. The work done for compression of air polytropically can be given by the area enclosed in cycle 1-2-3-4. Clearance volume in compressors varies from 1.5% to 35% depending upon type of compressor.

$$
w_{c} \text { with } C V=\left(\frac{n}{n-1}\right) P_{1} V_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\left(\frac{n-1}{n}\right)}-1\right]-\left(\frac{n}{n-1}\right) P_{4} V_{4}\left[\left(\frac{P_{3}}{P_{4}}\right)^{\left(\frac{n-1}{n}\right)}-1\right]
$$

Here $P_{1}=P_{4}, P_{2}=P_{3}$

$$
\begin{aligned}
w_{c \text { with } C V}= & \left(\frac{n}{n-1}\right) P_{1} V_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\left(\frac{n-1}{n}\right)}-1\right]-\left(\frac{n}{n-1}\right) P_{1} V_{4}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\left(\frac{n-1}{n}\right)}-1\right] \\
& w_{c \text { with } C V}=\left(\frac{n}{n-1}\right) P_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\left(\frac{n-1}{n}\right)}-1\right]\left(V_{1}-V_{4}\right)
\end{aligned}
$$

For single acting compressor running with N rpm , power input required, assuming clearance volume.

$$
\text { Power required }=\left\{\left(\frac{n}{n-1}\right) P_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\left(\frac{n-1}{n}\right)}-1\right]\left(V_{1}-V_{4}\right)\right\} \times N
$$

for double acting compressor,

$$
\text { Power required } \left.=\left\{\left(\frac{n}{n-1}\right) P_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\left(\frac{n-1}{n}\right)}-1\right]-V_{4}\right)\right\} \times 2 N
$$

Volumetric efficiency: Volumetric efficiency of compressor is the measure of the deviation from volume handling capacity σ cempressor. Mathematically, the volumetric efficiency is given by the ratio of actual volume of air sucked and swept volume of cylinder. Ideally the volume piair sucked should be equal to the swept volume of cylinder, but it is not so in aval case. Practically the volumetric efficiency lies between 60 and 90%. Vohmetric efficiency can be overall volumetric efficiency and absolute volumetric eficiency as given below:

$$
\text { Overall voluneetric efficiency }=\frac{\text { Volumeof freeairsuckedintocylinder }}{\text { Sweptvolumeof LP cylinder }}
$$

OR

Volumetric efficiency

referred to free air conditions $=\frac{\text { Volumeof freeairsuckedintocylinder }}{\text { Sweptvolumeof LP cylinder }}$

QUADRANT-3

Wikis:

$1 \mathrm{http}: / /$ petrowiki.org/Reciprocating compressor
2) http://en.wikipedia.org/wiki/Gas compressor
3) http://demonstrations.wolfram.com/ReciprocatingCompressorWithAnIntercooler/
4) http://en.wikipedia.org/wiki/Reciprocating_compressor
5) http://en.wikipedia.org/wiki/Air compressor
6) http://www.ask.com/question/what-is-a-reciprocating-compressor
7) http://petrowiki.org/Reciprocating_compressor
8) http://cair.wikia.com/wiki/Compressor
9) http://www.roymech.co.uk/Related/Thermos/Thermos_Air_com_mot henpl
10) http://www.authorstream.com/Presentation/venumanu2008-170911. Compressors/

Open Contents:

Applied Thermodynamics by R. K, <ajpit

Applied Thermodynamics frrmgineering Technologists by Eastop

Applied Thermodynamics by B. K. Venkanna, B. V. S

Basic and Applied Thermodynamics by Nag

Applied Thermodynamics by D. S. Kumar

A textbook of applied thermodynamics, steam and thermal ... by S. K. Kulshrestha

Applied thermodynamics by Anthony Edward John Hayes

QUADRANT-4

Problems

1) A reciprocating air compressor has cylinder with 24 cm bore and 36 cm stroke. Compressor admits air at 1 bar, $17^{\circ} \mathrm{C}$ and compresses it up to 6 bar. Compressor runs at 120 rpm . Considering compressor to be single acting and single stage determine mean effective pressure and the horse power required to run compressor when it compresses following the isothermal process and polytropic process with index of 1.3. Also find isothermal efficiency when compression is of polytropic and adiabatic type.

Solution:

Compression ratio $=\frac{P_{2}}{P_{1}}=6=r$
From cylinder dimensions the stroke volume $=\frac{\pi}{4} \mathrm{X}(0.24)^{2} \mathrm{X},(0.36)$

$$
=0.0162\left(\mathrm{~m}^{3}\right)
$$

Volume of air compressed per minute $=0.01628 \times 1 / 20=1.954 \mathrm{~m}^{3} / \mathrm{min}$
Let us neglect clearance volume.
Work done in isothermal process

$$
W_{\text {iso }}=P_{1} V_{1} \ln r
$$

Mean effective pressure in isothormal process

$$
\begin{aligned}
\text { mep }_{\text {iso }} & =P_{1} V_{1} \ln r / V_{1} \\
& =P_{1} \ln r \\
& =1 \times 10^{2} \ln 6=179.18 \mathrm{kPa}
\end{aligned}
$$

Work done in polytropic process with index $n=1.3$, i.e. $P V^{1.3}=C$
$\mathrm{W}_{\text {poly }}=\frac{n}{n-1} P_{1} V_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}-1\right]$
Mean effective pressure in polytropic process,
$m e p_{\text {poly }}=\frac{\frac{n}{n-1} P_{1} V_{1}}{v_{1}}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}-1\right]$
$m e p_{\text {poly }}=\frac{n}{n-1} P_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}-1\right]$
$m e p_{\text {poly }}=\frac{1.3}{1.3-1} \times 1 \times 10^{2} \times\left[(6)^{\frac{1.3-1}{1.3}}-1\right]$
$m e p_{\text {poly }}=221.89 \mathrm{kPa}$
Work done in adiabatic process, $W_{\text {adiabatic }}=\gamma /(\gamma-1) P_{1} V_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{-1}{}}-1\right]$
Mean effective pressure in adiabatic process, $\operatorname{mep}_{\text {adiabatic }}=\frac{W_{\text {adiabatic }}}{\mathrm{v} 1}$
$m e p_{\text {adiabatic }}=\gamma /(\mathrm{\gamma}-1) P_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{-1}{}}-1\right]=\frac{1.4}{1.4-1} \times 1 \times 10^{2} \times\left[(6)^{\frac{1.4-1}{1.4}}-1\right]$
mep $_{\text {adiabatic }}=233.98 \mathrm{kPa}$

Horse power required for isothermal process ,

Horse power required for polytropic process,

Horse power required for adiabaticpress,
$\mathrm{HP}_{\text {adiabatic }}=\frac{\mathrm{mep}_{\text {adiabatic, }} \text { Volumeperminute }}{0.7 .5 \times 60}=\frac{233.98 \times 1.954}{0.7457 \times 60}=10.22 \mathrm{hp}$
Isothermal efficiency = Iscthermal process power required/ Actual power required
Isothermal efficienty poly $=\frac{\mathrm{HP}_{\text {iso }}}{\mathrm{HP}_{\text {poly }}}=0.8075$ or 80.75%

Isothermal efficiency $_{\text {adiabatic }}=\frac{\mathrm{HP}_{\text {adabatic }}}{H P_{\text {poly }}}=0.7657$ or 76.57%
2) A single stage single acting reciprocating air compressor has air entering at 1 bar, $20^{\circ} \mathrm{C}$ and compression occurs following polytropic process with index 1.2 upto the delivery pressure of 12 bar. The compressor runs at the speed of 240 rpm and has L/D ratio of 1.8. The compressor has mechanical efficiency of 0.88 . Determine the isothermal efficiency
and cylinder dimensions. Also find out the rating of drive required to run the compressor which admits 1 m 3 of air perminute.

Solution:

Using perfect gas equation the mass of air delivered per minute can be obtained as,
$\mathrm{m}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{\left(1 \times 10^{2} \times 1\right)}{(0.287 \times 293)}$
$=1.189 \mathrm{~kg} / \mathrm{min}$
Compression process follows $\mathrm{PV}^{1.2}=$ constt.
Temperature at the end of compression;

$$
\begin{aligned}
T_{2} & =T_{1}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}} \\
T_{2} & =293\left(\frac{12}{1}\right)^{\frac{1.2-1}{1.2}}
\end{aligned}
$$

$T_{2}=443.33 \mathrm{~K}$
Work required during compression process $\left.W=\frac{1}{n-1}\right) \times m R\left(T_{2}-T_{1}\right)$
$=\left(\frac{1.2}{1.2-1}\right) \times 1.189 \times 0.287(433.33-293)$
$W=307.79 \mathrm{~kJ} / \mathrm{min}=307.79 /(0 \sim \times 0.7457) \mathrm{hp}$
$W=6.88 \mathrm{hp}$

Capacity of drive required to run compressor $=6.88 / 0.88=7.82 \mathrm{hp}$
Isothermal work required for same compression,

$$
W_{i s o}=m R T_{1} \ln \left(\frac{P_{2}}{P_{1}}\right)
$$

$=1.189 \times 0.287 \times 293 \times \ln \left(\frac{12}{1}\right)=W_{\text {iso }}=248.45 \mathrm{~kJ} / \mathrm{min}$

Isothermal efficiency $=$ Isothermal work $/$ Actual work $=248.45 / 307.79=0.8072$
Volume of air entering per cycle $=1 / 240=4.167 \times 10^{-3} \mathrm{~m}^{3} /$ cycle

Volume of cylinder $=4.167 \times 10^{-3}=(\pi / 4) D^{2} L$
$=4.167 \times 10^{-3}=(\pi / 4) \times D \times 1.8 D$

Bore, $D=0.1434 \mathrm{~m}$ or 14.34 cm
Stroke length $L=1.8 D=1.8 \times 14.34=25.812 \mathrm{~cm}$
3) A reciprocating compressor of single stage and double acting type is running at 200 rpm with mechanical efficiency of 85%. Air flows into compressor at the rate of $5 \mathrm{m3} / \mathrm{min}$ measured at atmospheric condition of $1.02 \mathrm{bar}, 27^{\circ} \mathrm{C}$. Compressor has compressed air leaving at 8 bar with compression following polytropic process with index of 1.3. Compressor has clearance volume of 5% of stroke volume. During suction of air from atmosphere into compressor its temperature rises by $10^{\circ} \mathrm{C}$. There occers pressure loss of 0.03 bar during suction and pressure loss of 0.05 bar during diserarge passage through valves. Determine the dimensions of cylinder, volumetric effiliency and power input required to drive the compressor if stroke to bore ratio is 1.5 .

Solution:

Considering the losses at suction and discharge, the acwal pressure at suction and delivery shall be as under.

Atmospheric pressure, $\mathrm{P}_{\mathrm{a}}=1.02$ bar, $\mathrm{T}_{\mathrm{a}}=2 \times 27=300 \mathrm{~K}, \mathrm{~V}_{\mathrm{a}}=5 \mathrm{~m}^{3} / \mathrm{min}$
Pressure at suction, $\mathrm{P}_{1}=1.02-0.03>0.99$ bar
$\mathrm{T}_{1}=300+10=310 \mathrm{~K}$
Pressure at delivery, $\mathrm{P}_{2}=8+0.25=8.05 \mathrm{bar}$
Volume corresponding to suction condition of $P 1, T 1$,
$\mathrm{V}_{1}=\frac{P_{a} T_{1} V_{a}}{P_{1} T a}=(1.02 \times 310 \times 5) / 0.99 \times 300=5.32 \mathrm{m3} / \mathrm{min}$
$W=\frac{n}{n-1} P_{1} V_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}-1\right]$
$W=\frac{1.3}{1.3-1} \times 0.99 \times 10^{2} \times 5.32\left[\left(\frac{8.05}{0.99}\right)^{\frac{0.3}{1.3}}-1\right]=23.66 \mathrm{~kW}$ or 31.73 hp
Power input required $=31.7 / 0.85=37.33 \mathrm{hp}$

Volumetric efficiency, $\eta_{V O L}=\frac{T a P_{1}}{P_{a} T_{1}}\left[1+C-C\left(\frac{P_{2}}{P_{1}}\right)^{\frac{1}{n}}\right] \quad C=0.05$,

$$
\begin{aligned}
\eta_{V O L}= & \frac{0.99 \times 300}{1.02 \times 310}\left[1+0.05-0.05\left(\frac{8.03}{0.99}\right)^{\frac{1}{1.3}}\right] \\
& =0.7508 \text { or } 75.08 \%
\end{aligned}
$$

Stroke volume per cycle $=5 /(2 \times 200)=0.0125 \mathrm{~m}^{3} /$ cycle
Actual stroke volume taking care of volumetric efficiency $=0.0125 / 0.7508=0.0167 \mathrm{~m}^{3} / \mathrm{cycle}$
Stroke volume $=00.0167=(\pi / 4) D^{2} L$
$=00.0167=(\pi / 4) D^{2} 1.5 D$
$D=0.2420 \mathrm{~m}$ or 24.20 cm
Stroke $L=1.5 D=36.3 \mathrm{~cm}$
4) A reciprocating air compressor has four stage compres wion with $2 \mathrm{~m} 3 / \mathrm{min}$ of air being delivered at 150 bar when initial pressure and tentereture are $1 \mathrm{bar}, 27^{\circ} \mathrm{C}$. Compression occur polytropically following polytropic inctaf 1.25 in four stages with perfect intercooling between stages. For the antintm intercooling conditions determine the intermediate pressures and the work required for driving compressor.

Solution:

Here there is four stage compres, with perfect intercooling at optimum intercooling conditions.

So optimum stage presstreratio $=(150)^{1 / 4}=3.499=3.5$
Intermediate pressure shall be as follows:
Between Ist and IInd stage $=3.5$ bar
Between IInd and IIIrd stage $=12.25$ bar
Between IIIrd and IVth stage $=42.87$ bar
Intermediate pressure: $3.5 \mathrm{bar}, 12.25 \mathrm{bar}, 42.87$ bar.
Since it is perfect intercooling so temperature at inlet of each stage will be 300K.

So temperature at the end of fourth stage,

$$
T=T_{1}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}
$$

$$
T=300(3.5)^{\frac{0.25}{1.25}}
$$

$\mathrm{T}=385.42 \mathrm{~K}$
Mass of air, $\mathrm{kg} / \mathrm{min}, \mathrm{m}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{\left(150 \times 10^{2} \times 2\right)}{(0.287 \times 385.42)}=271.21 \mathrm{~kg} / \mathrm{min}$
Work required for driving compressor,
$W=\frac{n}{n-1} m R T_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}-1\right] \times 4$
$W=\frac{1.25}{1.25-1} 271.21 \times 0.287 \times 300\left[(3.5)^{\frac{1.25-1}{1.25}}-1\right] \times 4$
$=132978.04 \mathrm{~kJ} / \mathrm{min}$ or 2972.11 hp Work input $=2972.11 \mathrm{hp}$
5) In a two stage reciprocating air compressor running at $2001 \rho \mathrm{~m}$ the air is admitted at 1 bar, $17^{\circ} \mathrm{C}$ and discharged at 25 bar. At low pressure stage suction conditions the rate of air flow is $4 \mathrm{~kg} /$ minute. The low pressure cylinder and high pressure cylinders have clearance volumes of 4% and 5% of respective cylinder strono rolumes. The index for compression and expansion processes in two stages are sameas 1.25 . Considering an optimum and perfect intercooling in between two stages detenwhe the power required, isothermal efficiency, free air delivered, heat transferred in ach cylinder and the cylinder volumes

Solution:

For the optimum intercere ratio in each stage $=\sqrt{\frac{25}{1}}=5$

$$
\frac{P_{2}}{P_{1}}=\frac{P_{6}}{P_{5}}=5
$$

Perfect intercooling indicates, T $1=$ T $5=273+17=290 \mathrm{~K}$
$T_{2}=T_{1}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}=400.12 \mathrm{~K}$
$T_{6}=T_{5}\left(\frac{P_{6}}{P_{5}}\right)^{\frac{n-1}{n}}=400.12 \mathrm{~K}$
Actual compression work requirement, $\mathrm{W}=\mathrm{W}$ HP +W LP

$$
\frac{n}{n-1} m R T_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}-1\right] \times 2
$$

$$
=\frac{1.25}{1.25-1} 4 \times 0.287 \times 290\left[(5)^{\frac{1.25-1}{1.25}}-1\right] \times 2
$$

$\mathrm{W}=1264.19 \mathrm{~kJ} / \mathrm{min}$ or 28.25 hp

Work requirement if the process is isothermal compression,

$W_{\text {iso }}=1071.63 \mathrm{~kJ} / \mathrm{min}$
Isothermal efficiency $=\frac{W_{\text {iso }}}{W}-0.8477$ or 84.77%

Free air delivered $=\frac{m R T_{1}}{P_{1}}=\frac{(4 \times 0.287 \times 290)}{\left(1 \times 10^{2}\right)}=3.33 \mathrm{~m}^{3} / \mathrm{min}$
Heat transferred in HP cylinder $=$ Heat transferred in LP cylinder $=\mathrm{Q}$
(Due to optimum and perfect intercooling)
$\mathrm{Q}=\left(\frac{W}{2}\right)-m C_{P}\left(T_{2}-T_{1}\right)$
$\mathrm{Q}=\left(\frac{1264.19}{2}\right)-4 \times 1.0032 \times(400.12-290)$
$\mathrm{Q}=190.21 \mathrm{~kJ} / \mathrm{min}$

Volumetric efficiency, $\eta_{V O L}=\frac{T a P_{1}}{P_{a} T_{1}}\left[1+C-C\left(\frac{P_{2}}{P_{1}}\right)^{\frac{1}{n}}\right]$
Here the ambient conditions and suction conditions are same so expression gets modified as,

$$
\eta_{V O L}=\left[1+C-C\left(\frac{P_{2}}{P_{1}}\right)^{\frac{1}{n}}\right]
$$

Volumetric efficiency of HP,

$$
\eta_{V O L H P}=\left[1+C_{H P}-C_{H P}\left(\frac{P_{6}}{P_{5}}\right)^{\frac{1}{n}}\right]
$$

$\mathrm{C}_{\mathrm{HP}}=0.04 \quad=1+0.04-0.04(5)^{1 / 1.25}$
$\eta_{\text {VOL HP }}=0.895$ or 89.5%
Volumetric efficiency of LP,
$\eta_{V O L L P}=\left[1+C_{L P}-C_{L P}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{1}{n}}\right]$
$=1+0.05-0.05(5)^{1 / 1.25}=0.8688$ or 86.88%
Stroke volume of HP cylinder $=$ Freeairdelivery
$\mathrm{V}_{\mathrm{SHP}}=\frac{3.33}{5 \times 200 \times 0.895}=3.721 \times 10^{-3} \mathrm{~m}^{3}$

Clearance volume, $\mathrm{V}_{\mathrm{c}, \mathrm{HP}}=0.05 \mathrm{c}^{3.21} 21 \times 10^{-3}=1.861 \times 10^{-4} \mathrm{~m}^{3}$
Total HP cylinder volume, $\mathrm{v}_{\mathrm{m}}=\mathrm{V}_{\mathrm{s}, \mathrm{HP}}+\mathrm{V}_{\mathrm{c}, \mathrm{HP}}=3.907 \times 10^{-3} \mathrm{~m}^{3}$
$\mathrm{V}_{\mathrm{c}, \mathrm{HP}}=$ Clearance volumg of HP
Stroke volume of LP cylinder $=$ Free air delivery $/\left(\operatorname{Speed} \times \eta_{V O L L P}\right)$
$=3.33 /(200 \times 0.8688)=V_{\mathrm{s}, \mathrm{LP}}=0.01916 \mathrm{~m}^{3}$
Clearance volume, $\mathrm{V}_{\mathrm{c}, \mathrm{LP}}=0.04 \times \mathrm{V}_{\mathrm{s}, \mathrm{LP}}=7.664 \times 10^{-4} \mathrm{~m}^{3}$
Total LP cylinder volume, $\mathrm{V}_{\mathrm{LP}}=\mathrm{V}_{\mathrm{s}, \mathrm{LP}}+\mathrm{V}_{\mathrm{c}, \mathrm{LP}}=0.019926 \mathrm{~m}^{3}$
6) A two stage double acting reciprocating air compressor running at 200 rpm has air entering at $1 \mathrm{bar}, 25^{\circ} \mathrm{C}$. The low pressure stage discharges air at optimum intercooling pressure into intercooler after which it enters at 2.9 bar, $25^{\circ} \mathrm{C}$ into high pressure stage. Compressed air leaves HP stage at 9 bar. The LP cylinder and HP cylinder have same stroke lengths and equal clearance volumes of 5% of respective cylinder swept volumes. Bore of LP cylinder is 30 cm and stroke is 40 cm . Index of compression for both stages may be taken as 1.2.

Determine, (i) the heat rejected in intercooler, (ii) the bore of HP cylinder, (iii) the hp required to drive the HP cylinder.

SOLUTION:

Optimum intercooling pressure $=\sqrt{9}=3$ bar
LP stage pressure ratio $=$ HP stage pressure ratio $=3$
From the given dimensions of LP cylinder, the volume of LP cylinder, in $\mathrm{m}^{3} / \mathrm{min}$
$\mathrm{V}_{\mathrm{LP}}=\frac{\pi}{4} \mathrm{X} 0.30 \mathrm{X} 0.40 \times 200 \times 2$
$\mathrm{V}_{\mathrm{LP}}=11.31 \mathrm{~m}^{3} / \mathrm{min}$
Volumetric efficiency of LP compressor, here ambient and suction conditions are same,

$$
\begin{aligned}
\eta_{V O L L P} & =\left[1+C_{L P}-C_{L P}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{1}{n}}\right] \\
\eta_{V O L L P} & =\left[1+0.05-005\left(\frac{3}{1}\right)^{n}\right] \\
& =0.92510192 .51 \%
\end{aligned}
$$

Volume of air inhaled in LP stage $=\mathrm{V}_{\mathrm{LP}} \times \eta_{V O L, L P}$
$=11.3 \times 0.9251$
$20.46 \mathrm{~m}^{3} / \mathrm{min}$
$=12.23 \mathrm{~kg} / \mathrm{min}$
Mass of air per minute, $\mathrm{m}=\frac{P_{1} V_{1}}{T_{1} R}=\frac{\left(1 \times 10^{2} \times 10.46\right)}{(0.287 \times 298)}$

Temperature after compression in LP stage,

$$
T_{2}=T_{1}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}
$$

$$
T_{2}=298\left(\frac{3}{1}\right)^{\frac{1.2-1}{1.2}}
$$

$$
\mathrm{T} 2=357.88 \mathrm{~K}
$$

Volume of air going into HP cylinder $V_{1}=\frac{m R T_{5}}{P_{5}}$, After intercooling, $\mathrm{T}_{5}=298 \mathrm{~K}, \mathrm{P}_{5}=2.9$ bar,

$$
\begin{aligned}
& =\frac{12.23 \times 0.287 \times 298}{2.9} \\
& \mathrm{~V}_{5}=3.61 \mathrm{~m} \mathrm{3} / \mathrm{min}
\end{aligned}
$$

Since the clearance volume fraction and pressure ratio for both HP and LP stages are same so the
volumetric efficiency of HP stage referred to LP stage suction condition shall be same

$$
\eta_{V O L L P}=\eta_{V O L H P}=0.9251
$$

Hence, the volume of HP cylinder $/ \mathrm{min}=\frac{\mathrm{V}_{5}}{\eta_{\mathrm{VOL} \mathrm{HP}}}=\frac{3.61}{0.9251}=3.902 \mathrm{~m} \mathrm{3} / \mathrm{min}$
Let bore of HP cylinder be D_{HP}
$3.902=(\pi / 4) \times D_{H P}^{2} \times 0.40 \times 2 \times 200$
$\mathrm{D}_{\mathrm{HP}}=0.1762 \mathrm{~m}$ or 17.62 cm
Heat rejected in intercooler, $\mathrm{Q}=\mathrm{mC}_{\mathrm{p}}\left(\mathrm{T}_{2}-\mathrm{T}_{5}\right)$

$$
\begin{aligned}
& =12.23 \times 1.0032 \times(35 \mathrm{NQ} 298) \\
& =734.68 \mathrm{~kJ} / \mathrm{min}
\end{aligned}
$$

In HP stage, $T_{6}=T_{5}\left(\frac{P_{6}}{P_{5}}\right)^{\frac{n-1}{n}}$

$$
T_{6}=298\left(\frac{9}{2.9}\right)^{\frac{1.2-1}{1.2}}
$$

T $6=359.91 \mathrm{~K}$
Work input required son stage, $W_{H P}=\frac{n}{n-1} m R\left(T_{6}-T_{5}\right)$

$$
\frac{1.2}{1.2-1} \times 12.23 \times 0.287 \times(359.9-298)
$$

$\mathrm{W}_{\mathrm{HP}}=1303.62 \mathrm{~kJ} / \mathrm{min}$
or $W_{H P}=29.14 \mathrm{hp}$
7) During an experiment on reciprocating air compressor the following observations are being taken; Barometer reading $=75.6 \mathrm{~cm} \mathrm{Hg}$, Manometer reading across orifice $=13 \mathrm{~cm}$ Hg . Atmospheric temperature $=25^{\circ} \mathrm{C}$. Diameter of orifice $=15 \mathrm{~mm}$. Coefficient of discharge across the orifice $=0.65$ Take density of $\mathrm{Hg}=0.0135951 \mathrm{~kg} / \mathrm{cm} 3$ Determine the volume of free air handled by compressor in $\mathrm{m} 3 / \mathrm{min}$.

Solution:

Cross-sectional area of orifice, $\mathrm{A}=\frac{\pi}{4} \times\left(15 \times 10^{-3}\right)^{2}=1.77 \times 10^{-4} \mathrm{~m}^{2}$
Atmospheric pressure $=75.6 \times 0.0135951 \times 9.81 \times 10^{4} \times 10^{-3}=100.83 \mathrm{kPa}$
Specific volume of air per kg at atmospheric conditions, $v=\frac{R T}{P}=\frac{0.287 \times 298}{100.83}=0.848 \mathrm{~m} \mathrm{3} /$
kg
Density of air $=1 / \mathrm{v}=1.18 \mathrm{~kg} / \mathrm{m}^{3}$
Pressure difference across orifice $=13 \times 0.0135951 \times 9.81 \times 10^{4} \times 10^{-3}=17.34 \mathrm{kPa}$
Height of air column for pressure difference across orifice.
$\rho_{a} \times h_{a} \times g=17.34 \times 10^{3}$
$\rho_{\mathrm{a}}=1.18 \mathrm{~kg} / \mathrm{m}^{3}$
$\therefore \mathrm{h}_{\mathrm{a}}=1497.95 \mathrm{~m}$
Free air delivery $=\mathrm{C}_{\mathrm{d}} \times \mathrm{A} \times \sqrt{2 \text { gha }}$
$=0.65 \times 1.77 \times 10^{-4} \times \sqrt{2 \times 9.81 \times 1497.95}$
$=0.01972 \mathrm{~m}^{3} / \mathrm{s}$ or $1.183 \mathrm{~m}^{3} / \mathrm{min}$
. Free air delivery $=1.183 \mathrm{~m}^{3} / \mathrm{min}$
8) During a trial on single acting single stage compression the following observations are made;

Dimensions of cylinder: 10 cm hore and 8 cm stroke.
Speed of rotation: 500 rpm . Barometer reading: 76 cm Hg
Atmospheric temperature. $27^{\circ} \mathrm{C}$
Delivery air temperature $=130^{\circ} \mathrm{C}$
Free air delivery $=\mathrm{m} 3 / \mathrm{hr}$
Spring balance of dynamometer type (electric motor) reading: 10 kg
Radius of arm of spring balance: 30 cm
Take mechanical efficiency $=0.90$.
Determine the volumetric efficiency, shaft output per m 3 of free air per minute.

Solution:

Free air delivery $=15 \mathrm{~m}^{3} / \mathrm{hr}=0.25 \mathrm{~m}^{3} / \mathrm{min}$
Volume of cylinder $=\frac{\pi}{4} \times(0.10)^{2} \times(0.08)=6.28 \times 10^{-4} \mathrm{~m}^{3}$
Volumetric efficiency $=\frac{15 / 60}{6.28 \times 10^{-4} \times 500}=0.7962$ or 79.62%

Shaft output $=\frac{2 \pi N T}{60}$

Shaft output $=\frac{2 \times \pi \times 500 \times 10 \times 9.81 \times 0.30 \times 10^{-3}}{60}$
$=15.41 \mathrm{~kJ} / \mathrm{s}$ or 20.66 hp
Shaft output per m 3 of free air per minute $=20.66 / 0.25=82.64 \mathrm{hp}$ per m^{3} of free air per minute.
9) Determine the minimum number of stages required in an air compressor which admits air at $1 \mathrm{bar}, 27^{\circ} \mathrm{C}$ and delivers at 180 bar. The maximum discharge temperature at any stage is limited to $150^{\circ} \mathrm{C}$. Consider the index for polytropic compression as $1 \frac{5}{5}$ and perfect and optimum intercooling in between the stages. Neglect the effect of clearalice.

Solution:

Let there be ' i ' number of stages. So the overall pressure ratio considering inlet state as P_{a} and Ta
and delivery state pressure as P_{i}

$$
\frac{P_{i}}{P_{a}}=\frac{P_{1}}{P_{a}} \times \frac{P_{2}}{P_{1}} \times \frac{P_{3}}{P_{2}} \times \ldots \times \frac{P_{i}}{P_{i-1}}
$$

When perfect and optimum intercoling is considered then pressure ratio in each stage will be same.

$$
\begin{gathered}
\frac{P_{1}}{P_{a}}=\frac{P_{1}}{P_{1}}=\frac{P_{3}}{P_{2}}=\cdots=\frac{P_{i}}{P_{i-1}}=r \\
\frac{P_{i}}{P_{a}}=r^{i}
\end{gathered}
$$

for any stage, say second stage, $\mathrm{T}_{1}=273+27=300 \mathrm{~K}$
and $\mathrm{T}_{2}=273+150=423 \mathrm{~K}$

$$
\begin{gathered}
\frac{P_{2}}{P_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{n}{n-1}}, \frac{P_{i}}{P_{a}}=(r)^{i}=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{i n}{n-1}} \\
\frac{180}{1}=\left(\frac{423}{300}\right)^{\frac{i * 1.25}{1.25-1}}
\end{gathered}
$$

Taking log for solving,

$$
\ln 180=\frac{i * 1.25}{1.25-1} \times \ln \frac{423}{300}
$$

Solving, $i=3.022$ say $\mathbf{3}$ stages

10) In a triple stage reciprocating compressor of single acting type the air enters at 1 bar, $27^{\circ} \mathrm{C}$. The compressor has low pressure cylinder with bore of 30 cm and stroke of 20 cm . Clearance volume of LP cylinder is 4% of the swept volume. The final discharge from compressor takes place at 20 bar. The expansion and compression index may be taken uniformly as 1.25 for all the stages. The intercooling between the stages may be considered to be at optimum intercooling pressure and perfect intercooling. Determine, the interstage pressures, effective swept volume of low pressure cylinder, temperature and volume of air delivered in each stroke and the work done per kg of air.

Solution:

Here $P_{1}=1 \mathrm{bar}, \mathrm{T}_{1}=800 \mathrm{~K}, \mathrm{C}=0.04, \mathrm{P}_{10}=20 \mathrm{bar}$,

$$
\mathrm{n}=1.25 \text {, See Fg. }
$$

For optimum and perfect intercoohg,

$$
\begin{aligned}
\frac{P_{2}}{P_{1}}=\frac{P_{6}}{P_{10}}=\frac{P_{10}}{P_{6}} & =\left(\frac{20}{1}\right)^{\frac{1}{3}} \\
& =2.714
\end{aligned}
$$

$P_{2}=2.714 \mathrm{bar}, T_{5}-T_{1}=300 \mathrm{~K}$
$P_{6}=7.366$ bar $T_{9}=T_{1}=300 \mathrm{~K}$
Volumetric efficiency of LP stage,

$$
\begin{gathered}
\eta_{V O L L P}=\left[1+C_{L P}-C_{L P}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{1}{n}}\right] \\
\eta_{V O L L P}=\left[1+0.04-0.04(2.714)^{\frac{1}{1.25}}\right] \\
=0.9511 \text { or } 95.11 \%
\end{gathered}
$$

LP swept volume, $V_{1}-V_{3}=\frac{\pi}{4} \times(\mathrm{D})^{2} \times(\mathrm{L})$

$$
=\frac{\pi}{4} \times(0.30)^{2} \times(0.20)=0.01414 \mathrm{~m}^{3}
$$

Effective swept volume of LP cylinder, $V_{1}-V_{4}=\eta_{V O L L P} \times V_{1}-V_{3}$

$$
=0.9511 \times 0.01414=0.01345 \mathrm{~m}^{3}
$$

Temperature of air delivered, $T_{10}=T_{9} \times\left(\frac{P_{10}}{P_{6}}\right)^{\frac{0.25}{1.25}}$

$$
\begin{aligned}
& =300 \times(2.714)^{\frac{0.25}{1.25}} \\
& =366.31 \mathrm{~K}
\end{aligned}
$$

For the compression process of air as perfect gas;

$$
\frac{P_{1} \times\left(V_{1}-V_{4}\right)}{T_{1}}=\frac{P_{10} \times\left(V_{10}-V_{11}\right)}{L_{0}}
$$

$=\frac{0.01345 \times 1 \times 10^{2} \times 366.31}{300 \times 20 \times 10^{2}}$
Volume of air delivered $=W_{11}=8.2115 \times 10^{-4} \mathrm{~m}^{3}$
Total Work done per kg âir,

$$
\begin{aligned}
& W=\frac{n}{n-1} m R T_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}-1\right] \times 3 \\
& W=\frac{1.25}{1.25-1} \times 0.287 \times 300 T_{1}\left[(2.714)^{\frac{1.25-1}{1.25}}-1\right] \times 3 \\
& =285.44 \mathrm{~kJ} / \mathrm{kg} \text { of air }
\end{aligned}
$$

11) A two stage reciprocating air compressor has air being admitted at $1 \mathrm{bar}, 27^{\circ} \mathrm{C}$ and delivered at 30 bar, $150^{\circ} \mathrm{C}$ with interstage pressure of 6 bar and intercooling up to $35^{\circ} \mathrm{C}$. Compressor delivers at the rate of $2 \mathrm{~kg} / \mathrm{s}$. Clearance volumes of LP and HP cylinders are 5%
and 7% of stroke volume respectively. The index of compression and expansion are same throughout. Determine the swept volume of both cylinders in $\mathrm{m}^{3} / \mathrm{min}$, amount of cooling required in intercooler and total power required. Also estimate the amount of cooling required in each cylinder.

Solution:

Given: $\mathrm{P}_{1}=1$ bar, $\mathrm{T}_{1}=300 \mathrm{~K}, \mathrm{P}_{2}=6$ bar, $\mathrm{P}_{6}=30$ bar,
$\mathrm{T}_{6}=273+150=423 \mathrm{~K}, \mathrm{~T}_{5}=273+35=308 \mathrm{~K}, \mathrm{C}_{\mathrm{LP}}=0.05, \mathrm{C}_{\mathrm{HP}}=0.07, \mathrm{~m}=2 \mathrm{~kg} / \mathrm{s}$

For process 5-6, $\mathrm{P}_{2}=$

$$
\frac{300}{6}=\left(\frac{423}{308}\right)^{\frac{n}{n-1}}
$$

Taking \log of both sides, $\quad \quad \operatorname{ra}(5)=\frac{n}{n-1} \ln (1.3734)$
solving we get, $n=1.245$
Volumetric efficiency of ΔP cylinder,

$$
\begin{aligned}
\eta_{V O L L P} & =\left[1+C_{L P}-C_{L P}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{1}{n}}\right] \\
\eta_{V O L L P} & =\left[1+0.05-0.05\left(\frac{6}{1}\right)^{\frac{1}{1.245}}\right] \\
& =0.8391 \text { or } 83.91 \%
\end{aligned}
$$

Volumetric efficiency of HP cylinder,

$$
\eta_{V O L H P}=\left[1+C_{H P}-C_{H P}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{1}{1.245}}\right]
$$

$$
\begin{gathered}
\eta_{V O L H P}=\left[1+0.07-0.07\left(\frac{30}{6}\right)^{\frac{1}{1.245}}\right] \\
=0.815 \text { or } 81.50 \%
\end{gathered}
$$

For suction of LP cylinder $P_{1} \times\left(V_{1}-V_{4}\right)=m R T_{1}$

$$
\begin{aligned}
\left(\mathrm{V}_{1}-\mathrm{V}_{4}\right) & =\frac{2 \times 0.287 \times 300}{1 \times 10^{2}} \\
& =1.722 \mathrm{~m}^{3} / \mathrm{s} \text { or } 103.32 \mathrm{~m}^{3} / \mathrm{min} \\
\eta_{V O L L P} & =\frac{V_{1}-V_{4}}{V_{1}-V_{3}}
\end{aligned}
$$

$V_{1}-V_{3}=103.32 / 0.8391=123.13 \mathrm{~m}^{3} / \mathrm{min}=$ Swept volume of LP cyloget
For suction of HP cylinder $\mathrm{P}_{2} \times\left(\mathrm{V}_{5}-\mathrm{V}_{8}\right)=\mathrm{mRT}_{5}$

$$
\begin{aligned}
\left(\mathrm{V}_{5}-\mathrm{V}_{8}\right) & =\frac{2 \times 0.287 \times 308}{6 \times 10^{2}} \\
& =0.44 \mathrm{~m}^{3} / \mathrm{s} \text { or } 17.676 \mathrm{~m}^{3} / \mathrm{min} \\
\eta_{V O L}^{H K} & =\frac{5}{V_{6}-V_{7}}
\end{aligned}
$$

$V_{6}-V_{7}=17.676 / 0.815=21.69 \mathrm{~m}^{3} /$-110 $=$ Swept volume of LP cylinder

For compression in LP stage

$$
\begin{aligned}
T_{2} & =T_{1}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}} \\
T_{2} & =300_{1}\left(\frac{6}{1}\right)^{\frac{1.245-1}{1.245}} \\
T 2 & =426.83 \mathrm{~K}
\end{aligned}
$$

Cooling required in intercooler, $Q_{I C}=m \times C_{P} \times\left(T_{2}-T_{5}\right)$
$=2 \times 1.0032 \times(426.83-308)$
$Q_{I C}=238.42 \mathrm{~kJ} / \mathrm{s} \quad$ Heat picked in intercooler $=238.42 \mathrm{Kw}$
Work input required $=W_{\mathrm{LP}}+W_{\mathrm{HP}}$

$$
=\frac{n}{n-1} m R T_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}-1\right]+=\frac{n}{n-1} m R T_{5}\left[\left(\frac{P_{6}}{P_{5}}\right)^{\frac{n-1}{n}}-1\right]
$$

$=\frac{n}{n-1} m R\left\{T_{1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}-1\right]+T_{5}\left[\left(\frac{P_{6}}{P_{5}}\right)^{\frac{n-1}{n}}-1\right]\right\}$
$=\frac{1.245}{1.245-1} m R\left\{300\left[\left(\frac{6}{1}\right)^{\frac{1.245-1}{1.245}}-1\right]+308\left[\left(\frac{30}{6}\right)^{\frac{1.245-1}{1.245}}-1\right]\right\}$
Total work required $=704.71 \mathrm{~kW}$

Heat transferred in LP cylinder $=$ Amount of cooling required in LP cylinder

$$
\begin{array}{r}
Q_{L P}=m \times \frac{-n}{n-1} \times C_{v} \times\left(T_{2}-T_{1}\right) \\
=2 \times \frac{1.4-1.245}{1.245-1} \times 0.72 \times(426.83-300)
\end{array}
$$

$=115.55 \mathrm{~kJ} / \mathrm{s}$ Amount of cooling required in LP cylinder $=115.55 \mathrm{~kW}$
Heat transferred in HP cylinder $=$ Amount of cooling required in HP Hylinder 2
$Q_{H P}=m \times \frac{-n}{n-1} \times C_{v} \times\left(T_{6}, \mathbb{N}_{5}\right)$
$=2 \times \frac{1.4-1.245}{1.245-1} \times 0.72 \times(423-308)=104.77 \mathrm{~kJ} / \mathrm{s}$
Amount of cooling required in HP cylinder $=10 \% 1 \mathrm{~W}$

Frequently asked Questions

1) Classify the compressors
2) Discuss the application of compressed air to highlight the significance of compressors.
3) Obtain the volumencic efficiency of single stage reciprocating compressor with clearance volume and without learance volume.
4) Discuss the effects of clearance upon the performance of reciprocating compressor.
5) Define isothermal efficiency. Also discuss its significance.
6) What do you understand by multistage compression? What are its' merits over single stage compression?
7) What is the optimum pressure ratio for perfect intercooling in between two stages of compression? The inlet and outlet pressures may be taken as $P 1$ and $P 3$.
8) A single stage single cylinder reciprocating compressor has $60 \mathrm{~m} 3 / \mathrm{hr}$ air entering at 1.013 bar, $15^{\circ} \mathrm{C}$ and air leaves at 7 bar. Compression follows polytropic process with index of 1.35 .

Considering negligible clearance determine mass of air delivered per minute, delivery temperature, indicated power and isothermal efficiency.
[ANS: $1.225 \mathrm{~kg} / \mathrm{min}, 202.37^{\circ} \mathrm{C}, 4.23 \mathrm{~kW}, 77.1 \%$]
9) A reciprocating compressor of single stage and double acting type has free air delivered at $14 \mathrm{~m} 3 / \mathrm{min}$ measured at $1.013 \mathrm{bar}, 288 \mathrm{~K}$. Pressure and temperature at suction are 0.95 bar and 305 K . The cylinder has clearance volume of 5% of swept volume. The air is delivered at pressure of 7 bar and expansion and compression follow the common index of 1.3. Determine the indicated power required and volumetric efficiency with respect to free air delivery.
[ANS: $63.55 \mathrm{~kW}, 72.4 \%$]
10) A single stage double acting reciprocating compressor delivers $14 \mathrm{~m} 3 / \mathrm{min}$ measured at suction states of 1 bar and $20^{\circ} \mathrm{C}$. Compressor runs at 300 rpm and ater is delivered after compression with compression ratio of 7 . Compressor has clearance Blume of 5% of swept volume and compression follows polytropic process with inder 1.3. Determine the swept volume of cylinder and indicated power in hp .
[ANS: $0.028 \mathrm{~m} 3,76.86 \mathrm{hp}$]
11) A single stage single acting reciprocating air Compressor handles $0.5 \mathrm{~m} 3 / \mathrm{min}$ of free air measured at 1 bar. Compressor delivers ait at 0.5 bar while running at 450 rpm . The volumetric efficiency is 0.75 , isothermal efficiency is 0.76 and mechanical efficiency is 0.80 . Determine indicated mean effective prossare and power required to drive the compressor. [ANS:0.185 MPa, 3.44 hp]
12) A reciprocating compresson has two stages with inlet air going into LP stage at 1 bar, $16^{\circ} \mathrm{C}$ and at the rate of $12 / \mathrm{m} 3 / \mathrm{min}$. Air is finally delivered at 7 bar and there is perfect intercooling at optipatm pressure between the stages. The index for compression is 1.25 and compressor runs at 00 rpm . Neglecting clearance volume determine intermediate pressure, total volume of each cylinder and total work required.
[ANS: 2.645 bar, $0.02 \mathrm{~m} 3,0.0075 \mathrm{~m} 3,57.6 \mathrm{hp}$]
13) A two stage reciprocating air compressor delivers 4.2 kg of free air per min at 1.01325 bar and $15^{\circ} \mathrm{C}$. The suction conditions are 0.95 bar, $22^{\circ} \mathrm{C}$. Compressor delivers air at 13 bar. Compression throughout occurs following $P V 1.25=C$. There is optimum and perfect intercooling between the two stages. Mechanical efficiency is 0.75 . Neglecting clearance volume determine
(i) the heat transfer in intercooler per second.
(ii) the capacity of electric motor.
(iii) the \% saving in work if two stage intercooling is compared with single stage compressor
between same limits.
[ANS: $7.6 \mathrm{~kJ} / \mathrm{s}, 44.65 \mathrm{hp}, 13 \%$]

Self Answered Question \& Answer

1) A single stage single acting reciprocating air compressor handles $0.5 \mathrm{~m} 3 / \mathrm{min}$ of free air measured at 1 bar. Compressor delivers air at 6.5 bar while running at 450 rpm . The volumetric efficiency is 0.75 , isothermal efficiency is 0.76 and mechanical efficiency is 0.80 . Determine indicated mean effective pressure and power required to drive the compressor. [ANS: $0.185 \mathrm{MPa}, 3.44 \mathrm{hp}$]
2) A single stage single acting reciprocating air compressor compresses air by a ratio of 7 . The polytropic index of both compression and expansion is 1.35 . The clearance volume is 6.2% of cylinder volume. For volumetric efficiency of 0.8 and stroke 1.3 determine the dimensions of cylinder.
[ANS: 14.67 cm and 19.08 cm]
3) A single stage single acting reciprocating air compresset rums with air entering at 1 bar and leaving at 7 bar following $P V 1.3=$ constant. Free ai dglivery is $5.6 \mathrm{~m} 3 /$ minute and mean piston speed is $150 \mathrm{~m} / \mathrm{min}$. Take stroke to bore rator 1.3 and clearance volume to be $1 / 15^{\text {th }}$ of swept volume per stroke. The suterin pressure and temperature are equal to atmospheric air pressure and temperature. Determine volumetric efficiency, speed of rotation, stroke and bore. Take mean piston speed $/ 2$ stroke rpm.
[ANS: $76.88 \%, 164 \mathrm{rpm}, 45.7 \mathrm{~cm}, 3 \mathrm{~F} .1 \mathrm{~cm}$]
4) A reciprocating compresson of single acting type has air entering at $1.013 \mathrm{bar}, 15^{\circ} \mathrm{C}$ and leaving at 8 bar. Comprossor is driven by electric motor of 30.84 hp and the mechanical efficiency is 0.87 . The clearance volume is 7% of swept volume and the bore is equal to stroke. The compression and expansion follow $P V 1.3=$ constant. Determine (i) free air delivered in $\mathrm{m} 3 / \mathrm{min}$, (ii) volumetric efficiency, and (iii) cylinder dimensions.
[ANS: $4.47 \mathrm{~m} 3 / \mathrm{min}, 72.68 \%, L=D=29.7 \mathrm{~cm}$]
5) A single acting reciprocating air compressor has two stages with the optimum and perfect intercooling in between. Compressor has air sucked at 1 bar and at the rate of $2.4 \mathrm{~m} 3 / \mathrm{min}$ when measured at 1.013 bar, 288 K . Compressor delivers air at 70 bar. Temperature at the end of suction stroke is $32^{\circ} \mathrm{C}$. The compression and expansion follows polytropic process $P V 1.25=C$ uniformly. The clearance volume is 3% of swept volume in each HP and LP cylinder. Compressor runs at 750 rpm . If the mechanical efficiency is 0.85 then determine the
power of drive required, swept volumes of each cylinder, \% saving in power as compared to single stage compression within limits.
[ANS: $35.8 \mathrm{hp}, 3963 \mathrm{~cm} 3,473 \mathrm{~cm} 3,20.89 \%$]

Test Your Skills

1) For reciprocating air compressor the law of compression desired is isothermal and that may be possible by
a) Very low speed b) very high speed c) any speed d) none of the above
2) Work input to thye air compressor with ' n ' as index of compression
a) Increases with increase in value of ' n ' b) decreases with increase in vatud (n ' c) remain same for all value of ' n ' d) first increase and then decrease with incrieas in value of ' n '
3) The Clarence volume in reciprocating compressor is predided to
a) To reduce the work done b) to increase the volumet (ic efficiency c) to accommodate valves d) to create the turbulence
4) Suction pressure being atmospheric, increase in delivery pressure with fixed clearance volume
a) Increase in volumetric efficien (e) decrease in volumetric efficiency c) does not change in volumetric efficiency d) first increase and then decreases in volumetric efficiency
5) For the same ovgranpressure ratio, the leakage of air past the piston for multi satge compression as compared to single stage compression is,
a) More b) less c) constant d) may be more or less
6) In reciprocating air compressor the method of controlling the quantity of air delivered is done by
a) Throttle control b) blow-off control c) Clarence control d) all of the above
7) With increase in clearance volume, the ideal work of the compressing 1 kg of air
a) Increases b) decreases c) remain same d) first increase and then decreases

Answers: 1)-a, 2-a, 3)-c, 4)-b, 5)-b, 6)-d, 7)-c

