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Chapter 1

REPRESENTATION OF POWER SYSTEMS

• One Line Diagram
• Table of Symbols
• Sample Example System
• Impedance Diagram
• Reactance Diagram
• Examples

Chapter 2

SYMMETRICAL THREE PHASE FAULTS

• Transients on a Transmission line
• Short Circuit of Unloaded Syn. Machine
• Short Circuit Reactances
• Sort Circuit Current Oscillogram
• Short Circuit of a Loaded machine
• Examples

Chapter 3

SYMMETRICAL COMPONENTS

• What are Symmetrical Components?
• Resolution of components, Neutral Shift
• Phase shift in Y-Δ Transformer Banks
• Power in terms of Symmetrical Components
• Sequence Imps. & Sequence Networks
• Sequence Networks of system elements
• Examples

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com



3

Chapter 4

UNSYMMETRICAL FAULTS

• Review of Symmetrical Components
• Preamble to Unsymmetrical Fault Analysis
• L-G, L-L, L-L-G & 3-Phase Faults
• Faults on Power Systems
• Effect of Fault Impedance
• Open Conductor Faults
• Examples

Chapter 5
STABILITY STUDIES

• Basic Stability terms
• Swing Equation & Swing Curve
• Power Angle Equation
• Equal Area Criterion
• Determination of Stability of a System
• Examples

EXPECTED PATTERN OF QUESTION PAPER

One question each on chapter 1 and 2    And Two questions each on chapters 3, 4 and 5.
Note:  Five questions out of 8 are to be answered in full.

TEXTS/ REFERENCES:

1. WD Stevenson, Elements of Power System Analysis, MH.
2. IJ Nagrath and DP Kothari, modern Power System analysis, TMH..
3. Hadi Sadat: Power System Analysis, TMH
4. GL Kusic: Computer aided PSA, PHI

PREREQUISITE SUBJECTS:

1. DC and Synchronous Machines
2. Transmission and distribution
3. Transformers and induction machines
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ELECTRICAL POWER SYSTEMS-

THE STATE-OF-THE-ART:

To  Begin  With ……

No. TOPICS SUB-TOPICS

1. Representation of
Power systems

- SLD/ OLD
- React./ Imp. Diagram
- per unit Systems

2. Electric Power
System

- Generation - Machines
- Transmission   Trans-
- Distribution      formers
- Utilization – Tariffs

3. Fault studies
- Sym. Faults
- Sym. Components
- Seq. Imps. / Networks
- Unsymmetrical Faults

4. System Stability
- SSS, TS, DS
- Angle Stability
- Solution of Equations
- EAC, Clarke’s Diagram

5. Linear Graph Theory
(Linear  Equations)

- Incidence Matrices
- Frames of Reference
- Singular/ NS Transformations
- Network Matrices
- Node Elimination
- ZBUS Building

6. Power Flow Studies
(NL Equations)

- Buses, YBUS Advs., Loads flow equations
- Iterative Methods
- GS, NR, FDLF & DCLF
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Present Scenario ……

No. TOPICS SUB-TOPICS

7. Reactive Power
Management

- Importance of VArs
- Compensation Devices,

Sizing, Placement,
Design, Optimality,

- VAr Dispatch
- VAr Co-ordination

8. Gen. Expansion
Planning

- Optimality
- Load Prediction:  Short,

Medium and Long Term
Forecasting

9. Operation and
Control

-EMS: EMC, SLDC,RLDC
-ALFC, Voltage Control
-Tie-line Power Control

10. System
Reliability

- Requirements
- Methods

11. Economic Operation
- Unit Commitment
- Parallel Operation
- Optimal Load Dispatch
- Constraints

12. Instrumentation - CTs,   PTs

13. State Estimation
- SCADA
- Bad Data Elimination
- Security/ Cont. Studies
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Future Trends ……

No. TOPICS SUB-TOPICS

14. Voltage Stability

- Importance
- Angle/ Voltage stability
- P- Vs. Q- |V|  Analysis
- Proximity Indices
- WBOV

15. Power System
Simulators

- Requirements
- Control Blocks
- Data-Base Definition

16. Energy Auditing - Deregulation

17. Demand Side
Management

- Time of Use Pricing

18. Renewable Energy - The Paradigm

19. Sparsity Oriented
Programming

- Sparsity: YBUS

- Ordering Schemes
- LU- Factorization: Fills
- Pivoting
- UD Table Storage

20. Recent Computer
Applications

- AI, Expert Systems
- ANN, Genetic Algorithms
- Fuzzy Logic
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ELECTRICAL POWER SYSTEMS-

An Introduction

Energy in electrical form, apart from being clean, can be generated (converted from other
natural forms) centrally in bulk; can be easily controlled; transmitted efficiently; and it is
easily and efficiently adaptable to other forms of energy for various industrial and
domestic applications. It is therefore a coveted form of energy and is an essential
ingredient for the industrial and all-round development of any country.

The generation of electrical energy (by converting other naturally available forms of
energy), controlling of electrical energy, transmission of energy over long distances to
different load centers, and distribution and utilization of electrical energy together is
called an electrical power system.

The subsystem that generates electrical energy is called generation subsystem or
generating plants (stations). It consists of generating units (consisting of turbine-
alternator sets) including the necessary accessories. Speed governors for the prime
movers (turbines; exciters and voltage regulators for generators, and step-up transformers
also form part of the generating plants.

The subsystem that transmits the electrical energy over long distances (from generating
plants to main load centers) is called transmission subsystem. It consists of transmission
lines, regulating transformers and static/rotating VAR units (which are used to control
active/reactive powers).

The sub system that distributes of energy from load centers to individual consumer points
along with end energy converting devices such as motors, resistances etc., is called
distribution subsystems. It consists of feeders, step-down transformers, and individual
consumer connections along with the terminal energy converting electrical equipment
such as motors, resistors etc.

Electrical energy cannot be stored economically and the electric utility can exercise little
control over the load demand (power) at any time. The power system must, therefore, be
capable of matching the output from the generators to demand at any time at specified
voltage and frequency.

With the constant increase in the electrical energy demand, more and more generating
units, the transmission lines and distribution network along with the necessary controlling
and protective circuits make the power system a large complex system. It is considered as
one of the largest man-made systems. Hence highly trained engineers are needed to
develop and implement the advances of technology for planning, operation and control of
power systems.
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The objective of the Course

The objective this course is to present methods of analysis with respect to the operation
and control of power systems. Planning and expansion, operation and control of a power
system require modeling (representation of the system suitable for analysis), load flow
studies, fault calculations, protective schemes, and stability studies. In addition, there are
more advanced issues such as economic operation which involve special algorithms for
secured and economical operation of power systems.

Load flow analysis is the determination of the voltage, current, real and reactive
powers at various points in the power network under normal operating conditions.

A fault in a power network is any failure which interferes with the normal
operation of the system. Fault calculations or Fault analysis consist of
determining the fault currents for various types of faults at various points of the
network.

Faults can be very destructive to power systems. System protection schemes are
therefore be evolved and implemented for the reliability and safety of power
systems.

Stability analysis deals with the determination of the effects of disturbances on
power systems. The disturbance may vary from be the usual fluctuation of the
load to severe fault causing the loss of an important transmission line.

The economic operation requires power systems to be operated at such conditions
which will ensure minimum cost of operation meeting all the conditions.
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CHAPTER 1

REPRESENTATION OF POWER SYSTEMS

[CONTENTS: One line diagram, impedance diagram, reactance diagram, per unit
quantities, per unit impedance diagram, formation of bus admittance &
impedance matrices, examples]

1.1 One Line Diagram

In practice, electric power systems are very complex and their size is unwieldy. It is very
difficult to represent all the components of the system on a single frame. The
complexities could be in terms of various types of protective devices, machines
(transformers, generators, motors, etc.), their connections (star, delta, etc.), etc. Hence,
for the purpose of power system analysis, a simple single phase equivalent circuit is
developed called, the one line diagram (OLD) or the single line diagram (SLD). An SLD
is thus, the concise form of representing a given power system. It is to be noted that a
given SLD will contain only such data that are relevant to the system analysis/study
under consideration. For example, the details of protective devices need not be shown for
load flow analysis nor it is necessary to show the details of shunt values for stability
studies.

Symbols used for SLD

Various symbols are used to represent the different parameters and machines as single
phase equivalents on the SLD,. Some of the important symbols used are as listed in the
table of Figure 1.
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Example system

Consider for illustration purpose, a sample example power system and data as under:
Generator 1: 30 MVA, 10.5 KV, X”= 1.6   ohms, Generator 2: 15 MVA, 6.6 KV,  X”=
1.2   ohms, Generator 3: 25 MVA,   6.6  KV,  X”= 0.56 ohms, Transformer 1 (3-phase):
15 MVA, 33/11  KV, X=15.2 ohms/phase on HT side,  Transformer 2 (3-phase): 15
MVA, 33/6.2 KV, X=16.0 ohms/phase on HT side, Transmission Line: 20.5 ohms per
phase, Load A: 15 MW, 11 KV, 0.9 PF (lag); and Load B: 40 MW, 6.6 KV, 0.85 PF
(lag). The corresponding SLD incorporating the standard symbols can be shown as in
figure 2.
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It is observed here, that the generators are specified in 3-phase MVA, L-L voltage and
per phase Y-equivalent impedance, transformers are specified in 3-phase MVA, L-L
voltage transformation ratio and per phase Y-equivalent impedance on any one side and
the loads are specified in 3-phase MW, L-L voltage and power factor.

1.2 Impedance Diagram

The impedance diagram on single-phase basis for use under balanced conditions can be
easily drawn from the SLD. The following assumptions are made in obtaining the
impedance diagrams.

Assumptions:

1. The single phase transformer equivalents are shown as ideals with impedances on
appropriate side (LV/HV),

2. The magnetizing reactances of transformers are negligible,
3. The generators are represented as constant voltage sources with series resistance or

reactance,
4. The transmission lines are approximated by their equivalent -Models,
5. The loads are assumed to be passive and are represented by a series branch of

resistance or reactance and
6. Since the balanced conditions are assumed, the neutral grounding impedances do not

appear in the impedance diagram.

Example system

As per the list of assumptions as above and with reference to the system of figure 2, the
impedance diagram can be obtained as shown in figure 3.
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1.3 Reactance Diagram

With some more additional and simplifying assumptions, the impedance diagram can be
simplified further to obtain the corresponding reactance diagram. The following are the
assumptions made.

Additional assumptions:

 The resistance is often omitted during the fault analysis. This causes a very
negligible error since, resistances are negligible

 Loads are Omitted
 Transmission line capacitances are ineffective  &
 Magnetizing currents of transformers are neglected.

Example system

as per the assumptions given above and with reference to the system of figure 2 and
figure 3, the reactance diagram can be obtained as shown in figure 4.

Note: These impedance & reactance diagrams are also refered as the Positive Sequence
Diagrams/ Networks.

1.4 Per Unit Quantities
during the power system analysis, it is a usual practice to represent current, voltage,
impedance, power, etc., of an electric power system in per unit or percentage of the base
or reference value of the respective quantities. The numerical per unit (pu) value of any
quantity is its ratio to a chosen base value of the same dimension. Thus a pu value is a
normalized quantity with respect to the chosen base value.

Definition: Per Unit value of a given quantity is the ratio of the actual value in any
given unit to the base value in the same unit. The percent value is 100 times the pu value.
Both the pu and percentage methods are simpler than the use of actual values. Further,
the main advantage in using the pu system of computations is that the result that comes
out of the sum, product, quotient, etc. of two or more pu values is expressed in per unit
itself.
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In an electrical power system, the parameters of interest include the current, voltage,
complex power (VA), impedance and the phase angle. Of these, the phase angle is
dimensionless and the other four quantities can be described by knowing any two of
them. Thus clearly, an arbitrary choice of any two base values will evidently fix the other
base values.

Normally the nominal voltage of lines and equipment is known along with the complex
power rating in MVA. Hence, in practice, the base values are chosen for complex power
(MVA) and line voltage (KV). The chosen base MVA is the same for all the parts of the
system. However, the base voltage is chosen with reference to a particular section of the
system and the other base voltages (with reference to the other sections of the systems,
these sections caused by the presence of the transformers) are then related to the chosen
one by the turns-ratio of the connecting transformer.

If Ib is the base current in kilo amperes and Vb, the base voltage in kilovolts, then the base
MVA is, Sb = (VbIb). Then the base values of current & impedance are given by

Base current (kA), Ib = MVAb/KVb
=  Sb/Vb (1.1)

Base impedance,    Zb = (Vb/Ib)
= (KVb

2 / MVAb) (1.2)

Hence the per unit impedance is given by

Zpu = Zohms/Zb
= Zohms (MVAb/KVb

2) (1.3)

In 3-phase systems, KVb is the line-to-line value & MVAb is the 3-phase MVA. [1-phase
MVA = (1/3) 3-phase MVA].

Changing the base of a given pu value:

It is observed from equation (3) that the pu value of impedance is proportional directly to
the base MVA and inversely to the square of the base KV. If Zpunew is the pu impedance

required to be calculated on a new set of base values: MVAbnew & KVbnew from the

already given per unit impedance Zpuold, specified on the old set of base values,

MVAbold & KVbold , then we have

Zpunew = Zpu
old (MVAb

new/MVAb
old) (KVb

old/KVb
new)2 (1.4)

On the other hand, the change of base can also be done by first converting the given pu
impedance to its ohmic value and then calculating its pu value on the new set of base
values.

Merits and Demerits of pu System

Following are the advantages and disadvantages of adopting the pu system of
computations in electric power systems:

Merits:
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 The pu value is the same for both 1-phase and & 3-phase systems
 The pu value once expressed on a proper base, will be the same when refereed to

either side of the transformer. Thus the presence of transformer is totally
eliminated

 The variation of values is in a smaller range 9nearby unity). Hence the errors
involved in pu computations are very less.

 Usually the nameplate ratings will be marked in pu on the base of the name plate
ratings, etc.

Demerits:
 If proper bases are not chosen, then the resulting pu values may be highly absurd

(such as 5.8 pu, -18.9 pu, etc.). This may cause confusion to the user. However,
this problem can be avoided by selecting the base MVA near the high-rated
equipment and a convenient base KV in any section of the system.

1.5 pu Impedance / Reactance Diagram
for a given power system with all its data with regard to the generators, transformers,
transmission lines, loads, etc., it is possible to obtain the corresponding impedance or
reactance diagram as explained above. If the parametric values are shown in pu on the
properly selected base values of the system, then the diagram is refered as the per unit
impedance or reactance diagram. In forming a pu diagram, the following are the
procedural steps involved:

1. Obtain the one line diagram based on the given data
2. Choose a common base MVA for the system
3. Choose a base KV in any one section (Sections formed by transformers)
4. Find the base KV of all the sections present
5. Find pu values of all the parameters: R,X, Z, E, etc.
6. Draw the pu impedance/ reactance diagram.

1.6 Formation Of YBUS &  ZBUS
The performance equations of a given power system can be considered in three different
frames of reference as discussed below:

Frames of Reference:

Bus Frame of Reference: There are b independent equations (b = no. of buses) relating
the bus vectors of currents and voltages through the bus impedance matrix and bus
admittance matrix:

EBUS = ZBUS IBUS

IBUS = YBUS EBUS (1.5)

Branch Frame of Reference: There are b independent equations (b = no. of branches of a
selected Tree sub-graph of the system Graph) relating the branch vectors of currents and
voltages through the branch impedance matrix and branch admittance matrix:

EBR = ZBR IBR

IBR = YBR EBR (1.6)
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Loop Frame of Reference: There are b independent equations (b = no. of branches of a
selected Tree sub-graph of the system Graph) relating the branch vectors of currents and
voltages through the branch impedance matrix and branch admittance matrix:

ELOOP = ZLOOP ILOOP

ILOOP = YLOOP ELOOP (1.7)

Of the various network matrices refered above, the bus admittance matrix (YBUS) and the
bus impedance matrix (ZBUS) are determined for a given power system by the rule of
inspection as explained next.

Rule of Inspection

Consider the 3-node admittance network as shown in figure5. Using the basic branch
relation: I = (YV), for all the elemental currents and applying Kirchhoff’s Current Law
principle at the nodal points, we get the relations as under:

At node 1:  I1 =Y1V1 + Y3 (V1-V3) + Y6 (V1 – V2)

At node 2:  I2 =Y2V2 + Y5 (V2-V3) + Y6 (V2 – V1)

At node 3:  0 = Y3 (V3-V1) + Y4V3 + Y5 (V3 – V2) (1.8)

These are the performance equations of the given network in admittance form and they
can be represented in matrix form as:

I1 =     (Y1+Y3 +Y6) -Y6 -Y3 V1

I2 = -Y6 (Y2+Y5 +Y6) -Y5 V2

0       = -Y3 -Y5 (Y3 +Y4+Y5) V3 (1.9)

In other words, the relation of equation (9) can be represented in the form

IBUS = YBUS EBUS (1.10)

Where, YBUS is the bus admittance matrix, IBUS & EBUS are the bus current and bus
voltage vectors respectively.

By observing the elements of the bus admittance matrix, YBUS of equation (9), it is
observed that the matrix elements can as well be obtained by a simple inspection of the
given system diagram:
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Diagonal elements: A diagonal element (Yii) of the bus admittance matrix, YBUS, is equal
to the sum total of the admittance values of all the elements incident at the bus/node i,

Off Diagonal elements: An off-diagonal element (Yij) of the bus admittance matrix, YBUS,
is equal to the negative of the admittance value of the connecting element present
between the buses I and j, if any.

This is the principle of the rule of inspection. Thus the algorithmic equations for the rule
of inspection are obtained as:

Yii =  yij (j = 1,2,…….n)
Yij = - yij (j = 1,2,…….n) (1.11)

For i = 1,2,….n,  n = no. of buses of the given system, yij is the admittance of element
connected between buses i and j and yii is the admittance of element connected between
bus i and ground (reference bus).

Bus impedance matrix
In cases where, the bus impedance matrix is also required, then it cannot be formed by
direct inspection of the given system diagram. However, the bus admittance matrix
determined by the rule of inspection following the steps explained above, can be inverted
to obtain the bus impedance matrix, since the two matrices are inter-invertible. Note: It
is to be noted that the rule of inspection can be applied only to those power systems that
do not have any mutually coupled elements.

1.7 Examples

I EXAMPLES ON RULE OF INSPECTION:

Problem #1: Obtain the bus admittance matrix for the admittance network shown aside
by the rule of inspection

Problem #2: Obtain YBUS and ZBUS matrices for the impedance network shown aside by
the rule of inspection. Also, determine YBUS for the reduced network after eliminating the
eligible unwanted node. Draw the resulting reduced system diagram.

16 -8 -4
YBUS = -8   24 -8

-4 -8   16
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-9.8    5    4
YBUS = 5 -16  10

4   10 -14

ZBUS = YBUS
-1

YBUS
New = YA-YBYD

-1YC

YBUS = -8.66    7.86
7.86 -8.86
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II EXAMPLES ON PER UNIT ANALYSIS:

Problem #1:

Two generators rated 10 MVA, 13.2 KV and 15 MVA, 13.2 KV are connected in parallel
to a bus bar. They feed supply to 2 motors of inputs 8 MVA and 12 MVA respectively.
The operating voltage of motors is 12.5 KV. Assuming the base quantities as 50 MVA,
13.8 KV, draw the per unit reactance diagram. The percentage reactance for generators is
15% and that for motors is 20%.

Solution:

The one line diagram with the data is obtained as shown in figure P1(a).

Selection of base quantities: 50 MVA, 13.8 KV  (Given)

Calculation of pu values:

XG1 = j 0.15 (50/10) (13.2/13.8)2 = j 0.6862 pu.

XG2 = j 0.15 (50/15) (13.2/13.8)2 = j 0.4574 pu.

Xm1 = j 0.2 (50/8) (12.5/13.8)2 = j 1.0256 pu.

Xm2 = j 0.2 (50/12) (12.5/13.8)2 = j 0.6837 pu.

Eg1 =  Eg2 = (13.2/13.8) = 0.9565 00 pu

Em1 = Em2 = (12.5/13.8) = 0.9058 00 pu

Thus the pu reactance diagram can be drawn as shown in figure P1(b).
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Problem #2:

Draw the per unit reactance diagram for the system shown in figure below. Choose a base
of 11 KV, 100 MVA in the generator circuit.

Solution:
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The one line diagram with the data is considered as shown in figure.

Selection of base quantities:

100 MVA, 11 KV in the generator circuit(Given); the voltage bases in other sections are:
11 (115/11.5) = 110 KV in the transmission line circuit and 110 (6.6/11.5) = 6.31 KV in
the motor circuit.

Calculation of pu values:

XG = j 0.1 pu,  Xm = j 0.2 (100/90) (6.6/6.31)2 = j 0.243 pu.

Xt1 =Xt2 = j 0.1 (100/50) (11.5/11)2 = j 0.2185 pu.

Xt3 =Xt4 = j 0.1 (100/50) (6.6/6.31)2 = j 0.219 pu.

Xlines = j 20 (100/1102) = j 0.1652 pu.

Eg = 1.000 pu,  Em = (6.6/6.31) = 1.04500 pu

Thus the pu reactance diagram can be drawn as shown in figure P2(b).

Problem #3:

A 30 MVA, 13.8 KV, 3-phase generator has a sub transient reactance of 15%. The
generator supplies 2 motors through a step-up transformer - transmission line – step-
down transformer arrangement. The motors have rated inputs of 20 MVA and 10 MVA at
12.8 KV with 20% sub transient reactance each. The 3-phase transformers are rated at 35
MVA, 13.2 KV- /115 KV-Y with 10 % leakage reactance. The line reactance is 80
ohms. Draw the equivalent per unit reactance diagram by selecting the generator ratings
as base values in the generator circuit.
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Solution:

The one line diagram with the data is obtained as shown in figure P3(a).

Selection of base quantities:

30 MVA, 13.8 KV in the generator circuit(Given);

The voltage bases in other sections are:

13.8 (115/13.2) = 120.23 KV in the transmission line circuit and

120.23 (13.26/115) = 13.8 KV in the motor circuit.

Calculation of pu values:

XG = j 0.15 pu.

Xm1 = j 0.2 (30/20) (12.8/13.8)2 = j 0.516 pu.

Xm2 = j 0.2 (30/10) (12.8/13.8)2 = j 0.2581 pu.

Xt1 =Xt2 = j 0.1 (30/35) (13.2/13.8)2 = j 0.0784 pu.

Xline = j 80 (30/120.232) = j 0.17 pu.

Eg = 1.000 pu;   Em1 = Em2 = (6.6/6.31) = 0.9300 pu

Thus the pu reactance diagram can be drawn as shown in figure P3(b).
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Problem #4:

A 33 MVA, 13.8 KV, 3-phase generator has a sub transient reactance of 0.5%. The
generator supplies a motor through a step-up transformer - transmission line – step-down
transformer arrangement. The motor has rated input of 25 MVA at 6.6 KV with 25% sub
transient reactance. Draw the equivalent per unit impedance diagram by selecting 25
MVA (3), 6.6 KV (LL) as base values in the motor circuit, given the transformer and
transmission line data as under:

Step up transformer bank: three single phase units, connected –Y, each rated 10 MVA,
13.2/6.6 KV with 7.7 % leakage reactance and 0.5 % leakage resistance;

Transmission line: 75 KM long with a positive sequence reactance of 0.8 ohm/ KM and a
resistance of 0.2 ohm/ KM; and

Step down transformer bank: three single phase units, connected –Y, each rated 8.33
MVA, 110/3.98 KV with 8% leakage reactance and 0.8 % leakage resistance;

Solution:

The one line diagram with the data is obtained as shown in figure P4(a).
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3-phase ratings of transformers:

T1:  3(10) = 30 MVA, 13.2/ 66.43 KV = 13.2/ 115 KV, X = 0.077, R = 0.005 pu.
T2:  3(8.33) = 25 MVA, 110/ 3.983 KV = 110/ 6.8936 KV, X = 0.08, R = 0.008 pu.

Selection of base quantities:

25 MVA, 6.6 KV in the motor circuit (Given); the voltage bases in other sections are:  6.6
(110/6.8936) = 105.316 KV in the transmission line circuit and 105.316 (13.2/115) =
12.09 KV in the generator circuit.

Calculation of pu values:

Xm = j 0.25 pu;  Em = 1.000 pu.

XG = j 0.005 (25/33) (13.8/12.09)2 = j 0.005 pu;  Eg = 13.8/12.09 = 1.41400 pu.

Zt1 = 0.005 + j 0.077 (25/30) (13.2/12.09)2 = 0.005 + j 0.0765 pu. (ref. to LV side)

Zt2 = 0.008 + j 0.08 (25/25) (110/105.316)2 = 0.0087 + j 0.0873 pu. (ref. to HV side)

Zline = 75 (0.2+j 0.8) (25/ 105.3162) = 0.0338 + j 0.1351 pu.

Thus the pu reactance diagram can be drawn as shown in figure P4(b).
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1.8 Exercises for Practice

Problems

1. Determine the reactances of the three generators rated as follows on a common base of
200 MVA, 35 KV: Generator 1: 100 MVA, 33 KV, sub transient reactance of 10%;
Generator 2: 150 MVA, 32 KV, sub transient reactance of 8% and Generator 3: 110
MVA, 30 KV, sub transient reactance of 12%.

[Answers:   XG1 = j 0.1778, Xg2 = j 0.089, Xg3 = j 0.16 all in per unit]

2. A 100 MVA, 33 KV, 3-phase generator has a sub transient reactance of 15%. The
generator supplies 3 motors through a step-up transformer - transmission line – step-
down transformer arrangement. The motors have rated inputs of 30 MVA, 20 MVA and
50 MVA, at 30 KV with 20% sub transient reactance each. The 3-phase transformers are
rated at 100 MVA, 32 KV- /110 KV-Y with 8 % leakage reactance. The line has a
reactance of 50 ohms. By selecting the generator ratings as base values in the generator
circuit, determine the base values in all the other parts of the system. Hence evaluate the
corresponding pu values and draw the equivalent per unit reactance diagram.

[Answers:   XG = j 0.15, Xm1 = j 0.551, Xm2 = j 0.826, Xm3 = j 0.331, Eg1=1.0 00, Em1 = Em2

= Em3 = 0.9100, Xt1 = Xt2 = j 0.0775  and  Xline = j 0.39 all in per unit]

3. A 80 MVA, 10 KV, 3-phase generator has a sub transient reactance of 10%. The
generator supplies a motor through a step-up transformer - transmission line – step-down
transformer arrangement. The motor has rated input of 95 MVA, 6.3 KV with 15% sub
transient reactance. The step-up 3-phase transformer is rated at 90 MVA, 11 KV-Y /110
KV-Y with 10% leakage reactance. The 3-phase step-down transformer consists of three
single phase Y- connected transformers, each rated at 33.33 MVA, 68/6.6 KV with 10%
leakage reactance. The line has a reactance of 20 ohms. By selecting the 11 KV, 100
MVA as base values in the generator circuit, determine the base values in all the other
parts of the system. Hence evaluate the corresponding pu values and draw the equivalent
per unit reactance diagram.

[Answers:    XG = j 1.103, Xm = j 0.165, Eg1=0.9100, Em= 1.02200, Xt1 = j 0.11, Xt2 = j
0.114 and  Xline = j 0.17 all in per unit]

4. For the three-phase system shown below, draw an impedance diagram expressing all
impedances in per unit on a common base of 20 MVA, 2600 V on the HV side of the
transformer. Using this impedance diagram, find the HV and LV currents.
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[Answers:    Sb = 20 MVA; Vb=2.6 KV (HV) and 0.2427 KV (LV); Vt=1.000, Xt = j 0.107,
Zcable = 0.136 +j 0.204 and Zload = 5.66 + j 2.26, I = 0.158 all in per unit, I
(hv)= 0.7 A and I (lv) = 7.5 A]

Objective type questions

1. Under no load conditions the current in a transmission line is due to.
a) Corona effects
b) Capacitance of the line
c) Back flow from earth
d) None of the above

2. In the short transmission line which of the following is used?
a)  - Model
b) T – Model
c) Both (a) and (b)
d) None of the above

3. In the short transmission line which of the following is neglected?
a) I2 R loss
b) Shunt admittance
c) Series impedance
d) All of the above

4. Which of the following loss in a transformer is zero even at full load?
a) Eddy current
b) Hysteresis
c) Core loss
d) Friction loss

5. The transmission line conductors are transposed to
a) Balance the current
b) Obtain different losses
c) Obtain same line drops
d) Balance the voltage

[Ans.: 1(b), 2(a), 3(b), 4(d), 5(c)]
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CHAPTER 2

SYMMETRICAL THREE PHASE FAULTS

[CONTENTS: Preamble, transients on a transmission line, short circuit of an unloaded
synchronous machine- short circuit currents and reactances, short circuit of a loaded
machine, selection of circuit breaker ratings, examples]

2.1 Preamble

in practice, any disturbance in the normal working conditions is termed as a FAULT. The
effect of fault is to load the device electrically by many times greater than its normal
rating and thus damage the equipment involved. Hence all the equipment in the fault line
should be protected from being overloaded. In general, overloading involves the increase
of current up to 10-15 times the rated value. In a few cases, like the opening or closing of
a circuit breaker, the transient voltages also may overload the equipment and damage
them.

In order to protect the equipment during faults, fast acting circuit breakers are put in the
lines. To design the rating of these circuit breakers or an auxiliary device, the fault
current has to be predicted. By considering the equivalent per unit reactance diagrams,
the various faults can be analyzed to determine the fault parameters. This helps in the
protection and maintenance of the equipment.

Faults can be symmetrical or unsymmetrical faults.  In symmetrical faults, the fault
quantity rises to several times the rated value equally in all the three phases. For example,
a 3-phase fault - a dead short circuit of all the three lines not involving the ground. On the
other hand, the unsymmetrical faults may have the connected fault quantities in a random
way. However, such unsymmetrical faults can be analyzed by using the Symmetrical
Components.  Further, the neutrals of the machines and equipment may or may not be
grounded or the fault may occur through fault impedance. The three-phase fault involving
ground is the most severe fault among the various faults encountered in electric power
systems.

2.2 Transients on a transmission line

Now, let us Consider a transmission line of resistance R and inductance L supplied by an
ac source of voltage v, such that v = Vm sin (t+) as shown in figure 1. Consider the
short circuit transient on this transmission line. In order to analyze this symmetrical 3-
phase fault, the following assumptions are made:

 The supply is a constant voltage source,
 The short circuit occurs when the line is unloaded and

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com



27

 The line capacitance is negligible.

Figure 1. Short Circuit Transients on an Unloaded Line.

Thus the line can be modeled by a lumped R-L series circuit. Let the short circuit take
place at t=0. The parameter,  controls the instant of short circuit on the voltage wave.
From basic circuit theory, it is observed that the current after short circuit is composed of
the two parts as under: i =is +it,  Where, is is the steady state current and it is the transient
current. These component currents are determined as follows.

Consider, v = Vm sin (t+)

= iR + L (di/dt) (2.1)

and i = Im sin (t+-) (22.)

Where Vm = 2V;  Im = 2I;  Zmag = [R2+(L)2]= tan-1(L/R) (2.3)

Thus is = [Vm/Z] sin (t+-) (2.4)

Consider the performance equation of the circuit of figure 1 under circuit as:

iR + L (di/dt) = 0

i.e., (R/L + d/dt)i = 0 (2.5)

In order to solve the equation (5), consider the complementary function part of the
solution as: CF = C1 e(-t/) (2.6)

Where  (= L/R) is the time constant and C1 is a constant given by the value of steady
state current at t = 0. Thus we have,

C1 = -is(0)

= - [Vm/Z] sin (-)

=   [Vm/Z] sin (-) (2.7)

Similarly the expression for the transient part is given by:

it = -is(0) e(-t/)

=   [Vm/Z] sin (-) e(-R/L)t (2.8)

Thus the total current under short circuit is given by the solution of equation (1) as
[combining equations (4) and (8)],
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i =is +it

= [2V/Z] sin (t+-)  + [2V/Z] sin (-) e(-R/L)t (2.9)

Thus, is is the sinusoidal steady state current called as the symmetrical short circuit
current and it is the unidirectional value called as the DC off-set current. This causes the
total current to be unsymmetrical till the transient decays, as clearly shown in figure 2.

Figure 2. Plot of Symmetrical short circuit current, i(t).

The maximum momentary current, imm thus corresponds to the first peak. Hence, if the
decay in the transient current during this short interval of time is neglected, then we have
(sum of the two peak values);

imm = [2V/Z] sin (-) + [2V/Z] (2.10)

now, since the resistance of the transmission line is very small, the impedance angle ,
can be taken to be approximately equal to 900. Hence, we have

imm = [2V/Z] cos  + [2V/Z] (2.11)
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This value is maximum when the value of  is equal to zero. This value corresponds to
the short circuiting instant of the voltage wave when it is passing through zero. Thus the
final expression for the maximum momentary current is obtained as:

imm = 2 [2V/Z] (2.12)

Thus it is observed that the maximum momentary current is twice the maximum value of
symmetrical short circuit current. This is refered as the doubling effect of the short circuit
current during the symmetrical fault on a transmission line.

2.3 Short circuit of an unloaded synchronous machine

2.3.1  Short Circuit Reactances

Under steady state short circuit conditions, the armature reaction in synchronous
generator produces a demagnetizing effect. This effect can be modeled as a reactance, Xa

in series with the induced emf and the leakage reactance, Xl of the machine as shown in
figure 3. Thus the equivalent reactance is given by:

Xd = Xa +Xl (2.13)

Where Xd is called as the direct axis synchronous reactance of the synchronous machine.
Consider now a sudden three-phase short circuit of the synchronous generator on no-load.
The machine experiences a transient in all the 3 phases, finally ending up in steady state
conditions.

Figure 3. Steady State Short Circuit Model

Immediately after the short circuit, the symmetrical short circuit current is limited only by
the leakage reactance of the machine. However, to encounter the demagnetization of the
armature short circuit current, current appears in field and damper windings, assisting the
rotor field winding to sustain the air-gap flux. Thus during the initial part of the short
circuit, there is mutual coupling between stator, rotor and damper windings and hence the
corresponding equivalent circuit would be as shown in figure 4. Thus the equivalent
reactance is given by:

Xd” = Xl +[1/Xa + 1/Xf + 1/Xdw]-1 (2.14)
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Where Xd” is called as the sub-transient reactance of the synchronous machine. Here, the
equivalent resistance of the damper winding is more than that of the rotor field winding.
Hence, the time constant of the damper field winding is smaller. Thus the damper field
effects and the eddy currents disappear after a few cycles.

Figure 4. Model during Sub-transient Period of Short Circuit

In other words, Xdw gets open circuited from the model of Figure 5 to yield the model as
shown in figure 4. Thus the equivalent reactance is given by:

Xd’ = Xl +[1/Xa + 1/Xf ]-1 (2.15)

Where Xd’ is called as the transient reactance of the synchronous machine.
Subsequently, Xf also gets open circuited depending on the field winding time constant
and yields back the steady state model of figure 3.

Figure 5. Model during  transient Period of Short Circuit

Thus the machine offers a time varying reactance during short circuit and this value of
reactance varies from initial stage to final one such that:    Xd  Xd’  Xd’

2.3.2  Short Circuit Current Oscillogram

Consider the oscillogram of short circuit current of a synchronous machine upon the
occurrence of a fault as shown in figure 6. The symmetrical short circuit current can be
divided into three zones: the initial sub transient period, the middle transient period and
finally the steady state period. The corresponding reactances, Xd,” Xd’ and Xd
respectively, are offered by the synchronous machine during these time periods.
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Figure 6. SC current Oscillogram of Armature Current.

The currents and reactances during the three zones of period are related as under in terms
of the intercepts on the oscillogram (oa, ob and oc are the y-intercepts as indicated in
figure 6):

RMS value of the steady state current = I = [oa/2] = [Eg/Xd]
RMS value of the transient current = I’ = [ob/2] = [Eg/Xd’]
RMS value of the sub transient current = I = [oc/2] = [Eg/Xd”] (2.16)

2.4 short circuit of a loaded machine
In the analysis of section 2.3 above, it has been assumed that the machine operates at no
load prior to the occurrence of the fault. On similar lines, the analysis of the fault
occurring on a loaded machine can also be considered.

Figure 7 gives the circuit model of a synchronous generator operating under steady state
conditions supplying a load current Il to the bus at a terminal voltage Vt. Eg is the induced
emf under the loaded conditions and Xd is the direct axis synchronous reactance of the
generator.

Figure 7. Circuit models for a fault on a loaded machine.
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Also shown in figure 7, are the circuit models to be used for short circuit current
calculations when a fault occurs at the terminals of the generator, for sub-transient current
and transient current values. The induced emf values used in these models are given by
the expressions as under:

Eg = Vt + j ILXd = Voltage behind syn. reactance

Eg’= Vt + j ILXd’ = Voltage behind transient reactance

Eg“= Vt + j ILXd” = Voltage behind subtr. Reactance (2.17)

The synchronous motors will also have the terminal emf values and reactances. However,
then the current direction is reversed. During short circuit studies, they can be replaced by
circuit models similar to those shown in figure 7 above, except that the voltages are given
by the relations as under:

Em = Vt - j ILXd = Voltage behind syn. reactance

Em’= Vt - j ILXd’ = Voltage behind transient reactance

Em“= Vt - j ILXd” = Voltage behind subtr. Reactance (2.18)

The circuit models shown above for the synchronous machines are also very useful while
dealing with the short circuit of an interconnected system.

2.5 Selection of circuit breaker ratings
For selection of circuit breakers, the maximum momentary current is considered
corresponding to its maximum possible value. Later, the current to be interrupted is
usually taken as symmetrical short circuit current multiplied by an empirical factor in
order to account for the DC off-set current. A value of 1.6 is usually selected as the
multiplying factor.

Normally, both the generator and motor reactances are used to determine the momentary
current flowing on occurrence of a short circuit. The interrupting capacity of a circuit
breaker is decided by Xd” for the generators and Xd’ for the motors.

2.6 Examples

Problem #1: A transmission line of inductance 0.1 H and resistance 5  is suddenly
short circuited at t = 0, at the far end of a transmission line and is supplied by an ac
source of voltage v = 100 sin (100t+150).  Write the expression for the short circuit
current, i(t).  Find the approximate value of the first current maximum for the given
values of  and .  What is this value for =0, and =900? What should be the instant of
short circuit so that the DC offset current is (i)zero and (ii)maximum?
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Solution:

Figure P1.

Consider the expression for voltage applied to the transmission system given by

v = Vm sin(t+)  =  100 sin (100t+150)

Thus we get:   Vm = 100 volts;   f = 50 Hz    and  = 150.

Consider the impedance of the circuit given by:

Z = R + jL   = 5 + j (100) (0.1)   = 5 + j 31.416 ohms.

Thus we have: Zmag=31.8113 Ohms; =80.9570 and =L/R=0.1/5=0.02 seconds.

The short circuit current is given by:

i(t) = [Vm/Z] sin (t+-)  + [Vm/Z] sin (-) e-(R/L)t

= [100/31.8113] [sin (100t+150-80.9570) + sin(80.9570-150) e-(t/0.02)]

=  3.1435 sin(314.16 t – 65.96) +2.871 e–50t

Thus we have:

i)   imm = 3.1435 + 2.871 e–50t

where t is the time instant of maximum of symmetrical short circuit current. This instant
occurs at (314.16 tc – 65.960) = 900 ; Solving we get,  t = 0.00867 seconds so that imm = 5
Amps.

ii)  imm = 2Vm/Z = 6.287 A; for =0, and =900 (Also, imm = 2 (3.1435) = 6.287 A)

iii) DC offset current = [Vm/Z] sin (-) e-(R/L)t

= zero, if  (-) = zero,  i.e.,  = ,              or  = 80.9570

= maximum if  (-) = 900,  i.e.,  =  - 900,    or  = - 9.0430.

Problem #2: A 25 MVA, 11 KV, 20% generator is connected through a step-up
transformer- T1 (25 MVA, 11/66 KV, 10%), transmission line (15% reactance on a base
of 25 MVA, 66 KV) and step-down transformer-T2 (25 MVA, 66/6.6 KV, 10%) to a bus
that supplies 3 identical motors in parallel (all motors rated: 5 MVA, 6.6 KV, 25%). A
circuit breaker-A is used near the primary of the transformer T1 and breaker-B is used
near the motor M3. Find the symmetrical currents to be interrupted by circuit breakers A
and B for a fault at a point P, near the circuit breaker B.
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Solution:

Consider the SLD with the data given in the problem statement. The base values are
selected as under:

Figure P2(a)

Selection of bases:

Sb = 25 MVA (common); Vb = 11 KV (Gen. circuit)- chosen so that then Vb = 66 KV
(line circuit) and Vb = 6.6 KV (Motor circuit).

Pu values:

Xg=j0.2 pu, Xt1=Xt2=j0.1 pu; Xm1=Xm2=Xm3=j0.25(25/5)=j1.25 pu; Xline=j0.15 pu.

Since the system is operating at no load, all the voltages before fault are 1 pu.
Considering the pu reactance diagram with the faults at P, we have:

Figure P2(b)

Current to be interrupted by circuit breaker A = 1.0 /j[0.2+0.1+0.15+0.1]

= - j 1.818 pu = - j 1.818 (25/[3(11)]) = - j 1.818 (1.312) KA = 2.386 KA

And Current to be interrupted by breaker B = 1/j1.25 = - j 0.8 pu

= - j0.8 (25/[3(6.6)]) = - j0.8 (2.187) KA = 1.75 KA.
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Problem #3: Two synchronous motors are connected to a large system bus through a
short line. The ratings of the various components are: Motors(each)= 1 MVA, 440 volts,
0.1 pu reactance; line of 0.05 ohm reactance and the short circuit MVA at the bus of the
large system is 8 at 440 volts. Calculate the symmetrical short circuit current fed into a
three-phase fault at the motor bus when the motors are operating at 400 volts.

Solution:

Consider the SLD with the data given in the problem statement. The base values are
selected as under:

Figure P3.

Sb = 1 MVA; Vb = 0.44 KV (common)- chosen so that   Xm(each)=j0.1 pu, Em = 1.000,
Xline=j0.05 (1/0.442) = j 0.258 pu  and Xlarge-system -= (1/8) = j 0.125 pu.

Thus the prefault voltage at the motor bus; Vt = 0.4/0.44 = 0.90900,

Short circuit current fed to the fault at motor bus (If = YV);

If = [0.125 + 0.258]-1 + 2.0 }0.909  = [20.55 pu] [1000/(3(0.4))]

= 20.55 (1.312) KA = 26.966 KA.

Problem #4: A generator-transformer unit is connected to a line through a circuit
breaker. The unit ratings are: Gen.: 10 MVA, 6.6 KV, Xd” = 0.1 pu, Xd’ = 0.2 pu and Xd

= 0.8 pu;  and Transformer: 10 MVA, 6.9/33 KV, Xl = 0.08 pu;  The system is operating
on no-load at a line voltage of 30 KV, when a three-phase fault occurs on the line just
beyond the circuit breaker. Determine the following:

(i) Initial symmetrical RMS current in the breaker,
(ii) Maximum possible DC off-set current in the breaker,

(iii) Momentary current rating of the breaker,
(iv) Current to be interrupted by the breaker and the interrupting KVA and
(v) Sustained short circuit current in the breaker.

Solution:
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Consider the base values selected as 10 MVA, 6.6 KV (in the generator circuit) and
6.6(33/6.9) = 31.56 KV(in the transformer circuit). Thus the base current is:

Ib = 10 / [3(31.56)] = 0.183 KA

The pu values are: Xd” = 0.1 pu, Xd’ = 0.2 pu and Xd = 0.8 pu;  and XTr = 0.08 (6.9/6.6)2

= 0.0874 pu; Vt = (30/31.6) = 0.9500 pu.
Initial symmetrical RMS current = 0.9500 / [0.1 + 0.0874] = 5.069 pu = 0.9277 KA;
Maximum possible DC off-set current = 2 (0.9277) = 1.312 KA;
Momentary current rating = 1.6(0.9277) = 1.4843 KA; (assuming 60% allowance)
Current to be interrupted by the breaker (5 Cycles) = 1.1(0.9277)  = 1.0205 KA;
Interrupting MVA = 3(30) (1.0205) = 53.03 MVA;
Sustained short circuit current in the breaker = 0.9500 (0.183) / [0.8 + 0.0874]

= 0.1959 KA.

2.7 Exercises for Practice

PROBLEMS

1. The one line diagram for a radial system network consists of two generators, rated  10
MVA, 15% and 10 MVA, 12.5 % respectively and connected in parallel to a bus bar A at
11 KV. Supply from bus A is fed to bus B (at 33 KV) through a transformer T1 (rated: 10
MVA, 10%) and OH line (30 KM long). A transformer T2 (rated: 5 MVA, 8%) is used in
between bus B (at 33 KV) and bus C (at 6.6 KV). The length of cable running from the
bus C up to the point of fault, F is 3 KM. Determine the current and line voltage at 11 kV
bus A under fault conditions, when a fault occurs at the point F, given that Zcable = 0.135
+ j 0.08 ohm/ kM  and ZOH-line = 0.27 + j 0.36 ohm/kM. [Answer:    9.62 kV at the 11 kV
bus]

2. A generator (rated: 25MVA, 12. KV, 10%) supplies power to a motor (rated: 20 MVA,
3.8 KV, 10%) through a step-up transformer (rated:25 MVA, 11/33 KV, 8%),
transmission line (of reactance 20 ohms) and a step-down transformer (rated:20 MVA,
33/3.3 KV, 10%). Write the pu reactance diagram. The system is loaded such that the
motor is drawing 15 MW at 0.9 leading power factor, the motor terminal voltage being
3.1 KV. Find the sub-transient current in the generator and motor for a fault at the
generator bus.        [Answer:   Ig” = 9.337 KA; Im” = 6.9 KA]

3. A synchronous generator feeds bus 1 and a power network feed bus 2 of a system.
Buses 1 and 2 are connected through a transformer and a line. Per unit reactances of the
components are:  Generator(bus-1):0.25; Transformer:0.12  and Line:0.28. The power
network is represented by a generator with an unknown reactance in series. With the
generator on no-load and with 1.0 pu voltage at each bus, a three phase fault occurring on
bus-1 causes a current of 5 pu to flow into the fault. Determine the equivalent reactance
of the power network.                     [Answer:   X = 0.6 pu]

4. A synchronous generateor, rated 500 KVA, 440 Volts, 0.1 pu sub-transient reactance is
supplying a passive load of 400 KW, at 0.8 power factor (lag). Calculate the initial
symmetrical RMS current for a three-phase fault at the generator terminals.

[Answer: Sb=0.5 MVA; Vb=0.44 KV; load=0.8–36.90; Ib=0.656 KA; If=6.97 KA]
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OBJECTIVE TYPE QUESTIONS

1. When a 1-phase supply is across a 1-phase winding, the nature of the
magnetic field produced is

a) Constant in magnitude and direction

b) Constant in magnitude and rotating at synchronous speed

c) Pulsating in nature

d) Rotating in nature

2. The damper windings are used in alternators to

a) Reduce eddy current loss

b) Reduce hunting

c) Make rotor dynamically balanced

d) Reduce armature reaction

3. The neutral path impedance Zn is used in the equivalent sequence network
models as

a) Zn2

b) Zn

c) 3 Zn

d) An ineffective value

4. An infinite bus-bar should maintain

a) Constant frequency and Constant voltage

b) Infinite frequency and Infinite voltage

c) Constant frequency and Variable voltage

d) Variable frequency and Variable voltage

5. Voltages under extra high voltage are

a) 1KV & above

b) 11KV & above

c) 132 KV & above

d) 330 KV & above
[Ans.: 1(c), 2(b), 3(c), 4(a), 5(d)]
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CHAPTER  3:  SYMMETRICAL COMPONENTS

[CONTENTS: Introduction, The a operator, Power in terms of symmetrical components, Phase shift in Y-
Δ transformer banks, Unsymmetrical series impedances, Sequence impedances, Sequence
networks, Sequence networks of an unloaded generator, Sequence networks of elements,
Sequence networks of power system]

3.1    INTRODUCTION

Power systems are large and complex three-phase systems. In the normal operating
conditions, these systems are in balanced condition and hence can be represented as an
equivalent single phase system.  However, a fault can cause the system to become
unbalanced. Specifically, the unsymmetrical faults: open circuit, LG, LL, and LLG faults
cause the system to become unsymmetrical. The single-phase equivalent system method
of analysis (using SLD and the reactance diagram) cannot be applied to such
unsymmetrical systems. Now the question is how to analyze power systems under
unsymmetrical conditions? There are two methods available for such an analysis:
Kirchhoff’s laws method and Symmetrical components method.

The method of symmetrical components developed by C.L. Fortescue in 1918 is a
powerful technique for analyzing unbalanced three phase systems. Fortescue defined a
linear transformation from phase components to a new set of components called
symmetrical components. This transformation represents an unbalanced three-phase
system by a set of three balanced three-phase systems. The symmetrical component
method is a modeling technique that permits systematic analysis and design of three-
phase systems. Decoupling a complex three-phase network into three simpler networks
reveals complicated phenomena in more simplistic terms.

Consider a set of three-phase unbalanced voltages designated as Va, Vb, and Vc.
According to Fortescue theorem, these phase voltages can be resolved into following
three sets of components.

1. Positive-sequence components, consisting of three phasors equal in magnitude,
displaced from each other by 1200 in phase, and having the same phase sequence as
the  original phasors, designated as Va1, Vb1, and Vc1

2. Negative-sequence components, consisting of three phasors equal in magnitude,
displaced from each other by 1200 in phase, and having the phase sequence opposite
to that of the original phasors, designated as Va2, Vb2, and Vc2

3. Zero-sequence components, consisting of three phasors equal in magnitude, and with
zero phase displacement from each other, designated as Va0, Vb0, and Vc0

Since each of the original unbalanced phasors is the sum of its components, the
original phasors expressed in terns of their components are

Va = Va1 + Va2 + Va0

Vb = Vb1 + Vb2 + Vb0

Vc = Vc1 + Vc2 + Vc0 (3.1)
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The synthesis of a set of three unbalanced phasors from the three sets of symmetrical
components is shown in Figure1.

Figure 3.1 Graphical addition of symmetrical components
To obtain unbalanced phasors.

3.2 THE OPERATOR ‘a’

The relation between the symmetrical components reveals that the phase displacement
among them is either 1200 or 00. Using this relationship, only three independent
components is sufficient to determine all the nine components. For this purpose an
operator which rotates a given phasor by 1200 in the positive direction (counterclockwise)
is very useful. The letter ‘a’ is used to designate such a complex operator of unit
magnitude with an angle of 1200.  It is defined by

a = 01201 = -0.5 + j 0.866 (3.2)
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If the operator ‘a’ is applied to a phasor twice in succession, the phasor is rotated through
2400.  Similarly, three successive applications of ‘a’ rotate the phasor through 3600.

To reduce the number of unknown quantities, let the symmetrical components of
Vb and Vc can be expressed as product of some function of the operator a and a
component of  Va. Thus,

Vb1 = a 2 Va1 Vb2 = a Va2 Vb0 = Va0

Vc1 = a Va1 Vc2 = a 2 Va2 Vc0 = Va0

Using these relations the unbalanced phasors can be written as

Va = Va0 + Va1 + Va2

Vb = Va0 + a 2Va1 + a Va2

Vc = Va0 + a Va1 + a 2Va2 (3.3)

In matrix form,
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The inverse of A matrix is
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(3.6)

With these definitions, the above relations can be written as

Vp = A Vs; Vs = A-1Vp (3.7)

Thus the symmetrical components of Va, Vb and Vc are given by

Va0 = 1/3 (Va + Vb + Vc)
Va1 = 1/3 (Va + a Vb + a 2Vc)
Va2 = 1/3 (Va + a 2Vb + a Vc) (3.8)

Since the sum of three balanced voltages is zero, the zero-sequence component voltage in
a balanced three-phase system is always zero. Further, the sum of line voltages of even an
unbalanced three-phase system is zero and hence the corresponding zero-sequence
component of line voltages.
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NUMERICAL EXAMPLES

Example 1 : The line currents in a 3-ph 4 –wire system are Ia = 100<300;  Ib = 50<3000;
Ic = 30<1800. Find the symmetrical components and the neutral current.

Solution:
Ia0  = 1/3(Ia + Ib + Ic)        = 27.29 < 4.70 A
Ia1  = 1/3(Ia + a Ib + a2Ic)  = 57.98 < 43.30 A
Ia2  = 1/3(Ia + a2 Ib + a Ic) = 18.96 < 24.90 A
In    =  Ia + Ib + Ic = 3 Ia0   =  81.87 <4.70 A

Example 2: The sequence component voltages of phase voltages of a 3-ph system are:
Va0 = 100 <00 V; Va1 =   223.6 < -26.60 V ; Va2 = 100 <1800 V. Determine the  phase
voltages.

Solution:
Va = Va0 + Va1 + Va2         = 223.6 <-26.60 V
Vb = Va0 + a2Va1 + a Va2  = 213 < -99.90  V
Vc = Va0 + a Va1 + a2 Va2  = 338.6 < 66.20 V

Example 3: The two seq. components and the corresponding phase voltage of a 3-ph
system are Va0 =1<-600 V;   Va1=2<00 V ;  & Va = 3 <00 V. Determine the other phase
voltages.

Solution:
Va = Va0 + Va1 + Va2
Va2 = Va – Va0 – Va1 = 1 <600 V
Vb =  Va0 + a2Va1 + a Va2 =  3 < -1200 V
Vc =  Va0 + a Va1 + a2 Va2 = 0 V

Example 4: Determine the sequence components if Ia =10<600 A; Ib =10<-600 A; Ic =
10 <1800 A.

Solution:
Ia0 = 1/3(Ia + Ib + Ic) = 0 A
Ia1 = 1/3(Ia + a Ib + a2Ic) = 10<600 A
Ia2 = 1/3(Ia + a2 Ib + a Ic) = 0 A

Observation: If the phasors are balanced, two sequence components will be zero.

Example 5: Determine the sequence components if  Va = 100 <300 V; Vb = 100
<1500 V  & Vc = 100 <-900 V.

Solution:
Va0 = 1/3(Va + Vb + Vc) = 0 V
Va1 = 1/3(Va + a Vb + a2Vc)    = 0 V
Va2 = 1/3(Va + a2 Vb + a Vc)   = 100<300 V

Observation: If the phasors are balanced, two sequence components will be zero.
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Example 6: The line b of a 3-ph line feeding a balanced Y-load with neutral grounded is
open resulting in line currents: Ia = 10<00 A & Ic = 10<1200 A.  Determine the sequence
current components.

Solution:
Ib   = 0 A.
Ia0 = 1/3(Ia + Ib + Ic) = 3.33<600 A
Ia1 = 1/3(Ia + a Ib + a2Ic) = 6.66<00 A
Ia2 = 1/3(Ia + a2 Ib + a Ic) = 3.33<-600 A

Example 7: One conductor of a 3-ph line feeding a balanced   delta-load is open.
Assuming that line c is open, if current in line a is 10<00 A , determine the sequence
components of the line currents.

Solution:
Ic = 0 A;  Ia = 10<00 A.  Ib = 10<1200 A
Ia0 = 1/3(Ia + Ib + Ic) =  0 A
Ia1 = 1/3(Ia + a Ib + a2Ic) =  5.78<-300 A
Ia2 = 1/3(Ia + a2 Ib + a Ic) =  5.78< 300 A

Note: The zero-sequence components of line currents of a delta load (3-ph 3-wire) system
are zero.

3.3 POWER IN TERMS OF SYMMETRICAL COMPONENTS

The power in a three-phase system can be expressed in terms of symmetrical components
of the associated voltages and currents. The power flowing into a three-phase system
through three lines a, b and c is

S = P + j Q = Va Ia
* + Vb Ib

* + Vc Ic
* (3.9)

where Va , Vb and  Vc are voltages to neutral at the terminals and   Ia , Ib, and Ic are the
currents flowing into the system in the three lines. In matrix form

 


















































c

b

a

c

b

a

c

b

a

vvvS

I

I

I

V

V

V

I

I

I
T

cba

**

Thus
S = [A V]T [AI]*

Using the reversal rule of the matrix algebra

S = VT AT A* I*

Noting that AT = A and a and a 2 are conjugates,
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Thus the complex three-phase power is given by

S =  Va Ia
* + Vb Ib

* + Vc Ic
* = 3 Va0 Ia0 + 3 Va1 Ia1 + 3 Va2 Ia2 (3.10)

Here, 3Va0Ia0, 3Va1Ia1 and 3Va2Ia2 correspond to the three-phase power delivered to the
zero-sequence system, positive-sequence system, and negative-sequence system,
respectively. Thus, the total three-phase power in the unbalanced system is equal to the
sum of the power delivered to the three sequence systems representing the three-phase
system.

3.4 PHASE SHIFT OF COMPONENTS IN Y-Δ TRANSFORMER BANKS

The dot convention is used to designate the terminals of transformers. The dots are placed
at one end of each of the winding on the same iron core of a transformer to indicate that
the currents flowing from the dotted terminal to the unmarked terminal of each winding
produces an mmf acting in the same direction in the magnetic circuit. In that case, the
voltage drops from dotted terminal to unmarked terminal in each side of the windings are
in phase.

The HT terminals of three-phase transformers are marked as H1, H2 and H3 and the
corresponding LT side terminals are marked X1, X2 and X3. In Y-Y or Δ-Δ transformers,
the markings are such that voltages to neutral from terminals H1, H2, and H3 are in phase
with the voltages to neutral from terminals X1, X2, and X3, respectively. But, there will
be a phase shift (of 300) between the corresponding quantities of the primary and
secondary sides of a star-delta (or delta-star) transformer. The standard for connection
and designation of transformer banks is as follows:
1. The HT side terminals are marked as H1, H2 and H3 and the corresponding LT side

terminals are marked X1, X2 and X3.
2. The phases in the HT side are marked in uppercase letters as A, B, and C.  Thus for

the sequence abc, A is connected to H1, B to H2 and C to H3. Similarly, the phases in
the LT side are marked in lowercase letters as a, b and c.

3. The standard for designating the terminals H1 and X1 on transformer banks requires
that the positive-sequence voltage drop from H1 to neutral lead the positive sequence
voltage drop from X1 to neutral by 300 regardless of the type of connection in the HT
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and LT sides. Similarly, the voltage drops from H2 to neutral and H3 to neutral lead
their corresponding values, X2 to neutral and X3 to neutral by 300.

Figure 3.2 Wiring diagram and voltage phasors of a Y-Δ transformer
With Y connection on HT side.

Consider a Y- Δ transformer as shown in Figure a. The HT side terminals H1, H2, and
H3 are connected to phases A, B, and C, respectively and the phase sequence is ABC.
The windings that are drawn in parallel directions are those linked magnetically (by being
wound on the same core). In Figure a winding AN is the phase on the Y-side which is
linked magnetically with the phase winding bc on the Δ side.  For the location of the dots
on the windings VAN is in phase with Vbc. Following the standards for the phase shift, the
phasor diagrams for the sequence components of voltages are shown in Figure b. The
sequence component of VAN1 is represented as VA1 (leaving subscript ‘N’ for convenience
and all other voltages to neutral are similarly represented. The phasor diagram reveals
that VA1 leads Vb1 by 300. This will enable to designate the terminal to which b is
connected as X1. Inspection of the positive-sequence and negative-sequence phasor
diagrams revels that Va1 leads VA1 by 900 and Va2 lags VA2 by 900.

From the dot convention and the current directions assumed in Figure a, the phasor
diagram for the sequence components of currents can be drawn as shown in Figure c.
Since the direction specified for IA in Figure a is away from the dot in the winding and the
direction of Ibc is also away from the dot in its winding, IA and Ibc are 1800 out of phase.
Hence the phase relation between the Y and Δ currents is as shown in Figure c. From this
diagram, it can be seen that Ia1 leads IA1 by 900 and Ia2 lags IA2 by 900.    Summarizing
these relations between the symmetrical components on the two sides of the transformer
gives:
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Figure 3.3  Current phasors of Y-Δ transformer with Y connection on HT side.

Va1 = +j VA1 Ia1 = +j IA1

Va2 = -j VA2 Ia1 = -j IA2 (3.11)
Where each voltage and current is expressed in per unit. Although, these relations are
obtained for Y- Δ transformer with Y connection in the HT side, they are valid even
when the HT side is connected in Δ and the LT side in Y.

NUMERICAL EXAMPLES

Example 8: Three identical resistors are Y-connected to the LT Y-side of a delta-star
transformer. The voltages at the resistor loads are  |Vab| = 0.8 pu., |Vbc|=1.2 pu., and
|Vca|=1.0 pu. Assume that the neutral of the load is not connected to the neutral of the
transformer secondary. Find the line voltages on the HT side of the transformer.

Solution:
Assuming an angle of 1800 for Vca, find the angles of other voltages

Vab = 0.8<82.80 pu
Vbc = 1.2<-41.40 pu
Vca = 1.0<1800 pu

The symmetrical components of line voltages are

Vab0 = 1/3 (Vab +Vbc + Vca) = 0
Vab1 = 1/3 (Vab +aVbc + a2Vca) = 0.985<73.60 V
Vab1 = 1/3 (Vab +a2Vbc + aVca) = 0.235<220.30 V

Since  Van1 = Vab1<-300 and Van2 = Vab2<300

Van1 = 0.985<73.60-300

= 0.985<43.60 pu (L-L base)
Van2 = 0.235<220.30+300

= 0.235<250.30 pu(L-L base)

Since each resistor is of 1.0<0 pu. Impedance,
Ian1 =  (Van1/Z)  = 0.985<43.60 pu.
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Ian2 =  (Van2/Z)  = 0.235<250.30 pu.

The directions are +ve for currents from supply toward the delta primary and away from
the Y-side toward the load. The HT side line to neutral voltages are

VA1 = - j Va1 = 0.985<-46.40

VA2 = +j Va2 = 0.235<-19.70

VA = VA1 +VA2 = 1.2<-41.30 pu.
VB1 =  a2VA1 and VB2 = a VA2
VB  = VB1 + VB2  = 1<1800 pu.
VC1 = a VA1 and VC2 = a2VA2
VC = VC1 + VC2 = 0.8<82.90 pu.

The HT side line voltages are

VAB  =  VA – VB = 2.06<-22.60 pu. (L-N base)
= (1/3) VAB = 1.19<-22.60 pu. (L-L base)

VBC  =  VB – Vc = 1.355<215.80 pu. (L-N base)
=  (1/3) VBC = 0.782<215.80 pu. (L-L base)

VCA  =  VC – VA = 1.78<116.90 pu. (L-N base)
= (1/3) VCA = 1.028<116.90 pu. (L-L base)

3.5 UNSYMMETRICAL IMPEDANCES

Figure 3.4 Portion of three-phase system representing three
unequal series impedances.

Consider the network shown in Figure. Assuming that there is no mutual impedance
between the impedances Za, Zb, and Zc, the voltage drops Vaa’, vbb’, and Vcc’ can be
expressed in matrix form as
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And in terms of symmetrical components of voltage and current as
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If the three impedances are equal ( i.e., if Za = Zb = Zc), Eq reduces to

Vaa’1 = Za Ia1; Vaa’2 = Za Ia2; Vaa’0 = Za Ia0 (3.14)

Thus, the symmetrical components of unbalanced currents flowing in balanced series
impedances (or in a balanced Y load) produce voltage drops of like sequence only.
However, if the impedances are unequal or if there exists mutual coupling, then voltage
drop of any one sequence is dependent on the currents of all the sequences.
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Figure 3.5 Sequence impedances of a Y-connected load.

NUMERICAL EXAMPLES

Example 9: A Y-connected source with phase voltages Vag = 277<00, Vbg = 260<-1200

and Vcg = 295<1150 is applied to a balanced Δ load of 30<400 Ω/phase through a line of
impedance 1<850 Ω. The neutral of the source is solidly grounded. Draw the sequence
networks of the system and find source currents.

Solution:
Va0 = 15.91<62.110 V
Va1 = 277.1<-1.70 V
Va2 = 9.22<216.70  V
Y eq. of Δ load = 10<400 Ω/phase
Zline  = 1<850 Ω.
Zneutral = 0

Ia0 = 0<00 A
Ia1 = 25.82<-45.60 A
Ia2 =  0.86<172.80  A

Ia  = 25.15<-46.80 A
Ib  = 25.71<196.40 A
Ic  = 26.62<73.80  A
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3.6 SEQUENCE IMPEDANCES AND SEQUENCE NETWORKS

The impedance of a circuit to positive-sequence currents alone is called the impedance to
positive-sequence current or simply positive-sequence impedance, which is generally
denoted as Z1. Similarly, the impedance of a circuit to negative-sequence currents alone
is called the impedance to negative-sequence current or simply negative-sequence
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impedance, which is generally denoted as Z2. The impedance of a circuit to zero-
sequence currents alone is called the impedance to zero-sequence current or simply zero-
sequence impedance, which is generally denoted as Z0. In the analysis of an
unsymmetrical fault on a symmetrical system, the symmetrical components of the
unbalanced currents that are flowing are determined. Since in a balanced system, the
components currents of one sequence cause voltage drops of like sequence only and are
independent of currents of other sequences, currents of any one sequence may be
considered to flow in an independent network composed of the generated voltages, if any,
and  impedances to the current of that sequence only.

The single-phase equivalent circuit consisting of the impedances to currents of any one
sequence only is called the sequence network of that particular sequence. Thus, the
sequence network corresponding to positive-sequence current is called the positive-
sequence network. Similarly, the sequence network corresponding to negative-sequence
current is called negative-sequence network, and that corresponding to zero-sequence
current is called zero-sequence network. The sequence networks are interconnected in a
particular way to represent various unsymmetrical fault conditions. Therefore, to
calculate the effect of a fault by the method of symmetrical components, it is required to
determine the sequence networks.

3.7 SEQUENCE NETWORKS OF UNLOADED GENERATOR

Consider an unloaded generator which is grounded through a reactor as shown in Figure.
When a fault occurs, unbalanced currents depending on the type of fault will flow
through the lines. These currents can be resolved into their symmetrical components. To
draw the sequence networks of this generator, the component voltages/currents,
component impedances are to be determined. The generated voltages are of positive-
sequence only as the generators are designed to supply balanced three-phase voltages.
Hence, positive-sequence network is composed of an emf in series with the positive-
sequence impedance. The generated emf in this network is the no-load terminal voltage to
neutral, which is also equal to the transient and subtransient voltages as the generator is
not loaded. The reactance in this network is the subtransient, transient, or synchronous
reactance, depending on the condition of study.

Figure 3.6 Circuit of an unloaded generator grounded through reactance.
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The negative- and zero-sequence networks are composed of only the respective sequence
impedances as there is no corresponding sequence emf. The reference bus for the
positive- and negative-sequence networks is the neutral of the generator.

The current flowing in the impedance Zn between neutral and ground is 3Ia0 as shown in
Fig. 3.6. Thus the zero-sequence voltage drop from point a to the ground, is given by: (-
Ia0Zg0 – 3Ia0Zn), where Zg0 is the zero-sequence impedance of the generator. Thus the
zero-sequence network, which is single-phase equivalent circuit assumed to carry only
one phase, must have an zero-sequence impedance of  Zo = (Zg0 +3Zn).

From the sequence networks, the voltage drops from point a to reference bus (or ground)
are given by

Va1 =  Ea - Ia1Z1

Va2 = - Ia2Z2

Va0 = - Ia0 Z0 (3.15)

Figure 3.7 Sequence current paths in a generator and
The corresponding sequence networks.
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Eq. 3.15 applicable to any unloaded generator are valid for loaded generator under steady
state conditions.  These relations are also applicable for transient or subtransient
conditions of a loaded generator if Eg’ or Eg” is substituted for Ea.

3.8 SEQUENCE IMPEDANCE OF CIRCUIT ELEMENTS

For obtaining the sequence networks, the component voltages/ currents and the
component impedances of all the elements of the network are to be determined. The usual
elements of a power system are: passive loads, rotating machines (generators/ motors),
transmission lines and transformers. The positive- and negative-sequence impedances of
linear, symmetrical, static circuits are identical (because the impedance of such circuits is
independent of phase order provided the applied voltages are balanced).

The sequence impedances of rotating machines will generally differ from one another.
This is due to the different conditions that exists when the sequence currents flows. The
flux due to negative-sequence currents rotates at double the speed of rotor while that the
positive-sequence currents is stationary with respect to the rotor. The resultant flux due to
zero-sequence currents is ideally zero as these flux components adds up to zero, and
hence the zero-sequence reactance is only due to the leakage flux. Thus, the zero-
sequence impedance of these machines is smaller than positive- and negative-sequence
impedances.

The positive- and negative-sequence impedances of a transmission line are identical,
while the zero-sequence impedance differs from these. The positive- and negative-
sequence impedances are identical as the transposed transmission lines are balanced
linear circuits. The zero-sequence impedance is higher due to magnetic field set up by the
zero-sequence currents is very different from that of the positive- or negative-sequence
currents ( because of no phase difference). The zero-sequence reactance is generally 2 to
3.5 times greater than the positive- sequence reactance. It is customary to take all the
sequence impedances of a transformer to be identical, although the zero-sequence
impedance slightly differs with respect to the other two.

3.9 SEQUENCE NETWORKS OF POWER SYSTEMS

In the method of symmetrical components, to calculate the effect of a fault on a power
system, the sequence networks are developed corresponding to the fault condition. These
networks are then interconnected depending on the type of fault. The resulting network is
then analyzed to find the fault current and other parameters.

Positive- and Negative-Sequence Networks: The positive-sequence network is obtained
by determining all the positive-sequence voltages and positive-sequence impedances of
individual elements, and connecting them according to the SLD. All the generated emfs
are positive-sequence voltages. Hence all the per unit reactance/impedance diagrams
obtained in the earlier chapters are positive-sequence networks. The negative-sequence
generated emfs are not present. Hence, the negative-sequence network for a power
system is obtained by omitting all the generated emfs (short circuiting emf sources) and
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replacing all impedances by negative-sequence impedances from the positive-sequence
networks.

Since all the neutral points of a symmetrical three-phase system are at the same potential
when balanced currents are flowing, the neutral of a symmetrical three-phase system is
the logical reference point. It is therefore taken as the reference bus for the positive- and
negative-sequence networks. Impedances connected between the neutral of the machine
and ground is not a part of either the positive- or negative- sequence networks because
neither positive- nor negative-sequence currents can flow in such impedances.

Zero-Sequence Networks: The zero-sequence components are the same both in
magnitude and in phase. Thus, it is equivalent to a single-phase system and hence, zero-
sequence currents will flow only if a return path exists. The reference point for this
network is the ground (Since zero-sequence currents are flowing, the ground is not
necessarily at the same point at all points and the reference bus of zero-sequence network
does not represent a ground of uniform potential. The return path is conductor of zero
impedance, which is the reference bus of the zero-sequence network.).

If a circuit is Y-connected, with no connection from the neutral to ground or to another
neutral point in the circuit, no zero-sequence currents can flow, and hence the impedance
to zero-sequence current is infinite. This is represented by an open circuit between the
neutral of the Y-connected circuit and the reference bus, as shown in Fig. 3.8a. If the
neutral of the Y-connected circuit is grounded through zero impedance, a zero-impedance
path (short circuit) is connected between the neutral point and the reference bus, as
shown in Fig. 3.8b. If an impedance Zn is connected between the neutral and the ground
of a Y-connected circuit, an impedance of 3Zn must be connected between the neutral
and the reference bus (because, all the three zero-sequence currents (3Ia0) flows through
this impedance to cause a voltage drop of 3Ia0 Z0 ), as shown in Fig. 3.8c.

A Δ-connected circuit can provide no return path; its impedance to zero-sequence line
currents is therefore infinite. Thus, the zero-sequence network is open at the Δ-connected
circuit, as shown in Fig.3.9 However zero-sequence currents can circulate inside the Δ-
connected circuit.

The zero-sequence equivalent circuits of three-phase transformers deserve special
attention. The different possible combinations of the primary and the secondary windings
in Y and Δ alter the zero-sequence network. The five possible connections of two-
winding transformers and their equivalent zero-sequence networks are shown in Fig.3.10.
The networks are drawn remembering that there will be no primary current when there is
no secondary current, neglecting the no-load component. The arrows on the connection
diagram show the possible paths for the zero-sequence current. Absence of an arrow
indicates that the connection is such that zero-sequence currents cannot flow. The letters
P and Q identify the corresponding points on the connection diagram and equivalent
circuit:
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Figure 3.8 Zero-sequence equivalent networks of Y-connected load

Figure 3.9 Zero-sequence equivalent networks of Δ -connected load

1. Case 1: Y-Y Bank with one neutral grounded: If either one of the neutrals of a Y-Y
bank is ungrounded, zero-sequence current cannot flow in either winding ( as the
absence of a path through one winding prevents current in the other). An open circuit
exists for zero-sequence current between two parts of the system connected by the
transformer bank.

2. Case 2: Y-Y Bank with both neutral grounded: In this case, a path through
transformer exists for the zero-sequence current. Hence zero-sequence current can
flow in both sides of the transformer provided there is complete outside closed path
for it to flow. Hence the points on the two sides of the transformer are connected by
the zer0-sequence impedance of the transformer.
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Figure 3.10 Zero-sequence equivalent networks of three-phase
transformer banks for various combinations.

3. Case 3: Y- Δ Bank with grounded Y: In this case, there is path for zero-sequence
current to ground through the Y as the corresponding induced current can circulate in
the Δ. The equivalent circuit must provide for a path from lines on the Y side through
zero-sequence impedance of the transformer to the reference bus. However, an open
circuit must exist between line and the reference bus on the Δ side.  If there is an
impedance Zn between neutral and ground, then the zero-sequence impedance must
include 3Zn along with zero-sequence impedance of the transformer.
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4. Case 4: Y- Δ Bank with ungrounded Y: In this case, there is no path for zero-
sequence current. The zero-sequence impedance is infinite and is shown by an open
circuit.

5. Case 5: Δ-Δ Bank: In this case, there is no return path for zero-sequence current. The
zero-sequence current cannot flow in lines although it can circulate in the Δ windings.

6. The zero-sequence equivalent circuits determined for the individual parts separately
are connected according to the SLD to form the complete zero-sequence network.

Procedure to draw the sequence networks
The sequence networks are three separate networks which are the single-phase equivalent
of the corresponding symmetrical sequence systems. These networks can be drawn as
follows:

1. For the given condition (steady state, transient, or subtransient), draw the reactance
diagram (selecting proper base values and converting all the per unit values to the
selected base, if necessary). This will correspond to the positive-sequence network.

2. Determine the per unit negative-sequence impedances of all elements (if the values of
negative sequence is not given to any element, it can approximately be taken as equal
to the positive-sequence impedance).   Draw the negative-sequence network by
replacing all emf sources by short circuit and all impedances by corresponding
negative-sequence impedances in the positive-sequence network.

3. Determine the per unit zero-sequence impedances of all the elements and draw the
zero-sequence network corresponding to the grounding conditions of different
elements.

NUMERICAL EXAMPLES

Example 10: For the power system shown in the SLD, draw the sequence networks.
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EXERCISE PROBLEM: For the power system shown in the SLD, draw the sequence
networks.
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CHAPTER  4:  UNSYMMETRICAL FAULTS

[CONTENTS: Preamble, L-G, L-L, L-L-G and 3-phase faults on an unloaded alternator without and with
fault impedance, faults on a power system without and with fault impedance, open
conductor faults in power systems, examples]

4.1 PREAMBLE

The unsymmetrical faults will have faulty parameters at random. They can be analyzed
by using the symmetrical components. The standard types of unsymmetrical faults
considered for analysis include the following (in the order of their severity):

 Line–to–Ground (L-G) Fault
 Line–to–Line (L-L) Fault
 Double Line–to–Ground (L-L-G)Fault and
 Three-Phase–to–Ground (LLL-G) Fault.

Further the neutrals of various equipment may be grounded or isolated, the faults can
occur at any general point F of the given system, the faults can be through a fault
impedance, etc. Of the various types of faults as above, the 3- fault involving the ground
is the most severe one. Here the analysis is considered in two stages as under: (i) Fault at
the terminals of a Conventional (Unloaded) Generator and (ii) Faults at any point F, of a
given Electric Power System (EPS).

Consider now the symmetrical component relational equations derived from the three
sequence networks corresponding to a given unsymmetrical system as a function of
sequence impedances and the positive sequence voltage source in the form as under:

Va0 = - Ia0Z0

Va1 =   Ea - Ia1Z1

Va2 = - Ia2Z2 (4.1)

These equations are refered as the sequence equations. In matrix Form the sequence
equations can be considered as:

Va0 0           Z0 0     0      Ia0

Va1 =  Ea – 0     Z1 0      Ia1

Va2 0           0     0     Z2 Ia2 (4.2)

This equation is used along with the equations i.e., conditions under fault (c.u.f.), derived
to describe the fault under consideration, to determine the sequence current Ia1 and hence
the fault current If, in terms of Ea and the sequence impedances, Z1, Z2 and Z0. Thus
during unsymmetrical fault analysis of any given type of fault, two sets of equations as
follows are considered for solving them simultaneously to get the required fault
parameters:
 Equations for the conditions under fault (c.u.f.)
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 Equations for the sequence components (sequence equations) as per (4.2) above.
4.2 SINGLE LINE TO GROUND FAULT ON A CONVENTIONAL (UNLOADED)

GENERATOR

Figure 4.1 LG Fault on a Conventional Generator

A conventional generator is one that produces only the balanced voltages. Let Ea, nd Ec
be the internally generated voltages and Zn be the neutral impedance. The fault is
assumed to be on the phase’a’ as shown in figure 4.1. Consider now the conditions under
fault as under:

c.u.f.:

Ib = 0;   Ic = 0;    and    Va = 0. (4.3)

Now consider the symmetrical components of the current Ia with Ib=Ic=0, given by:

Ia0 1    1     1 Ia

Ia1 = (1/3)  1    a     a2 0
Ia2 1    a2 a         0 (4.4)

Solving (4.4) we get,

Ia1 = Ia2 = Ia0 = (Ia/3) (4.5)

Further, using equation (4.5) in (4.2), we get,

Va0 0          Z0 0 0       Ia1

Va1 =  Ea – 0     Z1 0       Ia1
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Va2 0          0     0     Z2 Ia1 (4.6)

Pre-multiplying equation (4.6) throughout by [1 1 1], we get,

Va1+Va2+Va0 = - Ia1Z0 + Ea – Ia1Z1 – Ia2Z2

i.e., Va = Ea – Ia1 (Z1 + Z2 + Z0) = zero,

Or in other words,

Ia1 = [Ea/(Z1 + Z2 + Z0)] (4.7)

.
Figure 4.2 Connection of sequence networks for LG Fault

on phase a of a Conventional Generator

The equation (4.7) derived as above implies that the three sequence networks are
connected in series to simulate a LG fault, as shown in figure 4.2. Further we have the
following relations satisfied under the fault conditions:

1. Ia1 = Ia2 = Ia0 = (Ia/3) = [Ea/(Z1 + Z2 + Z0)]
2. Fault current If = Ia = 3Ia1 = [3Ea/(Z1 + Z2 + Z0)]
3. Va1 = Ea - Ia1Z1 = Ea(Z2+Z0)/(Z1+Z2+Z0)
4. Va2 = - EaZ2/(Z1+Z2+Z0)
5. Va0 = - EaZ0/(Z1+Z2+Z0)
6. Fault phase voltage Va = 0,
7. Sound phase voltages Vb = a2Va1+aVa2+Va0;    Vc = aVa1+a2Va2+Va0

8. Fault phase power: VaIa
* = 0, Sound pahse powers: VbIb

* = 0, and  VcIc
* = 0,

9. If Zn = 0, then Z0 = Zg0,
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10. If Zn = , then Z0 = , i.e., the zero sequence network is open so that then,
If=Ia=0.

4.3 LINE TO LINE FAULT ON A CONVENTIONAL GENERATOR

Figure 4.3 LL Fault on a Conventional Generator

Consider a line to line fault between phase ‘b’ and phase ‘c’ as shown in figure 4.3, at the
terminals of a conventional generator, whose neutral is grounded through a reactance.
Consider now the conditions under fault as under:

c.u.f.:

Ia = 0;  Ib = - Ic;  and  Vb = Vc (4.8)

Now consider the symmetrical components of the voltage Va with Vb=Vc, given by:

Va0 1    1     1        Va

Va1 = (1/3)   1   a     a2 Vb

Va2 1    a2 a Vb (4.9)

Solving (4.4) we get,

Va1 = Va2 (4.10)

Further, consider the symmetrical components of current Ia with Ib=-Ic, and Ia=0; given
by:

Ia0 1    1     1        0
Ia1 = (1/3)  1    a     a2 Ib

Ia2 1    a2 a -Ib (4.11)
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Solving (4.11) we get,

Ia0 = 0;  and Ia2 = -Ia1 (4.12)

Using equation (4.10) and (4.12) in (4.2), and since Va0 = 0 ( Ia0 being 0), we get,

0            0          Z0 0     0 0
Va1 =    Ea – 0     Z1 0        Ia1

Va1 0          0     0     Z2 -Ia1 (4.13)
Pre-multiplying equation (4.13) throughout by [0 1 -1], we get,

Va1-Va1 = Ea – Ia1Z1 – Ia1Z2 = 0

Or in other words,

Ia1 = [Ea/(Z1 + Z2)] (4.14)

Figure 4.4 Connection of sequence networks for LL Fault
on phases b & c of a Conventional Generator

The equation (4.14) derived as above implies that the three sequence networks are
connected such that the zero sequence network is absent and only the positive and
negative sequence networks are connected in series-opposition to simulate the LL fault,
as shown in figure 4.4. Further we have the following relations satisfied under the fault
conditions:

1. Ia1 = - Ia2 = [Ea/(Z1 + Z2)]  and Ia0 = 0,
2. Fault current If = Ib = - Ic = [3Ea/(Z1 + Z2)] (since Ib = (a2-a)Ia1 = 3Ia1)
3. Va1 = Ea - Ia1Z1 = EaZ2/(Z1+Z2)
4. Va2 = Va1 = EaZ2/(Z1+Z2)
5. Va0 = 0,
6. Fault phase voltages;Vb = Vc = aVa1+a2Va2+Va0 = (a+a2)Va1 = - Va1

7. Sound phase voltage; Va = Va1+Va2+Va0 = 2Va1;
8. Fault phase powers are VbIb

* and VcIc
*,

9. Sound phase power: VaIa
* = 0,
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10. Since Ia0=0, the presence of absence of neutral impedance does not make any
difference in the analysis.

4.4 DOUBLE LINE TO GROUND FAULT ON A CONVENTIONAL
GENERATOR

Figure 4.5 LLG Fault on a Conventional Generator

Consider a double-line to ground fault at the terminals of a conventional unloaded
generator, whose neutral is grounded through a reactance, between phase ‘b’ and phase
‘c’ as shown in figure 4.5, Consider now the conditions under fault as under:

c.u.f.:

Ia = 0  and  Vb = Vc = 0 (4.15)

Now consider the symmetrical components of the voltage with Vb=Vc=0, given by:

Va0 1    1 1        Va

Va1 = (1/3)   1   a     a2 0
Va2 1    a2 a          0 (4.16)

Solving (4) we get,

Va1 = Va2 = Va0 = Va/3 (4.17)

Consider now the sequence equations (4.2) as under,

Va0 0          Z0 0     0       Ia0

Va1 =    Ea – 0     Z1 0       Ia1

Va2 0          0     0     Z2 Ia2 (4.18)

Pre-multiplying equation (4.18) throughout by
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1/Z0 0       0

Z-1 =     0       1/Z1 0

0         0     1/Z2 (4.19)

We get,

Va1 0               Z0 0     0       Ia0

Z-1 Va1 = Z-1 Ea – Z-1 0     Z1 0       Ia1

Va1 0               0     0     Z2 Ia2 (4.20)

Using the identity: Va1= (Ea – Ia1Z1) in equation (4.19), pre-multiplying throughout by [1
1 1] and finally adding, we get,

Ea/Z0 - Ia1(Z1/Z0) + (Ea/Z1)- Ia1 + Ea/Z2 - Ia1(Z1/Z2) = (Ea/Z1) – (Ia0+Ia1+Ia2)

= (Ea/Z1) - Ia = (Ea/Z1) (4.21)

Since Ia = 0, solving the equation (4.21), we get,

Ia1 = { Ea/ [Z1 + Z2Z0/(Z2+Z0)] } (4.22)

Figure4.6 Connection of sequence networks for LLG Fault on
phases b and c of a Conventional Generator

The equation (4.22) derived as above implies that, to simulate the LLG fault, the three
sequence networks are connected such that the positive network is connected in series
with the parallel combination of the negative and zero sequence networks, as shown in
figure 4.6. Further we have the following relations satisfied under the fault conditions:

1. Ia1 = {Ea/ [Z1+Z2Z0/(Z2+Z0)]}; Ia2= -Ia1Z0/(Z2 + Z0) and Ia0 = -Ia1Z2/(Z2 + Z0),
2. Fault current If: Ia0=(1/3)(Ia+Ib+Ic) = (1/3)(Ib+Ic) = If/3,   Hence If = 3Ia0

3. Ia = 0, Vb=Vc=0  and hence Va1=Va2=Va0=Va/3
4. Fault phase voltages;Vb = Vc = 0
5. Sound phase voltage; Va = Va1+Va2+Va0 = 3Va1;
6. Fault phase powers are VbIb

* = 0, and VcIc
* = 0,  since  Vb=Vc=0
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7. Healthy phase power: VaIa
* = 0, since Ia=0

8. If Z0=, (i.e., the ground is isolated), then Ia0=0, and hence the result is the same
as that of the LL fault [with Z0=, equation (4.22) yields equation (4.14)].

4.5 THREE PHASE TO GROUND FAULT ON A CONVENTIONAL
GENERATOR

Figure 4.7 Three phase ground Fault on a Conventional Generator

Consider a three phase to ground (LLLG) fault at the terminals of a conventional
unloaded generator, whose neutral is grounded through a reactance, between all its three
phases a, b and c, as shown in figure 4.7, Consider now the conditions under fault as
under:

c.u.f.:

Va = Vb = Vc = 0,  Ia + Ib + Ic = 0 (4.23)

Now consider the symmetrical components of the voltage with Va=Vb=Vc= 0, given by:

Va0 1    1     1         0
Va1 = (1/3) 1   a     a2 0
Va2 1    a2 a          0 (4.24)
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Solving (4.24) we get,

Va1 = Va2 = Va0 = 0 (4.25)

Thus we have

Va1 = Ea1 – Ia1Z1 (4.26)

So that after solving for Ia1 we, get,

Ia1 = [ Ea / Z1 ] (4.27)

Figure 4.8 Connection of sequence networks for 3-phase ground
Fault on phases b and c of a Conventional Generator

The equation (4.26) derived as above implies that, to simulate the 3-phase ground fault,
the three sequence networks are connected such that the negative and zero sequence
networks are absent and only the positive sequence network is present, as shown in figure
4.8. Further the fault current, If in case of a 3-phase ground fault is given by

If = Ia1= Ia = (Ea/Z1) (4.28)

It is to be noted that the presence of a neutral connection without or with a neutral
impedance, Zn will not alter the simulated conditions in case of a three phase to ground
fault.

4.6 UNSYMMETRICAL FAULTS ON POWER SYSTEMS

In all the analysis so far, only the fault at the terminals of an unloaded generator have
been considered. However, faults can also occur at any part of the system and hence the
power system fault at any general point is also quite important.  The analysis of
unsymmetrical fault on power systems is done in a similar way as that followed thus far
for the case of a fault at the terminals of a generator. Here, instead of the sequence
impedances of the generator, each and every element is to be replaced by their
corresponding sequence impedances and the fault is analyzed by suitably connecting
them together to arrive at the Thevenin equivalent impedance if that given sequence.
Also, the internal voltage of the generators of the equivalent circuit for the positive
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sequence network is now Vf (and not Ea), the pre-fault voltage to neutral at the point of
fault (PoF) (ref. Figure 4.9).

Figure 4.9 Unsymmetrical faults in Power Systems

Thus, for all the cases of unsymmetrical fault analysis considered above, the sequence
equations are to be changed as under so as to account for these changes:

Va0 0           Z0 0     0      Ia0

Va1 =  Vf – 0     Z1 0      Ia1

Va2 0           0     0     Z2 Ia2 (4.29)

(i) LG Fault at any point F of a given Power system
Let phase ‘a’ be on fault at F so that then, the c.u.f. would be:

Ib = 0;   Ic = 0;    and    Va = 0.
Hence the derived conditions under fault would be:

Ia1 = Ia2 = Ia0 = (Ia/3)
Ia1 = [Vf / (Z1 + Z2 + Z0)]  and
If = 3Ia1 (4.30)

(ii) LL Fault at any point F of a given Power system
Let phases ‘b’ and ‘c’ be on fault at F so that then, the c.u.f. would be:

Ia = 0;  Ib = - Ic;  and  Vb = Vc

Hence the derived conditions under fault would be:
Va1 = Va2;  Ia0 = 0; Ia2 = -Ia1

Ia1 = [Vf / (Z1 + Z2)]  and
If = Ib = - Ic = [3 Vf / (Z1 + Z2)] (4.31)

(ii) LLG Fault at any point F of a given Power system
Let phases ‘b’ and ‘c’ be on fault at F so that then, the c.u.f. would be:

Ia = 0  and  Vb = Vc = 0
Hence the derived conditions under fault would be:

Va1 = Va2 = Va0 = (Va/3)
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Ia1 = {Vf / [Z1+Z2Z0/(Z2+Z0)]}

Ia2= -Ia1Z0/(Z2 + Z2); Ia0 = -Ia1Z2/(Z2 + Z2) and
If = 3Ia0 (4.32)

(ii) Three Phase Fault at any point F of a given Power system
Let all the 3 phases a, b and c be on fault at F so that then, the c.u.f. would be:

Va = Vb = Vc = 0,  Ia + Ib + Ic = 0
Hence the derived conditions under fault would be:

Va1 = Va2 = Va0 = Va/3

Va0 = Va1 = Va2 = 0; Ia0 = Ia2 = 0,

Ia1 = [Vf /Z1] and If = Ia1=Ia (4.33)

4.7 OPEN CONDUCTOR FAULTS

Various types of power system faults occur in power systems such as the shunt type faults
(LG, LL, LLG, LLLG faults) and series type faults (open conductor and cross country
faults). While the symmetrical fault analysis is useful in determination of the rupturing
capacity of a given protective circuit breaker, the unsymmetrical fault analysis is useful in
the determination of relay setting, single phase switching and system stability studies.

When one or two of a three-phase circuit is open due to accidents, storms, etc., then
unbalance is created and the asymmetrical currents flow. Such types of faults that come
in series with the lines are refered as the open conductor faults. The open conductor faults
can be analyzed by using the sequence networks drawn for the system under
consideration as seen from the point of fault, F.  These networks are then suitably
connected to simulate the given type of fault. The following are the cases required to be
analyzed (ref. fig.4.10).

Figure 4.10 Open conductor faults.

(i) Single Conductor Open Fault: consider the phase ‘a’ conductor open so that then the
conditions under fault are:

Ia = 0;   Vbb’ = Vcc’ = 0
The derived conditions are:
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Ia1 + Ia2 + Ia0 = 0  and
Vaa1’ = Vaa2’ = Vaa0’ = (Vaa’/3) (4.34)

These relations suggest a parallel combination of the three sequence networks as shown
in fig. 4.11.

Figure 4.11 Sequence network connection for 1-conductor open fault

It is observed that a single conductor fault is similar to a LLG fault at the fault point F of
the system considered.

(ii) Two Conductor Open Fault: consider the phases ‘b’ and ‘c’ under open condition so
that then the conditions under fault are:

Ib = Ic = 0;  Vaa’ = 0
The derived conditions are:

Ia1 = Ia2 = Ia0 = Ia/3 and
Vaa1’ = Vaa2’ = Vaa0’ = 0 (4.35)

These relations suggest a series combination of the three sequence networks as shown in
fig. 4.12.  It is observed that a double conductor fault is similar to a LG fault at the fault
point F of the system considered.

Figure 4.12 Sequence network connection for 2-conductor open fault.
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(iii) Three Conductor Open Fault: consider all the three phases a, b and c, of a 3-phase
system conductors be open. The conditions under fault are:

Ia + Ib + Ic = 0
The derived conditions are:

Ia1 = Ia2 = Ia0 = 0  and
Va0 = Va2 = 0 and Va1 = Vf (4.36)

These relations imply that the sequence networks are all open circuited. Hence, in a strict
analystical sense, this is not a fault at all!

4.8 FAULTS THROUGH IMPEDANCE

All the faults considered so far have comprised of a direct short circuit from one or two
lines to ground. The effect of impedance in the fault is found out by deriving equations
similar to those for faults through zero valued neutral impedance. The connections of the
hypothetical stubs for consideration of faults through fault impedance Zf are as shown in
figure 4.13.

Fig
ure 4.13 Stubs Connections for faults through fault impedance Zf.

(i) LG Fault at any point F of a given Power system through Zf

Let phase ‘a’ be on fault at F through Zf, so that then, the c.u.f. would be:
Ib = 0;   Ic = 0;    and    Va = 0.

Hence the derived conditions under fault would be:
Ia1 = Ia2 = Ia0 = (Ia/3)
Ia1 = [Vf / (Z1 + Z2 + Z0+3Zf)]  and
If = 3Ia1 (4.37)

(ii) LL Fault at any point F of a given Power system through Zf

Let phases ‘b’ and ‘c’ be on fault at F through Zf, so that then, the c.u.f. would be:
Ia = 0;  Ib = - Ic;  and  Vb = Vc

Hence the derived conditions under fault would be:
Va1 = Va2;  Ia0 = 0; Ia2 = -Ia1

Ia1 = [Vf / (Z1 + Z2+Zf)]  and
If = Ib = - Ic = [3 Vf / (Z1 + Z2+Zf)] (4.38)

(iii) LLG Fault at any point F of a given Power system through Zf
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Let phases ‘b’ and ‘c’ be on fault at F through Zf,, so that then, the c.u.f. would be:
Ia = 0  and  Vb = Vc = 0

Hence the derived conditions under fault would be:
Va1 = Va2 = Va0 = (Va/3)

Ia1 = {Vf / [Z1+Z2(Z0+3Zf)/(Z2+Z0+3Zf)]}

Ia2= -Ia1(Z0+3Zf)/(Z2+Z0+3Zf); Ia0 = -Ia1Z2/(Z2+(Z0+3Zf) and
If = 3Ia0 (4.39)

(iv) Three Phase Fault at any point F of a given Power system through Zf

Let all the 3 phases a, b and c be on fault at F, through Zf so that the c.u.f. would be: Va =
IaZf ; Hence the derived conditions under fault would be: Ia1 = [Vf /(Z1+Zf); The
connections of the sequence networks for all the above types of faults through Zf are as
shown in figure 4.14.

LG Fault                                                               LL Fault

LLG Fault                                                               3-Ph. Fault
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Figure 4.15 Sequence network connections for faults through impedance

4.9 EXAMPLES

Example-1: A three phase generator with constant terminal voltages gives the following
currents when under fault: 1400 A for a line-to-line fault and 2200 A for a line-to-ground
fault. If the positive sequence generated voltage to neutral is 2 ohms, find the reactances
of the negative and zero sequence currents.

Solution: Case a) Consider the conditions w.r.t. the LL fault:

Ia1 = [Ea1/(Z1 + Z2)]

If = Ib = - Ic = 3 Ia1

=3 Ea1 / (Z1 + Z2)    or

(Z1 + Z2) = 3 Ea1 / If

i.e., 2 + Z2 = 3 [2000/1400]

Solving, we get,     Z2 = 0.474 ohms.

Case b) Consider the conditions w.r.t. a LG fault:

Ia1 = [Ea1/(Z1 + Z2+Z0)]

If =  3 Ia1

=  3 Ea1 / (Z1 + Z2+Z0)    or

(Z1 + Z2+Z0) = 3 Ea1 / If

i.e., 2 + 0.474 + Z0 = 3 [2000/2200]

Solving, we get,     Z0 = 0.253 ohms.

Example-2: A dead fault occurs on one conductor of a 3-conductor cable supplied y a 10
MVA alternator with earhed neutral. The alternator has +ve, -ve and 0-sequence
components of impedances per phase respectively as: (0.5+j4.7), (0.2+j0.6) and (j0.43)
ohms. The corresponding LN values for the cable up to the point of fault are:
(0.36+j0.25), (0.36+j0.25) and (2.9+j0.95) ohms respectively. If the generator voltage at
no load (Ea1) is 6600 volts between the lines, determine the (i)Fault current, (ii)Sequence
components of currents in lines  and (iii)Voltages of healthy phases.

Solution: There is LG fault on any one of the conductors. Consider the LG fault to be on
conductor in phase a. Thus the fault current is given by:

(i)  Fault current: If = 3Ia0 = [3Ea/(Z1 + Z2 + Z0)]

= 3(6600/3)/ (4.32+j7.18)

= 1364.24 58.970.
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(ii) Sequence components of line currents:

Ia1 = Ia2 = Ia0 = Ia/3 = If/3 = 454.75 58.970.

(iii) Sound phase voltages:
Va1 = Ea - Ia1Z1 = Ea(Z2+Z0)/(Z1+Z2+Z0) = 1871.83 -26.170,
Va2 = - EaZ2/(Z1+Z2+Z0) = 462.91 177.60,
Va0 = - EaZ0/(Z1+Z2+Z0) = 1460.54 146.50,

Thus,
Sound phase voltages Vb = a2Va1+aVa2+Va0 = 2638.73 -165.80 Volts,
And Vc = aVa1+a2Va2+Va0 = 3236.35 110.80 Volts.

Example-3: A generator rated 11 kV, 20 MVA has reactances of X1=15%, X2=10% and
X0=20%. Find the reactances in ohms that are required to limit the fault current to 2 p.u.
when a a line to ground fault occurs. Repeat the analysis for a LLG fault also for a fault
current of 2 pu.

Solution: Case a: Consider the fault current expression for LG fault given by:

If = 3 Ia0

i.e., 2.0 = 3Ea / j[X1+X2+X0]

= 3(1.000) / j[0.15+0.1+0.2+3Xn]

Solving we get

3Xn = 2.1 pu

= 2.1 (Zb) ohms  = 2.1 (112/20)  = 2.1(6.05)

= 12.715 ohms.

Thus      Xn = 4.235 ohms.

Case b: Consider the fault current expression for LLG fault given by:
If = 3Ia0 = 3 { -Ia1X2/(X2 + X0+3Xn)}= 2.0,

where,  Ia1 = {Ea/ [X1+X2(X0+3Xn)/(X2+X0+3Xn)]}
Substituting and solving for Xn we get,

Xn = 0.078 pu
= 0.47 ohms.

Example-4: A three phase 50 MVA, 11 kV generator is subjected to the various faults
and the surrents so obtained in each fault are: 2000 A for a three phase fault; 1800 A for a
line-to-line fault and 2200 A for a line-to-ground fault. Find the sequence impedances of
the generator.

Solution: Case a) Consider the conditions w.r.t. the three phase fault:

If = Ia = Ia1 = Ea1/Z1

i.e., 2000 = 11000/ (3Z1)

Solving, we get,     Z1 = 3.18 ohms  (1.3 pu, with Zb = (112/50) = 2.42 ohms).
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Case b) Consider the conditions w.r.t. the LL fault:

Ia1 = [Ea1/(Z1 + Z2)]

If = Ib = - Ic = 3 Ia1

=3 Ea1 / (Z1 + Z2)    or

(Z1 + Z2) = 3 Ea1 / If

i.e., 3.18 + Z2 = 3 (11000/3)/1800

Solving, we get,     Z2 = 2.936 ohms = 1.213 pu.

Case c) Consider the conditions w.r.t. a LG fault:

Ia1 = [Ea1/(Z1 + Z2+Z0)]

If =  3 Ia1

=  3 Ea1 / (Z1 + Z2+Z0)    or

(Z1 + Z2+Z0) = 3 Ea1 / If

i.e., 3.18+ 2.936 + Z0 = 3 (11000/3)/ 2200

Solving, we get,     Z0 = 2.55 ohms = 1.054 pu.
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CHAPTER  5:  POWER SYSTEM STABILITY

5.1 INTRODUCTION

Power system stability of modern large inter-connected systems is a major problem for

secure operation of the system. Recent major black-outs across the globe caused by

system instability, even in very sophisticated and secure systems, illustrate the problems

facing secure operation of power systems. Earlier, stability was defined as the ability of a

system to return to normal or stable operation after having been subjected to some form

of disturbance. This fundamentally refers to the ability of the system to remain in

synchronism. However, modern power systems operate under complex interconnections,

controls and extremely stressed conditions. Further, with increased automation and use of

electronic equipment, the quality of power has gained utmost importance, shifting focus

on to concepts of voltage stability, frequency stability,      inter-area oscillations etc.

The IEEE/CIGRE Joint Task Force on stability terms and conditions have proposed the

following definition in 2004: “Power System stability is the ability of an electric power

system, for a given initial operating condition, to regain a state of operating equilibrium

after being subjected to a physical disturbance, with most system variables bounded, so

that practically the entire system remains intact”.

The Power System is an extremely non-linear and dynamic system, with operating

parameters continuously varying. Stability is hence, a function of the initial operating

condition and the nature of the disturbance. Power systems are continually subjected to

small disturbances in the form of load changes. The system must be in a position to be

able to adjust to the changing conditions and operate satisfactorily. The system must also

withstand large disturbances, which may even cause structural changes due to isolation of

some faulted elements.

A power system may be stable for a particular (large) disturbance and unstable for

another disturbance. It is impossible to design a system which is stable under all

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com



76

disturbances. The power system is generally designed to be stable under those

disturbances which have a high degree of occurrence. The response to a disturbance is

extremely complex and involves practically all the equipment of the power system. For

example, a short circuit leading to a line isolation by circuit breakers will cause variations

in the power flows, network bus voltages and generators rotor speeds. The voltage

variations will actuate the voltage regulators in the system and generator speed variations

will actuate the prime mover governors; voltage and frequency variations will affect the

system loads. In stable systems, practically all generators and loads remain connected,

even though parts of the system may be isolated to preserve bulk operations. On the other

hand, an unstable system condition could lead to cascading outages and a shutdown of a

major portion of the power system.

5.2  CLASSIFICATION OF POWER SYSTEM STABILITY

The high complexity of stability problems has led to a meaningful classification of the

power system stability into various categories. The classification takes into account the

main system variable in which instability can be observed, the size of the disturbance and

the time span to be considered for assessing stability.

5.2.1  ROTOR ANGLE STABILITY

Rotor angle stability refers to the ability of the synchronous machines of an

interconnected power system to remain in synchronism after being subjected to a

disturbance. Instability results in some generators accelerating (decelerating) and losing

synchronism with other generators. Rotor angle stability depends on the ability of each

synchronous machine to maintain equilibrium between electromagnetic torque and

mechanical torque. Under steady state, there is equilibrium between the input mechanical

torque and output electromagnetic torque of each generator, and its speed remains a

constant. Under a disturbance, this equilibrium is upset and the generators

accelerate/decelerate according to the mechanics of a rotating body. Rotor angle stability

is further categorized as follows:
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Small single (or small disturbance) rotor angle stability: It is the ability of the power

system to maintain synchronism under small disturbances. In this case, the system

equation can be linearized around the initial operating point and the stability depends

only on the operating point and not on the disturbance. Instability may result in

(i)  A non oscillatory or a periodic increase of rotor angle

(ii) Increasing amplitude of rotor oscillations due to insufficient damping.

The first form of instability is largely eliminated by modern fast acting voltage regulators

and the second form of instability is more common. The time frame of small signal

stability is of the order of 10-20 seconds after a disturbance.

Large-signal rotor angle stability or transient stability: This refers to the ability of

the power system to maintain synchronism under large disturbances, such as short circuit,

line outages etc. The system response involves large excursions of the generator rotor

angles. Transient stability depends on both the initial operating point and the disturbance

parameters like location, type, magnitude etc. Instability is normally in the form of a

periodic angular separation. The time frame of interest is 3-5 seconds after disturbance.

The term dynamic stability was earlier used to denote the steady-state stability in the

presence of automatic controls (especially excitation controls) as opposed to manual

controls. Since all generators are equipped with automatic controllers today, dynamic

stability has lost relevance and the Task Force has recommended against its usage.

5.2.2  VOLTAGE STABILITY

Voltage stability refers to the ability of a power system to maintain steady voltages at all

buses in the system after being subjected to a disturbance. It depends on the ability of the

system to maintain equilibrium between load demand and load supply. Instability results

in a progressive fall or rise of voltages of some buses, which could lead to loss of load in

an area or tripping of transmission lines, leading to cascading outages. This may

eventually lead to loss of synchronism of some   generators.

The cause of voltage instability is usually the loads. A run-down situation causing voltage

instability occurs when load dynamics attempt to restore power consumption beyond the
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capability of the transmission network. Voltage stability is also threatened when a

disturbance increases the reactive power demand beyond the sustainable capacity of the

available reactive power resources. Voltage stability is categorized into the following

sub-categories:

Small – disturbance voltage stability: It  refers to the system’s ability to maintain

steady voltages when subjected to small perturbations such as incremental changes in

load. This is primarily influenced by the load characteristics and the controls at a given

point of time.

Large disturbance voltage stability:  It refers to the systems ability to maintain steady

voltages following large disturbances; It requires computation of the non-linear response

of the power system to include interaction between various devices like motors,

transformer tap changers and field current limiters. Short term voltage stability involves

dynamics of fast acting load components and period of interest is in the order of several

seconds. Long term voltage stability involves slower acting equipment like tap-changing

transformers and generator current limiters. Instability is due to loss of long-term

equilibrium.

5.2.3  FREQUENCY STABILITY

Frequency stability refers to the ability of a power system to maintain steady frequency

following a severe disturbance, causing considerable imbalance between generation and

load. Instability occurs in the form of sustained frequency swings leading to tripping of

generating units or loads. During frequency swings, devices such as under frequency load

shedding, generator controls and protection equipment get activated in a few seconds.

However, devices such as prime mover energy supply systems and load voltage

regulators respond after a few minutes. Hence, frequency stability could be a short-term

or a long-term phenomenon.

5.3 MECHANICS OF ROTATORY MOTION
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Since a synchronous machine is a rotating body, the laws of mechanics of rotating bodies

are applicable to it. In rotation we first define the fundamental quantities. The angle θm is

defined, with respect to a circular arc with its center at the vertex of the angle, as the ratio

of the arc length s to radius r.

θm =
r

s
(5.1)

The unit is radian. Angular velocity ωm is defined as

ωm =
dt

d m
(5.2)

and angular acceleration as

2

2

dt

d

dt

d mm 
  (5.3)

The torque on a body due to a tangential force  F at a distance r from axis of rotation is

given by T = r F (5.4)

The total torque is the summation of infinitesimal forces, given by

T = ∫ r dF (5.5)

The unit of torque is N-m. When torque is applied to a body, the body experiences

angular acceleration. Each particle experiences a tangential acceleration ra  , where r

is the distance of the particle from axis of rotation. The tangential force required to

accelerate a particle of mass dm is

dF = a dm = r α dm (5.6)

The torque required for the particle is

dT = r dF = r2 α dm (5.7)

and that required for the whole body is given by

T = α ∫ r2dm  = I α (5.8)

Here,                I = ∫ r2dm (5.9)

It is called the moment of inertia of the body. The unit is Kg – m2. If the torque is

assumed to be the result of a number of tangential forces F, which act at different points

of the body

T = ∑ r F

Now each force acts through a distance,  ds = r dθm and the work done is ∑ F . ds  i.e.,
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dW = ∑ F r dθm = dθm T

W = ∫ T dθm (5.10)

and                  T =
md

Wd


(5.11)

Thus the unit of torque may also be Joule per radian. The power is defined as rate of

doing work. Using (5.11)

P = m
m T

dt

dT

td

Wd



 (5.12)

The angular momentum M is defined as

M = I ωm (5.13)

And the kinetic energy is given by

KE = 2

2

1
mI  =

2

1
M ωm (5.14)

From (5.14) we can see that the unit of M has to be J-sec/rad.

5.4   SWING EQUATION:

The laws of rotation developed in section.3 are applicable to the synchronous machine.

From(.5.8)

I = T

or T
td

dI m 
2

2
(5.15)

Here T is the net torque of all torques acting on the machine, which includes the shaft

torque (due to prime mover of a generator or load on a motor), torque due to rotational

losses (friction, windage and core loss) and electromagnetic torque.

Let  Tm = shaft torque or mechanical torque corrected for rotational losses

Te = Electromagnetic or electrical torque

For a generator Tm tends to accelerate the rotor in positive direction of rotation as shown

in Fig 5.1.   It also shows the corresponding torque for a motor with respect to the

direction of rotation.
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(a) Generator                                                    (b) Motor

Fig. 5.1  Torque acting on a synchronous machine

The accelerating torque for a generator is given by:

Ta = Tm  Te (5.16)

Under steady-state operation of the generator, Tm is equal to Te and the accelerating

torque is zero. There is no acceleration or deceleration of the rotor masses and the

machines run at a constant synchronous speed. In the stability analysis in the following

sections, Tm is assumed to be a constant since the prime movers (steam turbines or hydro

turbines) do no act during the short time period in which rotor dynamics are of interest in

the stability studies.

Now (5.15) has to be solved to determine m as a function of time. Since m is measured

with respect to a stationary reference axis on the stator, it is the measure of the absolute

rotor angle and increases continuously with time even at constant synchronous speed.

Since machine acceleration /deceleration is always measured relative to synchronous

speed, the rotor angle is measured with respect to a synchronously rotating reference axis.

Let

mm    tsm (5.17)
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where sm is the synchronous speed in mechanical rad/s and m is the angular

displacement in mechanical radians. Taking the derivative of (5.17) we get

dt

d

dt

d mm 
  sm

2

2

2

2

dt

d

dt

d mm 
 (5.18)

Substituting (5.18) in (5.15) we get

2

2

dt

d
I m

= Ta = Tm  Te N-m (5.19)

Multiplying by m on both sides we get

2

2

dt

d
I m

m


 = m ( Tm  Te )  N-m (5.20)

From (5.12) and (5.13), we can write

WPP
dt

d
M am

m 
2

2
(5.21)

where M is the angular momentum, also called inertia constant, Pm is shaft power input

less rotational losses, Pe is electrical power output corrected for losses and Pa is the

acceleration power.  M depends on the angular velocity m , and hence is strictly not a

constant, because m deviates from the synchronous speed during and after a

disturbance. However, under stable conditions m does not vary considerably and M can

be treated as a constant. (21) is called the “Swing equation”. The constant M depends on

the rating of the machine and varies widely with the size and type of the machine.

Another constant called H constant (also referred to as inertia constant) is defined as

H = MVAMJ
MVAinratingMachine

speedsychronousat
joulesmegainenergykineticstored

/ (5.22)

H falls within a narrow range and typical values are given in Table 5.1. If the rating of the

machine is G MVA, from (5.22) the stored kinetic energy is GH Mega Joules. From

(5.14)

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com



83

GH = msM
2

1
MJ (5.23)

or

M =
ms

GH


2

MJ-s/mech rad (5.24)

The swing equation (5.21) is written as

G

PP

G

P

td

dH emam

ms


2

22 


(5.25)

In (5.25) m is expressed in mechanical radians and ms in mechanical radians per

second (the subscript m indicates mechanical units). If  and  have consistent units

(both are mechanical or electrical units) (5.25) can be written as

ema
s

PPP
dt

dH


2

22 


pu (5.26)

Here s is the synchronous speed in electrical rad/s ( mss

p
 







2
) and Pa is

acceleration power in per unit on same base as H. For a system with an electrical

frequency f Hz, (5.26) becomes

ema PPP
dt

d

f

H


2

2


pu                                         (5.27)

when  is in electrical radians and

ema PPP
dt

d

f

H


2

2

180


pu (5.28)

when  is in electrical degrees.  Equations (5.27) and (5.28) also represent the swing

equation. It can be seen that the swing equation is a second order differential equation

which can be written as two first order differential equations:

em
s

PP
dt

dH




2

pu (5.29)

sdt

d



 (5.30)

In which s , and  are in electrical units. In deriving the swing equation, damping

has been neglected.
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Table 5.1 H constants of synchronous machines

Type of machine H (MJ/MVA)

Turbine generator condensing  1800 rpm

3600 rpm

9 – 6

7 – 4

Non condensing                        3600 rpm 4 – 3

Water wheel generator

Slow speed < 200 rpm

High speed > 200 rpm

2 – 3

2 – 4

Synchronous condenser Large

Small 


1.0
1.25 25% less for hydrogen cooled

Synchronous motor with load varying

from 1.0 to 5.0 2.0

In defining the inertia constant H, the MVA base used is the rating of the machine. In a

multi machine system, swing equation has to be solved for each machine, in which case,

a common MVA base for the system has to chosen. The constant H of each machine must

be consistent with the system base.

Let Gmach = Machine MVA rating (base)

Gsystem = System MVA base

In (5.25), H is computed on the machine rating
hmac

GG 

Multiplying (5.25) by
system

mach

G

G
on both sides we get























system

mach

mach

emm

mssystem

mach

G

G

G

PP

dt

dH

G

G
2

22 


(5.31)

em
m

ms

system PP
dt

dH


2

22 


pu (on system base)

where  H system =
system

mach

G

G
H (5.32)
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In the stability analysis of a multi machine system, computation is considerably reduced

if the number of swing equations to be solved is reduced. Machines within a plant

normally swing together after a disturbance. Such machines are called coherent machines

and can be replaced by a single equivalent machine, whose dynamics reflects the

dynamics of the plant. The concept is best understood by considering a two machine

system.

5.4.1  SWING EQUATION OF TWO COHERENT MACHINES

The swing equations for two machines on a common system base are:

112
1

2
12

em
s

PP
td

dH





pu (5.33)

222
2

2
22

em
s

PP
td

dH





pu (5.34)

Now   21 (since they swing together). Adding (5.33) and (5.34) we get

em
s

eq PP
td

dH


2

22 


pu (5.35)

Where 21 HHH eq 

21 mmm PPP 

21 eee PPP 

The relation  (5.35)  represents the dynamics of the single equivalent machine.

5.4.2 SWING EQUATION OF TWO NON – COHERENT MACHINES

For any two non – coherent machines also (5.33) and (5.34) are valid. Subtracting (5.34)

from (33) we get

2

22

1

11

2
2

2

2
1

2 22

H

PP

H

PP

td

d

td

d emem

ss













(5.36)

Multiplying both sides by
21

21

HH

HH


we get

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com



86

 
21

1221

21

1221

2

21
2

21

212

HH

HpHP

HH

HPHP

td

d

HH

HH eemm

s 
























i.e 12122
12

2

12

2
em

s

PP
td

d
H 




(5.37)

where 2112   , the relative angle of the two machines

21

21
12 HH

HH
H




21

1221
12 HH

HpHp
P mm

m 




21

1221
12 HH

HpHp
P ee

e 




From (5.37) it is obvious that the swing of a machine is associated with dynamics of

other machines in the system. To be stable, the angular differences between all the

machines must decrease after the disturbance. In many cases, when the system loses

stability, the machines split into two coherent groups, swinging against each other. Each

coherent group of machines can be replaced by a single equivalent machine and the

relative swing of the two equivalent machines solved using an equation similar to (5.37),

from which stability can be assessed.

The acceleration power is given by Pa = Pm – Pe. Hence, under the condition that Pm is a

constant, an accelerating machine should have a power characteristic, which would

increase Pe as δ increases.

This would reduce Pa and hence the acceleration and help in maintaining stability. If on

the other hand, Pe decreases when δ increases, Pa would further increase which is

detrimental to stability. Therefore,

P

must be positive for a stable system. Thus the

power-angle relationship plays a crucial role in stability.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com



87

5.5 POWER–ANGLE EQUATION:

In solving the swing equation, certain assumptions are normally made

(i) Mechanical power input Pm is a constant during the period of interest,

immediately after the disturbance

(ii) Rotor speed changes are insignificant.

(iii) Effect of voltage regulating loop during the transient is neglected  i.e the

excitation is assumed to be a constant.

As discussed in section 4, the power–angle relationship plays a vital role in the solution

of the swing equation.

5.5.1  POWER–ANGLE EQUATION FOR A NON–SALIENT POLE MACHINE:

The simplest model for the synchronous generator is that of a constant voltage behind an

impedance. This model is called the classical model and can be used for cylindrical rotor

(non–salient pole) machines. Practically all high–speed turbo alternators are of

cylindrical rotor construction, where the physical air gap around the periphery of the rotor

is uniform. This type of generator has approximately equal magnetic reluctance,

regardless of the angular position of the rotor, with respect to the armature mmf. The

phasor diagram of the voltages and currents at constant speed and excitation is shown in

Fig. 5.2.

Fig 5.2 Phasor diagram of a non–salient pole synchronous generator

Eg = Generator internal emf.

Vt = Terminal voltage

θ  = Power factor angle
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Ia = Armature current

Ra = Armature resistance

xd = Direct axis reactance

The power output of the generator is given by the real part of Eg Ia
* .

da

tg
a jxR

VE
I






0
(5.38)

Neglecting Ra,
d

tg
a xj

VE
I




0

P = R  



















 





*
9090

d

t

d

g
g x

V

x

E
E




=
 

d

tg

d

g

x

VE

x

E 

 90cos90cos2

=
d

tg

x

VE sin
(5.39)

(Note- R stands for real part of).   The graphical representation of (9.39) is called the

power angle curve and it is as shown in Fig 5.3.

Fig 5.3 Power angle curve of a non – salient pole machine

The maximum power that can be transferred for a particular excitation is given by
d

tg

x

VE

at δ = 90o.
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5.5.2   POWER ANGLE EQUATION FOR A SALIENT POLE MACHINE:

Here because of the salient poles, the reluctance of the magnetic circuit in which flows

the flux produced by an armature mmf in line with the quadrature axis is higher than that

of the magnetic circuit in which flows the flux produced by the armature mmf in line with

the direct axis. These two components of armature mmf are proportional to the

corresponding components of armature current. The component of armature current

producing an mmf acting in line with direct axis is called the direct component, Id. The

component of armature current producing an mmf acting in line with the quadrature axis

is called the quadrature axis component, Iq. The phasor diagram is shown in Fig 5, with

same terminology as Fig 5.4 and Ra neglected.

Fig 5.4 Phasor diagram of a salient pole machine

Power output cosat IVP 

qqdd IEIE  (5.40)

From Fig  5.4, sintd VE  ; costq VE 

  


 sina
d

qg
d I

x

EE
I

   cosa
q

d
q I

x

E
I (5.41)

Substituting (5.41) in (5.40), we obtain

 
qd

qdt

d

tg

xx

xxV

x

VE
P

2

2sinsin 2  
 (5.42)
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the relation (5.42) gives the steady state power angle relationship for a salient pole

machine. The second term does not depend on the excitation and is called the reluctance

power component. This component makes the maximum power greater than in the

classical model. However, the angle at which the maximum power occurs is less than 90o.

5.6  POWER ANGLE RELATIONSHIP IN A SMIB SYSTEM:

Without loss of generality, many important conclusions on stability can be arrived at by

considering the simple case of a Single Machine Infinite Bus (SMIB), where a generator

supplies power to an infinite bus. The concept of an infinite bus arises from the fact that

if we connect a generator to a much larger power system, it is reasonable to assume that

the voltage and frequency of the larger system will not be affected by control of the

generator parameters. Hence, the external system can be approximated by an infinite bus,

which is equivalent to an ideal voltage source, whose voltage and frequency are constant.

The one line diagram is shown in Fig 7.

Fig. 5.5   SMIB System

In Fig. 5.5, the infinite bus voltage is taken as reference and δ is the angle between Eg and

Eb. The generator is assumed to be connected to the infinite bus through a lossless line of

reactance xe. The power transferred (using classical model) is given by

P = sin
ed

bg

xx

EE


(5.43)

and using salient pole model,

P =
 

     2sin
2

sin
2

eqed

qdb

ed

bg

xxxx

xxE

xx

EE







(5.44)
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An important measure of performance is the steady state stability limit, which is defined

as the maximum power that can be transmitted in steady state without loss of

synchronism, to the receiving end. If transient analysis is required, respective transient

quantities namely 
gE , 

dx and 
qx are used in (5.43) and (5.44) to calculate the power

output.

5.7   TRANSIENT STABILITY

Transient stability is the ability of the system to remain stable under large disturbances

like short circuits, line outages, generation or load loss etc. The evaluation of the transient

stability is required offline for planning, design etc. and online for load management,

emergency control and security assessment. Transient stability analysis deals with actual

solution of the nonlinear differential equations describing the dynamics of the machines

and their controls and interfacing it with the algebraic equations describing the

interconnections through the transmission network.

Since the disturbance is large, linearized analysis of the swing equation (which describes

the rotor dynamics) is not possible. Further, the fault may cause structural changes in the

network, because of which the power angle curve prior to fault, during the fault and post

fault may be different (See example 9.8). Due to these reasons, a general stability criteria

for transient stability cannot be established, as was done in the case of steady state

stability (namely PS > 0). Stability can be established, for a given fault, by actual solution

of the swing equation. The time taken for the fault to be cleared (by the circuit breakers)

is called the clearing time. If the fault is cleared fast enough, the probability of the system

remaining stable after the clearance is more. If the fault persists for a longer time,

likelihood of instability is increased.

Critical clearing time is the maximum time available for clearing the fault, before the

system loses stability. Modern circuit breakers are equipped with auto reclosure facility,

wherein the breaker automatically recloses after two sequential openings. If the fault still

persists, the breakers open permanently. Since most faults are transient, the first reclosure
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is in general successful. Hence, transient stability has been greatly enhanced by auto

closure breakers.

Some common assumptions made during transient stability studies are as follows:

1. Transmission line and synchronous machine resistances are neglected. Since

resistance introduces a damping term in the swing equation, this gives

pessimistic results.

2. Effect of damper windings is neglected which again gives pessimistic results.

3. Variations in rotor speed are neglected.

4. Mechanical input to the generator is assumed constant. The governor control

loop is neglected. This also leads to pessimistic results.

5. The generator is modeled as a constant voltage source behind a transient

reactance, neglecting the voltage regulator action.

6. Loads are modeled as constant admittances and absorbed into the bus

admittance matrix.

The above assumptions, vastly simplify the equations. A digital computer program for

transient stability analysis can easily include more detailed generator models and effect of

controls, the discussion of which is beyond the scope of present treatment. Studies on the

transient stability of an SMIB system, can shed light on some important aspects of

stability of larger systems. One of the important methods for studying the transient

stability of an SMIB system is the application of equal-area criterion.

5. 8  EQUAL- AREA CRITERION

Transient stability assessment of an SMIB system is possible without resorting to actual

solution of the swing equation, by a method known as equal–area criterion. In a SMIB

system, if the system is unstable after a fault is cleared, δ(t) increases indefinitely with

time, till the machine loses synchronism. In contrast, in a stable system, δ(t)  reaches a

maximum and then starts reducing as shown in Fig.5.6.
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Fig.5.6 Swing Curve (δ VS t) for stable and unstable system

Mathematically stated,

 
0

td

td

some time after the fault is cleared in a stable system and
td

d 
> 0, for a long time after

the fault is cleared in an unstable system.

Consider the swing equation (21)

aem PPP
dt

d
M 

2

2

M

P

dt

d a
2

2

Multiplying both sides by
dt

d
2 , we get

M

P

dt

d

dt

d

dt

d a
22

2

2



This may be written as

M

P

dt

d

dt

d

td

d a
2

2





















Integrating both sides we get
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o

dP
Mdt

d
a

2
2

or 







o

dP
Mdt

d
a

2
(5.45)

For stability 0
dt

d
, some time after fault is cleared. This means

0





o

dPa (5.46)

The integral gives the area under the Pa – δ curve. The condition for stability can be, thus

stated as follows: A SMIB system is stable if the area under the Pa – δ curve, becomes

zero at some value of δ. This means that the accelerating (positive) area under Pa – δ

curve, must equal the decelerating (negative) area under Pa – δ curve. Application of

equal area criterion for several disturbances is discussed next.

5.9 SUDDEN CHANGE IN MECHANICAL INPUT

Consider the SMIB system shown in Fig. 5.7.

Fig.5.7 SMIB System

The electrical power transferred is given by

sinmaxPPe 

ed

g

xx

VE
P




max

Under steady state Pm = Pe. Let the machine be initially operating at a steady state angle

δo, at synchronous speed ωs, with a mechanical input Pmo, as shown in Fig.5.8 ( point a).
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Fig.5.8   Equal area criterion–sudden change in mechanical input

If there is a sudden step increase in input power to Pm1 the accelerating power is positive

(since Pm1 > Pmo) and power angle δ increases. With increase in δ, the electrical power Pe

increases, the accelerating power decreases, till at δ = δ1, the electrical power matches the

new input Pm1. The area A1, during acceleration is given by

A1 =   



dPP em 1

0
1

)cos(cos)( 10max011   PPm (5.47)

At b, even though the accelerating power is zero, the rotor is running above synchronous

speed. Hence, δ and Pe increase beyond b, wherein Pe < Pm1 and the rotor is subjected to

deceleration. The rotor decelerates and speed starts dropping, till at point d, the machine

reaches synchronous speed and δ = δmax. The area A2, during deceleration is given by

A2 = )()cos(cos)( 1max1max1max1

max

1





 mme PPdPP (5.48)

By equal area criterion A1 = A2. The rotor would then oscillate between δ0 and δmax at its

natural frequency. However, damping forces will reduce subsequent swings and the

machine finally settles down to the new steady state value δ1 (at point b). Stability can be

maintained only if area A2 at least equal to A1, can be located above Pm1. The limiting

case is shown in Fig.5.9, where A2 is just equal to A1.
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Fig.5.9   Maximum increase in mechanical power

Here δmax is at the intersection of Pe and Pm1. If the machine does not reach synchronous

speed at d, then beyond d, Pe decreases with increase in δ, causing δ to increase

indefinitely. Applying equal area criterion to Fig.5.9 we get

A1 = A2.

From (5.47) and (5.48) we get

)cos(cos)( max0max0max1   PPm

Substituting maxmax1 sinPPm  , we get

  0maxmax0max coscossin   (5.49)

Equation (5.49) is a non-linear equation in δmax and can be solved by trial and error or by

using any numerical method for solution of non-linear algebraic equation (like Newton-

Raphson, bisection etc). From solution of δmax, Pm1 can be calculated. Pm1 – Pmo will give

the maximum possible increase in mechanical input before the machine looses stability.

5.10   NUMERICAL EXAMPLES

Example 1: A 50Hz, 4 pole turbo alternator rated 150 MVA, 11 kV has an inertia

constant of 9 MJ / MVA. Find the (a) stored energy at synchronous speed (b) the rotor

acceleration if the input mechanical power is raised to 100 MW when the electrical load

is 75 MW, (c) the speed at the end of 10 cycles if acceleration is assumed constant at the

initial value.
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Solution:

(a) Stored energy = GH = 150 × 9 = 1350 MJ

(b) Pa = Pm – Pe = 100 – 75 = 25 MW

M = 15.0
50180

1350

180





f

GH
MJ – s /ºe

2515.0
2

2


td

d 

Acceleration 6.166
15.0

25
2

2


td

d 
 ºe/s2

= 166.6 ×
P

2
ºm/s2

= 166.6 ×
P

2
× rps

360

1
/s

= 166.6 ×
P

2
×

360

1
× 60 rpm/s

= 13.88 rpm/s

* Note  ºe = electrical degree; ºm = mechanical degree; P=number of poles.

(c) 10 cycles = 2.0
50

10
 s

NS = Synchronous speed = 1500
4

50120



rpm

Rotor speed at end of 10 cycles = NS + α × 0.2 = 1500 + 13.88 × 0.2 = 1502.776 rpm.

Example 2: Two 50 Hz generating units operate in parallel within the same plant, with

the following ratings: Unit 1: 500 MVA, 0.8 pf, 13.2 kV, 3600 rpm: H = 4 MJ/MVA;

Unit 2: 1000 MVA, 0.9 pf, 13.8 kV, 1800 rpm: H = 5 MJ/MVA.  Calculate the equivalent

H constant on a base of 100 MVA.

Solution:

system

mach
machsystem G

G
HH 1

11  = 20
100

500
4  MJ/MVA

system

mach
machsystem G

G
HH 2

22  = 50
100

1000
5  MJ/MVA
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21 HHH eq  = 20 + 50 = 70 MJ/MVA

This is the equivalent inertia constant on a base of 100 MVA and can be used when the

two machines swing coherently.

Example 3: Obtain the power angle relationship and the generator internal emf for (i)

classical model (ii) salient pole model with following data: xd = 1.0 pu : xq = 0.6 pu : Vt

= 1.0 pu : Ia = 1.0 pu at upf

Solution:

(i) Classical model: The phasor diagram is shown in Fig P3.

Fig.P3 Example 3, case(i)

      414.10.10.10.1 2222  datg xIVE

δ = tan 1

t

da

V

xI
= tan  45

0.1

0.11

 Eg = 1.414 45 .

If the excitation is held constant so that gE = 1.414, then power output

P = 


sin414.1
0.1

sin0.1414.1




(ii) Salient pole: From Fig (5), we get using (41a) to (41d)

Eg = Eq + Id xd = Vt cos δ + Id xd

= Vt cos δ + Ia sin δ xd
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(* θ = 00, since we are considering upf)

Substituting given values we get

Eg = cos δ + sin δ.

Again from Fig (9.5) we have

Ed = Vt sin δ = Iq xq

 Vt sin δ – Iq xq = 0

Vt sin δ – Ia cos δ xq = 0

Substituting the given values we get

0 = sin δ – 0.6 cos δ

We thus have two simultaneous equations.

Eg = cos δ + sin δ

0 = sin δ – 0.6 cos δ

Solving we get δ = 30.96o

Eg = 1.372 pu

If the excitation is held constant, then from (42)

P = 1.372 sin δ + 0.333 sin 2δ

Example 4: Determine the steady state stability limit of the system shown in Fig 8, if  Vt

= 1.0 pu and the reactances are in pu.

Fig. P4 Example 4

Solution:

Current I =
0.1

00.10.1

0.1

00.1

jj

Vt 

 

Eg )(0.1 IjVt  
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100

= 1
 

0.1

00.10.10.1

j

j 





= cos θ + j sinθ + cosθ + j sinθ – 1.0

= 2cosθ – 1 + j 2sinθ

When maximum power is transferred δ = 90o; which means real part of E = 0

 2 cosθ – 1 = 0

θ = cos-1 0.5 = 60o

gE = 2sin 60o = 1.732

Eg = 1.732 90 (for maximum power)

Steady state stability limit = 866.0
0.10.1

0.1732.1





pu

Example 5: A 50 Hz synchronous generator having an internal voltage 1.2 pu,

H = 5.2 MJ/MVA and a reactance of 0.4 pu is connected to an infinite bus through a

double circuit line, each line of reactance 0.35 pu. The generator is delivering 0.8pu

power and the infinite bus voltage is 1.0 pu. Determine: maximum power transfer,

Steady state operating angle, and Natural frequency of oscillation if damping is

neglected.

Solution: The one line diagram is shown in Fig P5.

Fig . P5   Example 6

(a) X = 0.4 +
2

35.0
= 0.575 pu
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Pmax = 087.2
575.0

0.12.1





X

EE bg pu

(b) Pe = Pmax sin δo







  54.22

087.2

8.0
sinsin 1

max

1

P

Pe
o .

(c) Ps = Pmax cos δo = 2.087 cos (22.54o)

= 1.927 MW (pu)/ elec rad.

M (pu) = radelecs
f

H
/0331.0

50

2.5 2





Without damping s =
0331.0

927.1
j

M

P
j S 

= ± j 7.63 rad/sec   =   1.21 Hz

Natural frequency of oscillation ωn = 1.21 Hz.

Example 6: In example .6, if the damping is 0.14 and there is a minor disturbance of  

= 0.15 rad from the initial operating point, determine: (a) n (b)  (c) d (d) setting time

and (e) expression for .

Solution:

(a) n =
M

PS =
0331.0

927.1
= 7.63 rad/sec = 1.21 Hz

(b)  =
927.10331.0

1

2

14.01

2 


SPM

D
= 0.277

(c) d =  22 277.0163.71 n = 7.33 rad/sec = 1.16 Hz

(d) Setting time = 4 =
63.7277.0

1
4

1
4




n
= 1.892 s

(e)  o = 0.15 rad = 8.59o

 =  cos-1  = cos-1 0.277 = 73.9o

δ  =  



  




  te d

to
o

n sin
1 2

=  oto te 9.7333.7sin
277.01

59.8
54.22 63.7277.0

2
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= 22.54o + 8.94 e- 2.11t sin (7.33t + 73.9o)

The variation of delta with respect to time is shown below. It can be observed that the

angle reaches the steady state value of 22.54o after the initial transient. It should be noted

that the magnitudes of the swings decrease in a stable system with damping.

Fig.P6 Swing Curve for example 7

Example 7: In example 6, find the power angle relationship

(i) For the given network

(ii) If a short circuit occurs in the middle of a line

(iii) If fault is cleared by line outage

Assume the generator to be supplying 1.0 pu power initially.

Solution:

(i) From example 6, Pmax = 2.087, Pe = 2.087 sin .

(ii) If a short circuit occurs in the middle of the line, the network equivalent

can be draw as shown in Fig. 12a.
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Fig.P7a   Short circuit in middle of line

The network is reduced by converting the delta to star and again the resulting star to delta

as shown in Fig P7a, P7b and P7c.

Fig.P7b Fig.P7c
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The transfer reactance is 1.55 pu. Hence,

Pmax =
55.1

0.12.1 
= 0.744 ; Pe = 0.744 sin δ

(iii) When there is a line outage

X = 0.4 + 0.35 = 0.75

Pmax =
75.0

0.12.1 
= 1.6

Pe = 1.6 sin δ

Example 8: A generator supplies active power of 1.0 pu to an infinite bus, through a

lossless line of reactance xe = 0.6 pu. The reactance of the generator and the connecting

transformer is 0.3 pu. The transient internal voltage of the generator is 1.12 pu and

infinite bus voltage is 1.0 pu. Find the maximum increase in mechanical power that will

not cause instability.

Solution:

Pmax =
9.0

0.112.1 
= 1.244 pu

Pmo = Peo = 1.0 = Pmax sin δo = 1.244 sin δo

 δo = sin-1

244.1

0.1
= 53.47o = 0.933 rad.

The above can be solved by N–R method since it is of the form f(δmax) = K. Applying N–

R method, at any iteration ‘r’, we get

Δ )(
max

r =
 
 r

r

d

df
fK

max

)(
max





    )(
max

)(
max

max

cos r
o

r
rd

df





(This is the derivative evaluated at a value of  = )(
max

r ) )(
max

)(
max

)1(
max

rrr  

Starting from an initial guess of δmax between
2


to  , the above equations are solved

iteratively till Δ )(
max

r ≤ . Here K = cos δo = 0.595. The computations are shown in table

P8, starting from an initial guess )1(
max = 1.745 rad.
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Table P8

Interaction

r
)(

max
r )(

max
rd

df


 )(

max
rf  )(

max
r )1(

max
r

1 1.745 – 0.1407 0.626 0.22 1.965

2 1.965 – 0.396 0.568 – 0.068 1.897

3 1.897 – 0.309 0.592 – 0.0097 1.887

4 1.887 – 0.2963 0.596 – 0.0033 1.883

Since )(
max

r is sufficient by small, we can take

δmax = 1.883 rad = 107.88o

δ1 = max180  = 72.1o

Pm1 = Pmax sin δmax = 1.183

Maximum step increase permissible is Pm1 – Pmo, = 1.183 – 1.0 = 0.183 pu

Example 9: Transform a two machine system to an equivalent SMIB system and show

how equal area criterion is applicable to it.

Solution: Consider the two machine system show in Fig.P9.

Fig.P9  Two machine system under steady state (neglecting losses)

mmm PPP  21 ; eee PPP  21

The swing equations are
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11

11
2

1
2

M

PP

M

PP

dt

d emem 







22

22
2

2
2

M

PP

M

PP

dt

d meem 







Simplifying, we get

)(
)(

21

21
2

21
2

em PP
MM

MM

dt

d







or emeq PP
dt

d
M 

2

2

where Meq =
21

21

MM

MM



δ   =  δ1 – δ2

sin
21

21






ded

e

xxx

EE
P

This relation  is identical to that of an SMIB system in form and can be used to determine

the relative swing (δ1 – δ2) between the two machines to assess the stability.

------------------------
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