
SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 1

Software Architecture (06IS72)
PART - A

UNIT - 1
INTRODUCTION: The Architecture Business Cycle: Where do architectures come from? Software
processes and the architecture business cycle; What makes a “good” architecture? What software
architecture is and what it is not; Other points of view; Architectural patterns, reference models and
reference architectures; Importance of software architecture; Architectural structures and views. 6
Hours

UNIT - 2
ARCHITECTURAL STYLES AND CASE STUDIES: Architectural styles; Pipes and filters; Data
abstraction and object-oriented organization; Event-based, implicit invocation; Layered systems;
Repositories; Interpreters; Process control; Other familiar architectures; Heterogeneous
architectures. Case Studies: Keyword in Context; Instrumentation software; Mobile robotics; Cruise
control; Three vignettes in mixed style.

7 Hours
UNIT - 3

QUALITY: Functionality and architecture; Architecture and quality attributes; System quality
attributes; Quality attribute scenarios in practice; Other system quality attributes; Business
qualities; Architecture qualities.

Achieving Quality: Introducing tactics; Availability tactics; Modifiability tactics; Performance tactics;
Security tactics; Testability tactics; Usability tactics; Relationship of tactics to architectural patterns;
Architectural patterns and styles. 6 Hours

UNIT - 4
ARCHITECTURAL PATTERNS – 1: Introduction; from mud to structure: Layers, Pipes and Filters,
Blackboard. 7 Hours

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 2

PART - B
UNIT - 5

ARCHITECTURAL PATTERNS – 2: Distributed Systems: Broker; Interactive Systems: MVC,
Presentation-Abstraction-Control. 7 Hours

UNIT - 6
ARCHITECTURAL PATTERNS – 3:Adaptable Systems: Microkernel; Reflection.

6 Hours
UNIT - 7
SOME DESIGN PATTERNS: Structural decomposition: Whole – Part; Organization of work:
Master – Slave; Access Control: Proxy. 6 Hours

UNIT - 8

DESIGNING AND DOCUMENTING SOFTWARE ARCHITECTURE: Architecture in the life cycle;
designing the architecture; Forming the team structure; Creating a skeletal system. Uses of
architectural documentation; Views; choosing the relevant views; Documenting a view;
Documentation across views. 7 Hours

TEXT BOOKS:
1. Software Architecture in Practice – Len Bass, Paul Clements, Rick Kazman, 2nd

Edition, Pearson Education, 2003.
2. Pattern-Oriented Software Architecture, A System of Patterns - Volume 1 – Frank

Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal, , John
Wiley and Sons, 2006.

1. Mary Shaw and David Garlan: Software Architecture- Perspectives on an Emerging
Discipline, Prentice-Hall of India, 2007.

REFERENCE BOOK:
1. Design Patterns- Elements of Reusable Object-Oriented Software – E. Gamma, R.

Helm, R. Johnson, J. Vlissides:, Addison-Wesley, 1995. Web site for Patterns:
http://www.hillside.net/patterns/

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 3

INDEX

SL.No Contents Page.No
1 IntroductionThe Architecture Business Cycle 6Where do architectures come from? 7Software processes and the architecture business cycle 11What makes a good architecture? 14What software architecture is and what it is not? 16Other points of view 17Architectural patterns, reference models and referencearchitectures, 18

Importance of software architecture 19Architectural structures and views 24

2 ARCHITECTURAL STYLES AND CASE STUDIESArchitectural styles 26Pipes and filters 26Data abstraction and object-oriented organization 28Event-based, implicit invocation 28Layered systems 30Repositories 31Interpreters 32Heterogeneous Architectures. 33
Case Studies:

 Keyword in Context
 Instrumentation software
 Mobile robotics
 Cruise control
 Three vignettes in mixed style

33

3 QUALITYFunctionality and architecture 38Architecture and quality attributes 39System quality attributes 40Quality attribute scenarios in practice 43www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 4

Other system quality attributesBusiness qualities 60Architecture qualities 62

Achieving Quality : Introducing tactics
 Availability tactics
 Modifiability tactics
 Performance tactics
 Security tactics
 Testability tactics
 Usability tactics

62-83

Relationship of tactics to architectural patterns 83Architectural patterns and styles 84

4 Architectural Patterns – 1:Introduction 87From mud to structure 88Layers 90Pipes and Filters 92Blackboard 96

5 Architectural Patterns – 2Distributed Systems: Broker 97Interactive Systems 98MVC 100Presentation-Abstraction-Control 101

6 Architectural Patterns – 3Adaptable Systems: Microkernel 102Reflection 106

7 Some Design PatternsStructural decomposition: Whole – Part 108Organization of work: Master – Slave 109Access Control : Proxy 110

8 Designing and Documenting Softwarewww.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 5

ArchitectureArchitecture in the life cycle 111Designing the architecture 112Forming the team structure 116Creating a skeletal system 118Uses of architectural documentation 120

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 6

SOFTWARE ARCHITECTURE NOTES

UNIT 1

Contents

 The Architecture Business Cycle

 Where do architectures come from?

 Software processes and the architecture business cycle

 What makes a good architecture?

 What software architecture is and what it is not

 Other points of view

 Architectural patterns, reference models and reference architectures,

 Importance of software architecture

 Architectural structures and views

Chapter 1: INTRODUCTION

The Architecture Business Cycle:

 Software designers build systems based exclusively on the technical requirements.
Requirements beget design, which begets system. Modern software development
methods recognize the naïveté of this model and provide all sorts of feedback loops from
designer to analyst.

 Software architecture encompasses the structures of large software systems. The
architectural view of a system is abstract, distilling away details of implementation,
algorithm, and data representation and concentrating on the behavior and interaction of
"black box" elements. A software architecture is developed as the first step toward
designing a system that has a collection of desired properties.

 The software architecture of a program or computing system is the structure or structureswww.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 7

of the system, which comprise software elements, the externally visible properties of
those elements, and the relationships among them.

 Software architecture is a result of technical, business, and social influences. Its existence
in turn affects the technical, business, and social environments that subsequently
influence future architectures. We call this cycle of influences, from the environment to
the architecture and back to the environment, the Architecture Business Cycle (ABC).

Where Do Architectures Come From? :

 Architecture is the result of a set of business and technical decisions. There are many
influences at work in its design, and the realization of these influences will change
depending on the environment in which the architecture is required to perform.

 An architect designing a system for which the real-time deadlines are believed to be tight
will make one set of design choices; the same architect, designing a similar system in
which the deadlines can be easily satisfied, will make different choices. And the same
architect, designing a non-real-time system, is likely to make quite different choices still.

 Even with the same requirements, hardware, support software, and human resources
available, an architect designing a system today is likely to design a different system than
might have been designed five years ago.

 In any development effort, the requirements make explicit some but only some of the
desired properties of the final system. Not all requirements are concerned directly with
those properties, a development process or the use of a particular tool may be mandated
by them. Failure to satisfy other constraints may render the system just as problematic as if
it functioned poorly.

ARCHITECTURES ARE INFLUENCED BY SYSTEM STAKEHOLDERS

Many people and organizations are interested in the construction of a software system. We call
these stakeholders: The customer, the end users, the developers, the project manager, the
maintainers, and even those who market the system are a few examples.

Stakeholders have different concerns that they wish the system to guarantee or optimize,
including things as diverse as providing a certain behavior at runtime, performing well on a
particular piece of hardware, being easy to customize, achieving short time to market or low cost
of development, gainfully employing programmers who have a particular specialty, or
providing a broad range of functions. Figure shows the architect receiving helpful stakeholder
"suggestions."www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 8

Figure : Influence of stakeholders on the architect

Having an acceptable system involves properties such as performance, reliability, availability,
platform compatibility, memory utilization, network usage, security, modifiability, usability,
and interoperability with other systems as well as behavior. These properties determine the
overall design of the architecture. All of them, and others, affect how the delivered system is
viewed by its eventual recipients, and so they find a voice in one or more of the system's
stakeholders.

ARCHITECTURES ARE INFLUENCED BY THE DEVELOPING ORGANIZATION

In addition to the organizational goals expressed through requirements, an architecture is
influenced by the structure or nature of the development organization. For example, if the
organization has an abundance of idle programmers skilled in client-server
communications, then a client-server architecture might be the approach supported by
management. If not, it may well be rejected. Staff skills are one additional influence, but so are
the development schedule and budget.

An organization may wish to make a long-term business investment in an infrastructure to pursue
strategic goals and may view the proposed system as one means of financing and extending that
infrastructure.

The organizational structure can shape the software architecture. The development of some of the
subsystems was subcontracted because the subcontractors provided specialized expertise. This was
made possible by a division of functionality in the architecture that allowed isolation of the
specialities.www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 9

ARCHITECTURES ARE INFLUENCED BY THE BACKGROUND AND EXPERIENCE
OF THE ARCHITECTS

If the architects for a system have had good results using a particular architectural
approach, such as distributed objects or implicit invocation, chances are that they will try that
same approach on a new development effort. Conversely, if their prior experience with this
approach was disastrous, the architects may be reluctant to try it again. Architectural choices may
also come from an architect's education and training, exposure to successful architectural
patterns, or exposure to systems that have worked particularly poorly or particularly well. The
architects may also wish to experiment with an architectural pattern or technique learned from a
book or a course.

ARCHITECTURES ARE INFLUENCED BY THE TECHNICAL ENVIRONMENT

A special case of the architect's background and experience is reflected by the technical
environment. The environment that is current when an architecture is designed will influence
that architecture. It might include standard industry practices or software engineering
techniques prevalent in the architect's professional community.

RAMIFICATIONS OF INFLUENCES ON AN ARCHITECTURE

 Influences on an architecture come from a wide variety of sources. Some are only
implied, while others are explicitly in conflict.

 Almost never are the properties required by the business and organizational goals
consciously understood, let alone fully articulated. Customer requirements are seldom
documented completely, which means that the inevitable conflict among different
stakeholders' goals has not been resolved.

 Architects need to know and understand the nature, source, and priority of constraints on
the project as early as possible. Therefore, they must identify and actively engage the
stakeholders to solicit their needs and expectations. Without such engagement,
the stakeholders will, at some point, demand that the architects explain why each proposed
architecture is unacceptable, thus delaying the project and idling workers.

 Early engagement of stakeholders allows the architects to understand the constraints of
the task, manage expectations, negotiate priorities, and make tradeoffs. Architecture
reviews and iterative prototyping are two means for achieving it.

 The influences on the architect, and hence on the architecture, are shown in Figure 1.3.
Architects are influenced by the requirements for the product as derived from itswww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 10

stakeholders, the structure and goals of the developing organization, the available
technical environment, and their own background and experience.

Figure 1.3 . Influences on the architecture

THE ARCHITECTURES AFFECT THE FACTORS THAT INFLUENCE THEM

The relationships among business goals, product requirements, architects' experience,
architectures, and fielded systems form a cycle with feedback loops that a business can manage.
A business manages this cycle to handle growth, to expand its enterprise area, and to take
advantage of previous investments in architecture and system building. Figure 1.4 shows the
feedback loops. Some of the feedback comes from the architecture itself, and some comes from
the system built from it.

Figure 1.4. The Architecture Business Cycle

Here is how the cycle works:

 The architecture affects the structure of the developing organization. An architecturewww.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 11

prescribes a structure for a system it particularly prescribes the units of software that must
be implemented (or otherwise obtained) and integrated to form the system.

 These units are the basis for the development project's structure. Teams are formed for
individual software units and the development, test, and integration activities all revolve
around the units. Likewise, schedules and budgets allocate resources in chunks
corresponding to the units.

o If a company becomes adept at building families of similar systems, it will
tend to invest in each team by nurturing each area of expertise. Teams become
embedded in the organization's structure. This is feedback from the architecture to
the developing organization.

o In the software product line, separate groups were given responsibility for
building and maintaining individual portions of the organization's architecture for a
family of products. In any design undertaken by the organization at large, these
groups have a strong voice in the system's decomposition, pressuring for the
continued existence of the portions they control.

 The architecture can affect the goals of the developing organization. A successful system
built from it can enable a company to establish a foothold in a particular market area.
The architecture can provide opportunities for the efficient production and deployment
of similar systems, and the organization may adjust its goals to take advantage of its
newfound expertise to plumb the market. This is feedback from the system to the
developing organization and the systems it builds.

 The architecture can affect customer requirements for the next system by giving the
customer the opportunity to receive a system (based on the same architecture) in a more
reliable, timely, and economical manner than if the subsequent system were to be built
from scratch.

 The process of system building will affect the architect's experience with subsequent
systems by adding to the corporate experience base. A system that was successfully built
around a tool bus or .NET or encapsulated finite-state machines will engender similar
systems built the same way in the future. On the other hand, architectures that fail are less
likely to be chosen for future projects.

That architecture is a primary determinant of the properties of the developed system or systems.
But the ABC is also based on a recognition that shrewd organizations can take advantage of the
organizational and experiential effects of developing an architecture and can use those effects to
position their business strategically for future projects.

Software Processes and the Architecture Business Cycle :www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 12

Software process is the term given to the organization, reutilization, and management of
software development activities. These activities include the following:

 Creating the business case for the system
 Understanding the requirements
 Creating or selecting the architecture
 Documenting and communicating the architecture
 Analyzing or evaluating the architecture
 Implementing the system based on the architecture
 Ensuring that the implementation conforms to the architecture

ARCHITECTURE ACTIVITIES :

Architecture activities have comprehensive feedback relationships with each other.

Creating the Business Case for the System :

Creating a business case is broader than simply assessing the market need for a system. It is an
important step in creating and constraining any future requirements. How much should the
product cost? What is its targeted market? What is its targeted time to market? Will it need to
interface with other systems? Are there system limitations that it must work within?

These are all questions that must involve the system's architects. They cannot be decided solely
by an architect, but if an architect is not consulted in the creation of the business case, it may be
impossible to achieve the business goals.

Understanding the Requirements :

There are a variety of techniques for eliciting requirements from the stakeholders. For example,
object-oriented analysis uses scenarios, or "use cases" to embody requirements. Safety-critical
systems use more rigorous approaches, such as finite-state-machine models or formal
specification languages.

 One fundamental decision with respect to the system being built is the extent to which it is
a variation on other systems that have been constructed. Since it is a rare system these
days that is not similar to other systems, requirements elicitation techniques extensively
involve understanding these prior systems' characteristics.

 Another technique that helps us understand requirements is the creation of prototypes.
Prototypes may help to model desired behavior, design the user interface, or analyze
resource utilization. This helps to make the system "real" in the eyes of its stakeholders
and can quickly catalyze decisions on the system's design and the design of its userwww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 13

interface.

Creating or Selecting the Architecture :

Conceptual integrity is the key to sound system design and that conceptual integrity can only be
had by a small number of minds coming together to design the system's architecture.

Communicating the Architecture :

For the architecture to be effective as the backbone of the project's design, it must be
communicated clearly and unambiguously to all of the stakeholders. Developers must
understand the work assignments it requires of them, testers must understand the task structure it
imposes on them, management must understand the scheduling implications it suggests, and so
forth. Toward this end, the architecture's documentation should be informative, unambiguous,
and readable by many people with varied backgrounds.

Analyzing or Evaluating the Architecture :

In any design process there will be multiple candidate designs considered. Some will be rejected
immediately. Others will contend for primacy. Choosing among these competing designs in a
rational way is one of the architect's greatest challenges.

Evaluating an architecture for the qualities that it supports is essential to ensuring that the system
constructed from that architecture satisfies its stakeholders' needs. Becoming more
widespread are analysis techniques to evaluate the quality attributes that an architecture imparts
to a system. Scenario-based techniques provide one of the most general and effective approaches
for evaluating an architecture. The most mature methodological approach is found in the
Architecture Tradeoff Analysis Method (ATAM)

Implementing Based on the Architecture :

This activity is concerned with keeping the developers faithful to the structures and interaction
protocols constrained by the architecture. Having an explicit and well- communicated
architecture is the first step toward ensuring architectural conformance. Having an environment
or infrastructure that actively assists developers in creating and maintaining the architecture (as
opposed to just the code) is better.

Ensuring Conformance to an Architecture :

Finally, when an architecture is created and used, it goes into a maintenance phase. Constant
vigilance is required to ensure that the actual architecture and its representation remain faithful to
each other during this phase.www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 14

What Makes a 'Good' Architecture? :

Given the same technical requirements for a system, two different architects in different
organizations will produce different architectures, how can we determine if either one of them is
the right one?

There is no such thing as an inherently good or bad architecture. Architectures are either more or
less fit for some stated purpose. A distributed three-tier client-server architecture may be just
the ticket for a large enterprise's financial management system but completely wrong for an
avionics application. An architecture carefully crafted to achieve high modifiability does not make
sense for a throw-away prototype.

We divide our observations into two clusters: process recommendations and product (or
structural) recommendations. Our process recommendations are as follows:

 The architecture should be the product of a single architect or a small group of architects
with an identified leader.

 The architect (or architecture team) should have the functional requirements for the
system and an articulated, prioritized list of quality attributes (such as security or
modifiability) that the architecture is expected to satisfy.

 The architecture should be well documented, with at least one static view and one
dynamic view, using an agreed-on notation that all stakeholders can understand with a
minimum of effort.

 The architecture should be circulated to the system's stakeholders, who should be actively
involved in its review.

 The architecture should be analyzed for applicable quantitative measures (such as
maximum throughput) and formally evaluated for quality attributes before it is too late to
make changes to it.

 The architecture should lend itself to incremental implementation via the creation of a
"skeletal" system in which the communication paths are exercised but which at first has
minimal functionality. This skeletal system can then be used to "grow" the system
incrementally, easing the integration and testing efforts

The architecture should result in a specific (and small) set of resource contention areas, the
resolution of which is clearly specified, circulated, and maintained. For example, if network
utilization is an area of concern, the architect should produce (and enforce) for each
development team guidelines that will result in a minimum of network traffic. If performance iswww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 15

a concern, the architects should produce (and enforce) time budgets for the major threads.

The structural rules of thumb are as follows:

 The architecture should feature well-defined modules whose functional
responsibilities are allocated on the principles of information hiding and
separation of concerns. The information-hiding modules should include those that
encapsulate idiosyncrasies of the computing infrastructure, thus insulating the bulk of
the software from change should the infrastructure change.

 Each module should have a well-defined interface that encapsulates or "hides" changeable
aspects (such as implementation strategies and data structure choices) from other software
that uses its facilities. These interfaces should allow their respective development teams to
work largely independently of each other.

 Quality attributes should be achieved using well-known architectural tactics specific to
each attribute (Achieving Qualities).

 The architecture should never depend on a particular version of a commercial product or
tool. If it depends upon a particular commercial product, it should be structured such that
changing to a different product is straightforward and inexpensive.

 Modules that produce data should be separate from modules that consume data. This tends
to increase modifiability because changes are often confined to either the production or
the consumption side of data. If new data is added, both sides will have to change, but the
separation allows for a staged (incremental) upgrade.

 For parallel-processing systems, the architecture should feature well-defined
processes or tasks that do not necessarily mirror the module decomposition structure.
That is, processes may thread through more than one module; a module may include
procedures that are invoked as part of more than one process

 Every task or process should be written so that its assignment to a specific processor can
be easily changed, perhaps even at runtime.

 The architecture should feature a small number of simple interaction patterns That is, the
system should do the same things in the same way throughout. This will aid in
understandability, reduce development time, increase reliability, and enhance
modifiability. It will also show conceptual integrity in the architecture, which, while not
measurable, leads to smooth development.www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 16

What Is Software Architecture?

If a project has not achieved a system architecture, including its rationale, the project should not
proceed to full-scale system development. Specifying the architecture as a deliverable enables its
use throughout the development and maintenance process.

Architecture plays a pivotal role in allowing an organization to meet its business goals.
Architecture commands a price (the cost of its careful development), but it pays for itself
handsomely by enabling the organization to achieve its system goals and expand its software
capabilities. Architecture is an asset that holds tangible value to the developing organization
beyond the project for which it was created.

What Software Architecture Is and What It Isn't :

The following Figure gives a system description for an underwater acoustic simulation, purports
to describe that system's "top-level architecture" and is precisely the kind of diagram most often
displayed to help explain an architecture.

Figure 2.1. Typical, but uninformative, presentation of a software architecture

 The system consists of four elements.
 Three of the elements Prop Loss Model (MODP), Reverb Model (MODR), and Noise

Model (MODN)?might have more in common with each other than with the fourth
Control Process (CP)?because they are positioned next to each other.

 All of the elements apparently have some sort of relationship with each other, since
the diagram is fully connected.

This is not a architecture since it fails to explain the following points :
 What is the nature of the elements? What is the significance of their separation?

Do they run on separate processors? Do they run at separate times? Do the elements
consist of processes, programs, or both? Do they represent ways in which the projectwww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 17

labor will be divided, or do they convey a sense of runtime separation? Are they objects,
tasks, functions, processes, distributed programs, or something else?

 What are the responsibilities of the elements? What is it they do? What is their
function in the system?

 What is the significance of the connections? Do the connections mean that the
elements communicate with each other, control each other, send data to each other,
use each other, invoke each other, synchronize with each other, share some information-
hiding secret with each other, or some combination of these or other relations? What are
the mechanisms for the communication? What information flows across the mechanisms,
whatever they may be?

 What is the significance of the layout? Why is CP on a separate level? Does it call the
other three elements, and are the others not allowed to call it? Does it contain the other
three in an implementation unit sense? Or is there simply no room to put
all four elements on the same row in the diagram?

This diagram does not show a software architecture. The most charitable thing we can say
about such diagrams is that they represent a start.

The software architecture of a program or computing system is the structure or structures of the
system, which comprise software elements, the externally visible properties of those elements,
and the relationships among them.

There the primary building blocks were called "components," a term that has since become
closely associated with the component-based software engineering movement, taking on a
decidedly runtime flavor. "Element" was chosen here to convey something more general.

 First, architecture defines software elements. The architecture embodies information
about how the elements relate to each other.

 Second, the definition makes clear that systems can and do comprise more than one
structure and that no one structure can irrefutably claim to be the architecture. For
example, all nontrivial projects are partitioned into implementation units; these units are
given specific responsibilities and are frequently the basis of work assignments for
programming teams.

 Third, the definition implies that every computing system with software has a software
architecture because every system can be shown to comprise elements and the relations
among them.

 Fourth, the behavior of each element is part of the architecture insofar as that behavior
can be observed or discerned from the point of view of another element. Such behavior is
what allows elements to interact with each other, which is clearly part of the architecture.
This is another reason that the box-and-line drawings that are passed off as architectures
are not architectures at all.

 Finally, the definition is indifferent as to whether the architecture for a system is a good
one or a bad one, meaning that it will allow or prevent the system from meeting itswww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 18

behavioral, performance, and life-cycle requirements.

Other Points of View :

The study of software architecture has evolved by observation of the design principles that
designers follow and the actions that they take when working on real systems. It is an attempt to
abstract the commonalities inherent in system design, and as such it must account for a wide
range of activities, concepts, methods, approaches, and results.

 Architecture is high-level design.
 Architecture is the overall structure of the system.
 Architecture is the structure of the components of a program or system, their

interrelationships, and the principles and guidelines governing their design and evolution
over time.

 Architecture is components and connectors. Connectors imply a runtime
mechanism for transferring control and data around a system.

Architectural Patterns, Reference Models, and Reference
Architectures :

1. architectural pattern is a description of element and relation types together with a set of
constraints on how they may be used. A pattern can be thought of as a set of constraints on
an architecture. On the element types and their patterns of interaction and these
constraints define a set or family of architectures that satisfy them. For example, client-
server is a common architectural pattern.

 Client and server are two element types, and their coordination is described in
terms of the protocol that the server uses to communicate with each of its clients.
Use of the term client-server implies only that multiple clients exist; the clients
themselves are not identified, and there is no discussion of what functionality,
other than implementation of the protocols, has been assigned to any of the
clients or to the server.

 Countless architectures are of the client-server pattern under this (informal)
definition, but they are different from each other. An architectural pattern is not
an architecture, then, but it still conveys a useful image of the system, it imposes
useful constraints on the architecture and, in turn, on the system.

 One of the most useful aspects of patterns is that they exhibit known quality
attributes. This is why the architect chooses a particular pattern and not one at
random.www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 19

 Some patterns represent known solutions to performance problems, others
lend themselves well to high-security systems, still others have been used
successfully in high-availability systems. Choosing an architectural pattern is
often the architect's first major design choice.

2. A reference model is a division of functionality together with data flow between the
pieces. A reference model is a standard decomposition of a known problem into parts
that cooperatively solve the problem. Arising from experience, reference models are
a characteristic of mature domains.

3. A reference architecture is a reference model mapped onto software elements (that
cooperatively implement the functionality defined in the reference model) and the data
flows between them. Whereas a reference model divides the functionality, a reference
architecture is the mapping of that functionality onto a system decomposition. The
mapping may be, but by no means necessarily is, one to one. A software element may
implement part of a function or several functions.

Figure 2.2. The relationships of reference models, architectural patterns, reference architectures,
and software architectures.

Why Is Software Architecture Important? :

There are fundamentally three reasons for software architecture's importance.

1. Communication among stakeholders. Software architecture represents a common
abstraction of a system that most if not all of the system's stakeholders can use as a basis
for mutual understanding, negotiation, consensus, and communication.

2. Early design decisions. Software architecture manifests the earliest design decisions
about a system, and these early bindings carry weight far out of proportion to their
individual gravity with respect to the system's remaining development, its
deployment, and its maintenance life. It is also the earliest point at which design
decisions governing the system to be built can be analyzed.

3. Transferable abstraction of a system. Software architecture constitutes a relatively small,
intellectually graspable model for how a system is structured and how its elements work
together, and this model is transferable across systems. In particular, it can be applied towww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 20

other systems exhibiting similar quality attribute and functional requirements and can
promote large-scale re-use.

ARCHITECTURE IS THE VEHICLE FOR STAKEHOLDER COMMUNICATION :

Each stakeholder of a software system-customer, user, project manager, coder, tester, and so on is
concerned with different system characteristics that are affected by the architecture. For
example, the user is concerned that the system is reliable and available when needed; the
customer is concerned that the architecture can be implemented on schedule and to budget; the
manager is worried (as well as about cost and schedule) that the architecture will allow teams to
work largely independently, interacting in disciplined and controlled ways. The architect is
worried about strategies to achieve all of those goals.

Architecture provides a common language in which different concerns can be expressed,
negotiated, and resolved at a level that is intellectually manageable even for large,
complex systems. Without such a language, it is difficult to understand large systems sufficiently
to make the early decisions that influence both quality and usefulness.

ARCHITECTURE MANIFESTS THE EARLIEST SET OF DESIGN DECISIONS

Software architecture represents a system's earliest set of design decisions. These early decisions
are the most difficult to get correct and the hardest to change later in the development process,
and they have the most far-reaching effects.

The Architecture Defines Constraints on Implementation :

An implementation exhibits an architecture if it conforms to the structural design decisions
described by the architecture. This means that the implementation must be divided into the
prescribed elements, the elements must interact with each other in the prescribed fashion, and
each element must fulfill its responsibility to the others as dictated by the architecture.

Resource allocation decisions also constrain implementations. These decisions m ay be
invisible to implementors working on individual elements. The constraints permit a
separation of concerns that allows management decisions to make the best use of personnel and
computational capacity. Element builders must be fluent in the specification of their
individual elements but not in architectural tradeoffs. Conversely, architects need not be experts
in all aspects of algorithm design or the intricacies of the programming language, but they are the
ones responsible for the architectural tradeoffs.

The Architecture Dictates Organizational Structure :

 Not only does architecture prescribe the structure of the system being developed, but that
structure becomes engraved in the structure of the development project. The normalwww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 21

method for dividing up the labor in a large system is to assign different groups different
portions of the system to construct. This is called the work breakdown structure of a
system.

 A side effect of establishing the work breakdown structure is to freeze some aspects of
the software architecture. A group that is responsible for one of the subsystems will resist
having its responsibilities distributed across other groups. If these responsibilities have
been formalized in a contractual relationship, changing them can become expensive.
Tracking progress on a collection of tasks being distributed also becomes much more
difficult.

 Once the architecture has been agreed on, then, it becomes almost impossible, for
managerial and business reasons, to modify it. This is one argument (among many) for
carrying out a comprehensive evaluation before freezing the software architecture for a
large system.

The Architecture Inhibits or Enables a System's Quality Attributes :

Whether a system will be able to exhibit its desired (or required) quality attributes is
substantially determined by its architecture.

The strategies for these and other quality attributes are supremely architectural. It is important to
understand, however, that architecture alone cannot guarantee functionality

or quality. Poor downstream design or implementation decisions can always undermine an
adequate architectural design. Decisions at all stages of the life cycle from high-level design to
coding and implementation affect system quality. Therefore, quality is not completely a function
of architectural design. To ensure quality, a good architecture is necessary, but not sufficient.

Predicting System Qualities by Studying the Architecture :

Is it possible to tell that the appropriate architectural decisions have been made (i.e., if the system
will exhibit its required quality attributes) without waiting until the system is developed and
deployed. If the answer were no, choosing an architecture would be a hopeless task random
selection would perform as well as any other method. Fortunately, it is possible to make quality
predictions about a system based solely on an evaluation of its architecture.

The Architecture Makes It Easier to Reason about and Manage Change

Every architecture partitions possible changes into three categories: local, non local, and
architectural. A local change can be accomplished by modifying a single element. A non local
change requires multiple element modifications but leaves the underlying architectural approach
intact. An architectural change affects the fundamental ways in which the elements interact withwww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 22

each other. The pattern of the architecture and will probably require changes all over the system.
Obviously, local changes are the most desirable, and so an effective architecture is one in which
the most likely changes are also the easiest to make.

Deciding when changes are essential, determining which change paths have the least risk,
assessing the consequences of proposed changes, and arbitrating sequences and priorities for
requested changes all require broad insight into relationships, performance, and behaviors of
system software elements. These are in the job description for an architect. Reasoning about the
architecture can provide the insight necessary to make decisions about proposed changes.

The Architecture Helps in Evolutionary Prototyping :

Once an architecture has been defined, it can be analyzed and prototyped as a skeletal system.
This aids the development process in two ways.

1. The system is executable early in the product's life cycle. Its fidelity increases as
prototype parts are replaced by complete versions of the software. These prototype
parts can be a lower-fidelity version of the final functionality, or they can be surrogates
that consume and produce data at the appropriate rates.

2. A special case of having the system executable early is that potential performance
problems can be identified early in the product's life cycle.

Each of these benefits reduces the risk in the project. If the architecture is part of a family of
related systems, the cost of creating a framework for prototyping can be distributed over the
development of many systems.

The Architecture Enables More Accurate Cost and Schedule Estimates :

Cost and schedule estimates are an important management tool to enable the manager to acquire
the necessary resources and to understand whether a project is in trouble.

Cost estimations based on an understanding of the system pieces are, inherently, more accurate
than those based on overall system knowledge. As we have said, the organizational structure of a
project is based on its architecture.

Each team will be able to make more accurate estimates for its piece than a project manager will
and will feel more ownership in making the estimates come true. Second, the initial definition of
an architecture means that the requirements for a system have been reviewed and, in some sense,
validated. The more knowledge about the scope of a system, the more accurate the estimates.

ARCHITECTURE AS A TRANSFERABLE, RE-USABLE MODEL :www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 23

The earlier in the life cycle re-use is applied, the greater the benefit that can be achieved. While
code re-use is beneficial, re-use at the architectural level provides tremendous leverage for
systems with similar requirements. Not only code can be re-used but so can the requirements that
led to the architecture in the first place, as well as the experience of building the re-used
architecture. When architectural decisions can be re-used across multiple systems, all of the early
decision consequences are also transferred.

Software Product Lines Share a Common Architecture :

 A software product line or family is a set of software-intensive systems sharing a
common, managed set of features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in a
prescribed way.

 Chief among these core assets is the architecture that was designed to handle the needs of
the entire family. Product line architects choose an architecture (or a family of closely
related architectures) that will serve all envisioned members of the product line by
making design decisions that apply across the family early and by making other decisions
that apply only to individual members late.

 The architecture defines what is fixed for all members of the product line and what is
variable. Software product lines represent a powerful approach to multi-system
development that shows order-of- magnitude payoffs in time to market, cost,
productivity, and product quality. The power of architecture lies at the heart of the
paradigm. Similar to other capital investments, the architecture for a product line becomes
a developing organization's core asset.

Systems Can Be Built Using Large, Externally Developed Elements :

 Whereas earlier software paradigms focused on programming as the prime activity, with
progress measured in lines of code, architecture-based development often focuses on
composing or assembling elements that are likely to have been developed
separately,even independently, from each other.

 This composition is possible because the architecture defines the elements that can be
incorporated into the system. It constrains possible replacements (or additions) according
to how they interact with their environment, how they receive and relinquish control, what
data they consume and produce, how they access data, and what protocols they use for
communication and resource sharing.

 One key aspect of architecture is its organization of element structure, interfaces, andwww.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 24

operating concepts. The most significant principle of this organization is
interchangeability.

 Commercial off-the-shelf components, subsystems, and compatible communications
interfaces all depend on the principle of interchangeability. However, there is much about
software development through composition that remains unresolved.

 When the components that are candidates for importation and re-use are distinct
subsystems that have been built with conflicting architectural assumptions, unanticipated
complications can increase the effort required to integrate their functions.

An Architecture Permits Template-Based Development :

An architecture embodies design decisions about how elements interact that, while
reflected in each element's implementation, can be localized and written just once.
Templates can be used to capture in one place the inter-element interaction mechanisms. For
instance, a template can encode the declarations for an element's public area where results will
be left, or can encode the protocols that the element uses to engage with the system executive.

An Architecture Can Be the Basis for Training :

The architecture, including a description of how elements interact to carry out the
required behavior, can serve as the introduction to the system for new project members. This
reinforces our point that one of the important uses of software architecture is to support and
encourage communication among the various stakeholders.

Architectural Structures and Views :

A view is a representation of a coherent set of architectural elements, as written by and read by
system stakeholders. It consists of a representation of a set of elements and the relations among
them. A structure is the set of elements itself, as they exist in software or hardware. For example,
a module structure is the set of the system's modules and their organization. A module view is the
representation of that structure, as documented by and used by some system stakeholders.

Architectural structures can by and large be divided into three groups, depending on the broad
nature of the elements they show.

 Module structures. Here the elements are modules, which are units of
implementation. Modules represent a code-based way of considering the system. They
are assigned areas of functional responsibility. There is less emphasis on how the
resulting software manifests itself at runtime. Module structures allow us to answer
questions such as What is the primary functional responsibility assigned to each module?www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 25

What other software elements is a module allowed to use? What other software does it
actually use? What modules are related to other modules by generalization or
specialization (i.e., inheritance) relationships?

 Allocation structures. Allocation structures show the relationship between the
software elements and the elements in one or more external environments in
which the software is created and executed. They answer questions such as What
processor does each software element execute on? In what files is each element stored
during development, testing, and system building? What is the assignment of software
elements to development teams?

These three structures correspond to the three broad types of decision that architectural design
involves:

 How is the system to be structured as a set of code units (modules)?
 How is the system to be structured as a set of elements that have runtime behavior

(components) and interactions (connectors)?
 How is the system to relate to nonsoftware structures in its environment (i.e., CPUs,

file systems, networks, development teams, etc.)?

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 26

UNIT 2
Contents

 Architectural styles

 Pipes and filters

 Data abstraction and object-oriented organization

 Event-based, implicit invocation

 Layered systems

 Repositories

 Interpreters

 Process control

 Other familiar architectures

 Heterogeneous architectures.

 Case Studies: Keyword in Context

 Instrumentation software

UNIT: 2 ARCHITECTURAL STYLES AND CASE STUDIES

Architectural Styles:

The software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally visible properties
of those components, and the relationships between them. The term also refers to documentation
of a system's software architecture. Documenting software architecture facilitates communication
between stakeholders, documents early decisions about high- level design, and allows reuse of
design components and patterns between projects.

An architectural style defines a family of systems in terms of a pattern of structural organization.
This provides a vocabulary of components and connector types, and a set of constraints on how
they can be combined. A semantic model may also exist which specify how to determine a
system's overall properties from the properties of its parts.www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 27

Pipes and Filters :

 In a pipe and filter style each component has a set of inputs and a set of outputs. A
component reads streams of data on its inputs and produces streams of data on its
outputs, delivering a complete instance of the result in a standard order.

 This is usually accomplished by applying a local transformation to the input streams
and computing incrementally so output begins before input is consumed. Hence
components are termed “filters”. The connectors of this style serve as conduits for the
streams, transmitting outputs of one filter to inputs of another. Hence the
connectors are termed “pipes”. Among the important invariants of the style, filters
must be independent entities: in particular, they should not share state with other
filters.

 Another important invariant is that filters do not know the identity of their upstream
and downstream filters. Their specifications might restrict what appears on the input
pipes or make guarantees about what appears on the output pipes, but they may not
identify the components at the ends of those pipes.

 Furthermore, the correctness of the output of a pipe and filter network should not
depend on the order in which the filters perform their incremental processing—
although fair scheduling can be assumed. Common specializations of this style
include pipelines, which restrict the topologies to linear sequences of filters;
bounded pipes, which restrict the amount of data that can reside on a pipe; and typed
pipes, which require that the data passed between two filters have a well-defined type.

 A degenerate case of a pipeline architecture occurs when each filter processes all of
its input data as a single entity. In this case the architecture becomes a “batch
sequential” system. In these systems pipes no longer serve the function of providing a
stream of data, and therefore are largely vestigial. Hence such systems are best treated
as instances of a separate architectural style.

 The best known examples of pipe and filter architectures are programs written in the
Unix shell. Unix supports this style by providing a notation for connecting
components (represented as Unix processes) and by providing run time
mechanisms for implementing pipes. As another well-known example,
traditionally compilers have been viewed as a pipeline systems (though the phases are
often not incremental).

 Third, systems can be easily maintained and enhanced: new filters can be added to
existing systems and old filters can be replaced by improved ones. Fourth, theywww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 28

permit certain kinds of specialized analysis, such as throughput and deadlock
analysis. Finally, they naturally support concurrent execution. Each filter can be
implemented as a separate task and potentially executed in parallel with other filters.

Data Abstraction and Object-Oriented Organization :

 In this style data representations and their associated primitive operations are
encapsulated in an abstract data type or object. The components of this style are the
objects—or, if you will, instances of the abstract data types.

 Objects are examples of a sort of component we call a manager because it is responsible
for preserving the integrity of a resource (here the representation). Objects interact through
function and procedure invocations. Two important aspects of this style are (a) that an
object is responsible for preserving the integrity of its representation (usually by
maintaining some invariant over it), and (b) that the representation is hidden from other
objects.

 The use of abstract data types, and increasingly the use of object-oriented systems, is, of
course, widespread. There are many variations. For example, some systems allow
“objects” to be concurrent tasks; others allow objects to have multiple interfaces.

 Object-oriented systems have many nice properties, most of which are well known.
Because an object hides its representation from its clients, it is possible to change the
implementation without affecting those clients. Additionally, the bundling of a set of
accessing routines with the data they manipulate allows designers to decompose
problems into collections of interacting agents. But object-oriented systems also have
some disadvantages.

 The most significant is that in order for one object to interact with another (via procedure
call) it must know the identity of that other object. This is in contrast, for example, to pipe
and filter systems, where filters do need not know what other filters are in the system in
order to interact with them.

 The significance of this is that whenever the identity of an object changes it is necessary
to modify all other objects that explicitly invoke it. In a module oriented language this
manifests itself as the need to change the “import” list of every module that uses the
changed module. Further there can be side effect problems: if A uses object B and C also
uses B, then C's effects on B look like unexpected side effects to A, and vice versa.

Event-based, Implicit Invocation :www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 29

 Traditionally, in a system in which the component interfaces provide a collection of
procedures and functions, components interact with each other by explicitly invoking
those routines. However, recently there has been considerable interest in an alternative
integration technique, variously referred to as implicit invocation, reactive integration,
and selective broadcast.

 This style has historical roots in systems based on actors, constraint satisfaction,
daemons, and packet-switched networks. The idea behind implicit invocation is that instead
of invoking a procedure directly, a component can announce (or broadcast) one or more
events. Other components in the system can register an interest in an event by associating a
procedure with the event.

 When the event is announced the system itself invokes all of the procedures that have
been registered for the event. Thus an event announcement ``implicitly'' causes the
invocation of procedures in other modules. For example, in the Field system, tools such as
editors and variable monitors register for a debugger’s breakpoint events.

 When a debugger stops at a breakpoint, it announces an event that allows the system to
automatically invoke methods in those registered tools. These methods might scroll an
editor to the appropriate source line or redisplay the value of monitored variables. In
this scheme, the debugger simply announces an event, but does not know what other
tools (if any) are concerned with that event, or what they will do when that event is
announced.

 One important benefit of implicit invocation is that it provides strong support for reuse.
Any component can be introduced into a system simply by registering it for the events of
that system. A second benefit is that implicit invocation eases system evolution.
Components may be replaced by other components without affecting the interfaces of
other components in the system.

 In contrast, in a system based on explicit invocation, whenever the identity of a that
provides some system function is changed, all other modules that import that module must
also be changed. The primary disadvantage of implicit invocation is that components
relinquish control over the computation performed by the system.

 When a component announces an event, it has no idea what other components will
respond to it. Worse, even if it does know what other components are interested in the
events it announces, it cannot rely on the order in which they are invoked.

 Nor can it know when they are finished. Another problem concerns exchange of data.
Sometimes data can be passed with the event. But in other situations event systems must
rely on a shared repository for interaction. In these cases global performance and resourcewww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 30

management can become a serious issue.

 Finally, reasoning about correctness can be problematic, since the meaning of a procedure
that announces events will depend on the context of bindings in which it is invoked.
This is in contrast to traditional reasoning about procedure calls, which need only
consider a procedure’s pre- and post- conditions when reasoning about an invocation of it.

Layered Systems :

 A layered system is organized hierarchically, each layer providing service to the layer
above it and serving as a client to the layer below. In some layered systems inner layers
are hidden from all except the adjacent outer layer, except for certain functions carefully
selected for export. Thus in these systems the components implement a virtual machine at
some layer in the hierarchy. The connectors are defined by the protocols that determine
how the layers will interact. Topological constraints include limiting interactions to
adjacent layers.

 The most widely known examples of this kind of architectural style are layered
communication protocols. In this application area each layer provides a substrate for
communication at some level of abstraction. Lower levels define lower levels of
interaction, the lowest typically being defined by hardware connections. Other appli-
cation areas for this style include database systems and operating systems.

 Layered systems have several desirable properties. First, they support design based on
increasing levels of abstraction. This allows implementers to partition a complex problem
into a sequence of incremental steps.

 Second, they support enhancement. Like pipelines, because each layer interacts with at
most the layers below and above, changes to the function of one layer affect at most two
other layers. Third, they support reuse. Like abstract data types, different implementations
of the same layer can be used interchangeably, provided they support the same interfaces
to their adjacent layers.

 This leads to the possibility of defining standard layer interfaces to which different
implementers can build. (A good example is the OSI ISO model and some of the X
Window System protocols.) But layered systems also have disadvantages. Not all
systems are easily structured in a layered fashion. And even if a system can logically be
structured as layers, considerations of performance may require closer coupling between
logically high-level functions and their lower-level implementations.

 Additionally, it can be quite difficult to find the right levels of abstraction. This is
particularly true for standardized layered models. One notes that the communications
community has had some difficulty mapping existing protocols into the ISOwww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 31

framework: many of those protocols bridge several layers.

 In one sense this is similar to the benefits of implementation hiding found in abstract data
types. However, here there are multiple levels of abstraction and implementation. They
are also similar to pipelines, in that components communicate at most with one other
component on either side. But instead of simple pipe read/write protocol of pipes, layered
systems can provide much richer forms of interaction.

 This makes it difficult to define system independent layers (as with filters)—since a layer
must support the specific protocols at its upper and lower boundaries. But it also allows
much closer interaction between layers, and permits two- way transmission of information.

Repositories :

In a repository style there are two quite distinct kinds of components: a central data structure
represents the current state, and a collection of independent components operate on the central
data store. Interactions between the repository and its external components can vary significantly
between systems.

The choice of control discipline leads to major subcategories. If the types of transactions in
an input stream of transactions trigger selection of processes to execute, the repository can
be a traditional database. If the current state of the central data structure is the main trigger of
selecting processes to execute, the repository can be a blackboard. The blackboard model is
usually presented with three major parts:

 The knowledge sources: separate, independent parcels of application dependent
knowledge. Interaction among knowledge sources takes place solely through the
blackboard.

 The blackboard data structure: problem-solving state data, organized into an
application-dependent hierarchy. Knowledge sources make changes to the blackboard
that lead incrementally to a solution to the problem.

 Control: driven entirely by state of blackboard. Knowledge sources respond
opportunistically when changes in the blackboard make them applicable.

 Invocation of a knowledge source is triggered by the state of the blackboard. The actual
locus of control, and hence its implementation, can be in the knowledge sources, the
blackboard, a separate module, or some combination of these. Blackboard systems have
traditionally been used for applications requiring complex interpretations of signal
processing, such as speech and pattern recognition.

 They have also appeared in other kinds of systems that involve shared access to datawww.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 32

with loosely coupled agents. There are, of course, many other examples of repository
systems. Batch sequential systems with global databases are a special case. Programming
environments are often organized as a collection of tools together with a shared repository
of programs and program fragments.

 Even applications that have been traditionally viewed as pipeline architectures may be
more accurately interpreted as repository systems. For example, while a compiler
architecture has traditionally been presented as a pipeline, the “phases” of most modern
compilers operate on a base of shared information (symbol tables, abstract syntax tree,
etc.).

Interpreters :

In an interpreter organization a virtual machine is produced in software. An interpreter includes
the pseudo-program being interpreted and the interpretation engine itself. The pseudo-program
includes the program itself and the interpreter’s analog of its execution state (activation record).
The interpretation engine includes both the definition of the interpreter and the current state of
its execution. Thus an interpreter generally has four components: an interpretation engine to do
the work, a memory that contains the pseudo- code to be interpreted, a representation of the
control state of the interpretation engine, and a representation of the current state of the program
being simulated.

Interpreters are commonly used to build virtual machines that close the gap between the
computing engine expected by the semantics of the program and the computing engine available
in hardware.

Other Familiar Architectures :

There are numerous other architectural styles and patterns. Some are widespread and others are
specific to particular domains.

• Distributed processes: Distributed systems have developed a number of common
organizations for multi-process systems. Some can be characterized primarily by their
topological features, such as ring and star organizations. Others are better characterized in terms
of the kinds of inter-process protocols that are used for communication (e.g., heartbeat
algorithms). One common form of distributed system architecture is a “client- server”
organization . In these systems a server represents a process that provides services to other
processes (the clients). Usually the server does not know in advance the identities or number of
clients that will access it at run time. On the other hand, clients know the identity of a server (or
can find it out through some other server) and access it by remote procedure call.
• Main program/subroutine organizations: The primary organization of many systems mirrors
the programming language in which the system is written. For languages without support forwww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 33

modularization this often results in a system organized around a main program and a set
of subroutines. The main program acts as the driver for the subroutines, typically
providing a control loop for sequencing through the subroutines in some order.
• Domain-specific software architectures: Recently there has been considerable interest in
developing “reference” architectures for specific domains . These architectures provide an
organizational structure tailored to a family of applications, such as avionics, command
and control, or vehicle management systems. By specializing the architecture to the domain, it
is possible to increase the descriptive power of structures. Indeed, in many cases the architecture
is sufficiently constrained that an executable system can be generated automatically or semi-
automatically from the architectural description itself.
• State transition systems: A common organization for many reactive systems is the state
transition system . These systems are defined in terms a set of states and a set of named
transitions that move a system from one state to another.
• Process control systems: Systems intended to provide dynamic control of a physical
environment are often organized as process control systems . These systems are roughly
characterized as a feedback loop in which inputs from sensors are used by the process control
system to determine a set of outputs that will produce a new state of the environment.

Heterogeneous Architectures :

 Most systems typically involve some combination of several styles. There are different
ways in which architectural styles can be combined. One way is through hierarchy. A
component of a system organized in one architectural style may have an internal structure
that is developed a completely different style.

 For example, in a Unix pipeline the individual components may be represented
internally using virtually any style— including, of course, another pipe and filter, system.
For example, a pipe connector may be implemented internally as a FIFO queue accessed
by insert and remove operations.

 A second way for styles to be combined is to permit a single component to use a mixture of
architectural connectors. For example, a component might access a repository through
part of its interface, but interact through pipes with other components in a system, and
accept control information through another part of its interface.

 Another example is an “active database”. This is a repository which activates external
components through implicit invocation. In this organization external components
register interest in portions of the database. The database automatically invokes the
appropriate tools based on this association. (Blackboards are often constructed this way;
knowledge sources are associated with specific kinds of data, and are activated whenever
that kind of data is modified.)www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 34

 A third way for styles to be combined is to completely elaborate one level of architectural
description in a completely different architectural style.

Case Studies :

Following are the examples to illustrate how architectural principles can be used to increase
our understanding of software systems. The first example shows how different architectural
solutions to the same problem provide different benefits. The second case study summarizes
experience in developing a domain-specific architectural style for a family of industrial products.

Case Study 1: Key Word in Context :

 In his paper of 1972, Parnas proposed the following problem :The KWIC [Key Word in
Context] index system accepts an ordered set of lines, each line is an ordered set of
words, and each word is an ordered set of characters. Any line may be ``circularly
shifted'' by repeatedly removing the first word and appending it at the end of the line.

 The KWIC index system outputs a listing of all circular shifts of all lines in
alphabetical order. Parnas used the problem to contrast different criteria for
decomposing a system into modules. He describes two solutions, one based on

 functional decomposition with shared access to data representations, and a second based
on a decomposition that hides design decisions. Since its introduction, the problem has
become well-known and is widely used as a teaching device in software engineering.
Garlan, Kaiser, and Notkin also use the problem to illustrate modularization schemes based
on implicit invocation .

 While KWIC can be implemented as a relatively small system it is not simply of
pedagogical interest. Practical instances of it are widely used by computer scientists. For
example, the “permuted” [sic] index for the Unix Man pages is essentially such a system.

 From the point of view of software architecture, the problem derives its appeal from the
fact that it can be used to illustrate the effect of changes on software design. Parnas
shows that different problem decompositions vary greatly in their ability to withstand
design changes. Among the changes he considers are:

Changes in processing algorithm: For example, line shifting can be performed on
each line as it is read from the input device, on all the lines after they are read, or on
demand when the alphabetization requires a new set of shifted lines.

Changes in data representation: For example, lines can be stored in various ways.www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 35

Similarly, circular shifts can be stored explicitly or implicitly (as pairs of index and
offset).Garlan, Kaiser, and Notkin, extend Parnas’ analysis by considering:

Enhancement to system function: For example, modify the system so that shifted
lines to eliminate circular shifts that start with certain noise words (such as “a”, “an”,
“and”, etc.). Change the system to be interactive, and allow the user to delete lines
from the original lists.Performance: Both space and time.

• Reuse: To what extent can the components serve as reusable entities. We now outline four
architectural designs for the KWIC system. All four are grounded in published solutions
(including implementations). The first two are those considered in Parnas’ original article.
The third solution is based on the use of an implicit invocation style and represents a variant on
the solution examined by Garlan, Kaiser, and Notkin. The fourth is a pipeline solution inspired
by the Unix index utility. After presenting each solution and briefly summarizing its
strengths and weakness, we contrast the different architectural decompositions in a table
organized along the five design dimensions itemized above.

Solution : Main Program/Subroutine with Shared Data

The first solution decomposes the problem according to the four basic functions performed:
input, shift, alphabetize, and output. These computational components are coordinated as
subroutines by a main program that sequences through them in turn. Data is communicated
between the components through shared storage (“core storage”). Communication between the
computational components and the shared data is an unconstrained read write protocol. This is
made possible by the fact that the coordinating program guarantees sequential access to the data.

Case Study 2: Instrumentation Software :

 This case study describes the industrial development of a software architecture at
Tektronix, Inc. This work was carried out as a collaborative effort between several
Tektronix product divisions and the Computer Research Laboratory over a three year
period.

 The purpose of the project was to develop reusable system architecture for oscilloscopes.
An oscilloscope is an instrumentation system that samples electrical signals and
displays pictures (called traces) of them on a screen. Additionally, oscilloscopes
perform measurements on the signals, and also display these on the screen.

 While oscilloscopes were once simple analogue devices involving little software, modern
oscilloscopes rely primarily on digital technology and have quite complex software. It is
not uncommon for a modern oscilloscope to perform dozens of measurements, supply
megabytes of internal storage, interface to a network of workstations and otherwww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 36

instruments, and provide sophisticated user interface including a touch panel screen with
menus, built-in help facilities, and color displays.

 Like many companies that have had to rely increasingly on software to support their
products, Tektronix was faced with number of problems. First, there was little reuse
across different oscilloscope products. Instead, different oscilloscopes were built by
different product divisions, each with their own development conventions, software
organization, programming language,and development tools.

 Moreover, even within a single product division, each new oscilloscope typically
required a redesign from scratch to accommodate changes in hardware capability and
new requirements on the user interface. This problem was compounded by the fact
that both hardware and interface requirements were changing increasingly rapidly.

 Furthermore, there was a perceived need to address “specialized markets”. To do this it
would have to be possible to tailor a general-purpose instrument, to a specific set of uses.

 Second, there were increasing performance problems because the software was not
rapidly configurable within the instrument. This problem arises because an oscilloscope
can be configured in many different modes, depending on the user’s task. In old
oscilloscopes reconfiguration was handled simply by loading different software to handle
the new mode.

 But as the total size of software was increasing, this was leading to delays between a user's
request for a new mode and a reconfigured instrument. The goal of the project was to
develop an architectural framework for oscilloscopes that would address these problems.
The result of that work was a domain-specific software architecture that formed the basis
of the next generation of Tektronix oscilloscopes.

 Since then the framework has been extended and adapted to accommodate a broader
class of system, while at the same time being better adapted to the specific needs of
instrumentation software.

 This case study illustrates the issues involved in developing an architectural style for a
real application domain. It underscores the fact that different architectural styles have
different effects on the ability to solve a set of problems.

 It illustrates that architectural designs for industrial software must typically be adapted
from pure forms to specialized styles that meet the needs of the specific domain. In this
case, the final result depended greatly on the properties of pipe and filter architectures, but
found ways to adapt that generic style so that it could also satisfy the performance needs
of the product family.www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 37

UNIT 3

CONTENTS

 Functionality and architecture

 Architecture and quality attributes

 System quality attributes

 Quality attribute scenarios in practice

 Other system quality attributes

 Business qualities

 Architecture qualities

 Achieving Quality : Introducing tactics

 Availability tactics

 Modifiability tactics

 Performance tactics

 Security tactics

 Testability tactics

 Usability tactics

 Relationship of tactics to architectural patterns

 Architectural patterns and styles

Chapter 4: Quality

As we have seen in the Architecture Business Cycle, business considerations determine qualities
that must be accommodated in a system's architecture. These qualities are over and above that of
functionality, which is the basic statement of the system's capabilities, services, and behavior.
Although functionality and other qualities are closely related, as you will see, functionality often
takes not only the front seat in the development scheme but the only seat. This is short-sighted,www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 38

however. Systems are frequently redesigned not because they are functionally deficient the
replacements are often functionally identical. but because they are difficult to maintain, port, or
scale, or are too slow, or have been compromised by network hackers. Architecture is the first
stage in software creation in which quality requirements could be addressed. It is the mapping of
a system's functionality onto software structures that determines the architecture's support for
qualities.

Functionality and Architecture :

 Functionality and quality attributes are orthogonal. If functionality and quality attributes
were not orthogonal, the choice of function would dictate the level of security or
performance or availability or usability.

 Functionality is the ability of the system to do the work for which it was intended. A task
requires that many or most of the system's elements work in a coordinated manner to
complete the job, just as framers, electricians, plumbers, drywall hangers, painters, and
finish carpenters all come together to cooperatively build a house.

 Therefore, if the elements have not been assigned the correct responsibilities or have not
been endowed with the correct facilities for coordinating with other elements (so that, for
instance, they know when it is time for them to begin their portion of the task), the
system will be unable to offer the required functionality.

 Functionality may be achieved through the use of any of a number of possible structures.
In fact, if functionality were the only requirement, the system could exist as a single
monolithic module with no internal structure at all. Instead, it is decomposed into
modules to make it understandable and to support a variety of other purposes.

 In this way, functionality is largely independent of structure. Software architecture
constrains its allocation to structure when other quality attributes are important. For
example, systems are frequently divided so that several people can cooperatively build
them (which is, among other things, a time-to-market issue, though seldom stated this
way). The interest of functionality is how it interacts with, and constrains, those other
qualities.

Architecture and Quality Attributes :

Achieving quality attributes must be considered throughout design, implementation, and
deployment. No quality attribute is entirely dependent on design, nor is it entirely
dependent on implementation or deployment. Satisfactory results are a matter of getting the big
picture (architecture) as well as the details (implementation) correct. For example:

 Usability involves both architectural and non architectural aspects. The nonwww.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 39

architectural aspects include making the user interface clear and easy to use. Should you
provide a radio button or a check box? What screen layout is most intuitive?

What typeface is most clear? Although these details matter tremendously to the end user
and influence usability, they are not architectural because they belong to the details of
design. Whether a system provides the user with the ability to cancel operations, to undo
operations, or to re-use data previously entered is architectural, however. These
requirements involve the cooperation of multiple elements.

 Modifiability is determined by how functionality is divided (architectural) and by coding
techniques within a module (non architectural). Thus, a system is modifiable if changes
involve the fewest possible number of distinct elements. In spite of having the ideal
architecture, however, it is always possible to make a system difficult to modify by
writing obscure code.

 Performance involves both architectural and non architectural dependencies. It depends
partially on how much communication is necessary among components
(architectural), partially on what functionality has been allocated to each
component (architectural), partially on how shared resources are allocated (architectural),
partially on the choice of algorithms to implement selected functionality (non
architectural), and partially on how these algorithms are coded (non architectural).

The message of this is twofold:

Architecture is critical to the realization of many qualities of interest in a system, and these
qualities should be designed in and can be evaluated at the architectural level.

Architecture, by itself, is unable to achieve qualities. It provides the foundation for achieving
quality, but this foundation will be to no avail if attention is not paid to the details.

 Within complex systems, quality attributes can never be achieved in isolation. The
achievement of any one will have an effect, sometimes positive and sometimes negative,
on the achievement of others. For example, security and reliability often exist in a state of
mutual tension:

 The most secure system has the fewest points of failure typically a security kernel. The
most reliable system has the most points of failure typically a set of redundant processes
or processors where the failure of any one will not cause the system to fail. Another
example of the tension between quality attributes is that almost every quality attribute
negatively affects performance. Take portability. The main technique for achieving
portable software is to isolate system dependencies, which introduces overhead into the
system's execution, typically as process or procedure boundaries, and this hurts
performance.

Following are the three classes:www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 40

1. Qualities of the system. We will focus on availability, modifiability, performance,
security, testability, and usability.

2. Business qualities (such as time to market) that are affected by the architecture.
3. Qualities, such as conceptual integrity, that are about the architecture itself

although they indirectly affect other qualities, such as modifiability

System Quality Attributes :

System quality attributes have been of interest to the software community at least since the
1970s. There are a variety of published taxonomies and definitions, and many of them have their
own research and practitioner communities. From an architect's perspective, there are three
problems with previous discussions of system quality attributes:

The definitions provided for an attribute are not operational. It is meaningless to say that a system
will be modifiable. Every system is modifiable with respect to one set of changes and not
modifiable with respect to another. The other attributes are similar.

A focus of discussion is often on which quality a particular aspect belongs to. Is a system failure
an aspect of availability, an aspect of security, or an aspect of usability? All three attribute
communities would claim ownership of a system failure.

Each attribute community has developed its own vocabulary. The performance community has
"events" arriving at a system, the security community has "attacks" arriving at a system, the
availability community has "failures" of a system, and the usability community has "user input."
All of these may actually refer to the same occurrence, but are described using different terms.

A solution to the first two of these problems (non operational definitions and overlapping attribute
concerns) is to use quality attribute scenarios as a means of characterizing quality attributes.
A solution to the third problem is to provide a brief discussion of each attribute concentrating on
its underlying concerns to illustrate the concepts that are fundamental to that attribute
community.

QUALITY ATTRIBUTE SCENARIOS

A quality attribute scenario is a quality-attribute-specific requirement. It consists of six parts.

Source of stimulus. This is some entity (a human, a computer system, or any other actuator)
that generated the stimulus.

Stimulus. The stimulus is a condition that needs to be considered when it arrives at a system.www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 41

Environment. The stimulus occurs within certain conditions. The system may be in an overload
condition or may be running when the stimulus occurs, or some other condition may be true.

Artifact. Some artifact is stimulated. This may be the whole system or some pieces of it.

Response. The response is the activity undertaken after the arrival of the stimulus.

Response measure. When the response occurs, it should be measurable in some fashion so that
the requirement can be tested.

Figure 4.1 shows the parts of a quality attribute scenario.

Availability Scenario

A general scenario for the quality attribute of availability, for example, is shown in Figure
4.2. Its six parts are shown, indicating the range of values they can take. From this we can derive
concrete, system-specific, scenarios. Not every system-specific scenario has all of the six parts.
The parts that are necessary are the result of the application of the scenario and the types of testing
that will be performed to determine whether the scenario has been achieved.

figure 4.2. Availability general scenarios

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 42

An example availability scenario, derived from the general scenario of Figure 4.2 by
instantiating each of the parts, is "An unanticipated external message is received by a process
during normal operation. The process informs the operator of the receipt of the message and
continues to operate with no downtime." Figure 4.3 shows the pieces of this derived scenario.

Figure 4.3. Sample availability scenario

 The source of the stimulus is important since differing responses may be required
depending on what it is. For example, a request from a trusted source may be treated
differently from a request from an untrusted source in a security scenario.

 The environment may also affect the response, in that an event arriving at a system may be
treated differently if the system is already overloaded. The artifact that is stimulated is
less important as a requirement. It is almost always the system, and we explicitly call it
out for two reasons.

 First, many requirements make assumptions about the internals of the system (e.g., "a Web
server within the system fails"). Second, when we utilize scenarios within an
evaluation or design method, we refine the scenario artifact to be quite explicit about the
portion of the system being stimulated. Finally, being explicit about the value of thewww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 43

response is important so that quality attribute requirements are made explicit. Thus, we
include the response measure as a portion of the scenario.

Modifiability Scenario

A sample modifiability scenario is "A developer wishes to change the user interface to make a
screen's background color blue. This change will be made to the code at design time. It will take
less than three hours to make and test the change and no side effect changes will occur in the
behavior." Figure 4.4 illustrates this sample scenario (omitting a few minor details for brevity).

Figure 4.4. Sample modifiability scenario

A collection of concrete scenarios can be used as the quality attribute requirements for a system.
Each scenario is concrete enough to be meaningful to the architect, and the details of the
response are meaningful enough so that it is possible to test whether the system has achieved the
response. When eliciting requirements, we typically organize our discussion of general scenarios
by quality attributes; if the same scenario is generated by two different attributes, one can be
eliminated.

Quality Attribute Scenarios in Practice :

 General scenarios provide a framework for generating a large number of generic, system-
independent, quality-attribute-specific scenarios. Each is potentially but not necessarily
relevant to the system you are concerned with. To make the general scenarios useful for a
particular system, you must make them system specific.

 Making a general scenario system specific means translating it into concrete terms for the
particular system. Thus, a general scenario is "A request arrives for a change in
functionality, and the change must be made at a particular time within the development
process within a specified period."www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 44

 A system-specific version might be "A request arrives to add support for a new browser to
a Web-based system, and the change must be made within two weeks." Furthermore, a
single general scenario may have many system- specific versions. The same system that
has to support a new browser may also have to support a new media type.

 We now discuss the six most common and important system quality attributes, with the
twin goals of identifying the concepts used by the attribute community and providing a
way to generate general scenarios for that attribute.

AVAILABILITY

 Availability is concerned with system failure and its associated consequences. A system
failure occurs when the system no longer delivers a service consistent with its
specification. Such a failure is observable by the system's users either humans or other
systems. An example of an availability general scenario appeared in Figure 4.3.

 Among the areas of concern are how system failure is detected, how frequently system
failure may occur, what happens when a failure occurs, how long a system is allowed to be
out of operation, when failures may occur safely, how failures can be prevented, and what
kinds of notifications are required when a failure occurs.

 We need to differentiate between failures and faults. A fault may become a failure if not
corrected or masked. That is, a failure is observable by the system's user and a fault is
not. When a fault does become observable, it becomes a failure. For example, a fault can
be choosing the wrong algorithm for a computation, resulting in a miscalculation that
causes the system to fail.

 Once a system fails, an important related concept becomes the time it takes to repair it.
Since a system failure is observable by users, the time to repair is the time until the
failure is no longer observable. This may be a brief delay in the response time or it may
be the time it takes someone to fly to a remote location in the mountains of Peru to repair a
piece of mining machinery

The availability of a system is the probability that it will be operational when it is needed. This is
typically defined as

From this come terms like 99.9% availability, or a 0.1% probability that the system will not be
operational when needed.www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 45

Scheduled downtimes (i.e., out of service) are not usually considered when calculating
availability, since the system is "not needed" by definition. This leads to situations where the
system is down and users are waiting for it, but the downtime is scheduled and so is not counted
against any availability requirements.

Availability General Scenarios

From these considerations we can see the portions of an availability scenario, shown in Figure
4.2.

Source of stimulus. We differentiate between internal and external indications of faults or
failure since the desired system response may be different. In our example, the unexpected
message arrives from outside the system.

Stimulus. A fault of one of the following classes occurs.

omission. A component fails to respond to an input.

crash. The component repeatedly suffers omission faults.

timing. A component responds but the response is early or late.

response. A component responds with an incorrect value.

In Figure 4.3, the stimulus is that an unanticipated message arrives. This is an example of a
timing fault. The component that generated the message did so at a different time than expected.

Artifact. This specifies the resource that is required to be highly available, such as a processor,
communication channel, process, or storage.

Environment. The state of the system when the fault or failure occurs may also affect the
desired system response. For example, if the system has already seen some faults and is operating
in other than normal mode, it may be desirable to shut it down totally. However, if this is the
first fault observed, some degradation of response time or function may be preferred. In our
example, the system is operating normally.

Response. There are a number of possible reactions to a system failure. These include logging the
failure, notifying selected users or other systems, switching to a degraded mode with either
less capacity or less function, shutting down external systems, or becoming unavailable during
repair. In our example, the system should notify the operator of the unexpected message and
continue to operate normally.www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 46

Response measure. The response measure can specify an availability percentage, or it can
specify a time to repair, times during which the system must be available, or the duration for which
the system must be available. In Figure 4.3, there is no downtime as a result of the unexpected
message.

Table 4.1 presents the possible values for each portion of an availability scenario.

Table 4.1. Availability General Scenario Generation

Portion of
Scenario

Possible Values

Source Internal to the system; external to the system

Stimulus Fault: omission, crash, timing, response

Artifact System's processors, communication channels, persistent storage,
processes

Environment Normal operation;

degraded mode (i.e., fewer features, a fall back solution) Response System

should detect event and do one or more of the following:

record notify appropriate parties, including the user and other systems disable
sources of events that cause fault or failure according to
defined rules

be unavailable for a prespecified interval, where interval depends on criticality of
system

continue to operate in normal or degraded mode

Response Measure Time interval when the system must be available

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 47

MODIFIABILITY

Modifiability is about the cost of change. It brings up two concerns.

What can change (the artifact)? A change can occur to any aspect of a system, most
commonly the functions that the system computes, the platform the system exists on (the
hardware, operating system, middleware, etc.), the environment within which the system
operates (the systems with which it must interoperate, the protocols it uses to
communicate with the rest of the world, etc.)

the qualities the system exhibits (its performance, its reliability, and even its future
modifications), and its capacity (number of users supported, number of simultaneous
operations, etc.). Some portions of the system, such as the user interface or the platform,
are sufficiently distinguished and subject to change that we consider them separately. The
category of platform changes is also called portability. Those changes may be to add,
delete, or modify any one of these aspects.

When is the change made and who makes it (the environment)? Most commonly in the
past, a change was made to source code. That is, a developer had to make the change,
which was tested and then deployed in a new release. Now, however, the question of
when a change is made is intertwined with the question of who makes it. An end user
changing the screen saver is clearly making a change to one of the aspects of the system.

Equally clear, it is not in the same category as changing the system so that it can be used over
the Web rather than on a single machine. Changes can be made to the implementation (by
modifying the source code), during compile (using compile-time switches), during build
(by choice of libraries), during configuration setup (by a range of techniques, including
parameter setting) or during execution (by parameter setting). A change can also be made
by a developer, an end user, or a system administrator.

Once a change has been specified, the new implementation must be designed, implemented,
tested, and deployed. All of these actions take time and money, both of which can be measured.

Modifiability General Scenarios

From these considerations we can see the portions of the modifiability general scenarios. Figure
4.4 gives an example: "A developer wishes to change the user interface. This change will be
made to the code at design time, it will take less than three hours to make and test the change, and
no side-effect changes will occur in the behavior."

 Source of stimulus. This portion specifies who makes the changes? the
developer, a system administrator, or an end user. Clearly, there must be machinery inwww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 48

place to allow the system administrator or end user to modify a system, but this is a
common occurrence. In Figure 4.4, the modification is to be made by the developer.

 Stimulus. This portion specifies the changes to be made. A change can be the addition
of a function, the modification of an existing function, or the deletion of a function. It can
also be made to the qualities of the system making it more responsive, increasing its
availability, and so forth. The capacity of the system may also change. Increasing the
number of simultaneous users is a frequent requirement. In our example, the stimulus
is a request to make a modification, which can be to the function, quality, or capacity.

Variation is a concept associated with software product lines .When considering
variation, a factor is the number of times a given variation must be specified. One that
must be made frequently will impose a more stringent requirement on the response
measures than one that is made only sporadically.

 Artifact. This portion specifies what is to be changed? the functionality of a system,
its platform, its user interface, its environment, or another system with which it
interoperates. In Figure 4.4, the modification is to the user interface.

 Environment. This portion specifies when the change can be made, design time, compile
time, build time, initiation time, or runtime. In our example, the modification is to occur at
design time.

 Response. Whoever makes the change must understand how to make it, and then make it,
test it and deploy it. In our example, the modification is made with no side effects.

 Response measure. All of the possible responses take time and cost money, and so time
and cost are the most desirable measures. Time is not always possible to predict,
however, and so less ideal measures are frequently used, such as the extent of the
change (number of modules affected). In our example, the time to perform the
modification should be less than three hours.

Table 4.2 presents the possible values for each portion of a modifiability scenario.

Table 4.2. Modifiability General Scenario Generation

Portion of
Scenario

Possible Values

Source End user, developer, system administrator

Stimulus Wishes to add/delete/modify/vary functionality, quality attribute,
capacity

Artifact System user interface, platform, environment; system that
interoperates with target systemwww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE
06IS72

DEPT OF CSE, SJBIT Page 49

Environment At runtime, compile time, build time, design time

Response Locates places in architecture to be modified; makes modification
without affecting other functionality; tests modification; deploys
modification

Response
Measure

Cost in terms of number of elements affected, effort, money;
extent to which this affects other functions or quality attributes

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 50

PERFORMANCE

 Performance is about timing. Events (interrupts, messages, requests from users, or the
passage of time) occur, and the system must respond to them. There are a variety of
characterizations of event arrival and the response but basically performance is concerned
with how long it takes the system to respond when an event occurs.

 One of the things that make performance complicated is the number of event sources and
arrival patterns. Events can arrive from user requests, from other systems, or from within
the system. A Web-based financial services system gets events from its users (possibly
numbering in the tens or hundreds of thousands). An engine control system gets its
requests from the passage of time and must control both the firing of the ignition when a
cylinder is in the correct position and the mixture of the fuel to maximize power and
minimize pollution.

 For the Web-based financial system, the response might be the number of transactions
that can be processed in a minute. For the engine control system, the response might be
the variation in the firing time. In each case, the pattern of events arriving and the pattern
of responses can be characterized, and this characterization forms the language with
which to construct general performance scenarios.

 A performance scenario begins with a request for some service arriving at the system.
Satisfying the request requires resources to be consumed. While this is happening the
system may be simultaneously servicing other requests.

 An arrival pattern for events may be characterized as either periodic or stochastic. For
example, a periodic event may arrive every 10 milliseconds. Periodic event arrival is
most often seen in real-time systems. Stochastic arrival means that events arrive
according to some probabilistic distribution. Events can also arrive sporadically, that is,
according to a pattern not capturable by either periodic or stochastic characterizations.

 Multiple users or other loading factors can be modeled by varying the arrival pattern for
events. In other words, from the point of view of system performance, it does not matter
whether one user submits 20 requests in a period of time or whether two users each
submit 10. What matters is the arrival pattern at the server and dependencies within the
requests.

 The response of the system to a stimulus can be characterized by latency (the time
between the arrival of the stimulus and the system's response to it), deadlines in processing
(in the engine controller, for example, the fuel should ignite when the cylinder is in a
particular position, thus introducing a processing deadline)www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 51

 the throughput of the system (e.g., the number of transactions the system can process in a
second), the jitter of the response (the variation in latency), the number of events not
processed because the system was too busy to respond, and

the data that was lost because the system was too busy.

Notice that this formulation does not consider whether the system is networked or
standalone. Nor does it (yet) consider the configuration of the system or the consumption of
resources.

Performance General Scenarios

From these considerations we can see the portions of the performance general scenario, an
example of which is shown in Figure 4.5: "Users initiate 1,000 transactions per minute
stochastically under normal operations, and these transactions are processed with an average
latency of two seconds."

Figure 4.5. Sample performance scenario

Source of stimulus. The stimuli arrive either from external (possibly multiple) or internal
sources. In our example, the source of the stimulus is a collection of users.

Stimulus. The stimuli are the event arrivals. The arrival pattern can be characterized as
periodic, stochastic, or sporadic. In our example, the stimulus is the stochastic initiation
of 1,000 transactions per minute.

Artifact. The artifact is always the system's services, as it is in our example. Environment.

The system can be in various operational modes, such as normal,
emergency, or overload. In our example, the system is in normal mode.www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 52

Response. The system must process the arriving events. This may cause a change in the
system environment (e.g., from normal to overload mode). In our example, the transactions
are processed.

Response measure. The response measures are the time it takes to process the arriving
events, the variation in this time (jitter), the number of events that can be processed within a
particular time interval (throughput), or a characterization of the events that cannot be
processed (miss rate, data loss). In our example, the transactions should be processed with
an average latency of two seconds.

SECURITY

Security is a measure of the system's ability to resist unauthorized usage while still providing its
services to legitimate users. An attempt to breach security is called an attack and can take a
number of forms. It may be an unauthorized attempt to access data or services or to modify data,
or it may be intended to deny services to legitimate users.

Some security experts use "threat" interchangeably with "attack."

Attacks, often occasions for wide media coverage, may range from theft of money by electronic
transfer to modification of sensitive data, from theft of credit card numbers to destruction of files
on computer systems, or to denial-of-service attacks carried out by worms or viruses. Still, the
elements of a security general scenario are the same as the elements of our other general
scenarios a stimulus and its source, an environment, the target under attack, the desired response
of the system, and the measure of this response.

Security can be characterized as a system providing non repudiation, confidentiality, integrity,
assurance, availability, and auditing. For each term, we provide a definition and an example.

 Non repudiation is the property that a transaction (access to or modification of data or
services) cannot be denied by any of the parties to it. This means you cannot deny that you
ordered that item over the Internet if, in fact, you did.

 Confidentiality is the property that data or services are protected from
unauthorized access. This means that a hacker cannot access your income tax returns on a
government computer.

 Integrity is the property that data or services are being delivered as intended. This means
that your grade has not been changed since your instructor assigned it.

 Assurance is the property that the parties to a transaction are who they purport to be. This
means that, when a customer sends a credit card number to an Internet merchant, the
merchant is who the customer thinks they are. Availability is the property that the system
will be available for legitimate use.

 Auditing is the property that the system tracks activities within it at levelswww.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 53

sufficient to reconstruct them. This means that, if you transfer money out of one account
to another account, in Switzerland, the system will maintain a record of that transfer.

Each of these security categories gives rise to a collection of general scenarios.

Security General Scenarios

The portions of a security general scenario are given below. Figure 4.6 presents an example. A
correctly identified individual tries to modify system data from an external site; system maintains
an audit trail and the correct data is restored within one day.

Source of stimulus. The source of the attack may be either a human or another system. It
may have been previously identified (either correctly or incorrectly) or may be currently
unknown.

If the source of the attack is highly motivated (say politically motivated), then defensive
measures such as "We know who you are and will prosecute you" are not likely to be
effective; in such cases the motivation of the user may be important. If the source has
access to vast resources (such as a government), then defensive measures are very
difficult. The attack itself is unauthorized access, modification, or denial of service.

The difficulty with security is allowing access to legitimate users and determining
legitimacy. If the only goal were to prevent access to a system, disallowing all access would be
an effective defensive measure.

Figure 4.6. Sample security scenario

Stimulus. The stimulus is an attack or an attempt to break security. We characterize this as
an unauthorized person or system trying to display information, change and/or delete
information, access services of the system, or reduce availability of system services. In
Figure 4.6, the stimulus is an attempt to modify data.www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 54

Artifact. The target of the attack can be either the services of the system or the data within it.
In our example, the target is data within the system.

Environment. The attack can come when the system is either online or offline, either
connected to or disconnected from a network, either behind a firewall or open to the
network.

Response. Using services without authorization or preventing legitimate users from using
services is a different goal from seeing sensitive data or modifying it. Thus, the system
must authorize legitimate users and grant them access to data and services, at the same
time rejecting unauthorized users, denying them access, and reporting unauthorized
access.

Response measure. Measures of a system's response include the difficulty of mounting
various attacks and the difficulty of recovering from and surviving attacks. In our
example, the audit trail allows the accounts from which money was embezzled to be
restored to their original state. Of course, the embezzler still has the money, and he must
be tracked down and the money regained, but this is outside of the realm of the computer
system.

Table 4.4 shows the security general scenario generation table.

Table 4.4. Security General Scenario Generation

Portion of
Scenario

Possible Values

Source Individual or system that is correctly identified, identified incorrectly,
of unknown identity who is internal/external, authorized/not authorized with access to

limited resources, vast resources

Stimulus Tries to display data, change/delete data, access system services,
reduce availability to system services

Artifact System services; data within system

Environment Either online or offline, connected or disconnected, firewalled or open

Response Authenticates user; hides identity of the user; blocks access to data
and/or services; allows access to data and/or services; grants or

Table 4.4. Security General Scenario Generation

Portion of
Scenariowww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE
06IS72

DEPT OF CSE, SJBIT Page 55

Response
Measure

Possible Values

withdraws permission to access data and/or services; records
access/modifications or attempts to access/modify data/services by
identity; stores data in an unreadable format; recognizes an
unexplainable high demand for services, and informs a user or
another system, and restricts availability of services

Time/effort/resources required to circumvent security measures with
probability of success; probability of detecting attack; probability of
identifying individual responsible for attack or access/modification of
data and/or services; percentage of services still available under
denial-of-services attack; restore data/services; extent to which
data/services damaged and/or legitimate access denied

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 56

TESTABILITY

 Software testability refers to the ease with which software can be made to demonstrate its
faults through (typically execution-based) testing. At least 40% of the cost of developing
well-engineered systems is taken up by testing. If the software architect can reduce this
cost, the payoff is large.

 In particular, testability refers to the probability, assuming that the software has at least
one fault, that it will fail on its next test execution. Of course, calculating this probability is
not easy and, when we get to response measures, other measures will be used.

 For a system to be properly testable, it must be possible to control each component's
internal state and inputs and then to observe its outputs. Frequently this is done through
use of a test harness, specialized software designed to exercise the software under test.
This may be as simple as a playback capability for data recorded across various interfaces
or as complicated as a testing chamber for an engine.

 Testing is done by various developers, testers, verifiers, or users and is the last step of
various parts of the software life cycle. Portions of the code, the design, or the complete
system may be tested. The response measures for testability deal with how effective the
tests are in discovering faults and how long it takes to perform the tests to some desired
level of coverage.

Testability General Scenarios

Figure 4.7 is an example of a testability scenario concerning the performance of a unit test: A
unit tester performs a unit test on a completed system component that provides an interface for
controlling its behavior and observing its output; 85% path coverage is achieved within three
hours.

Figure 4.7. Sample testability scenario

Source of stimulus. The testing is performed by unit testers, integration testers, systemwww.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 57

testers, or the client. A test of the design may be performed by other developers or by an
external group. In our example, the testing is performed by a tester.

Stimulus. The stimulus for the testing is that a milestone in the development process is met.
This might be the completion of an analysis or design increment, the completion of a
coding increment such as a class, the completed integration of a subsystem, or the
completion of the whole system. In our example, the testing is triggered by the
completion of a unit of code.

Artifact. A design, a piece of code, or the whole system is the artifact being tested. In our
example, a unit of code is to be tested.

Environment. The test can happen at design time, at development time, at compile time, or
at deployment time. In Figure 4.7, the test occurs during development.

Response. Since testability is related to observability and controllability, the desired
response is that the system can be controlled to perform the desired tests and that the
response to each test can be observed. In our example, the unit can be controlled
and its responses captured.

Response measure. Response measures are the percentage of statements that have been
executed in some test, the length of the longest test chain (a measure of the difficulty of
performing the tests), and estimates of the probability of finding additional faults. In
Figure 4.7, the measurement is percentage coverage of executable statements.

Table 4.5 gives the testability general scenario generation table.

Table 4.5. Testability General Scenario Generation

Portion of
Scenario

Possible Values

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 58

Source Unit developer Increment integrator

System verifier

Client acceptance tester
System user

Stimulus Analysis, architecture, design, class, subsystem integration completed; system
delivered

Artifact Piece of design, piece of code, complete application

Environment At design time, at development time, at compile time, at deployment time

Response Provides access to state values; provides computed values;
prepares test environment

Response Measure Percent executable statements executed
Probability of failure if fault exists,Time to perform tests, Length of longest dependency ,hain
in a test, Length of time to prepare test environment

USABILITY

Usability is concerned with how easy it is for the user to accomplish a desired task and the kind
of user support the system provides. It can be broken down into the following areas:

Learning system features. If the user is unfamiliar with a particular system or a
particular aspect of it, what can the system do to make the task of learning easier?

Using a system efficiently. What can the system do to make the user more efficient in its
operation?

Minimizing the impact of errors. What can the system do so that a user error has minimal
impact?

Adapting the system to user needs. How can the user (or the system itself) adapt to make
the user's task easier?

Increasing confidence and satisfaction. What does the system do to give the user
confidence that the correct action is being taken?

In the last five years, our understanding of the relation between usability and software
architecture has deepened (see the sidebar Usability Mea Culpa). The normal
development process detects usability problems through building prototypes and user testing.
The later a problem is discovered and the deeper into the architecture its repair must be made,
the more the repair is threatened by time and budget pressures. In our scenarios we focus on
aspects of usability that have a major impact on the architecture. Consequently, these scenarios
must be correct prior to the architectural design so that they will not be discovered during user
testing or prototyping.www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 59

Usability General Scenarios
Figure 4.8 gives an example of a usability scenario: A user, wanting to minimize the impact of
an error, wishes to cancel a system operation at runtime; cancellation takes place in less than one
second. The portions of the usability general scenarios are:

Source of stimulus. The end user is always the source of the stimulus.

Stimulus. The stimulus is that the end user wishes to use a system efficiently, learn to use the
system, minimize the impact of errors, adapt the system, or feel comfortable with the
system. In our example, the user wishes to cancel an operation, which is an example
of minimizing the impact of errors.

Artifact. The artifact is always the system.

Environment. The user actions with which usability is concerned always occur at runtime or
at system configuration time. Any action that occurs before then is performed by
developers and, although a user may also be the developer, we distinguish between these
roles even if performed by the same person. In Figure
4.8, the cancellation occurs at runtime.

Response. The system should either provide the user with the features needed or anticipate
the user's needs. In our example, the cancellation occurs as the user wishes and the
system is restored to its prior state.

Response measure. The response is measured by task time, number of errors, number
of problems solved, user satisfaction, gain of user knowledge, ratio of successful
operations to total operations, or amount of time/data lost when an error occurs. In
Figure 4.8, the cancellation should occur in less than one second.

Figure 4.8. Sample usability scenario

The
usability
general
scenario

generation table is given in Table 4.6.

Table 4.6. Usability General Scenario Generationwww.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 60

Portion of Possible Values

Scenario
Source End user

Stimulus At runtime or configure time System provides one or more of the following responses:
to support "learn system features"

Response Wants to learn system features; efficiently; minimize impact of errors; adapt system; feel
comfortable

Artifact System help system is sensitive to context; interface is familiar to user;interface is usable in an unfamiliar

contextto support "use system efficiently

Table 4.7. Quality Attribute Stimuli

Quality
Attribute

Stimulus

Availability Unexpected event, nonoccurrence of expected event

Modifiability Request to add/delete/change/vary functionality, platform, quality attribute, or capacity

Performance Periodic, stochastic, or sporadic

Security Tries to

display, modify, change/delete information, access, or reduce availability to system
services

Testability Completion of phase of system development

Table 4.7 gives the stimuli possible for each of the attributes and shows a number of different
concepts. Some stimuli occur during runtime and others occur before. The problem for the
architect is to understand which of these stimuli represent the same occurrence, which are
aggregates of other stimuli, and which are independent.

Once the relations are clear, the architect can communicate them to the various stakeholders
using language that each comprehends. We cannot give the relations among stimuli in a general
way because they depend partially on environment. A performance event may be atomic or may
be an aggregate of other lower-level occurrences; a failure may be a single performance event or
an aggregate.

For example, it may occur with an exchange of several messages between a client and a server
(culminating in an unexpected message), each of which is an atomic event from a performance
perspective.

Business Qualities :

In addition to the qualities that apply directly to a system, a number of business quality goals
frequently shape a system's architecture. These goals center on cost, schedule, market, and
marketing considerations. Each suffers from the same ambiguity that system qualities have, and

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 61

they need to be made specific with scenarios in order to make them suitable for influencing the
design process and to be made testable. Here, we present them as generalities, however, and
leave the generation of scenarios as one of our discussion questions.

 Time to market. If there is competitive pressure or a short window of
opportunity for a system or product, development time becomes important. This in turn
leads to pressure to buy or otherwise re-use existing elements. Time to market is often
reduced by using prebuilt elements such as commercial off-the- shelf (COTS) products or
elements re-used from previous projects. The ability to insert or deploy a subset of the
system depends on the decomposition of the system into elements.

 Cost and benefit. The development effort will naturally have a budget that must not be
exceeded. Different architectures will yield different development costs. For instance,
an architecture that relies on technology (or expertise with a technology) not resident in
the developing organization will be more expensive to realize than one that takes
advantage of assets already inhouse. An architecture that is highly flexible will typically
be more costly to build than one that is rigid (although it will be less costly to maintain
and modify).

 Projected lifetime of the system. If the system is intended to have a long
lifetime, modifiability, scalability, and portability become important. But building
in the additional infrastructure (such as a layer to support portability) will usually
compromise time to market. On the other hand, a modifiable, extensible product is more
likely to survive longer in the marketplace, extending its lifetime.

 Targeted market. For general-purpose (mass-market) software, the platforms on which a
system runs as well as its feature set will determine the size of the potential market.
Thus, portability and functionality are key to market share. Other qualities, such as
performance, reliability, and usability also play a role. To attack a large market with a
collection of related products, a product line approach should be considered in which a
core of the system is common (frequently including provisions for portability) and
around which layers of software of increasing specificity are constructed.

 Rollout schedule. If a product is to be introduced as base functionality with many features
released later, the flexibility and customizability of the architecture are important.
Particularly, the system must be constructed with ease of expansion and contraction in
mind.

 Integration with legacy systems. If the new system has to integrate with existing
systems, care must be taken to define appropriate integration mechanisms. This property
is clearly of marketing importance but has substantial architectural implications. For
example, the ability to integrate a legacy system with an HTTP server to make it
accessible from the Web has been a marketing goal in many corporations over the past
decade. The architectural constraints implied by this integration must be analyzed.

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 62

Architecture Qualities :

 In addition to qualities of the system and qualities related to the business environment in
which the system is being developed, there are also qualities directly related to the
architecture itself that are important to achieve.

 Conceptual integrity is the underlying theme or vision that unifies the design of the
system at all levels. The architecture should do similar things in similar ways. Fred
Brooks writes emphatically that a system's conceptual integrity is of overriding
importance, and that systems without it fail:

 Correctness and completeness are essential for the architecture to allow for all of the
system's requirements and runtime resource constraints to be met

 Buildability allows the system to be completed by the available team in a timely manner
and to be open to certain changes as development progresses. It refers to the ease of
constructing a desired system and is achieved architecturally by paying careful attention
to the decomposition into modules, judiciously assigning of those modules to
development teams, and limiting the dependencies between the modules (and hence the
teams). The goal is to maximize the parallelism that can occur in development.

 Because buildability is usually measured in terms of cost and time, there is a relationship
between it and various cost models. However, buildability is more complex than what is
usually covered in cost models. A system is created from certain materials, and these
materials are created using a variety of tools.

Chapter 5. Achieving Quality

Introducing Tactics :

What is it that imparts portability to one design, high performance to another, and
integrability to a third? The achievement of these qualities relies on fundamental design
decisions. We will examine these design decisions, which we call tactics. A tactic is a design
decision that influences the control of a quality attribute response.

A system design consists of a collection of decisions. Some of these decisions help control
the quality attribute responses; others ensure achievement of system functionality. In this section,
we discuss the quality attribute decisions known as tactics. We represent this relationship in
Figure 5.1. The tactics are those that architects have been using for years, and we isolate and
describe them. We are not inventing tactics here, just capturing what architects do in practice.

Figure 5.1. Tactics are intended to control responses to stimuli.www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 63

Each tactic is a design option for the architect. For example, one of the tactics introduces
redundancy to increase the availability of a system. This is one option the architect has to increase
availability, but not the only one. Usually achieving high availability through redundancy
implies a concomitant need for synchronization (to ensure that the redundant copy can be used if
the original fails). We see two immediate ramifications of this example.

1. Tactics can refine other tactics. We identified redundancy as a tactic. As such, it can be
refined into redundancy of data (in a database system) or redundancy of computation (in
an embedded control system). Both types are also tactics. There are further refinements
that a designer can employ to make each type of redundancy more concrete. For each
quality attribute that we discuss, we organize the tactics as a hierarchy.

2. Patterns package tactics. A pattern that supports availability will likely use both a
redundancy tactic and a synchronization tactic. It will also likely use more concrete
versions of these tactics. At the end of this section, we present an example of a
pattern described in terms of its tactics.

Availability Tactics :

A failure occurs when the system no longer delivers a service that is consistent with its
specification; this failure is observable by the system's users. A fault (or combination of faults)
has the potential to cause a failure. Recall also that recovery or repair is an important aspect of
availability. The tactics we discuss in this section will keep faults from becoming failures or at
least bound the effects of the fault and make repair possible. We illustrate this in Figure 5.2.

Figure 5.2. Goal of availability tactics

Many of the tactics we discuss are available within standard execution environments such as
operating systems, application servers, and database management systems. It is still important to
understand the tactics used so that the effects of using a particular one can be considered during
design and evaluation. All approaches to maintaining availability involve some type of
redundancy, some type of health monitoring to detect a failure, and some type of recovery when

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 64

a failure is detected. In some cases, the monitoring or recovery is automatic and in others it is
manual.

FAULT DETECTION

Three widely used tactics for recognizing faults are ping/echo, heartbeat, and exceptions.

 Ping/echo. One component issues a ping and expects to receive back an echo, within a
predefined time, from the component under scrutiny. This can be used within a group of
components mutually responsible for one task. It can also used be used by clients to
ensure that a server object and the communication path to the server are operating within
the expected performance bounds. "Ping/echo" fault detectors can be organized in a
hierarchy, in which a lowest-level detector pings the software processes with which it
shares a processor, and the higher-level fault detectors ping lower-level ones. This uses
less communications bandwidth than a remote fault detector that pings all processes.

 Heartbeat (dead man timer). In this case one component emits a heartbeat
message periodically and another component listens for it. If the heartbeat fails, the
originating component is assumed to have failed and a fault correction component is
notified. The heartbeat can also carry data. For example, an automated teller machine can
periodically send the log of the last transaction to a server. This message not only acts as
a heartbeat but also carries data to be processed.

The ping/echo and heartbeat tactics operate among distinct processes, and the exception tactic
operates within a single process. The exception handler will usually perform a semantic
transformation of the fault into a form that can be processed.

FAULT RECOVERY

Fault recovery consists of preparing for recovery and making the system repair. Some
preparation and repair tactics follow.

Voting. Processes running on redundant processors each take equivalent input and compute a
simple output value that is sent to a voter. If the voter detects deviant behavior from a
single processor, it fails it.

o The voting algorithm can be "majority rules" or "preferred component" or some
other algorithm. This method is used to correct faulty operation of algorithms or
failure of a processor and is often used in control systems. If all of the processors
utilize the same algorithms, the redundancy detects only a processor fault and not
an algorithm fault. Thus, if the consequence of a failure is extreme, such as
potential loss of life, the redundant components can be diverse.

o One extreme of diversity is that the software for each redundant component is
developed by different teams and executes on dissimilar platforms. Less extreme is
to develop a single software component on dissimilar platforms.

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 65

o Diversity is expensive to develop and maintain and is used only in exceptional
circumstances, such as the control of surfaces on aircraft. It is usually used for
control systems in which the outputs to the voter are straightforward and easy to
classify as equivalent or deviant, the computations are cyclic, and all redundant
components receive equivalent inputs from sensors.

o Diversity has no downtime when a failure occurs since the voter continues to
operate. Variations on this approach include the Simplex approach, which uses the
results of a "preferred" component unless they deviate from those of a "trusted"
component, to which it defers. Synchronization among the redundant components
is automatic since they are all assumed to be computing on the same set of inputs in
parallel.

Active redundancy (hot restart).

 All redundant components respond to events in parallel. Consequently, they are all in
the same state. The response from only one component is used (usually the first to
respond), and the rest are discarded. When a fault occurs, the downtime of systems
using this tactic is usually milliseconds since the backup is current and the only time
to recover is the switching time.

 Active redundancy is often used in a client/server configuration, such as database
management systems, where quick responses are necessary even when a fault occurs.
In a highly available distributed system, the redundancy may be in the
communication paths. For example, it may be desirable to use a LAN with a number
of parallel paths and place each redundant component in a separate path. In this case,
a single bridge or path failure will not make all of the system's components
unavailable.

 Synchronization is performed by ensuring that all messages to any redundant
component are sent to all redundant components. If communication has a possibility
of being lost (because of noisy or overloaded communication lines), a reliable
transmission protocol can be used to recover. A reliable transmission protocol
requires all recipients to acknowledge receipt together with some integrity
indication such as a checksum.

 If the sender cannot verify that all recipients have received the message, it will
resend the message to those components not acknowledging receipt. The resending of
unreceived messages (possibly over different communication paths) continues until
the sender marks the recipient as out of service.

Passive redundancy

o One component (the primary) responds to events and informs the other
components (the standbys) of state updates they must make. When a fault occurs,
the system must first ensure that the backup state is sufficiently fresh before
resuming services.

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 66

o This approach is also used in control systems, often when the inputs come over
communication channels or from sensors and have to be switched from the primary
to the backup on failure. This tactic depends on the standby components taking
over reliably.

o Forcing switchovers periodically for example, once a day or once a week increases
the availability of the system. Some database systems force a switch with storage of
every new data item. The new data item is stored in a shadow page and the old
page becomes a backup for recovery. In this case, the downtime can usually be
limited to seconds.

o Synchronization is the responsibility of the primary component, which may use
atomic broadcasts to the secondaries to guarantee synchronization.

Spare. A standby spare computing platform is configured to replace many different failed
components. It must be rebooted to the appropriate software configuration and have its
state initialized when a failure occurs.

Making a checkpoint of the system state to a persistent device periodically and logging all
state changes to a persistent device allows for the spare to be set to the appropriate
state. This is often used as the standby client workstation, where the user can move when
a failure occurs. The downtime for this tactic is usually minutes.

There are tactics for repair that rely on component reintroduction. When a redundant
component fails, it may be reintroduced after it has been corrected. Such tactics are
shadow operation, state resynchronization, and rollback.

Shadow operation. A previously failed component may be run in "shadow mode" for a short
time to make sure that it mimics the behavior of the working components before restoring
it to service.

State resynchronization. The passive and active redundancy tactics require the
component being restored to have its state upgraded before its return to service. The
updating approach will depend on the downtime that can be sustained, the size of the
update, and the number of messages required for the update. A single message containing
the state is preferable, if possible. Incremental state upgrades, with periods of service
between increments, lead to complicated software.

Checkpoint/rollback. A checkpoint is a recording of a consistent state created either
periodically or in response to specific events. Sometimes a system fails in an unusual
manner, with a detectably inconsistent state. In this case, the system should be restored
using a previous checkpoint of a consistent state and a log of the transactions that
occurred since the snapshot was taken.

FAULT PREVENTION
The following are some fault prevention tactics.

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 67

Removal from service. This tactic removes a component of the system from operation to
undergo some activities to prevent anticipated failures. One example is rebooting a
component to prevent memory leaks from causing a failure. If this removal from service
is automatic, an architectural strategy can be designed to support it. If it is manual, the
system must be designed to support it.

Transactions. A transaction is the bundling of several sequential steps such that the entire
bundle can be undone at once. Transactions are used to prevent any data from being
affected if one step in a process fails and also to prevent collisions among several
simultaneous threads accessing the same data.

Process monitor. Once a fault in a process has been detected, a monitoring process can
delete the nonperforming process and create a new instance of it, initialized to some
appropriate state as in the spare tactic.

Modifiability Tactics :

Tactics to control modifiability have as their goal controlling the time and cost to
implement, test, and deploy changes. Figure 5.4 shows this relationship.

Figure 5.4. Goal of modifiability tactics

We organize the tactics for modifiability in sets according to their goals. One set has as its goal
reducing the number of modules that are directly affected by a change. We call this set "localize
modifications." A second set has as its goal limiting modifications to the localized modules. We
use this set of tactics to "prevent the ripple effect." Implicit in this distinction is that there are
modules directly affected (those whose responsibilities are adjusted to accomplish the change)
and modules indirectly affected by a change (those whose responsibilities remain unchanged but
whose implementation must be changed to accommodate the directly affected modules). A
third set of tactics has as its goal controlling deployment time and cost. We call this set "defer
binding time."

LOCALIZE MODIFICATIONS

Although there is not necessarily a precise relationship between the number of modules affected
by a set of changes and the cost of implementing those changes, restricting modifications to a
small set of modules will generally reduce the cost. The goal of tactics in this set is to assign

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 68

responsibilities to modules during design such that anticipated changes will be limited in scope.
We identify five such tactics.

Maintain semantic coherence.
o Semantic coherence refers to the relationships among responsibilities in a module.

The goal is to ensure that all of these responsibilities work together without
excessive reliance on other modules. Achievement of this goal comes from
choosing responsibilities that have semantic coherence.

o Coupling and cohesion metrics are an attempt to measure semantic coherence, but
they are missing the context of a change. Instead, semantic coherence should be
measured against a set of anticipated changes. One subtactic is to abstract
common services. Providing common services through specialized modules is
usually viewed as supporting re-use.

o This is correct, but abstracting common services also supports modifiability. If
common services have been abstracted, modifications to them will need to be made
only once rather than in each module where the services are used. Furthermore,
modification to the modules using those services will not impact other users.

o This tactic, then, supports not only localizing modifications but also the prevention
of ripple effects. Examples of abstracting common services are the use of
application frameworks and the use of other middleware software.

 Anticipate expected changes.

Considering the set of envisioned changes provides a way to evaluate a particular
assignment of responsibilities. The basic question is "For each change, does the proposed
decomposition limit the set of modules that need to be modified to accomplish it?"

An associated question is "Do fundamentally different changes affect the same
modules?" How is this different from semantic coherence? Assigning responsibilities
based on semantic coherence assumes that expected changes will be semantically
coherent.

The tactic of anticipating expected changes does not concern itself with the coherence
of a module's responsibilities but rather with minimizing the effects of the
changes. In reality this tactic is difficult to use by itself since it is not possible to
anticipate all changes. For that reason, it is usually used in conjunction with semantic
coherence.

 Generalize the module. Making a module more general allows it to compute a broader
range of functions based on input. The input can be thought of as defining a language for
the module, which can be as simple as making constants input parameters or as
complicated as implementing the module as an interpreter and making the input
parameters be a program in the interpreter's language. The more general a module, the

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 69

more likely that requested changes can be made by adjusting the input language
rather than by modifying the module.

 Limit possible options. Modifications, especially within a product line may be far
ranging and hence affect many modules. Restricting the possible options will reduce the
effect of these modifications. For example, a variation point in a product line may be
allowing for a change of processor. Restricting processor changes to members of the same
family limits the possible options.

PREVENT RIPPLE EFFECTS

A ripple effect from a modification is the necessity of making changes to modules not directly
affected by it. For instance, if module A is changed to accomplish a particular modification, then
module B is changed only because of the change to module A. B has to be modified because it
depends, in some sense, on A.

We begin our discussion of the ripple effect by discussing the various types of dependencies that
one module can have on another. We identify eight types:

1. Syntax of

- data. For B to compile (or execute) correctly, the type (or format) of the data that is
produced by A and consumed by B must be consistent with the type (or format) of data
assumed by B.

- service. For B to compile and execute correctly, the signature of services
provided by A and invoked by B must be consistent with the assumptions of B.

2. Semantics of

- data. For B to execute correctly, the semantics of the data produced by A and consumed
by B must be consistent with the assumptions of B.

- service. For B to execute correctly, the semantics of the services produced by A
and used by B must be consistent with the assumptions of B.

3. Sequence of

- data. For B to execute correctly, it must receive the data produced by A in a fixed
sequence. For example, a data packet's header must precede its body in order of
reception (as opposed to protocols that have the sequence number built into the data).

- control. For B to execute correctly, A must have executed previously within certain
timing constraints. For example, A must have executed no longer than 5ms before B
executes.

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 70

4. Identity of an interface of A. A may have multiple interfaces. For B to compile and
execute correctly, the identity (name or handle) of the interface must be consistent with
the assumptions of B.

5. Location of A (runtime). For B to execute correctly, the runtime location of A must be
consistent with the assumptions of B. For example, B may assume that A is located in a
different process on the same processor.

6. Quality of service/data provided by A. For B to execute correctly, some property
involving the quality of the data or service provided by A must be consistent with
B's assumptions. For example, data provided by a particular sensor must have a certain
accuracy in order for the algorithms of B to work correctly.

7. Existence of A. For B to execute correctly, A must exist. For example, if B is requesting
a service from an object A, and A does not exist and cannot be dynamically
created, then B will not execute correctly.

8. Resource behavior of A. For B to execute correctly, the resource behavior of A must be
consistent with B's assumptions. This can be either resource usage of A (A uses the same
memory as B) or resource ownership (B reserves a resource that A believes it owns).

With this understanding of dependency types, we can now discuss tactics available to the
architect for preventing the ripple effect for certain types.

 Hide information. Information hiding is the decomposition of the responsibilities for an
entity (a system or some decomposition of a system) into smaller pieces and choosing
which information to make private and which to make public. The public responsibilities
are available through specified interfaces.

The goal is to isolate changes within one module and prevent changes from propagating
to others. This is the oldest technique for preventing changes from propagating. It is
strongly related to "anticipate expected changes" because it uses those changes as the
basis for decomposition.

 Maintain existing interfaces. If B depends on the name and signature of an
interface of A, maintaining this interface and its syntax allows B to remain
unchanged. Of course, this tactic will not necessarily work if B has a semantic
dependency on A, since changes to the meaning of data and services are difficult to
mask.

Also, it is difficult to mask dependencies on quality of data or quality of service, resource
usage, or resource ownership. Interface stability can also be achieved by separating the
interface from the implementation. This allows the creation of abstract interfaces that
mask variations. Variations can be embodied within the existing responsibilities, or they
can be embodied by replacing one implementation of a module with another.

Patterns that implement this tactic include

- adding interfaces. Most programming languages allow multiple interfaces. Newly

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 71

visible services or data can be made available through new interfaces, allowing existing
interfaces to remain unchanged and provide the same signature.

- adding adapter. Add an adapter to A that wraps A and provides the signature of the
original A.

- providing a stub A. If the modification calls for the deletion of A, then providing a stub
for A will allow B to remain unchanged if B depends only on A's signature.

 Restrict communication paths. Restrict the modules with which a given module shares
data. That is, reduce the number of modules that consume data produced by the given
module and the number of modules that produce data consumed by
it. This will reduce the ripple effect since data production/consumption introduces
dependencies that cause ripples.

 Use an intermediary. If B has any type of dependency on A other than semantic, it is
possible to insert an intermediary between B and A that manages activities associated
with the dependency. All of these intermediaries go by different names, but we will
discuss each in terms of the dependency types we have enumerated. As before, in the
worst case, an intermediary cannot compensate for semantic changes. The intermediaries
are

- data (syntax). Repositories (both blackboard and passive) act as intermediaries between
the producer and consumer of data. The repositories can convert the syntax produced by
A into that assumed by B. Some publish/subscribe patterns (those that have data flowing
through a central component) can also convert the syntax into that assumed by B. The
MVC and PAC patterns convert data in one formalism (input or output device) into
another (that used by the model in MVC or the abstraction in PAC).

- service (syntax). The facade, bridge, mediator, strategy, proxy, and factory patterns all
provide intermediaries that convert the syntax of a service from one form into another.
Hence, they can all be used to prevent changes in A from propagating to B.

- identity of an interface of A. A broker pattern can be used to mask changes in the
identity of an interface. If B depends on the identity of an interface of A and that identity
changes, by adding that identity to the broker and having the broker make the connection
to the new identity of A, B can remain unchanged.

- location of A (runtime). A name server enables the location of A to be changed without
affecting B. A is responsible for registering its current location with the name server, and
B retrieves that location from the name server.

- resource behavior of A or resource controlled by A. A resource manager is an
intermediary that is responsible for resource allocation. Certain resource managers (e.g.,
those based on Rate Monotonic Analysis in real-time systems) can guarantee the
satisfaction of all requests within certain constraints. A, of course, must give up control of

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 72

the resource to the resource manager.

- existence of A. The factory pattern has the ability to create instances as needed, and
thus the dependence of B on the existence of A is satisfied by actions of the factory.

DEFER BINDING TIME

The two tactic categories we have discussed thus far are designed to minimize the number
of modules that require changing to implement modifications. Our modifiability scenarios
include two elements that are not satisfied by reducing the number of modules to be changed
time to deploy and allowing non developers to make changes. Deferring
binding time supports both of those scenarios at the cost of requiring additional infrastructure to
support the late binding.

Decisions can be bound into the executing system at various times. We discuss those that affect
deployment time. The deployment of a system is dictated by some process. When a modification
is made by the developer, there is usually a testing and distribution process that determines the
time lag between the making of the change and the availability of that change to the end user.

Binding at runtime means that the system has been prepared for that binding and all of the
testing and distribution steps have been completed. Deferring binding time also supports allowing
the end user or system administrator to make settings or provide input that affects behavior.

Many tactics are intended to have impact at load time or runtime, such as the following.

 Runtime registration supports plug-and-play operation at the cost of additional
overhead to manage the registration. Publish/subscribe registration, for example, can be
implemented at either runtime or load time.

 Configuration files are intended to set parameters at startup.
 Polymorphism allows late binding of method calls.
 Component replacement allows load time binding.
 Adherence to defined protocols allows runtime binding of independent processes.

The tactics for modifiability are summarized in Figure 5.5.

Figure 5.5. Summary of modifiability tactics

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 73

Performance Tactics :

The goal of performance tactics is to generate a response to an event arriving at the system
within some time constraint. The event can be single or a stream and is the trigger for a request to
perform computation. It can be the arrival of a message, the expiration of

a time interval, the detection of a significant change of state in the system's environment, and so
forth. The system processes the events and generates a response. Performance tactics control the
time within which a response is generated. This is shown in Figure
5.6.Latency is the time between the arrival of an event and the generation of a response to it.

Figure 5.6. Goal of performance tactics

After an event arrives, either the system is processing on that event or the processing is blocked
for some reason. This leads to the two basic contributors to the response time: resource
consumption and blocked time.

1. Resource consumption. Resources include CPU, data stores, network
communication bandwidth, and memory, but it can also include entities defined by the
particular system under design. For example, buffers must be managed and access to
critical sections must be made sequential.

Events can be of varying types (as just enumerated), and each type goes through a
processing sequence. For example, a message is generated by one component, is placed on
the network, and arrives at another component.

It is then placed in a buffer; transformed in some fashion (marshalling is the term the
Object Management Group uses for this transformation); processed according to some
algorithm; transformed for output; placed in an output buffer; and sent onward to
another component, another system, or the user. Each of these phases contributes to the
overall latency of the processing of that event.

2. Blocked time. A computation can be blocked from using a resource because of
contention for it, because the resource is unavailable, or because the computation
depends on the result of other computations that are not yet available.

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 74

- Contention for resources. Figure 5.6 shows events arriving at the system. These
events may be in a single stream or in multiple streams. Multiple streams vying for the
same resource or different events in the same stream vying for the same resource
contribute to latency. In general, the more contention for a resource, the more
likelihood of latency being introduced. However, this depends on how the contention is
arbitrated and how individual requests are treated by the arbitration mechanism.

- Availability of resources. Even in the absence of contention, computation cannot
proceed if a resource is unavailable. Unavailability may be caused by the e resource
being offline or by failure of the component or for some other reason. In
any case, the architect must identify places where resource unavailability might cause a
significant contribution to overall latency.

- Dependency on other computation. A computation may have to wait because it must
synchronize with the results of another computation or because it is waiting for the
results of a computation that it initiated. For example, it may be reading information from
two different sources, if these two sources are read sequentially, the latency will be higher
than if they are read in parallel.

With this background, we turn to our three tactic categories: resource demand, resource
management, and resource arbitration.

RESOURCE DEMAND

Event streams are the source of resource demand. Two characteristics of demand are the time
between events in a resource stream (how often a request is made in a stream) and how much of
a resource is consumed by each request.

One tactic for reducing latency is to reduce the resources required for processing an event stream.
Ways to do this include the following.

 Increase computational efficiency. One step in the processing of an event or a
message is applying some algorithm. Improving the algorithms used in critical areas will
decrease latency. Sometimes one resource can be traded for another. For example,
intermediate data may be kept in a repository or it may be regenerated depending on time
and space resource availability. This tactic is usually applied to the processor but is
also effective when applied to other resources such as a disk.

 Reduce computational overhead. If there is no request for a resource,
processing needs are reduced. The use of intermediaries (so important for modifiability)
increases the resources consumed in processing an event stream, and so

removing them improves latency. This is a classic
modifiability/performance tradeoff.

Another tactic for reducing latency is to reduce the number of events processed. This can be done
in one of two fashions.

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 75

 Manage event rate. If it is possible to reduce the sampling frequency at which
environmental variables are monitored, demand can be reduced. Sometimes this is possible
if the system was over engineered. Other times an unnecessarily high sampling rate is
used to establish harmonic periods between multiple streams. That is, some stream or
streams of events are over sampled so that they can be synchronized.

 Control frequency of sampling. If there is no control over the arrival of
externally generated events, queued requests can be sampled at a lower frequency,
possibly resulting in the loss of requests.

Other tactics for reducing or managing demand involve controlling the use of resources.

 Bound execution times. Place a limit on how much execution time is used to respond
to an event. Sometimes this makes sense and sometimes it does not. For iterative, data-
dependent algorithms, limiting the number of iterations is a method for bounding
execution times.

 Bound queue sizes. This controls the maximum number of queued arrivals and
consequently the resources used to process the arrivals.

RESOURCE MANAGEMENT

Even though the demand for resources may not be controllable, the management of these
resources affects response times. Some resource management tactics are:

 Introduce concurrency. If requests can be processed in parallel, the blocked time can be
reduced. Concurrency can be introduced by processing different streams of events on
different threads or by creating additional threads to process different sets of activities.
Once concurrency has been introduced, appropriately allocating the threads to resources
(load balancing) is important in order to maximally exploit the concurrency.

 Maintain multiple copies of either data or computations. Clients in a client-server pattern
are replicas of the computation. The purpose of replicas is to reduce the
contention that would occur if all computations took place on a central server.
Caching is a tactic in which data is replicated, either on different speed
repositories or on separate repositories, to reduce contention. Since the data being cached
is usually a copy of existing data, keeping the copies consistent and synchronized
becomes a responsibility that the system must assume.

 Increase available resources. Faster processors, additional processors, additional
memory, and faster networks all have the potential for reducing latency. Cost is usually a
consideration in the choice of resources, but increasing the resources is definitely a tactic
to reduce latency.

RESOURCE ARBITRATION

 Whenever there is contention for a resource, the resource must be scheduled. Processors
are scheduled, buffers are scheduled, and networks are scheduled. The architect's goal is to
understand the characteristics of each resource's use and choose the scheduling strategy that
is compatible with it.

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 76

 A scheduling policy conceptually has two parts: a priority assignment and dispatching.
All scheduling policies assign priorities. In some cases the assignment is as simple as
first-in/first-out. In other cases, it can be tied to the deadline of the request or its semantic
importance.

 Competing criteria for scheduling include optimal resource usage, request importance,
minimizing the number of resources used, minimizing latency, maximizing throughput,
preventing starvation to ensure fairness, and so forth. The architect needs to be aware of
these possibly conflicting criteria and the effect that the chosen tactic has on meeting them.

A high-priority event stream can be dispatched only if the resource to which it is being assigned
is available. Sometimes this depends on pre-empting the current user of the resource. Possible
preemption options are as follows: can occur anytime; can occur only at specific pre-emption
points; and executing processes cannot be pre-empted. Some common scheduling policies are:

1. First-in/First-out. FIFO queues treat all requests for resources as equals and satisfy
them in turn. One possibility with a FIFO queue is that one request will be stuck behind
another one that takes a long time to generate a response. As long as all of the requests are
truly equal, this is not a problem, but if some requests are of higher priority than others, it
is problematic.

2. Fixed-priority scheduling. Fixed-priority scheduling assigns each source of resource
requests a particular priority and assigns the resources in that priority order. This strategy
insures better service for higher-priority requests but admits the possibility of a low-
priority, but important, request taking an arbitrarily long time to be serviced because it is
stuck behind a series of higher-priority requests. Three common prioritization strategies
are

- semantic importance. Each stream is assigned a priority statically according to some
domain characteristic of the task that generates it. This type of scheduling is used in
mainframe systems where the domain characteristic is the time of task initiation.

- deadline monotonic. Deadline monotonic is a static priority assignment that assigns
higher priority to streams with shorter deadlines. This scheduling policy is used when
streams of different priorities with real-time deadlines are to be scheduled.

- rate monotonic. Rate monotonic is a static priority assignment for periodic streams that
assigns higher priority to streams with shorter periods. This scheduling policy is a special
case of deadline monotonic but is better known and more likely to be supported by the
operating system.

3. Dynamic priority scheduling:

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 77

- round robin. Round robin is a scheduling strategy that orders the requests and then, at
every assignment possibility, assigns the resource to the next request in that order. A
special form of round robin is a cyclic executive where assignment possibilities are at
fixed time intervals.

- earliest deadline first. Earliest deadline first assigns priorities based on the pending
requests with the earliest deadline.

4. Static scheduling. A cyclic executive schedule is a scheduling strategy where the pre-
emption points and the sequence of assignment to the resource are determined offline.

The tactics for performance are summarized in Figure 5.7.

Figure 5.7. Summary of performance tactics

Security Tactics :

Tactics for achieving security can be divided into those concerned with resisting attacks, those
concerned with detecting attacks, and those concerned with recovering from attacks. All
three categories are important. Using a familiar analogy, putting a lock on your door is a form of
resisting an attack, having a motion sensor inside of your house is a form of detecting an attack,
and having insurance is a form of recovering from an attack. Figure 5.8 shows the goals of the
security tactics.

Figure 5.8. Goal of security tactics

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 78

RESISTING ATTACKS

The following tactics can be used in combination to achieve these goals.

 Authenticate users. Authentication is ensuring that a user or remote computer is actually
who it purports to be. Passwords, one-time passwords, digital certificates, and biometric
identifications provide authentication.

 Authorize users. Authorization is ensuring that an authenticated user has the rights to
access and modify either data or services. This is usually managed by providing some
access control patterns within a system. Access control can be by user or by user class.
Classes of users can be defined by user groups, by user roles, or by lists of individuals.

 Maintain data confidentiality. Data should be protected from unauthorized access.
Confidentiality is usually achieved by applying some form of encryption to data and to
communication links. Encryption provides extra protection to persistently maintained
data beyond that available from authorization.

Communication links, on the other hand, typically do not have authorization controls.
Encryption is the only protection for passing data over publicly accessible
communication links. The link can be implemented by a virtual private network (VPN)
or by a Secure Sockets Layer (SSL) for a Web-based link. Encryption can be symmetric
(both parties use the same key) or asymmetric (public and private keys).

 Maintain integrity. Data should be delivered as intended. It can have redundant
information encoded in it, such as checksums or hash results, which can be
encrypted either along with or independently from the original data.

 Limit exposure. Attacks typically depend on exploiting a single weakness to attack
all data and services on a host. The architect can design the allocation of services to hosts
so that limited services are available on each host.

DETECTING ATTACKS

The detection of an attack is usually through an intrusion detection system. Such systems work by
comparing network traffic patterns to a database. In the case of misuse detection, the traffic
pattern is compared to historic patterns of known attacks. In the case of anomaly detection, the
traffic pattern is compared to a historical baseline of itself. Frequently, the packets must be
filtered in order to make comparisons. Filtering can be on the basis of protocol, TCP flags,
payload sizes, source or destination address, or port number.

Intrusion detectors must have some sort of sensor to detect attacks, managers to do sensor fusion,
databases for storing events for later analysis, tools for offline reporting and analysis, and a
control console so that the analyst can modify intrusion detection actions.

RECOVERING FROM ATTACKS

 Tactics involved in recovering from an attack can be divided into those concerned with

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 79

restoring state and those concerned with attacker identification (for either preventive or
punitive purposes).

 The tactics used in restoring the system or data to a correct state overlap with those used
for availability since they are both concerned with recovering a consistent state from an
inconsistent state. One difference is that special attention is paid to maintaining redundant
copies of system administrative data such as passwords, access control lists, domain
name services, and user profile data.

 The tactic for identifying an attacker is to maintain an audit trail. An audit trail is a copy
of each transaction applied to the data in the system together with identifying
information. Audit information can be used to trace the actions of an attacker, support
non repudiation (it provides evidence that a particular request was made), and support
system recovery. Audit trails are often attack targets themselves and therefore should be
maintained in a trusted fashion.

Figure 5.9 provides a summary of the tactics for security.

Figure 5.9. Summary of tactics for security

Testability Tactics :

 The goal of tactics for testability is to allow for easier testing when an increment of
software development is completed. Figure 5.10 displays the use of tactics for testability.
Architectural techniques for enhancing the software testability have not received as much
attention as more mature fields such as modifiability, performance, and availability, since
testing consumes such a high percentage of system development cost, anything the
architect can do to reduce this cost will yield a significant benefit.

Figure 5.10. Goal of testability tacticswww.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 80

 The goal of a testing regimen is to discover faults. This requires that input be provided to
the software being tested and that the output be captured.

 Executing the test procedures requires some software to provide input to the software
being tested and to capture the output. This is called a test harness. A question we do not
consider here is the design and generation of the test harness. In some systems, this takes
substantial time and expense.

 We discuss two categories of tactics for testing: providing input and capturing output, and
internal monitoring.

INPUT/OUTPUT

There are three tactics for managing input and output for testing.

 Record/playback. Record/playback refers to both capturing information crossing an
interface and using it as input into the test harness. The information crossing an interface
during normal operation is saved in some repository and represents output from one
component and input to another. Recording this information allows test input for one of
the components to be generated and test output for later comparison to be saved.

 Separate interface from implementation. Separating the interface from the
implementation allows substitution of implementations for various testing purposes.
Stubbing implementations allows the remainder of the system to be tested in the absence
of the component being stubbed. Substituting a specialized component allows the
component being replaced to act as a test harness for the remainder of the system.

 Specialize access routes/interfaces. Having specialized testing interfaces allows the
capturing or specification of variable values for a component through a test
harness as well as independently from its normal execution.

For example, metadata might be made available through a specialized interface that
a test harness would use to drive its activities. Specialized access routes and interfaces
should be kept separate from the access routes and interfaces for required functionality.
Having a hierarchy of test interfaces in the architecture means that test cases can be
applied at any level in the architecture and that the testing functionality is in place to
observe the response.

INTERNAL MONITORING

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 81

A component can implement tactics based on internal state to support the testing process.

 Built-in monitors. The component can maintain state, performance load, capacity,
security, or other information accessible through an interface. This interface can be a
permanent interface of the component or it can be introduced temporarily via an

instrumentation technique such as aspect-oriented programming or
preprocessor macros.

A common technique is to record events when monitoring states have been activated.
Monitoring states can actually increase the testing effort since tests may have to be
repeated with the monitoring turned off. Increased visibility into the activities of the
component usually more than outweigh the cost of the additional testing.

Figure 5.11 provides a summary of the tactics used for testability.

Figure 5.11. Summary of testability tactics

Usability Tactics :

Usability is concerned with how easy it is for the user to accomplish a desired task and the kind
of support the system provides to the user. Two types of tactics support usability, each intended
for two categories of "users." The first category, runtime, includes those that support the user
during system execution. The second category is based on the iterative nature of user interface
design and supports the interface developer at design time. It is strongly related to the
modifiability tactics already presented.

Figure 5.12 shows the goal of the runtime tactics.

Figure 5.12. Goal of runtime usability tacticswww.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 82

RUNTIME TACTICS

 Once a system is executing, usability is enhanced by giving the user feedback as to what
the system is doing and by providing the user with the ability to issue usability-based
commands. For example, cancel, undo, aggregate, and show multiple views support the
user in either error correction or more efficient operations.

 Researchers in human computer interaction have used the terms "user initiative," "system
initiative," and "mixed initiative" to describe which of the human computer pair takes the
initiative in performing certain actions and how the interaction proceeds. Understanding
Quality Attributes, combine initiatives from both perspectives.

 For example, when canceling a command the user issues a cancel "user initiative" and the
system responds. During the cancel, however, the system may put up a progress indicator
"system initiative." Thus, cancel demonstrates "mixed initiative." We use this distinction
between user and system initiative to discuss the tactics that the architect uses to achieve
the various scenarios.

 When the user takes the initiative, the architect designs a response as if for any other
piece of functionality. The architect must enumerate the responsibilities of the system to
respond to the user command. To use the cancel example again: When the user issues a
cancel command, the system must be listening for it (thus, there is the responsibility to
have a constant listener that is not blocked by the actions of whatever is being canceled);
the command to cancel must be killed; any resources being used by the canceled command
must be freed; and components that are collaborating with the canceled command
must be informed so that they can also take appropriate action.

When the system takes the initiative, it must rely on some information, a model, about the user,
the task being undertaken by the user, or the system state itself. Each model requires various types
of input to accomplish its initiative. The system initiative tactics are those that identify the
models the system uses to predict either its own behavior or the user's intention. Encapsulating
this information will enable an architect to more easily tailor and modify those models. Tailoring
and modification can be either dynamically based on past user behavior or offline during
development.

 Maintain a model of the task. In this case, the model maintained is that of the task.
The task model is used to determine context so the system can have some idea of what
the user is attempting and provide various kinds of assistance. For example, knowing that

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 83

sentences usually start with capital letters would allow an application to correct a
lower-case letter in that position.

 Maintain a model of the user. In this case, the model maintained is of the user. It
determines the user's knowledge of the system, the user's behavior in terms of expected
response time, and other aspects specific to a user or a class of users. For example,
maintaining a user model allows the system to pace scrolling so that pages do not fly past
faster than they can be read.

 Maintain a model of the system. In this case, the model maintained is that of the system.
It determines the expected system behavior so that appropriate feedback
can be given to the user. The system model predicts items such as the time needed to
complete current activity.

DESIGN-TIME TACTICS

User interfaces are typically revised frequently during the testing process. That is, the usability
engineer will give the developers revisions to the current user interface design and the
developers will implement them. This leads to a tactic that is a refinement of the modifiability
tactic of semantic coherence:

 Separate the user interface from the rest of the application. Localizing expected changes
is the rationale for semantic coherence. Since the user interface is expected to change
frequently both during the development and after deployment, maintaining the user
interface code separately will localize changes to it. The software architecture patterns
developed to implement this tactic and to support the modification of the user interface
are:
- Model-View-Controller
- Presentation-Abstraction-Control
- Arch/Slinky

Figure 5.13 shows a summary of the runtime tactics to achieve usability.

Figure 5.13. Summary of runtime usability tactics

Relationship of Tactics to Architectural Patterns :
The Active Object design pattern decouples method execution from method invocation to enhance
concurrency and simplify synchronized access to objects that reside in their own thread of

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 84

control.
The motivation for this pattern is to enhance concurrency, a performance goal. Thus, its main
purpose is to implement the "introduce concurrency" performance tactic. Notice the other tactics
this pattern involves, however.

 Information hiding (modifiability). Each element chooses the responsibilities it will
achieve and hides their achievement behind an interface.

 Intermediary (modifiability). The proxy acts as an intermediary that will buffer changes
to the method invocation.

 Binding time (modifiability). The active object pattern assumes that requests for the
object arrive at the object at runtime. The binding of the client to the proxy, however, is
left open in terms of binding time.

 Scheduling policy (performance). The scheduler implements some scheduling policy.

Any pattern implements several tactics, often concerned with different quality attributes, and any
implementation of the pattern also makes choices about tactics. For example, an implementation
could maintain a log of requests to the active object for supporting recovery, maintaining an
audit trail, or supporting testability.

The analysis process for the architect involves understanding all of the tactics embedded in an
implementation, and the design process involves making a judicious choice of what combination
of tactics will achieve the system's desired goals.

Architectural Patterns and Styles :

An architectural pattern in software, also known as an architectural style, is analogous to an
architectural style in buildings, such as Gothic or Greek Revival or Queen Anne. It consists of a
few key features and rules for combining them so that architectural integrity is preserved. An
architectural pattern is determined by:

 A set of element types (such as a data repository or a component that computes a
mathematical function).

 A topological layout of the elements indicating their interrelation-ships.
 A set of semantic constraints (e.g., filters in a pipe-and-filter style are pure data

transducers. They incrementally transform their input stream into an output stream,
but do not control either upstream or downstream elements).

 A set of interaction mechanisms (e.g., subroutine call, event-subscriber,
blackboard) that determine how the elements coordinate through the allowed topology.

These patterns occur not only regularly in system designs but in ways that sometimes prevent us
from recognizing them, because in different disciplines the same architectural pattern may be
called different things. In response, a number of recurring architectural patterns, their properties,
and their benefits have been cataloged. One such catalog is illustrated in Figure 5.14.

Figure 5.14. A small catalog of architectural patterns, organized by is-a lations

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 85

In this figure patterns are categorized into related groups in an inheritance hierarchy. For
example, an event system is a sub style of independent elements. Event systems themselves have
two sub patterns: implicit invocation and explicit invocation.

What is the relationship between architectural patterns and tactics? As shown earlier, we view a
tactic as a foundational "building block" of design, from which architectural patterns and
strategies are created.

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 86

Unit 4

Contents

Architectural Patterns – 1: Introduction

 From mud to structure

 Layers

 Pipes and Filters

 Blackboard

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 87

UNIT 4
Chapter 6: ARCHITECTURAL PATTERNS-1

Introduction :

"A pattern for software architecture describes a particular recurring design problem that arises
in specific design contexts and presents a well-proven generic scheme for its solution. The
solution scheme is specified by describing its constituent components, their responsibilities and
relationships, and the ways in which they collaborate."

In general, patterns have the following characteristics :

 A pattern describes a solution to a recurring problem that arises in specific design
situations.

 Patterns are not invented; they are distilled from practical experience.
 Patterns describe a group of components (e.g., classes or objects), how the

components interact, and the responsibilities of each component. That is, they are higher
level abstractions than classes or objects.

 Patterns provide a vocabulary for communication among designers. The choice of a name
for a pattern is very important.

 Patterns help document the architectural vision of a design. If the vision is clearly
understood, it will less likely be violated when the system is modified.

 Patterns provide a conceptual skeleton for a solution to a design problem and, hence,
encourage the construction of software with well-defined properties

Typically a pattern will be described with a schema that includes at least the following three
parts :

1. Context
2. Problem
3. Solution

Context

The Context section describes the situation in which the design problem arises.
Problem
The Problem section describes the problem that arises repeatedly in the context.In
particular, the description describes the set of forces repeatedly arising in the context.
A force is some aspect of the problem that must be considered when attempting
a solution. Example types of forces include:

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 88

 requirements the solution must satisfy (e.g., efficiency)
 constraints that must be considered (e.g., use of a certain algorithm or protocol)
 desirable properties of a solution (e.g., easy to modify)

Forces may complementary (i.e., can be achieved simultaneously) or contradictory (i.e., can
only be balanced).
Solution
The Solution section describes a proven solution to the problem.

The solution specifies a configuration of elements to balance the forces associated with the
problem.

 A pattern describes the static structure of the configuration, identifying the
components and the connectors (i.e., the relationships among the components).

 A pattern also describes the dynamic runtime behavior of the configuration,
identifying the control structure of the components and connectors.

Categories of Patterns

Patterns can be grouped into three categories according to their level of abstraction:
Architectural patterns
Design patterns
Idioms

Architectural patterns
"An architectural pattern expresses a fundamental structural organization schema for
software systems. It provides a set of predefined subsystems, specifies their
responsibilities, and includes rules and guidelines for organizing the relationships
between them."

An architectural pattern is a high-level abstraction. The choice of the architectural pattern to be
used is a fundamental design decision in the development of a software system. It determines the
system-wide structure and constrains the design choices available for the various subsystems. It
is, in general, independent of the implementation language to be used.
An example of an architectural pattern is the Pipes and Filters pattern. In Unix for
instance, a filter is a program that reads a stream of bytes from its standard input and writes a
transformed stream to its standard output. These programs can be chained together with the
output of one filter becoming the input of the next filter in the sequence via the pipe mechanism.
Design patterns

"A design pattern provides a scheme for refining the subsystems or components of a
software system, or the relationships between them. It describes a commonly- recurring
structure of communicating components that solves a general design problem within a

particular context."

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 89

A design pattern is a mid-level abstraction. The choice of a design pattern does not affect the
fundamental structure of the software system, but it does affect the structure of a subsystem.
Like the architectural pattern, the design pattern tends to be independent of the implementation
language to be used.

Examples of design patterns include the following:

Adapter (or Wrapper) pattern.
This pattern adapts the interface of one existing type of object to have the same interface
as a different existing type of object.

Iterator pattern.
This pattern defines mechanisms for stepping through container data structures element
by element.

Strategy (or Policy) pattern.
The goal of this pattern is to allow any one of a family of related algorithms to be easily
substituted in a system.

Idioms

"An idiom is a low-level pattern specific to a programming language. An idiom
describes how to implement particular aspects of components or the relationships
between them using the features of the given language."

 An idiom is a low-level abstraction. It is usually a language-specific pattern that deals
with some aspects of both design and implementation.

 In some sense, use of a consistent program coding and formatting style can be considered
an idiom for the language being used. Such a style would provide guidelines for naming
variables, laying out declarations, indenting control structures, ordering the features of a
class, determining how values are returned, and so forth. A good style that is used
consistently makes a program easier to understand than otherwise would be the case.

 Another example of an idiom is the use of the Counted Pointer (or Counted Body or
Reference Counting) technique for storage management of shared objects in C++. In this
idiom, we control access to a shared object through two classes, a Body (representation)
class and a Handle (access) class.

 An object of the Body class holds the shared object and a count of the number of
references to the object.

 An object of a Handle class holds a direct reference to a body object; all other parts of the
program must access the body indirectly through handle class methods. The handle
methods can increment the reference count when a new reference is created and
decrement the count when a reference is freed. When a reference count goes to zero, the
shared object and its body can be deleted.

 A variant of the Counted Pointer idiom can be used to implement a "copy on write"
mechanism. That is, the body is shared as long as only "read" access is needed, but a
copy is created whenever one of the holders makes a change to the state of the object.

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 90

Layers :

 Some design patterns, describe the implementation of micro-architectures. These design
patterns are useful, for the most part, to describe small-scale object interactions.

 Other design patterns are useful for abstracting large systems of objects. These are
architectural design patterns. An architectural pattern is any pattern concerned with the
construction context of a whole system, rather than just some part of a system.

 The distinction between micro-architectures and system architectures depends on your
point of view and the scale of your system. If your system has 5 objects then the micro-
architecture-style design patterns are architectural patterns because they consider the
structure, relative communication, and design philosophy for the system. But more
commonly, architectural design patterns are used to describe the structure of bigger
systems where the number of objects is measured in hundreds or thousands.

Layers is an architectural design pattern that structures applications so they can be
decomposed into groups of subtasks such that each group of subtasks is at a particular level of
abstraction.

Some Examples

The traditional 3-tier client server model, which separates application functionality into three
distinct abstractions, is an example of layered design.
.

Context

A large system requires decomposition. One way to decompose a system is to segment it into
collaborating objects. In large systems a first-cut rough model might produce hundreds or
thousands of potential objects. Additional refactoring typically leads to object groupings that
provide related types of services. When these groups are properly segmented, and their interfaces
consolidated, the result is a layered architecture.

Benefits

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 91

-Segmentation of high-level from low-level issues. Complex problems can be broken into smaller
more manageable pieces.

-Since the specification of a layer says nothing about its implementation, the
implementation details of a layer are hidden (abstracted) from other layers.

-Many upper layers can share the services of a lower layer. Thus layering allows us to reuse
functionality.

-Development by teams is aided because of the logical segmentation.

-Easier exchange of parts at a later date.

A Layered model does not imply that each layer should be in a separate address space. Efficient
implementations demand that layer-crossings be fast and cheap. Examples: User Interfaces may
need efficient access to field validations.

Caching Layers

Layers are logical places to keep information caches. Requests that normally travel down through
several layers can be cached to improve performance.

Intra- and inter-Application Communications

A systems programming interface is often implemented as a layer. Thus if two applications (or
inter-application elements) need to communicate, placing the interface responsibilities into
dedicated layers can greatly simplify the other applications layers and, as a bonus, make them
more easily reusable.

The GUI Layer

The principle of separating the user interface from the application proper is old. It is rarely
practiced, for all the talk we devote to it. The principle of separating the user interface from the
application has the hardest consequences and is hardest to follow consistently.

It is easier on the user if input errors are brought up directly upon entry. Having the UI outside
the application separates input from error detection. First the UI will change, so isolate and
make an interface to it. Then someone will remove the human from the picture entirely,
with electronic interchange or another application driving the program.

Therefore, just making an interface to the UI component is not sufficient, it has to be an interface
that does not care about the UI.

Pipes and Filters :

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 92

"The Pipes and Filters architectural pattern provides a structure for systems that process a
stream of data. Each processing step is encapsulated in a filter component. Data [are] passed
through pipes between adjacent filters. Recombining filters allows you to build families of
related filters."

Context

The context consists of programs that must process streams of data.

Problem

Suppose we need to build a system to solve a problem:

that must be built by several developers

that decomposes naturally into several independent processing steps for

which the requirements are likely to change.

Structure

The filters are the processing units of the pipeline. A filter may enrich, refine, or
transform its input data

 It may enrich the data by computing new information from the input data and adding
it to the output data stream.

 It may refine the data by concentrating or extracting information from the input data
stream and passing only that information to the output stream.

 It may transform the input data to a new form before passing it to the output stream.
 It may, of course, do some combination of enrichment, refinement, and

transformation.

A filter may be active (the more common case) or passive.

An active filter runs as a separate process or thread; it actively pulls data from the input
data stream and pushes the transformed data onto the output data stream.

A passive filter is activated by either being called:

as a function, a pull of the output from the filter

as a procedure, a push of output data into the filter

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 93

The pipes are the connectors--between a data source and the first filter, between filters, and
between the last filter and a data sink. As needed, a pipe synchronizes the active elements that it
connects together.

A data source is an entity (e.g., a file or input device) that provides the input data to the system.
It may either actively push data down the pipeline or passively supply data when requested,
depending upon the situation.

A data sink is an entity that gathers data at the end of a pipeline. It may either actively pull data
from the last filter element or it may passively respond when requested by the last filter element.

Implementation

Implementation of the pipes-and-filters architecture is usually not difficult. It often includes
the following steps:

1. Divide the functionality of the problem into a sequence of processing steps.
Each step should only depend upon the outputs of the previous step in the
sequence. The steps will become the filters in the system.

In dividing up the functionality, be sure to consider variations or later changes that
might be needed--a reordering of the steps or substitution of one processing step for
another.

2. Define the type and format of the data to be passed along each pipe.
For example, Unix pipes carry an unstructured sequence of bytes. However, many Unix
filters read and write streams of ASCII characters that are structured into lines (with the
newline character as the line terminator).

Another important formatting issue is how the end of the input is marked. A filter might
rely upon a system end-of-input condition or it may need to implement their own
"sentinel" data value to mark the end.

3. Determine how to implement each pipe connection.
For example, a pipe connecting active filters might be implemented with operating
system or programming language runtime facility such as a message queue, a Unix-style
pipe, or a synchronized-access bounded buffer.

A pipe connecting to a passive filter might be implemented as a direct call of the
adjacent filter: a push connection as a call of the downstream filter as a procedure or a
pull connection as a call of the upstream filter as a function.

4. Design and implement the filters.
The design of a filter is based on the nature of the task to be performed and the natures of
the pipes to which it can be connected.

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 94

o An active filter needs to run with its own thread of control. It might run as as a
"heavyweight" operating system process (i.e., having its own address space)
or as a "lightweight" thread (i.e., sharing an address space with other threads).

o A passive filter does not require a separate thread of control (although it could
be implemented with a separate thread).

The selection of the size of the buffer inside a pipe is an important performance tradeoff.
Large buffers may use up much available memory but likely will involve less
synchronization and context-switching overhead. Small buffers conserve memory at
the cost of increased overhead.

To make filters flexible and, hence, increase their potential reusability, they often will
need different processing options that can be set when they are initiated. For example,
Unix filters often take command line parameters, access environment variables, or read
initialization files.

5. Design for robust handling of errors.

Error handling is difficult in a pipes-and-filters system since there is no global state and
often multiple asynchronous threads of execution. At the least, a pipes- and-filters system
needs mechanisms for detecting and reporting errors. An error should not result in
incorrect output or other damage to the data.

For example, a Unix program can use the stderr channel to report errors to its
environment.

More sophisticated pipes-and-filters systems should seek to recover from errors. For
example, the system might discard bad input and resynchronize at some well- defined
point later in the input data. Alternatively, the system might back up the input to some
well-defined point and restart the processing, perhaps using a different processing method
for the bad data.

6. Configure the pipes-and-filters system and initiate the processing.

One approach is to use a standardized main program to create, connect, and initiate
the needed pipe and filter elements of the pipeline.

Another approach is to use an end-user tool, such as a command shell or a visual pipeline
editor, to create, connect, and initiate the needed pipe and filter elements of the pipeline.

Example

An example pipes-and-filter system might be a retargetable compiler for a programming
language. The system might consist of a pipeline of processing elements similar to the following:

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 95

A source element reads the program text (i.e., source code) from a file (or perhaps a
sequence of files) as a stream of characters.

A lexical analyzer converts the stream of characters into a stream of lexical tokens for the
language--keywords, identifier symbols, operator symbols, etc.

A parser recognizes a sequence of tokens that conforms to the language grammar and
translates the sequence to an abstract syntax tree.

A "semantic" analyzer reads the abstract syntax tree and writes an appropriately augmented
abstract syntax tree.

A global optimizer (usually optionally invoked) reads an augmented syntax tree and outputs
one that is equivalent but corresponds to program that is more efficient in space and time
resource usage.

An intermediate code generator translates the augmented syntax tree to a sequence of
instructions for a virtual machine.

A local optimizer converts the sequence of intermediate code (i.e., virtual machine)
instructions into a more efficient sequence.

Note: A local optimizer may transform the program by removing unneeded loads and
stores of data.

A backend code generator translates the sequence of virtual machine instructions into a
sequence of instructions for some real machine platform (i.e., for some particular
hardware processor augmented by operating system calls and a runtime library).

If the previous step generated symbolic assembly code, then an assembler is needed to
translate the sequence of symbolic instructions into a relocatable binary module.

If the previous steps of the pipeline generated a sequence of separate binary modules, then a
linker might be needed to bind the separate modules with library modules to form a
single executable (i.e., object code) module.

A sink element outputs the resulting binary module into a file.

The pipeline can be reconfigured to support a number of different variations:

 If source code preprocessing is to be supported (e.g., as in C), then a reprocessor filter
(or filters) can be inserted in front of the lexical analyzer.

 If the language is to be interpreted rather than translated into object code, then the backend
code generator (and all components after it in the pipeline) can be replaced by an

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 96

interpreter that implements the virtual machine.

 If the compiler is to be retargeted to a different platform, then a backend code generator
(and assembler and linker) for the new platform can be substituted for the old one.

 If the compiler is to be modified to support a different language with the same lexical
structure, then only the parser, semantic analyzer, global optimizer, and intermediate code
generator need to be replaced.

o Note: If the parser is driven by tables that describe the grammar, then it may be
possible to use the same parser with a different table.

If a load-and-go compiler is desired, the file-output sink can be replaced by a loader that
loads the executable module into an address space in the computer's main memory and
starts the module executing.

Blackboard :

 The Blackboard pattern is useful for problems for which no deterministic solution
strategies are known. In Blackboard several specialized subsystems assemble their
knowledge to build a possibly partial or approximate solution.

 This pattern is useful for problems for which no deterministic solution strategies are
known. In Blackboard several specialised sub-systems assemble their knowledge to build a
possibly partial or approximate solution.

 A blackboard system is an artificial intelligence application based on the blackboard
architectural model, where a common knowledge base, the "blackboard", is iteratively
updated by a diverse group of specialist knowledge sources, starting with a problem
specification and ending with a solution.

 Each knowledge source updates the blackboard with a partial solution when its internal
constraints match the blackboard state. In this way, the specialists work together to solve
the problem. The blackboard model was originally designed as a way to handle complex,
ill-defined problems, where the solution is the sum of its parts.

A blackboard-system application consists of three major components
 The software specialist modules, which are called knowledge sources (KSs). Like the

human experts at a blackboard, each knowledge source provides specific expertise needed
by the application. The ability to support interaction and cooperation among diverse KSs
creates enormous flexibility in designing and maintaining applications. As the pace of
technology has intensified, it becomes ever more important to be able to replace software
modules as they become outmoded or obsolete.

 The blackboard, a shared repository of problems, partial solutions, suggestions, and

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 97

contributed information. The blackboard can be thought of as a dynamic "library" of
contributions to the current problem that have been recently "published" by other
knowledge sources.

Unit 5

Contents

Architectural Patterns – 2
 Distributed Systems: Broker
 Interactive Systems
 MVC
 Presentation-Abstraction-Control

UNIT 5
Chapter 7: Architectural Patterns-2

Distributed Systems :

Distributed systems architecture has rapidly evolved by applying and combining different
architecture patterns and styles. In recent years, decoupling interfaces and
implementation, scalable hosting models, and service orientation were the prominent tenets of
building distributed systems. Distributed systems have grown from independent enterprise
applications to Internet-connected networks of managed services, hosted on- premise and/or
clouds.

Creating successful distributed systems requires that you address how that system is designed,
developed, maintained, supported, and governed. Microsoft’s Service Oriented Architecture
Maturity Model (SOAMM) assessment method helps customers assess maturity elements and
prioritize the evolution of their enterprise architecture. Organizations are applying methods,
patterns, and technologies to model systems and enable proper governance.

Building distributed systems involves three core capabilities, based on the following roles:
Implementation of applications/services.

Consumption of services from within and external to organizations.

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 98

Administration of services or composite services.

Broker :

The Broker pattern can be used to structure distributed software systems with decoupled
components that interact by remote service invocations. A broker component is responsible for
coordinating communication, such as forwarding requests, as well as for transmitting results and
exceptions.

The Broker pattern has many of the benefits and liabilities of the Layered Application pattern.

Benefit
Broker provides the following benefits:
1) Isolation. Separating all the communication-related code into its own layer isolates it from
the application. You can decide to run the application distributed or all on one computer without
having to change any application code.

2) Simplicity. Encapsulating complex communication logic into a separate layer breaks down
the problem space. The engineers coding the broker do not have to concern themselves
with arcane user requirements and business logic, and the application developers do not have to
concern themselves with multicast protocols and TCP/IP routing.

3) Flexibility.

 Encapsulating functions in a layer allows you to swap this layer with a different
implementation. For example, you can switch from DCOM to .NET remoting to standard
Web services without affecting the application code.

 Unfortunately, layers of abstraction can harm performance. The basic rule is that the
more information you have, the better you can optimize. Using a separate broker layer
may hide details about how the application uses the lower layer, which may in turn
prevent the lower layer from performing specific optimizations.

 For example, when you use TCP/IP, the routing protocol has no idea what is being routed.
Therefore, it is hard to decide that a packet containing a video stream, for instance, should
have routing priority over a packet containing a junk e-mail.

 The Broker architectural pattern can be used to structure distributed software systems
with decoupled components that interact by remote service invocations

Structure

There are six types of components in Broker architectural pattern:

 Clients, Servers, Brokers, Bridges, Client-side proxies and Server-side proxies

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 99

 A server implements objects that expose their functionality through interfaces that consist
of operations and attributes

 These interfaces are either through Interface Definition Language (IDL), through a binary
standard, or some kind of APIs.

 Interfaces are grouped by semantically-related functionality. So,we Would have

 Servers implementing specific functionality for a single application domain or task

 A broker is a messager that is responsible for the transmission of requests from clients to
servers

It also takes care the transmission of responses and exceptions back to the client

 A broker will store control information for locating the receivers (servers) of the requests
 (it is normally down with some unique system identifier, IP address might not be enough)

 Broker also offer interface for clients and servers

 They are usually in the form of APIs with control operations such as registering servers
and invoking server methods

 Broker keeps track of all the servers information it maintains locally. If a request comes
in and it is for a server that is on the tracking list. It passes the request along directly

 If the server is currently inactive, the broker activates it (spawn a job, folk a process,
create a thread, use a pre start job, etc)

 Then response are passed back to the client through the broker

 If the request is for a server hosted by another broker, the local broker finds a route to the
remote broker and forwards the request using this route (So, a common way of
communication among brokers is needed)

It hides the implementation detail such as:
Inter-process communication mechanism used for message transfer between clients

and brokers
The creation and deletion of memory blocks (remember, we are dealing with

multiple different languages to build a system, not just Java)
The marshaling of parameters and results

In most cases, client-side proxies translate the object model specified as part of the Broker
architectural pattern to the object model of the programming language used to implement the

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 100

client

Advantages

Location Transparency
Changeability and extensibility of components
Portability of a Broker system

Interoperability between different Broker systems
Reusability
Testing and Dubugging

MVC :

Model–View–Controller (MVC) is a software architecture currently considered an
architectural pattern used in software engineering. The pattern isolates "domain logic" (the
application logic for the user) from input and presentation (GUI), permitting independent
development, testing and maintenance of each.

The Model-View-Controller pattern (MVC) divides an interactive application into three
components. The model contains the core functionality and data. Views display information to
the user. Controllers handle user input. Views and controllers together comprise the user
interface. A change-propagation mechanism ensures consistency between the user interface and
the model.

The model is used to manage information and notify observers when that information changes.
The model is the domain-specific representation of the data upon which the application operates.
Domain logic adds meaning to raw data (for example, calculating whether today is the user's
birthday, or the totals, taxes, and shipping charges for shopping cart items). When a model
changes its state, it notifies its associated views so they can be refreshed.

The controller receives input and initiates a response by making calls on model objects. A
controller accepts input from the user and instructs the model and viewport to perform actions
based on that input.

An MVC application may be a collection of model/view/controller triplets, each responsible for
a different UI element.

MVC is often seen in web applications where the view is the HTML or XHTML
generated by the app. The controller receives GET or POST input and decides what to do with it,
handing over to domain objects (i.e. the model) that contain the business rules and know how to
carry out specific tasks such as processing a new subscription.

Though MVC comes in different flavors, control flow is generally as follows:

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 101

The user interacts with the user interface in some way (for example, presses a mouse button).
The controller handles the input event from the user interface, often via a registered handler

or callback and converts the event into appropriate user action, understandable for the
model.

The controller notifies the model of the user action, possibly resulting in a change in the
model's state. (For example, the controller updates the user's shopping cart.)

A view queries the model in order to generate an appropriate user interface (for example, the
view lists the shopping cart's contents). The view gets its own data from the model. The
controller may (in some implementations) issue a general instruction to the view to render
itself. In others, the view is automatically notified by the model of changes in state
(Observer) which require a screen update.

The user interface waits for further user interactions, which restarts the cycle.

Some implementations such as the W3C XForms also use the concept of a dependency graph to
automate the updating of views when data in the model changes.

The goal of MVC is, by decoupling models and views, to reduce the complexity in architectural
design and to increase flexibility and maintainability of code.

Presentation-Abstraction-Control :

Presentation-abstraction-control (PAC) is a software architectural pattern, somewhat similar
to model-view-controller (MVC). PAC is used as a hierarchical structure of agents, each
consisting of a triad of presentation, abstraction and control parts. The agents (or triads)
communicate with each other only through the control part of each triad. It also differs from MVC
in that within each triad, it completely insulates the presentation (view in MVC) and the
abstraction (model in MVC), this provides the option to separately multithread the model and
view which can give the user experience of very short program start times, as the user interface
(presentation) can be shown before the abstraction has fully initialized.

The Presentation-Abstraction-Control

 pattern (PAC) defines a structure for interactive software systems in the form of a
hierarchy of cooperating agents. Every agent is responsible for a specific aspect of the
application's functionality and consists of three components: presentation, abstraction, and
control. This subdivision separates the hum an- computer interaction aspects of the agent
from its functional core and its communication with other agents.

 Presentation-abstraction-control (PAC) is a software architectural pattern that uses a
structure for interactive software systems in the form of a hierarchy of cooperating
agents. Each of the agent consist of a triad of presentation, abstraction and control
components and is responsible for a specific aspect of the application's functionality.

 The agents in their triads communicate with one other through the control part of each
triad insulating the presentation and abstraction. This insulation facilitates the

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 102

multithreading where the presentation as the user interface can be shown before the
abstraction has fully initialized. This is unlike other software architecture known as
Model-View-Controller (MVC) which is restricted to simple GUI's with one or more
views on the same model.

 The Control in the PAC is similar to the Controller in the MVC architecture to some
extent. The PAC architecture does not have the model as its core component. Like the
MVC the Abstraction contains the data in the PAC.

Unit 6

Contents

 Architectural Patterns – 3
 Adaptable Systems: Microkernel
 Reflection

Chapter 8: Architectural Patterns-3

Adaptive systems :

Cause and Effect

 For many years scientists saw the universe as a linear place. One where simple rules of
cause and effect apply. They viewed the universe as big machine and thought that if they
took the machine apart and understood the parts, then they would understand the whole.

 They also thought that the universe's components could be viewed as machines, believing
that if we worked on the parts of these machines and made each part work better, then the
whole would work better. Scientists believed the universe and everything in it could be
predicted and controlled.

Complexity Theory

 Gradually as scientists of all disciplines explored these phenomena a new theory emerged
complexity theory, A theory based on relationships, emergence, patterns and iterations. A
theory that maintains that the universe is full of systems, weather systems, immune

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 103

systems, social systems etc and that these systems are complex and constantly adapting to
their environment. Hence complex adaptive systems.

 The agents in the system are all the components of that system. For example the air and
water molecules in a weather system, and flora and fauna in an ecosystem. These agents
interact and connect with each other in unpredictable and unplanned ways.

 But from this mass of interactions regularities emerge and start to form a pattern which
feeds back on the system and informs the interactions of the agents. For example in an
ecosystem if a virus starts to deplete one species this results in a greater or lesser food
supply for others in the system which affects their behaviour and their numbers. A period
of flux occurs in all the populations in the system until a new balance is established.

Properties

Complex adaptive systems have many properties and the most important are,

· Emergence: Rather than being planned or controlled the agents in the system interact in
apparently random ways. From all these interactions patterns emerge which informs the
behaviour of the agents within the system and the behaviour of the system itself. For example a
termite hill is a wondrous piece of architecture with a maze of interconnecting passages, large
caverns, ventilation tunnels and much more. Yet there is no grand plan, the hill just emerges
as a result of the termites following a few simple local rules.

· Co-evolution: All systems exist within their own environment and they are also part of that
environment. Therefore, as their environment changes they need to change to ensure best fit. But
because they are part of their environment, when they change, they change their environment,
and as it has changed they need to change again, and so it goes on as a constant process. (
Perhaps it should have been Darwin's "Theory of Co-evolution".)

Some people draw a distinction between complex adaptive systems and complex evolving
systems. Where the former continuously adapt to the changes around them but do not learn from
the process. And where the latter learn and evolve from each change enabling them to influence
their environment, better predict likely changes in the future..

· Requisite Variety: The greater the variety within the system the stronger it is. In fact ambiguity
and paradox abound in complex adaptive systems which use contradictions to create new
possibilities to co-evolve with their environment. Democracy is a good example in that its
strength is derived from its tolerance and even insistence in a variety..

· Connectivity: The ways in which the agents in a system connect and relate to one another
is critical to the survival of the system, because it is from these connections that the patterns are
formed and the feedback disseminated. The relationships between the agents aregenerally more
important than the agents themselves.

· Simple Rules: Complex adaptive systems are not complicated. The emerging patterns may have

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 104

a rich variety, but like a kaleidoscope the rules governing the function of the system are quite
simple. A classic example is that all the water systems in the world, all the streams, rivers, lakes,
oceans, waterfalls etc with their infinite beauty, power and variety are governed by the
simple principle that water finds its own level.

· Iteration: Small changes in the initial conditions of the system can have significant effects after
they have passed through the emergence - feedback loop a few times (often referred to as the
butterfly effect). A rolling snowball for example gains on each roll much more snow than it
did on the previous roll and very soon a fist sized snowball .

· Self Organizing: There is no hierarchy of command and control in a complex adaptive system.
There is no planning or managing, but there is a constant re-organizing to find the best fit
with the environment. A classic example is that if one were to take any western town and
add up all the food in the shops and divide by the number of people in the town there will be
near enough two weeks supply of food, but there is no food plan, food manager or any other
formal controlling process. The system is continually self organizing through the process of
emergence and feedback.

· Edge of Chaos: Complexity theory is not the same as chaos theory, which is derived from
mathematics. But chaos does have a place in complexity theory in that systems exist on a
spectrum ranging from equilibrium to chaos. A system in equilibrium does not have the internal
dynamics to enable it to respond to its environment and will slowly (or quickly) die. A system in
chaos ceases to function as a system. The most productive state to be in is at the edge of chaos
where there is maximum variety and creativity, leading to new possibilities.

Complex adaptive: systems are all around us. Most things we take for granted are
complex adaptive systems, and the agents in every system exist and behave in total ignorance of
the concept but that does not impede their contribution to the system. Complex Adaptive
Systems are a model for thinking about the world around us not a model for predicting what
will happen.

Microkernel :

The Microkernel pattern applies to software systems that must be able to adapt to changing
system requirements. It separates a minimal functional core from extended functionality and
customer-specific parts. The microkernel also serves as a socket for plugging in these extensions
and coordinating their collaboration.

Context and Problem

The pattern may be applied in the context of complex software systems serving as a platform for
other software applications. Such complex systems usually should be extensible and adaptable to
emerging technologies, capable of coping with a range of standards and technologies. They also
need to possess high performance and scalability qualities; as a result, low memory consumption
and low processing demands are required. Taken together, the above requirements are difficult to

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 105

achieve.

Solution, Consequences and Liabilities

- The most important core services of the system should be encapsulated in a microkernel
component. The microkernel maintains the system resources and allows other
components to interact with each other as well as to access the functionality of the
microkernel. It encapsulates a significant part of system-specific dependencies, such as
hardware-dependent aspects. The size of the microkernel should be kept to a minimum,
therefore, only part of the core functionality can be included in it; the rest of the core
functionality is deferred to separate internal servers.

- Internal servers extend the functionalities of the microkernel. Internal servers can for
example handle graphics and storage media. Internal servers can have their own
processes or they can be shared Dynamic Link Libraries (DLL) loaded inside the kernel. The
external server provides a more complex functionality; they are built on top of the core
services provided by the microkernel.

- Different external servers may be needed in the system in order to provide the functionality
for specific application domains. These servers run in separate processes and employ the
communication facilities provided by microkernel to receiverequests from their clients
and to return the results. The role of the adapter is to provide a transparent interface for
clients to communicate with external servers. Adapter hides the system dependencies such as
communication facilities from the client. Adapter thus improves the scalability and
changeability of the system. The adapter enables the servers and clients to be distributed over
a network.

The benefits of the pattern can be mentioned like:

Good portability, since only microkernel need to be modified when porting the system
to a new environment.

High flexibility and extensibility, as modifications or extensions can be done by modifying
or extending internal servers.

Separation of low-level mechanisms (provided by microkernel and internal servers) and
higher-level policies (provided by external servers) improves maintainability and
changeability of the system.

There are some concerns about it as well.

1. The microkernel system requires much more inter-process communication inside one
application execution because of the calls to internal and external servers.

2. The design and implementation of the microkernel -based system is far more complex
than of a monolithic system

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 106

Reflection :

- The Reflection pattern provides a mechanism for changing structure and behavior of software
systems dynamically. It supports the modification of fundamental aspects, such as type
structures and function call mechanisms. In this pattern, an application is split into two parts.
A meta level provides information about selected system properties and makes the software
self-aware. A base level includes the application logic. Its implementation builds on the meta
level. Changes to information kept in the meta level affect subsequent base-level behavior.

- The Reflection pattern provides a mechanism for changing structure and behavior of
software systems dynamically. It supports the modification of fundamental aspects, such as
type structures and function call mechanisms. In this pattern, an application is split into two
parts. A meta level provides information about selected system properties and makes the
software self-aware. A base level includes the application logic. Its implementation builds on
the meta level. Changes to information kept in the meta level affect subsequent base-level
behavior.

- The Reflective Blackboard architectural pattern is independent of programming
languages and specific implementation frameworks, and its use can minimize the complexity
caused by the presence of numerous system-level properties in MASs.

Structure

- The controller subsystem is composed of a meta-object protocol (MOP) component that
together with a collection of meta-objects implement the multi-agent system control
strategies. Meta-objects are composed of data (metadata) and are responsible for associating
specific behavior (reactions) to operations performed over specific pieces of data.

These meta-objects can transparently modify the normal behavior of the blackboard, thus
implementing the multi-agent system control strategies. Different agents can act over the
blackboard by means of their sensors and effectuators, which can respectively sense and
perform changes in the blackboard that can be considered their environment. The agents do not
communicate directly; they only write and read data from the blackboard.

- Whenever an agent performs any operation over a specific piece of data stored at
blackboard, the MOP component verifies if there is any meta-object associated to it. If
positive it executes the reaction associated to the meta-object, i.e. its behavior.The meta-
object execution can access the blackboard writing and deleting data.

- In this way, in a reflective blackboard architecture the semantics of a blackboard operation,
in fact, is the result of the execution of the meta-objects associated to it. Meta-objects also
may exist in the control subsystem without correspondent data in the blackboard. In this
way the multi-agent system can associate reactions to data that is part of the multi-agent
system vocabulary and probably will be written in the blackboard at runtime.

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 107

Reflection is used to intercept and modify the effects of operations of the blackboard.

From the point of view of application agents, computational reflection is transparent: an agent
writes a piece of data on the blackboard, and has no knowledge this write operation has been
intercepted and redirected to the meta-level. The following scenario illustrates the general behavior
of the Reflective Blackboard architecture:

1. A knowledge source (or agent) performs an operation on the blackboard (write for
example), supplying a piece of data and expecting some other piece of retrieved data;
2. This operation is intercepted by the meta-level’s MOP, which will perform, if
specified, control activities over the performed operation;
3. The MOP checks for the existence of meta-objects associated to the blackboard data and
related to the performed operation. If the knowledge source has performed a write operation on
the blackboard, the searched meta-objects will be those related to the written piece of data. On
the other hand, if the knowledge source has performed read or delete operations, the searched
meta-object will be related to the piece of data read from the blackboard;

UNIT-7
Contents

 Some Design Patterns

 Structural decomposition

 Whole – Part

 Organization of work: Master – Slave

 Access Control

 Proxy

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 108

UNIT-7
Chapter 9: SOME DESIGN PATTERNS

Structural Decomposition :

Design patterns systematically names, explains and evaluates an important and recurring design
in object-oriented systems. Their main objective is to reuse successful designs and architectures
of experienced and professional designers. Structural design patterns relate to class and object
composition. They use inheritance to compose interfaces and define ways to compose objects to
obtain new functionality.

The design patterns in this group further emphasize and clarify the fundamental differences
between the UML and OPM design pattern models:

whole-Part :

In this there will be two parts. The structure of whole and part are shown below :

Class: Whole

Responsibility:

 Aggregates several smaller objects
 Provides services built on top of part objects
 Acts as a wrapper around its constituent parts

Collaborators: Partwww.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 109

Class: Part

Responsibility:
 Represents a particular object and its services

Collaborators: - Nil

 Whole object: It is an aggregation of smaller objects

 The smaller objects are called Parts

Whole object forms a semantic grouping of its Parts in that it coordinates and
organizes their collaboration

The Whole uses the functionality of Parts objects for implementing services

Implementation

1. Design the public Interface of the Whole
2. Separate the Whole into Parts, or make it from existing ones (Use either bottom- up, top-

down or both mixed)
3. Use existing Parts from component libraries or class libraries or package, specify their

collaboration if you use bottom-up approach
4. Partition the Whole's services into smaller collaborating services and map these

collaborating services to separate Parts if you follow a top-down approach
5. Specific the services of the Whole in terms of services of the Parts
6. Implement the Parts (Recursively if Parts are not leaf)
7. Implement the Whole by putting all the Parts together

Advantages

Changeability of Parts

Reusability

Defines class hierarchies consisting of primitive objects

Makes the client simple

Makes it easier to add new kinds of components

Disadvantageswww.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 110

1) Makes your design overly general
2) Lower efficiency through indirection
3) Complexity of decomposition into Parts might be an art

Organization of work : Master-Slave :

 The Master-Slave design pattern supports fault tolerance, parallel computation and
computational accuracy. A master component distributes work to identical slave
components and computes a final result from the results these slaves return.

 It is used when you have two or more processes that need to run simultaneously and
continuously but at different rates. If these processes run in a single loop, severe timing
issues can occur. These timing issues occur when one part of the loop takes longer to
execute than expected. If this happens, the remaining sections in the loop get delayed.

 The Master/Slave pattern consists of multiple parallel loops. Each of the loops may
execute tasks at different rates. Of these parallel loops, one loop acts as the master and
the others act as slaves. The master loop controls all of the slave loops, and
communicates with them using messaging architectures.

 It acquires a waveform from a transmission line and displays it on a graph every 100ms,
and also provides a user interface that allows the user to change parameters for each
acquisition. The Master/Slave design pattern is well suited for this application. In this
application, the master loop will contain the user interface. The voltage acquisition and
logging will happen in one slave loop, while the transmission line acquisition and
graphing will.

 This situation can be avoided by applying the Master/Slave design pattern to the
application. In this case, the user interface will be handled by the master loop, and every
controllable section of the robotic arm will have its own slave loop. Using this method,
each controllable section of the arm will have its own loop, and therefore, its own piece of
processing time.

 The Master/Slave design pattern is very advantageous when creating multi-task
applications. It gives you a more modular approach to application development because
of its multi-loop functionality, but most importantly, it gives you more control of your
application’s time management.

The Master/Slave design pattern consists of multiple parallel loops. The loop that controls
all the others is the master and the remaining loops are slaves. One master loop

always drives one or more slave loops. Since data communication directly between these loops
breaks data flow, it must be done by writing and reading to messaging architectureswww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 111

An access control model describes at a high level of abstraction a mechanism for
governing access to shared resources.

UNIT 8
Contents

 Architecture in the life cycle

 designing the architecture

 Forming the team structure

 Creating a skeletal system

 Uses of architectural documentation

 Views

 choosing the relevant views

 Documenting a view

 Documentation across views

Chapter 10 : Designing and documenting software
Architecture

Architecture in the Life Cycle :

Any organization that embraces architecture as a foundation for its software development
processes needs to understand its place in the life cycle. Several life-cycle models exist in the
literature, but one that puts architecture squarely in the middle of things is the Evolutionary
Delivery Life Cycle model shown in Figure 7.1. The intent of this model is to get user and
customer feedback and iterate through several releases before the final release. The model also
allows the adding of functionality with each iteration and the delivery of a limited version once a
sufficient set of features has been developed.www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 112

Figure 7.1. Evolutionary Delivery Life Cycle

The life-cycle model shows the design of the architecture as iterating with preliminary
requirements analysis. Clearly, one cannot begin the design until he has some idea of the system
requirements. On the other hand, it does not take many requirements in order for design to begin.

Once the architectural drivers are known, the architectural design can begin. The requirements
analysis process will then be influenced by the questions generated during architectural design
one of the reverse-direction arrows shown in Figure 7.1.

Designing the Architecture :

There is a method for designing an architecture to satisfy both quality requirements and
functional requirements. This method is known as Attribute-Driven Design (ADD). ADD takes
as input a set of quality attribute scenarios and employs knowledge about the relation
between quality attribute achievement and architecture in order to design the architecture.

The ADD method can be viewed as an extension to most other development methods, such as the
Rational Unified Process. The Rational Unified Process has several steps that result in the high-
level design of an architecture but then proceeds to detailed design and implementation.
Incorporating ADD into it involves modifying the steps dealing with the high-level design of the
architecture and then following the process as described by Rational.www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 113

ATTRIBUTE-DRIVEN DESIGN

 ADD is an approach to defining a software architecture that bases the decomposition
process on the quality attributes the software has to fulfill. It is a recursive decomposition
process where, at each stage, tactics and architectural patterns are chosen to satisfy a set
of quality scenarios and then functionality is allocated to instantiate the module types
provided by the pattern. ADD is positioned in the life cycle after requirements analysis
and, as we have said, can begin when the architectural drivers are known with some
confidence.

 The output of ADD is the first several levels of a module decomposition view of an
architecture and other views as appropriate. Not all details of the views result from an
application of ADD; the system is described as a set of containers for functionality and
the interactions among them. This is the first articulation of architecture during the design
process and is therefore necessarily coarse grained.

 Nevertheless, it is critical for achieving the desired qualities, and it provides a framework
for achieving the functionality. The difference between an architecture resulting from
ADD and one ready for implementation rests in the more detailed design decisions that
need to be made. These could be, for example, the decision to use specific object-
oriented design patterns or a specific piece of middleware that brings with it many
architectural constraints. The architecture designed by ADD may have intentionally
deferred this decision to be more flexible.

ADD Steps

Following are the steps performed when designing an architecture using the ADD
method.

1. Choose the module to decompose. The module to start with is usually the whole system.
All required inputs for this module should be available (constraints, functional
requirements, quality requirements).

2. Refine the module according to these steps:
a. Choose the architectural drivers from the set of concrete quality scenarios and

functional requirements. This step determines what is important for this
decomposition.

b. Choose an architectural pattern that satisfies the architectural drivers.
Create (or select) the pattern based on the tactics that can be used to achieve the
drivers. Identify child modules required to implement the tactics.

c. Instantiate modules and allocate functionality from the use cases and
represent using multiple views.

d. Define interfaces of the child modules. The decomposition provides modules
and constraints on the types of module interactions. Document this information inwww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 114

the interface document for each module.
e. Verify and refine use cases and quality scenarios and make them

constraints for the child modules. This step verifies that nothing important was
forgotten and prepares the child modules for further decomposition or
implementation.

3. Repeat the steps above for every module that needs further decomposition.

Figure 7.2. Architectural pattern that utilizes tactics to achieve garage door drivers

Instantiate modules

In Figure 7.2, it identifies a non-performance-critical computation running on top of a virtual
machine that manages communication and sensor interactions. The software running on top
of the virtual machine is typically an application. In a concrete system we will normally have
more than one module. There will be one for each "group" of functionality; these will be
instances of the types shown in the pattern. Our criterion for allocating functionality is similar to
that used in functionality-based design methods, such as most object-oriented design methods.

Figure 7.3. First-level decomposition of garage door opener

www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 115

The result of this step is a plausible decomposition of a module. The next steps verify how
well the decomposition achieves the required functionality.

Allocate functionality

 Applying use cases that pertain to the parent module helps the architect gain a more
detailed understanding of the distribution of functionality. This also may lead to adding
or removing child modules to fulfill all the functionality required. At the end, every use
case of the parent module must be representable by a sequence of responsibilities within
the child modules.

 Assigning responsibilities to the children in a decomposition also leads to the discovery
of necessary information exchange. This creates a producer/consumer relationship
between those modules, which needs to be recorded. At this point in the design, it is not
important to define how the information is exchanged.

 Is the information pushed or pulled? Is it passed as a message or a call parameter? These
are all questions that need to be answered later in the design process. At this point only the
information itself and the producer and consumer roles are of interest. This is an example of
the type of information left unresolved by ADD and resolved during detailed design.

 Some tactics introduce specific patterns of interaction between module types. A tactic
using an intermediary of type publish-subscribe, for example, will introduce a pattern,
"Publish" for one of the modules and a pattern "Subscribe" for the other. These patterns
of interaction should be recorded since they translate into responsibilities for the affected
modules.

These steps should be sufficient to gain confidence that the system can deliver the desired
functionality. To check if the required qualities can be met, we need more than just the
responsibilities so far allocated. Dynamic and runtime deployment information is also requiredwww.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 116

to analyze the achievement of qualities such as performance, security, and reliability.
Therefore, we examine additional views along with the module decomposition view.

Represent the architecture with views

 Module decomposition view-This shows how the module decomposition view
provides containers for holding responsibilities as they are discovered. Major data flow
relationships among the modules are also identified through this view.

 Concurrency view- In the concurrency view dynamic aspects of a system such as parallel
activities and synchronization can be modeled. This modeling helps to identify resource
contention problems, possible deadlock situations, data consistency issues, and so forth.

 Modeling the concurrency in a system likely leads to discovery of new responsibilities
of the modules, which are recorded in the module view. It can also lead to discovery of
new modules, such as a resource manager, in order to solve issues of concurrent access to a
scarce resource and the like.

 The concurrency view is one of the component-and-connector views. The components
are instances of the modules in the module decomposition view, and the connectors are the
carriers of virtual threads. A "virtual thread" describes an execution path through the
system or parts of it.

 This should not be confused with operating system threads (or processes), which implies
other properties like memory/processor allocation. Those properties are not of interest on
the level at which we are designing. Nevertheless, after the decisions on an operating
system and on the deployment of modules to processing units are made, virtual threads
have to be mapped onto operating system threads. This is done during detailed design.

 The connectors in a concurrency view are those that deal with threads such as
"synchronizes with," "starts," "cancels," and "communicates with." A concurrency view
shows instances of the modules in the module decomposition view as a means of
understanding the mapping between those two views. It is important to know that a
synchronization point is located in a specific module so that this responsibility can be
assigned at the right place.

Forming the Team Structure :

Once the first few levels of the architecture's module decomposition structure are fairly stable,www.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 117

those modules can be allocated to development teams. This view will either allocate modules to
existing development units or define new ones.

The close relationship between an architecture and the organization that produced it makes
the point as follows:
Take any two nodes x and y of the system. Either they are joined by a branch or they are not.
(That is, either they communicate with each other in some way meaningful to the

 operation of the system or they do not.) If there is a branch, then the two (not necessarily
distinct) design groups X and Y which designed the two nodes must have negotiated and
agreed upon an interface specification to permit communication between the two
corresponding nodes of the design organization. If, on the other hand, there is no branch
between x and y, then the subsystems do not communicate with each other, there was
nothing for the two corresponding design groups to negotiate, and therefore there is no
branch between X and Y.

 The impact of an architecture on the development of organizational structure is clear.
Once an architecture for the system under construction has been agreed on, teams are
allocated to work on the major modules and a work breakdown structure is created that
reflects those teams. Each team then creates its own internal work practices (or a system-
wide set of practices is adopted).

 For large systems, the teams may belong to different subcontractors. The work practices
may include items such as bulletin boards and Web pages for communication, naming
conventions for files, and the configuration control system. All of these may be different
from group to group, again especially for large systems. Furthermore, quality assurance
and testing procedures are set up for each group, and each group needs to establish liaisons
and coordinate with the other groups.

 Thus, the teams within an organization work on modules. Within the team there needs to
be high-bandwidth communications: Much information in the form of detailed design
decisions is being constantly shared. Between teams, low-bandwidth communications are
sufficient and in fact crucial.

 Highly complex systems result when these design criteria are not met. In fact, team
structure and controlling team interactions often turn out to be important factors affecting a
large project's success. If interactions between the teams need to be complex, either the
interactions among the elements they are creating are needlessly complex or the
requirements for those elements were not sufficiently "hardened" before development
commenced. In this case, there is a need for high-bandwidth connections between teams,
not just within teams, requiring substantial negotiations and often rework of elements and
their interfaces. Like software systems, teams should strive for loose coupling and high
cohesion.www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 118

 The module is a user interface layer of a system. The application programming
interface that it presents to other modules is independent of the particular user interface
devices (radio buttons, dials, dialog boxes, etc.) that it uses to present information to the
human user, because those might change. The domain here is the repertoire of such
devices.

 The module is a process scheduler that hides the number of available processors and the
scheduling algorithm. The domain here is process scheduling and the list of appropriate
algorithms.

 The module is the Physical Models Module of the A-7E architecture. It
encapsulates the equations that compute values about the physical environment. The
domain is numerical analysis (because the equations must be implemented to maintain
sufficient accuracy in a digital computer) and avionics.

Recognizing modules as mini-domains immediately suggests that the most effective use of staff
is to assign members to teams according to their expertise. Only the module structure permits
this. As the sidebar Organizational and Architecural Structures discusses, organizations
sometimes also add specialized groups that are independent of the architectural structures.

The impact of an organization on an architecture is more subtle but just as important as the
impact of an architecture on the organization (of the group that builds the system described by
the architecture).

Suppose you are a member of a group that builds database applications, assigned to work on a
team designing an architecture for some application. inclination is probably to view the current
problem as a database problem, to worry about what database system should be used or whether
a home-grown one should be constructed, to assume that data retrievals are constructed as
queries, and so on.

You therefore press for an architecture that has distinct subsystems for, say, data storage and
management, and query formulation and implementation. A person from the
telecommunications group, on the other hand, views the system in telecommunication terms, and
for this person the database is a single subsystem.

Creating a Skeletal System :

 Once an architecture is sufficiently designed and teams are in place to begin building to
it, a skeletal system can be constructed. The idea at this stage is to provide an underlying
capability to implement a system's functionality in an order advantageous to the project

 Classical software engineering practice recommends "stubbing out" sections of code so
that portions of the system can be added separately and tested independently. However,www.vt

uc
s.c

om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 119

which portions should be stubbed? By using the architecture as a guide, a sequence of
implementation becomes clear.

 First, implement the software that deals with the execution and interaction of
architectural components. This may require producing a scheduler in a real-time system,
implementing the rule engine (with a prototype set of rules) to control rule firing in a
rule-based system, implementing process synchronization mechanisms in a multi-process
system, or implementing client-server coordination in a client-server system.

 Often, the basic interaction mechanism is provided by third-party middleware, in which
case the job becomes ones of installation instead of implementation. On top of this
communication or interaction infrastructure, you may wish to install the simplest of
functions, one that does little more than instigate some rote behavior. At this point, you
will have a running system that essentially sits there and hums to itself, but a running
system nevertheless. This is the foundation onto which useful functionality can be added.

 You can now choose which of the elements providing functionality should be added to
the system. The choice may be based on lowering risk by addressing the most
problematic areas first, or it may be based on the levels and type of staffing available, or it
may be based on getting something useful to market as quickly as possible.

 Once the elements providing the next increment of functionality have been chosen, you
can employ the uses structure to tell you what additional software should be running
correctly in the system (as opposed to just being there in the form of a stub) to support
that functionality.

 This process continues, growing larger and larger increments of the system, until it is all in
place. At no point is the integration and testing task overwhelming; at every increment it is
easy to find the source of newly introduced faults. Budgets and schedules are more
predictable with smaller increments, which also provide management and marketing with
more delivery options.

 Even the stubbed-out parts help pave the way for completion. These stubs adhere to the
same interfaces that the final version of the system requires, so they can help with
understanding and testing the interactions among components even in the absence of
high-fidelity functionality.

 These stub components can exercise this interaction in two ways, either producing hard
coded canned output or reading the output from a file. They can also generate a synthetic
load on the system to approximate the amount of time the actual processing will take in
the completed working version.

 This aids in early understanding of system performance requirements, includingwww.vt
uc

s.c
om

SOFTWARE ARCHITECTURE 06IS72

DEPT OF CSE, SJBIT Page 120

performance interactions and bottlenecks.

--- END---

www.vt
uc

s.c
om

