

Achiever's Comprehensive Course (ACC)

INDEX

Торіс

Page No.

LOGARITHM

l.	Basic Mathematics	1
2.	Historical Development of Number System	3
3.	Logarithm	5
4.	Principal Properties of Logarithm	7
5.	Basic Changing theorem	8
6.	Logarithmic equations	10
7.	Common & Natural Logarithm	12
8.	Characteristic Mantissa	12
9.	Absolute value Function	14
10.	Solved examples	17
11.	Exercise	24
12.	Answer Key	30
13.	Hints & Solutions	31

LOGARITHM

LOGARITHM

BASIC MATHEMATICS :

Remainder Theorem :

Let p(x) be any polynomial of degree geater than or equal to one and 'a' be any real number. If p(x) is divided by (x-a), then the remainder is equal to p(a).

Factor Theorem :

Let p(x) be a polynomial of degree greater than or equal to 1 and 'a' be a real number such that p(a) = 0, then (x - a) is a factor of p(x). Conversely, if (x - a) is a factor of p(x), then p(a) = 0.

Note : Let p(x) be any polynomial of degree greater than or equal to one. If leading coefficient of p(x) is 1 then p(x) is called monic. (Leading coefficient means coefficient of highest power.)

SOME IMPORTANT IDENTITIES :

(1)
$$(a+b)^2 = a^2 + 2ab + b^2 = (a-b)^2 + 4ab$$

(2)
$$(a-b)^2 = a^2 - 2ab + b^2 = (a+b)^2 - 4ab$$

(3)
$$a^2 - b^2 = (a + b) (a - b)$$

- (4) $(a+b)^3 = a^3 + b^3 + 3ab (a+b)$
- (5) $(a-b)^3 = a^3 b^3 3ab (a-b)$

(6)
$$a^3 + b^3 = (a + b)^3 - 3ab (a + b) = (a + b) (a^2 + b^2 - ab)$$

(7)
$$a^3 - b^3 = (a - b)^3 + 3ab(a - b) = (a - b)(a^2 + b^2 + ab)$$

(8)
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2 (ab+bc+ca) = a^2 + b^2 + c^2 + 2abc \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$$

(9)
$$a^{2} + b^{2} + c^{2} - ab - bc - ca = \frac{1}{2} \left[(a-b)^{2} + (b-c)^{2} + (c-a)^{2} \right]$$

(10)
$$a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$$

$$= \frac{1}{2} (a+b+c) \left[(a-b)^2 + (b-c)^2 + (c-a)^2 \right]$$

If (a + b + c) = 0, then $a^3 + b^3 + c^2 = 3abc$.

(11)
$$a^4 - b^4 = (a^2 + b^2)(a^2 - b^2) = (a^2 + b^2)(a - b)(a + b)$$

(12) If
$$a, b \ge 0$$
 then $(a - b) = \left(\sqrt{a} + \sqrt{b}\right)\left(\sqrt{a} - \sqrt{b}\right)$

(13)
$$a^4 + a^2 + 1 = (a^4 + 2a^2 + 1) - a^2 = (a^2 + 1)^2 - a^2 = (a^2 + a + 1)(a^2 - a + 1)$$

BANSAL CLASSES Private Ltd. 'Gaurav Tower', A-10, Road No.-1, I.P.I.A., Kota-05

Definition of Indices :

The product of m factors each equal to a is represented by $a^m \cdot So$, $a^m = a \cdot a \cdot a \dots a$ (m times). Here a is called the base and m is the index (or power or exponent).

Law of Indices :

(1) $a^{m+n} = a^m \cdot a^n$, where m and n are rational numbers.

(2)
$$a^{-m} = \frac{1}{a^m}$$
, provided $a \neq 0$.

- (3) $a^0 = 1$, provided $a \neq 0$.
- (4) $a^{m-n} = \frac{a^m}{a^n}$, where m and n are rational numbers, $a \neq 0$.

$$(5) \qquad (a^m)^n = a^{mn}.$$

(6)
$$a^{\frac{p}{q}} = \sqrt[q]{a^p}$$

(7) $(ab)^n = a^n b^n$.

Intervals :

Intervals are basically subsets of R (the set of all real numbers) and are commonly used in solving inequaltities. If $a, b \in R$ such that a < b, then we can defined four types of intervals as follows :

Name	Representation	Discription.
Open interval	(a, b)	$\{x : a < x < b\}$ i.e., end points are not included.
Close interval	[a, b]	$\{x : a \le x \le b\}$ i.e., end points are also included. This is possible only when both a and b are finite.
Open-closed interval	(a, b]	$\{x : a \le x \le b\}$ i.e., a is excluded and b is included.
Closed-open interval	[a, b)	$\{x : a \le x \le b\}$ i.e., a is included and b is excluded.

Note :

(1) The infinite intervals are defined as follows: (i) $(a, \infty) = \{x : x > a\}$ (ii) $[a, \infty) = \{x \mid x \ge a\}$

(iii) $(-\infty, b) = \{x : x < b\}$ (iv) $(-\infty, b] = \{x : x \le b\}$

(v)
$$(-\infty,\infty) = \{x : x \in R\}$$

- (2) $x \in \{1, 2\}$ denotes some particular values of x, i.e., x = 1, 2.
- (3) If their is no value of x, then we say $x \in \phi$ (i.e., null set or void set or empty set).

Proportion :

When two ratios are equal, then the four quantities compositing then are said to be proportional.

If
$$\frac{a}{b} = \frac{c}{d}$$
, then it is written as $a: b = c: d$ or $a: b: : c: d$.

Note :

- (1) a and d are known as extremes while b and c are known as means.
- (2) Product of extremes = product of means.

(3) If
$$\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{b}{a} = \frac{d}{c}$$
 (Invertando)

(4) If
$$\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a}{c} = \frac{b}{d}$$
 (Alternando)

(5) If
$$\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a}{b} + 1 = \frac{c}{d} + 1 \Rightarrow \frac{a+b}{b} = \frac{c+d}{d}$$
 (Componendo)

(6) If
$$\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a}{b} - 1 = \frac{c}{d} - 1 \Rightarrow \frac{a-b}{b} = \frac{c-d}{d}$$
 (Dividendo).

(7) If
$$\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a+b}{a-b} = \frac{c+d}{c-d}$$
 (Componendo and dividendo)

(8) If $\frac{a}{b} = \frac{b}{c}$ then $b^2 = ac$. Here b is called mean proportional of a and c.

Histrorical Development of Number System :

I. Natural Number's

Number's used for counting are called as Natural number's. {1, 2, 3, 4,}

II. Whole number's

Including zero (0) | cypher | $\[verta | duck | love | knot along with natural numbers called as whole numbers.$ $w = {0,1, 2, 3}$ $i.e. N <math>\subset$ W 0 is neither positive nor negative

III Integer's

Integer's given by

integer s given by	
I = {2	2, -1, 0, 1, 2, 3}
i.e. $N \subset W \subset$	Ι
Type of Integer's	
(a) None negative integers	{ 0, 1, 2, 3,}
(b) Negative integers (I ⁻)	{3, -2, -1}
(c) Non positive integers	{3, -2 -1, 0}
(d) Positve integers (I ⁺)	{1, 2, 3}

IV. Rational Number's

Number's which are of the form p/q where $p, q \in I \& q \neq 0$ called as rational number's.

Rational numbers are also represented by recurring & terminating or repeating decimal's

e.g. $1.\overline{3} = 1.333$ 10x = 13.333 9x = 12 $x = \frac{4}{3}$

Every rational is either a terminating or a recurring decimal

V Irrational number's

The number's which cannot be expressed in the form p/q ($p,q \in I$) are called as irrational numbers. The decimal representation of these number is non-terminating and non repeating.

$$\sqrt{2} = 1.414$$

 π is an irrational number

VI Real Number's

Set of real number's is union of the set of rational number's and the set of irrational numbers.

Real \rightarrow Rational + Irrational N \subset W \subset I \subset Q \subset R \subset Z

VII. Prime Number's

Number's which are devisible by 1 or itself e.g. {2, 3, 5, 7, 11, 13}

VIII Composite Number's

Number's which are multiples of prime are called composite number's {4, 6, 8, 9}

IX Coprime or relatively prime number's

The number's having heighest common factor 1 are called relatively prime. e.g. (2, 9), (16, 25)

X Twin primes :

The prime number's which having the diffrence of 2

e.g. (5, 3), (7, 5), (13,11)

1 is niether a prime nor a composite number.

When studying logarithms it is important to note that all the propertise of logarithms are consequences of the corresponding properties of power, which means that sudent should have a good working knowledge of powers are a foundation for tacking logarithms

LOGARITHM :

Definition : Every positive real number N can be expressed in exponential form as

....(1)

where 'a' is also a positive real different than unity and is called the base and 'x' is called the exponent. We can write the relation (1) in logarithmic form as

e.g.

 $49 = 7^2$

 $\log_a N = x$ (2) Hence the two relations

 $a^{x} = N$ and $\log_{a} N = x$ are identical where N > 0, a > 0, $a \neq 1$

 $N = a^x$

Hence logarithm of a number to some base is the exponent by which the base must be raised in order to get that number. Logarithm of zero does not exist and logarithm of (-) ve reals are not defined in the system of real numbers.

i.e a is raised what power to get N

Illustration :

Find value of

(*i*) $log_{s_l} 27$ (ii) log₁₀100 (*iii*) $\log_{1/3} 9\sqrt{3}$ **Sol.**(*i*) Let $log_{8l}27 = x$ \Rightarrow $27 = 81^{x}$ $3^3 = 3^{4x}$ \Rightarrow gives x = 3/4 $Let \quad \log_{10} 100 = x$ (ii) $\Rightarrow 100 = 10^{x}$ $\Rightarrow 10^2 = 10^x$ gives x = 2Let $\log_{1/3} 9\sqrt{3} = x$ (iii) $\Rightarrow 9\sqrt{3} = \left(\frac{l}{3}\right)^x$ \Rightarrow $3^{5/2} = 3^{-x}$ gives x = -5/2

Note that :

(a)	a) Unity has been excluded from the base of the logarithm as in this case					
	$log_1 N$ will not be possible and if $N = 1$					
	then	log ₁ 1	will have infinitely many solutions and will not be unique which is necessary in the functional notation.			
(b)	a ^{log} a ^N	V = N is	an identify for all N > 0 and a > 0, a $\neq 1$ e.g. $2^{\log_2 5} = 5$			

(c) The number N in (2) is called the antilog of 'x' to the base 'a'. Hence If $\log_2 512$ is 9 then antilog₂9 is equal to $2^9 = 512$ (d) Using the basic definition of log we have 3 important deductions :

(i) i.e. logarithm of a number to the same base is 1. $\log_{N} N = 1$ $\log_{\frac{1}{N}} N = -1$ i.e. logarithm of a number to its reciprocal is -1. (ii) $\log_{2} 1 = 0$ (iii) i.e. logarithm of unity to any base is zero. (basic constraints on number and base must be observed.) $a^{\log_a n} = n$ is an identify for all N > 0 and a> 0; $a \neq 1$ e.g. $2^{\log_2 5} = 5$ (iv) (e) Whenever the number and base are on the same side of unity then logarithm of that number to the base is (+ve), however if the number and base are located an diffrent side of unity then logarithm of that number to the base is (-ve) (i) $\log_{10} 100 = 2$ e.g. (ii) $\log_{1/10} 100 = -2$ For a non negative number 'a' & $n \ge 2$, $n \in N$ $\sqrt[n]{a} = a^{1/n}$ (f) Illustration : $log_{sin 30^{\circ}} cos \ 60^{\circ} = 1$ (ii) $log_{3/4} \ 1.\overline{3} = -1$ (iii) $log_{2-\sqrt{3}} \ 2 + \sqrt{3} = -1$ (i) (iv) $log_5 \sqrt{5\sqrt{5\sqrt{5}\dots}} \infty = 1$ **Sol.** Let $\sqrt{5\sqrt{5\sqrt{5....\infty}}} = x$ $\Rightarrow \sqrt{5x} = x \quad \Rightarrow \quad x^2 = 5x \quad \Rightarrow \quad x = 5 \quad \Rightarrow \quad \log_5 5 = 1$ (v) $(\log \tan 1^{\circ}) (\log \tan 2^{\circ}) (\log \tan 3^{\circ}) \dots (\log \tan 89^{\circ}) = 0$ Since $\tan 45^\circ = 1$ thus $\log \tan 45^\circ = 0$ Sol. (vi) $7^{\log_7 x} + 2x + 9 = 0$ $3x + 9 = 0 \implies (x = -3)$ as it makes initial problem undefined Sol. $x = \phi$ $2^{\log_2(x-3)} + 2(x-3) - 12 = 0$ (vii) x - 3 + 2x - 6 - 12 = 0Sol. $3x = 21 \implies x = 7$ $log_2(x-3) = 4$ (viii) **Sol.** $x-3 = 2^4$ x = 19

Practice Problem

Q.1	Find the logarithms of the following numbers to the base 2:					
	(i) $\sqrt[3]{8}$ (ii) $2\sqrt{2}$ (iii) $\frac{1}{\sqrt[5]{8}}$	$\overline{\overline{2}}$	(iv) $\frac{1}{\sqrt[7]{8}}$			
Q.2	Find the logarithms of the following nu	umbers	s to the base $\frac{1}{3}$			
	(i) 81 (ii) $\sqrt[3]{3}$ (iii) $\frac{1}{\sqrt{3}}$	3	(iv) $9\sqrt{3}$ (v) $\frac{1}{9\sqrt[4]{3}}$			
Q.3	Find all number a for which each of th	e follo	wing equalities hold true?			
	(i) $\log_2 a = 2$	(ii)	$\log_{10}(a(a+3)) = 1$			
	(iii) $\log_{1/3}(a^2 - 1) = -1$	(iv)	$log_{10}(a(a+3)) = 1$ log_2(a ² -5) = 2			
Q.4	Find all values of x for which the follow	ving ec	qualities hold true?			
	(i) $\log_2 x^2 = 1$	(ii)	$\log_3 x = \log_3(2-x)$ (iii) $\log_4 x^2 = \log_4 x$			
	(iv) $\log_{1/2}(2x+1) = \log_{1/2}(x+1)$	(v)	$\log_{1/3}(x^2 + 8) = -2$			
Q.5	If $2\left(\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}\right) = \sqrt{a} +$	\sqrt{b} w	here a and b are natural number find $(a+b)$.			

Answer key

Q.1 (i) 1, (ii) 3/2, (iii) – 1/5, (iv) – 3/7	Q.2 (i) – 4, (ii) – 1/3, (iii) 1/7, (iv) – 5/2, (v) 9/4	
Q.3 (i) 4, (ii) -5, 2, (iii) -2, 2, (iv) -3, 3	Q.4 (i) $\sqrt{2}$, $-\sqrt{2}$, (ii) 1, (iii) 1, (iv) 0, (v) 1, -1	Q.5 8

PRINCIPAL PROPERTISE OF LOGARITHM :

If m, n are arbitrary positive real numbers where

	in m, if the thoritary positive real numbers where				
	a > 0	; a ≠ 1			
(1)	$\log_a m + \log_a n =$	log _a mn	(m > 0, n > 0)		
	Proof: Let	$x_1 = \log_a m$;	$m = a^x$		
		$x_2 = \log_a n$;	$n = a^{x_2}$		
	Now	$mn = a^x$; a^{x_2}			
		$mn = a^{x_1 + x_2}$			
		$x_1 + x_2 = \log_a mn$			
		$\log_a m + \log_a n = \log_a mn$	l		
(2)	$\log_a \frac{m}{n} = \log_a n$	n-log _a n			
		$\frac{m}{n} = a^{x_1 - x_2}$			
		$\mathbf{x}_1 - \mathbf{x}_2 = \log_a \frac{\mathbf{m}}{\mathbf{n}}$			
		$\log_a m - \log_a n = \log_a \frac{m}{m}$	n 1		

Solved Examples

Find the value of x satisfying $\log_{10} (2^x + x - 41) = x (1 - \log_{10} 5)$. Q.1 Sol. We have, $\log_{10} \left(2^{x} + x - 41 \right) = x \left(1 - \log_{10} 5 \right)$ $\log_{10}^{10}(2^{x} + x - 41) = x \log_{10}^{10} 2 = \log_{10}^{10}(2^{x})$ \Rightarrow $2^{x} + x - 41 = 2^{x} \implies x = 41$. Ans. \Rightarrow If the product of the roots of the equation, $x^{\left(\frac{3}{4}\right)(\log_2 x)^2 + \log_2 x - \left(\frac{5}{4}\right)} = \sqrt{2}$ is $\frac{1}{b/2}$ Q.2 (where $a, b \in N$) then the value of (a + b). Sol. Take log on both the sides with base 2 $\left(\frac{3}{4}(\log_2 x)^2 + \log_2 x - \frac{5}{4}\right)\log_2 x = \frac{1}{2}$ $log_{2}x = y$ $3y^{3} + 4y^{2} - 5y - 2 = 0 \implies 3y^{2}(y - 1) + 7y(y - 1) + 2(y - 1) = 0$ $\Rightarrow (y - 1)(3y^{2} + 7y + 2) = 0 \implies (y - 1)(3y + 1)(y + 2) = 0$ \Rightarrow y=1 or y=-2 or y= $\frac{-1}{3}$ $\therefore \qquad x = 2; \ \frac{1}{4}; \ \frac{1}{2^{1/3}} \Rightarrow x_1 x_2 x_3 = \frac{1}{\frac{3}{16}} \Rightarrow a + b = 19$ For $0 < a \neq 1$, find the number of ordered pair (x, y) satisfying the equation $\log_{a^2} |x + y| = \frac{1}{2}$ and Q.3 $\log_{a} y - \log_{a} |x| = \log_{2} 4$. We have $\log_{a^2} |x+y| = \frac{1}{2} \implies |x+y| = a \implies x+y=\pm a$ (1) Sol. Also, $\log_{a}\left(\frac{y}{|x|}\right) = \log_{a^{2}} 4 \implies y = 2 |x|$ (2) If x > 0, then x = $\frac{a}{2}$, y = $\frac{2a}{2}$ If x < 0, then y = 2a, x = -apossible ordered pairs = $\left(\frac{a}{3}, \frac{2a}{3}\right)$ and (-a, 2a) *.*.. Q.4 The system of equations $\log_{10}(2000xy) - \log_{10}x \cdot \log_{10}y = 4$ $\log_{10}(2yz) - \log_{10}y \cdot \log_{10}z = 1$ $\log_{10}(zx) - \log_{10}z \cdot \log_{10}x = 0$ and has two solutions (x_1, y_1, z_1) and (x_2, y_2, z_2) . Find $(y_1 + y_2)$. Sol. From (1), $3 + \log_{10}(2xy) - \log_{10}x \cdot \log_{10}y = 4$(i) $\log_{10}(xy) - \log_{10}x \cdot \log_{10}y = 1 - \log_{10}(2)$ or

EXERCISE-1 (Exercise for JEE Main)

[SINGLE CORRECT CHOICE TYPE]

Q.1	The sum $\sqrt{\frac{5}{4} + \sqrt{\frac{3}{2}}}$	+ $\sqrt{\frac{5}{4} - \sqrt{\frac{3}{2}}}$ is equal to	0		
	(A) $\tan \frac{\pi}{3}$	(B) $\cot \frac{\pi}{3}$	(C) $\sec \frac{\pi}{3}$	(D) $\sin\frac{\pi}{3}$	[3010110650]
Q.2	For $N > 1$, the produ	ct $\frac{1}{\log_2 N} \cdot \frac{1}{\log_N 8} \cdot \frac{1}{\log_N 8}$	$\frac{1}{\log_{32} N} \cdot \frac{1}{\log_N 128} \text{simp}$	olifies to	
	(A) $\frac{3}{7}$	(B) $\frac{3}{7 \ln 2}$	(C) $\frac{3}{5 \ln 2}$	(D) $\frac{5}{21}$	[3010110244]
Q.3	If p is the smallest va	alue of x satisfying the	equation $2^x + \frac{15}{2^x} = 8$	then the value	of 4^p is equal to
	(A) 9	(B) 16	(C) 25	(D) 1	
Q.4	The sum of two numb	pers a and b is $\sqrt{18}$ and	d their difference is $\sqrt{14}$. The value of	log _b a is equal to
	(A) – 1	(B) 2	(C) 1	(D) $\frac{1}{2}$	[3010112439]
Q.5	The value of the expr (A) rational which is l (C) equal to 1		$_{0}^{0}8 \cdot \log_{10}5 + (\log_{10}5)^{3}$ is (B) rational which is g (D) an irrational numb	greater than 1	[3010111646]
Q.6		$(\log 10^3) + \log((\log 10^6)^2)$ wl e base 3, is equal to	here base of the logarith	n is 10. The cha	aracteristic of the
	(A) 2	(B) 3	(C) 4	(D) 5	[3010112388]
Q.7	If $x = \frac{\sqrt{10} + \sqrt{2}}{2}$ and	ind $y = \frac{\sqrt{10} - \sqrt{2}}{2}$, then	In the value of $\log_2(x^2 - 1)$	$-xy + y^2$), is each	qual to
	(A) 0	(B) 2	(C) 3	(D) 4	[3010112337]
Q.8	Suppose that $x < 0$. W	which of the following is	equal to $\left 2x - \sqrt{(x-2)} \right $	2	
	(A) x - 2	(B) $3x - 2$	(C) $3x + 2$	(D) - 3x + 2	[3010112438]

EXERCISE-2 (Exercise for JEE Advanced)

[PARAGRAPH TYPE]

Paragraph for Question no. 1 to 3

	A denotes the product xyz where x, y and z satisfy						
	$\log_3 x = \log 5 - \log 7$						
	$\log_5 y = \log 7 - \log 3$						
	log ₇ z=	$= \log 3 - \log 5$					
	B denotes the sum of s	square of solution of the	equation				
	$\log_2(\log_2 x^6 -$	$-3) - \log_2(\log_2 x^4 - 5) =$	$=\log_2 3$				
	C denotes charactersti	c of logarithm					
	$\log_2(\log_2 3) -$	$\log_2\left(\log_4 3\right) + \log_2\left(\log_2 3\right)$	$(15) - \log_2(\log_6 5) + \log_2 6$	$(\log_6 7) - \log_2(\log_8 7)$			
Q.1	Find value of $A + B +$	- C					
X	(A) 18	(B) 34	(C) 32	(D) 24			
	()		()				
Q.2	Find $\log_2 A + \log_2 B +$	log ₂ C					
	(A) 5	(B) 6	(C) 7	(D) 4			
Q.3	Find $ A - B + C $						
	(A) - 30	(B) 32	(C) 28	(D) 30			

[3010112328]

[MULTIPLE CORRECT CHOICE TYPE]

Q.4 Let N = $\frac{\log_3 135}{\log_{15} 3} - \frac{\log_3 5}{\log_{405} 3}$. Then N is		
(A) a natural number(C) a rational number	(B) coprime with 3(D) a composite number	[3010112387]

Q.5 If $(a^{\log_b x})^2 - 5 x^{\log_b a} + 6 = 0$, where a > 0, b > 0 & $ab \neq 1$, then the value of x can be equal to (A) $2^{\log_b a}$ (B) $3^{\log_a b}$ (C) $b^{\log_a 2}$ (D) $a^{\log_b 3}$ [3010112336]

Q.6 Which of the following statement(s) is/are true?

(A) $\log_{10} 2$ lies between $\frac{1}{4}$ and $\frac{1}{3}$ (B) $\log_{\operatorname{cosec}\left(\frac{\pi}{6}\right)}\left(\cos\frac{\pi}{3}\right) = -1$

(C) $e^{ln(ln3)}$ is smaller than 1

(D)
$$\log_{10} 1 + \frac{1}{2} \log_{10} 3 + \log_{10} \left(2 + \sqrt{3}\right) = \log_{10} \left(1 + \sqrt{3} + \left(2 + \sqrt{3}\right)\right)$$
 [3010112432]

EXERCISE-3 (Miscellaneous Exercise)

Q.1 Let A denotes the value of $\log_{10}\left(\frac{ab + \sqrt{(ab)^2 - 4(a+b)}}{2}\right) + \log_{10}\left(\frac{ab - \sqrt{(ab)^2 - 4(a+b)}}{2}\right)$

when a = 43 and b = 57 and **B** denotes the value of the expression $(2^{\log_6 18}) \cdot (3^{\log_6 3})$. Find the value of (A · B).

- Q.2 (a) If $x = \log_3 4$ and $y = \log_5 3$, find the value of $\log_3 10$ and $\log_3 (1.2)$ in terms of x and y. (b) If $k^{\log_2 5} = 16$, find the value of $k^{(\log_2 5)^2}$. [3010110921]
- Q.3 If mantissa of a number N to the base 32 is varying from 0.2 to 0.8 both inclusive, and whose characteristic is 1, then find the number of integral values of N. [3010110177]
- Q.4 For x, $y \in N$, if $3^{2x-y+1} = 3^{y-2x+1} 8$ and $\log_6 |2x^2y xy^2| = 1 + \log_{36}(xy)$, then find the absolute value of (x-y). [3010110550]
- Q.5 Let $\log_2 x + \log_4 y + \log_4 z = 2$ $\log_9 x + \log_3 y + \log_9 z = 2$ and $\log_{16} x + \log_{16} y + \log_4 z = 2$. Find the value of $\frac{yz}{x}$. [3010110900]
- Q.6 Find the value of x satisfying $\log_{10} (2^x + x 41) = x (1 \log_{10} 5)$. [3010110220]
- Q.7 Positive numbers x, y and z satisfy $xyz = 10^{81}$ and $(log_{10}x)(log_{10}yz) + (log_{10}y)(log_{10}z) = 468$. Find the value of $(log_{10}x)^2 + (log_{10}y)^2 + (log_{10}z)^2$

[3010111000]

Q.8 Find the number of integral solution of the equation
$$\log_{\sqrt{x}}(x+|x-2|) = \log_{x}(5x-6+5|x-2|)$$
.

Q.9 Suppose p, q, r and s
$$\in$$
 N satisfying the relation $p + \frac{1}{q + \frac{1}{r + \frac{1}{s}}} = \frac{89}{68}$, then find the value of $(pq + rs)$.

[3010110887]

Q.10 If 'x' and 'y' are real numbers such that, $2\log(2y-3x) = \log x + \log y$, find $\frac{x}{y}$.

[3010110291]

[3010111267]

27

EXERCISE-4

	(IIT JEE Previous Year's Questions)					
Q.1	The least value of the	expression $2 \log_{10} x - \log_{10} x$	$\log_{x} (0.01)$, for x > 1 is :	[IIT 1090]		
	(A) 10	(B)2	(C) –0.01	[IIT 1980] (D) None of these [3010110151]		
Q.2	Solve for x the followi	ng equation :		[IIT 1987, 3M]		
	$\log_{(2x+3)}(6x^2)$	$+23x+21) = 4 - \log_{(1)}$	$_{3x+7)}(4x^2+12x+9)$	[3010110279]		
Q.3	The equation $x^{\frac{3}{4}(\log_2 x)}$	$e^{2^{2} + \log_{2} x - \frac{5}{4}} = \sqrt{2}$ has:		[IIT 1989, 2M]		
	(A) at least one real so (C) exactly one irration		(B) exactly three real so (D) Complex roots	olution [3010110651]		
Q.4	The nuber of solution	$of \log_4(x-1) = \log_2(x-1)$	- 3) is :			
	(A) 3	(B) 1	(C) 2	[IIT 2001] (D) 0 [3010110575]		
Q.5	Let (x_0, y_0) be the solution Then x_0 is	ation of the following equation $(2x)^{ln 2} = (3y)^{ln 3}$ $3^{ln x} = 2^{ln y}$.	uations			
	(A) $\frac{1}{6}$	(B) $\frac{1}{3}$	(C) $\frac{1}{2}$	(D) 6 [JEE 2011, 3] [3010111020]		
Q.6	The value of $6 + \log_{\frac{3}{2}}$	$\int_{0}^{1} \left(\frac{1}{3\sqrt{2}}\sqrt{4-\frac{1}{3\sqrt{2}}\sqrt{4-\frac{1}{3\sqrt{2}}}}\right)^{1}$	$\frac{1}{3\sqrt{2}}\sqrt{4-\frac{1}{3\sqrt{2}}\dots}$			
				[3010112474]		

ANSWER KEY

EXERCISE-1									
Q.1	А	Q.2	D	Q.3	А	Q.4	А	Q.5	С
Q.6	В	Q.7	С	Q.8	D	Q.9	D	Q.10	С
Q.11	С	Q.12	А						
			I	EXER	CISE-2				
Q.1	В	Q.2	А	Q.3	D	Q.4	A, C	Q.5	B, C
Q.6	A, B, D	Q.7	A, B, C	Q.8	A, C, D				
Q.9	(A) P, (B) P	, R, S,	(C) P, R, (D)) P, Q,	R				
Q.10	(A) Q, R, S,	T; (B)	P; (C) Q, R, S	, T; (D) P, R, S				

EXERCISE-3

Q.1	12 Q.2	(a) $\frac{xy+2}{2y}$, $\frac{x}{2}$	$\frac{y+2y}{2y}$	- <u>2</u> ; (b) 625	Q.3	449	Q.4	5
Q.5	54 Q.6	41	Q.7	5625	Q.8	1	Q.9	23
Q.10 Q.12	4/9 Q.11 (a) 140 (b) 12 (c	c) 47	Q.13	54	Q.14	2	Q.15	12
Q.17	$x \in [1/3, 3] - \{1\}$		Q.18	$2s + 10s^2 - 3$	$3(s^3+1)$		Q.19	y = 6

EXERCISE-4												
Q.1	D	Q.2 x=	-1/4 is the only solution	Q.3	В		Q.4	В				
Q.5	С	Q.6 4										

HINTS & SOLUTIONS

EXERCISE-1 (Exercise for JEE Main)

[SINGLE CORRECT CHOICE TYPE]

1. Let
$$x = \sqrt{\frac{5}{4} + \sqrt{\frac{3}{2}}} + \sqrt{\frac{5}{4}} - \sqrt{\frac{3}{2}} \Rightarrow x^2 = \frac{5}{2} + 2\sqrt{\frac{25}{16} - \frac{3}{2}} = \frac{5}{2} + 2 \cdot \frac{1}{4} = 3$$

 $\Rightarrow x = \sqrt{3} = \tan \frac{\pi}{3}$.
Alternative:
Let $S = \sqrt{\frac{5}{4} + \frac{\sqrt{24}}{4}} + \sqrt{\frac{5}{4} - \frac{\sqrt{24}}{4}} = \frac{\sqrt{5 + 2\sqrt{6}} + \sqrt{5 - 2\sqrt{6}}}{2} = \frac{(\sqrt{3} + \sqrt{2}) + (\sqrt{3} - \sqrt{2})}{2} = \sqrt{3}$. Ans.
2. $\frac{1}{\log_2 N} \cdot \frac{1}{\log_N 8} \cdot \frac{1}{\log_{32} N} \cdot \frac{1}{\log_N 128} = \frac{\ln 2}{\ln N} \cdot \frac{\ln N}{3\ln 2} \cdot \frac{5\ln 2}{\ln N} \cdot \frac{\ln N}{7\ln 2} = \frac{5}{21}$ Ans.
3. We have,
 $2^{2x} - 8 \cdot 2^x + 15 = 0 \Rightarrow (2^x - 3)(2^x - 5) = 0 \Rightarrow 2^x = 3$ or $2^x = 5$
Hence smallest x is obtained by equating $2^x = 3 \Rightarrow x = \log_2 3$
So, $p = \log_2 3$
Hence, $4^p = 2^{2\log_2 3} = 2^{\log_2 9} = 9$. Ans.
4. We have, $a + b = \sqrt{18}$
 $a - b = \sqrt{14}$
squaring & subtract, we get 4ab = 4 \Rightarrow ab = 1
Hence number are reciprocal of each other $\Rightarrow \log_b a = -1$. Ans.
5. $\log_{10} 2 = a$ and $\log_{10} 5 = b \Rightarrow a + b = 1$; $a^3 + 3ab + b^3 = ?$
Now $(a + b)^3 = 1 \Rightarrow a^3 + b^3 + 3ab = 1 \Rightarrow (C)$
6. $N = 10^p; p = \log_1 8 - \log_1 9 + 2\log_1 6$
 $p = \log\left(\frac{8\cdot36}{9}\right) = \log_{10} 32$
 $\therefore N = 10^{\log_1 0^{32}} = 32$
Hence characteristic of $\log_3 32$ is 3. Ans.
7. $\log_2((x + y)^2 - xy)$
but $x + y = \sqrt{10}; x - y = \sqrt{2}; xy = \frac{10-2}{4} = 2$

 $\log_2(10-2) = \log_2 8 = 3$ Ans.

BANSAL CLASSES Private Ltd. 'Gaurav Tower', A-10, Road No.-1, I.P.I.A., Kota-05

8.
$$y = |2x - |x - 2|| = |2x - (2 - x)| = |3x - 2|$$
 as $x < 0$ hence $y = 2 - 3x$ Ans.

9.
$$N = \left(2^{\log_{70}\left((70)^2 \times 2\right)}\right) \left(5^{\log_{70}(70 \times 2)}\right) \left(7^{\log_{70} 2}\right) = \left(2^{2 + \log_{70} 2}\right) \left(5^{1 + \log_{70} 2}\right) \left(7^{\log_{70} 2}\right) = 20 \left(2 \times 5 \times 7\right)^{\log_{70} 2} = 20 \left(70^{\log_{70} 2}\right) = 20 \times 2 = 40.$$
 Ans.

1

``

10. Clearly,
$$p^{\frac{\log_q(\log_q r)}{(\log_q p)}} = p^{\log_p(\log_q r)} = \log_q r$$

and let $y = \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots \infty}}}$, $y > 0 \Rightarrow y = \sqrt{6 + y} \Rightarrow y^2 = 6 + y$
 $\Rightarrow \quad y^2 - y - 6 = 0 \Rightarrow (y - 3) (y + 2) = 0$
But $y > 0$, so $y = 3$.
 \therefore Given expression $\log_3(\log_q r)$
 $= q^{3^{\log_3(\log_q r)}} = q^{(\log_q r)} = r$. Ans.

11. As,
$$\frac{1}{\log_{a}(2-\sqrt{3})} + \frac{1}{\log_{b}(\frac{\sqrt{3}-1}{\sqrt{3}+1})} = \log_{2-\sqrt{3}} a + \log_{\frac{\sqrt{3}-1}{\sqrt{3}+1}} b$$

$$= \log_{2-\sqrt{3}} a + \log_{2-\sqrt{3}} b = \log_{2-\sqrt{3}} (ab)$$
Now, $(2+\sqrt{3})^{\log_{2-\sqrt{3}}(ab)} = \frac{1}{12} \Rightarrow (2-\sqrt{3})^{\log_{2-\sqrt{3}}(\frac{1}{ab})} = \frac{1}{12}$

$$\Rightarrow \frac{1}{ab} = \frac{1}{12} \Rightarrow ab = 12$$
As a, b are co-prime numbers, so either $a = 4, b = 3$ or $a = 3, b = 12$

=4. Hence, (a + b) = 7. Ans.

 $2^{(\log_2 3)^x} = 3^{(\log_3 2)^x}$ 12.

> Taking log to the base 2 on both the sides, we get $(\log_2 3)^{x} \cdot \log_2 2 = (\log_3 2)^{x} \log_2 3$

$$(\log_2 3)^{x-1} = (\log_3 2)^x \implies \frac{(\log_2 3)^{x-1}}{(\log_3 2)^x} = 1$$
$$(\log_2 3)^{2x-1} = 1 = (\log_2 3)^0$$
$$\implies 2x-1=0 \implies x = \frac{1}{2} \qquad \text{Ans.}$$

www.bansaltestprep.com

Courses Offered :

- Online Test Series for JEE Main, JEE Main + JEE Advanced, BITSAT, NEET-UG, AIIMS, KVPY & NTSE.
- > Online Study Material i.e. DPP and Topic-wise Test- Bank Packages for Engineering & Medical Entrance examination.

🤣 admin@bansaltestprep.com

095710-42039

Ideal for Scholars A-10, 'Gaurav Tower' Road No. 1, I.P.I.A., Kota-324005 (Rajasthan) INDIA Tel: 0744-2423738/39/2421097/2424097 Fax: 0744-2436779 Email: admin@bansal.ac.in