1.	A cohesive soil yields a maximum dry density of 18kN/m³ during a standard proctor compaction test. If the specific gravity is 2.65, what would be its void ratio? (Adopt unit of water as 10kN/m³)				
	(a) 0.5523	(b) 0.4722		(c) 0.7121	(d) 0.5835
2.	A footing 2m x 1m exerts a uni Assuming a load dispersion of vertical stress in (kN/m²) at 1.0m k			2 vertical to 1 ho	50kN/m ² on the soil. rizontal, the average
	(a) 50	(b) 75		(c) 80	(d) 100
3.	Match List-I with List-II and select the correct answer using the code given below the lists:				
	List - I			List - II	
	A. Axel Bend	ixen		1. The mathem elasticity	natical theory of
	B. Hardy Cro	SS		2. Theory of curv	ed bars
	C. Winkler			3. Slope-deflection	n method
	D. St. Venant			4. Moment distrib	ution
	(a) A B C D	(b) ABCD		(c) A B C D	(d) ABCD
	1 2 3 4	3 4 2 1		1 2 4 3	3 2 4 1
4.	The standard size	of brick is			
	(a) 20cm x 10cm x	k 10cm	(b)	19cm x 9cm x 9cm	
	(c) 18cm x 9cm x 9	∂cm	(d)	18cm x 10cm x 10cr	n
5.	The velocity of flow of water in a pipe of 150 mm dia is 0.3m/sec, a diaphragm with a central hole 80mm in diameter is placed in the pipe obstructing the flow. With coefficient of contraction C _C =0.60, the loss of head from Vena Contracta to a point downstream will be				
	(a) 0.1083m	(b) 0.2250m	(c)	1.2054m	(d) 0.8250m
6.	If the depletion of sewag	of oxygen is ge sample for	fou 5 d	nd to be 5 ppm af ays at 20ºC, B.O.D	ter incubating a 2.5% of the sewage is
	(a) 50 ppm	(b) 100 ppm		150 ppm	(d) 200 ppm
7.	A trapezoidal section of an open channel has side slope 2H:1V. If bottom width is 'b' and depth 'd', the relation between b & d for most economical trapezoidal section of the channel is:				
	(a) b = 0.472 d	(b) $b/d = 0.5$	(c)	$b^2 = 0.3 d^2$	(d) d = √b
8.	If the difference crown is 15 cm, t	in elevation o he camber of	f a the	n edge of the paver e pavement is	ment 9m wide and its
	(a) 1 in 60	(b) 1 in 45		(c) 1 in 30	(d) 1 in 15

्रप्र [ा] क्षित	INDIAN SPACE RESEARCH ORGANISATION	Page 1 of 9
	`	

9.	The scour depth <i>D</i> of a river during flood, may be calculated from the Lacey's equation				
	(a) $D = 0.47 (Q/f)^{1/2}$		(b) $D = 0.47 (Q/f)$		
	(c) $D = 0.47 (Q/f)^{1/4}$		(d) $D = 0.47 (Q/f)^{1/3}$		
10.				er 150mm with a	
	(a) Laminar	(b) Turbulent	(c) Critical	(d) Rectilinear	
11.	bars of 1200 mm ²	, total cross-section	cross-section is rei onal area. Calculate oncrete is 5 N/mm² a	the safe load for	
	(a) 264 kN	(b) 274 kN	(c) 284 kN	(d) 294 kN	
12.			e strain in the reinf 3-2000 shall not be le		
	(a) f _y /1.15E		(b) $f_y/1.15E_S+0.002$		
	(c) f _y /E _s		(d) $f_y/E_S+0.002$		
13.		imit of 35, plastic luidity index and pl	imit of 20 and mois asticity index	sture content 25%.	
	(a) 0.67, 15	(b) 0.33, 15	(c) 0.67, 25	(d) 0.33, 20	
14.	sectional area is A		n about its axis is tion <i>r</i> about the axis	,	
	(a) r = <u>I</u>	(b) $r = \sqrt{I/A}$	(c) $r = \sqrt[3]{I/A}$	(d) r = √A/I	
15.	6kN at free end.	The magnitude of		ies a point load of ied at free end for f the beam)	
	(a) 5 kN.m	(b) 10 kN.m	(c) 11 kN.m	(d) 8 kN.m	
16.	Undergoes elong	ation resulting in material as E = 2x1	cted to a tensile fo decrease in diamet 0 ⁵ N/mm ² and Poiss		
	(a) 76923.07 N/mn	າ ²	(b) 20x10 ⁴ kg/cm ²		
	(c) 56898.50 N/mn	η ²	(d) 3x10 ⁵ Kg/cm ²		

ूर्ड १४५ (१ ५८)	INDIAN SPACE RESEARCH ORGANISATION	Page 2 of 9
	,	

17.	If the volume of a liquid weighing 3000 kg is 4 cubic metres, 0.75 is its			res 0.75 is its	
	(a)Specific weigh		(b)Specific mass	103, 0.7 0 13 113	
	(c)Specific gravity		(d)Specific volume		
18.			bove the centre of of water flowing t	a circular hole 2.5 hrough the hole is	
	(a) 20.53 m/sec	(b) 25.85 m/sec	(c) 31.32 m/sec	(d) 40.40 m/sec	
19,	A simply suppo	orted beam is consid o overall depth is less	lered as a deep be than	eam if the ratio of	
	(a) 1	(b) 2	(c) 3	(d) 4	
20.	In two dimens represents	ional stress system	, the radius of t	he Mohr's circles	
	(a) Maximum nor	mal stress	(b) Minimum norma	al stress	
	(c) Minimum she	ar stress	(d) Maximum shear	r stress	
21.	If 5x+3y+7z = 5, then	3x+2by+2z = 9, 7x+2	2y+10z = 5, be a sy	stem of equations,	
	(a) It has only trivial solution, x=0, y=0, z=0		(b) System is consistent and has infinite solution		
	(c) System is unique solution.	consistent and has	(d) System is incor	nsistent	
22.		le between the tanger	nts to the curve x=t,	$y=t^2$, $z=t^3$ at $t=\pm 1$	
	(a) Cos ⁻¹ (-3/7)	(b) Cos ⁻¹ (1/7)	(c) Cos ⁻¹ (3/7)	(d) Cos ⁻¹ (-1/7)	
23.	What is the Laplace transform of e ^{-3t} (2 cos 5t – 3 sin 5t)				
	(a) $2s + 9/s^2 + 6s$	· ·	(b) $3s - 9/s^2 + 6s +$	+ 34	
	(c) $2s - 9/s^2 + 6s$	s + 34	(d) $S + 9/s^2 + 6s + 34$		
24.	x is a uniformly	distributed random v	ariable that takes v	values between 0 &	
	1. The value of	[[] {×} will be			
	(a) 0	(b) 1/8	(c) 1/4	(d) 1/2	
25.	The earth press	ure of a soil at rest, is			
		(b) $\tan (45^0 + \emptyset)$	(c) (1 – sin ø)	(d) (1 + sin Ø)	
26.		e e-log p curve for a s			
	(a) Coefficient of		(b) Coefficient of co	onsolidation C_V	
	(c) Compression	index, C _C	(d) Coefficient compressibility m_{ν}		
27.	Stress produce produced by the	d in a bar by a sudo same load when app	denly applied load blied gradually. The	is the one value of `X' is	
	(a)Twice	(b)Thrice	(c)Same as	(d)Half of	

ीं ने ८५ किस	INDIAN SPACE RESEARCH ORGANISATION	Page 3 of 9	
		L	

28.	Two circular mild steel bars A and B of equal lengths have diameters 2 cm and 3 cm respectively. Each is subjected to a tensile load of magnitude T. The ratio of elongations of the bars I_A/I_B is				
	(a) 2/3 '	(b) 5/8	(c) 4/9	(d) 2/5	
29.		cross sectional are ne discharge of the			
	(a) 2/g m of water		(b) g/2 m of water		
	(c) 1 <i>g</i> m of water		(d) \sqrt{g} m of water		
30.	The length of hydr	aulic jump in rectar	ngular channel is ro	ughly	
	(a) 2 to 3 times its h	eight	(b) 3 to 5 times its h	neight	
	(c) 5 to 7 times its h	eight	(d) 10 to 12 times it	s height	
31.	The absolute mining Kmph is nearly	mum radius of hor	zontal curve for a	design speed of 60	
	(a) 151 m	(b) 210 m	(c) 360 m	(d) 129 m	
32.	If whole circle bea	ring of a line is 120	⁰ , its reduced bear	ing is	
	(a) S 20 ⁰ E	(b) S 60 ⁰ E	(c) N 120 ⁰ E	(d) N 60 ⁰ E	
33.	lf,				
	A = Cross section	al area		,	
	E = Young's modu	lus of elasticity			
	G = Modulus of rig	idity			
	J = Polar moment	of inertia			
	Then Torsional rig	idity is given by,			
	(a)AE	(b)GE	(c)El	(d)GJ	
34.	The Muller-Bresla	u principle in struct	ural analysis is use	d for,	
	(a) Drawing influentiany force function	ce line diagram for	(b) Superimposition	n of load effects	
	(c) Writing virtual w	ork equation	(d) Calculating stra	in energy	
35.	Minimum stopping design speed of 8		C for moving vehic	cles on road with a	
	(a) 80 m	(b) 100 m	(c) 120 m	(d) 150 m	
36.	The bearing of C f W. The departure	rom A is N 30 ⁰ E an of C from A is	d from <i>B</i> , 50 metres	s east of A, is N 60 ⁰	
	(a) 50 m	(b) 50 √3 m	(c) 25 √3 m	(d) 25 m	
37.		e following conditi in comparison to tr		ase of unconfined	
	(a) Minor principal s	stress = 0	(b) Minor principal stress = 0.5 x major principal stress		
	(c) Minor principal principal stress	al stress = major	(d) Major principal principal stress	stress = 3 x minor	

INDIAN SPACE RESEARCH ORGANISATION Page 4 of 9
--

38.	A rod of uniform subjected to a nor	cross-section A ar mal force P. The Yo	nd length L is defo oung's Modulus E o	rmed by δ , when f the material is,
	1	(b) E= <u>A. δ</u>		(d) E= <u>A. L</u>
	A.L	P.L	Α. δ	Ρ. δ

39.	A simply supported limiting ratio of sp	ed beam has an efformation effortive dept	ective span of 16m. th as per IS 456-200	. What shall be the 0?
	(a) 26	(b) 20	(c) 12.5	(d) 15
40.	If the depletion of of sewage diluted sewage is	oxygen is found to d with 250 ml wat	be 2.5 mg/litre afte er for 5 days at 2	r incubating 2.5 ml 10^{0} C, B.O.D of the
	(a) 50 mg/l	(b) 100 mg/l	(c) 200 mg/l	(d) 250 mg/l
41.	The number of br	icks per CUM of br	ickwork in CM is at	
	(a) 200 numbers	1	(c) 700 numbers	(d) 800 numbers
42.	The slope correcti	on for a length of	30 m along a gradie	
	(a) 3.75 cm	(b) 0.375 cm	(c) 37.5 cm	(d) 2.75 cm
43.	Both Reynolds a following example	and Froude numbers:	ers assume signif	icance in one of
	(a) Motion of sudepths	ıbmarine at large	(b) Motion of ship in	deep seas
	(c) Cruising of miss	ile in air	(d) Droplet formatio	n
44.	The flow in open c	hannel is said to be	subcritical if the Froude number is	
	(a) Less than 1.0	10.	(b) Equal to 1.0	
	(c) Greater than 1.0		(d) Zero	
45.	An ideal vertical c	urve to join two gra	dients is	
	(a) Cubic	(b) Parabolic	(c) Elliptical	(d) Hyperbolic
46.	For the differential	equation dy/dx + a	y = 0 with $y(0) = 1$, s	solution is
	(a) e ^{at}	(b) e ^{-at}	(c) ae ^{-at}	(d) e ^{√-at}
47.			differential equatio	n
	(a) $(dy/dx)^2 - x (dy/dx)^2$	dx) + y = 0	(b) $d^2y/dx^2 = 0$	
	(c) $dy/dx = c$		(d) $d^3y/dx^3 = 0$	
48.	The triangle forme			
	A(1, -2, -3), B(2, -3,		r	
	(a) Isosceles right a	ngled Δ	(b) Equilateral ∆	
	(c) Scalene Δ		(d) Acute Δ	

49.	The partial differential equation			
	$5\partial^2 z I \partial x^2 + 6\partial^2 z I \partial y^2$	= xy is,		
	(a) Elliptic ,	(b) Parabolic	(c) Hyperbolic	(d) Sinusoidal
50.	If A is a 3x3 matrix and A =3, then 3A is			
	a) 9	b) 27	c) 81	d) 243
51.	The relationship b	etween void ratio (e) and porosity ratio	(n) is:
	1			(d) e=n(1+e)
	1 - e	(b) e= <u>1 + n</u> 1 - e	1 + e	
52.			r up-stream and o I, the loss of head a	
	(a) $(D_2 - D_1)^3$	(b) $(D_2 - D_1)^3$	(c) $(D_2 - D_1)^3$	(d) $(D_2 - D_1)^3$
	D ₁ D ₂	2D ₁ D ₂	3D ₁ D ₂	4D ₁ D ₂
53.	Modular ratio 'm' f	or M25 grade of co	ncrete is	
	(a) 18.67	(b) 13.33	(c) 10.98	(d) None
54.			should not be less bars are used in th	
	(a) 0.10	(b) 0.12	(c) 0.15	(d) 0.18
EE	A sontilover been	a carrida a uniform	سفسف لمستريناتوناهماك برام	1 1 1 187
55.		a concentrated up	ward load W at its	I load W over its free end. The net
55.	whole length and	a concentrated up		free end. The net
55.	whole length and vertical deflection	a concentrated up	ward load W at its	free end. The net
55.	whole length and vertical deflection	a concentrated up	ward load W at its (b) 5.WL ³ downwar	free end. The net
55.	whole length and vertical deflection (a) Zero	a concentrated up	ward load W at its (b) <u>5.WL³</u> downwar 24 El	free end. The net
56.	whole length and vertical deflection (a) Zero (c) 5.WL³ upwards 24 El	a concentrated up at the free end is	(b) <u>5.WL³</u> downwar 24 El (d) <u>5.WL³</u> downwa	ds rds
	whole length and vertical deflection (a) Zero (c) 5.WL³ upwards 24 El As per IS 1893 [I	a concentrated up at the free end is Part-I] – 2002, Ban	ward load W at its (b) 5.WL ³ downwar 24 El (d) 5.WL ³ downwa 48 El	ds rds
	whole length and vertical deflection (a) Zero (c) 5.WL³ upwards 24 El As per IS 1893 [l zone - (a)Zone-l	a concentrated up at the free end is Part-I] - 2002, Ban (b) Zone-II near stress in a re	ward load W at its (b) 5.WL ³ downwar 24 El (d) 5.WL ³ downwa 48 El galore falls under	free end. The net ds rds which earthquake (d) Zone-IV
56.	whole length and vertical deflection (a) Zero (c) 5.WL³ upwards 24 El As per IS 1893 [Izone - (a)Zone-I The maximum sh	a concentrated up at the free end is Part-I] - 2002, Ban (b) Zone-II near stress in a re	ward load W at its (b) 5.WL ³ downwar 24 El (d) 5.WL ³ downwa 48 El galore falls under (c) Zone-III	free end. The net ds rds which earthquake (d) Zone-IV
56.	whole length and vertical deflection (a) Zero (c) 5.WL³ upwards 24 El As per IS 1893 [Izone - (a)Zone-I The maximum shaverage shear streets (a) 1.15	Part-I] - 2002, Ban (b) Zone-II near stress in a reess (b) 1.25 content required	ward load W at its (b) 5.WL³ downwar 24 El (d) 5.WL³ downwar 48 El galore falls under (c) Zone-III ctangular beam is	rds which earthquake (d) Zone-IV times of (d) 1.75 concrete for very
56.	whole length and vertical deflection (a) Zero (c) 5.WL³ upwards 24 El As per IS 1893 [I zone - (a)Zone-I The maximum shaverage shear street (a) 1.15 Minimum cement	Part-I] - 2002, Ban (b) Zone-II near stress in a reess (b) 1.25 content required	(b) 5.WL³ downwar 24 El (d) 5.WL³ downwar 48 El galore falls under (c) Zone-III ctangular beam is (c) 1.5 for M 35 grade of	rds which earthquake (d) Zone-IV times of (d) 1.75 concrete for very
56.	whole length and vertical deflection (a) Zero (c) 5.WL³ upwards 24 El As per IS 1893 [Izone - (a)Zone-I The maximum shaverage shear structure (a) 1.15 Minimum cement severe exposure (a) 300 Permissible devi	a concentrated up at the free end is Part-I] - 2002, Ban (b) Zone-II near stress in a reess (b) 1.25 content required condition as per I (b) 320	(b) 5.WL³ downwar 24 El (d) 5.WL³ downwar 48 El galore falls under (c) Zone-III ctangular beam is (c) 1.5 for M 35 grade of S 456 -2000 is	free end. The net ds rds which earthquake (d) Zone-IV times of (d) 1.75 concrete for very kg/m³ (d) 360
56. 57. 58.	whole length and vertical deflection (a) Zero (c) 5.WL³ upwards 24 El As per IS 1893 [Izone - (a)Zone-I The maximum shaverage shear structure (a) 1.15 Minimum cement severe exposure (a) 300 Permissible devi	Part-I] - 2002, Ban (b) Zone-II near stress in a ress (b) 1.25 content required condition as per I (b) 320 ation from specific	(b) 5.WL³ downwar 24 El (d) 5.WL³ downwar 48 El galore falls under (c) Zone-III ctangular beam is (c) 1.5 for M 35 grade of S 456 -2000 is	free end. The net ds rds which earthquake (d) Zone-IV times of (d) 1.75 concrete for very kg/m³ (d) 360

ा शिक्षान्त	INDIAN SPACE RESEARCH ORGANISATION	Page 6 of 9

60.	Soundness of Cement is measured by				
<u> </u>	(a) Vicat Apparatus		(b) Le Chatelier Apparatus		
	(c) Rebound Hamr	mer	(d) Ultra Sonic Apparatus	Pulse Velocity	
61.	through its center	of gravity & Perpe	of Mass 'm' & lengt ndicular to its lengt	th 'l', about its axis th is	
	_	(b) m l ² /6		(d) m $I^2/12$	
62.	The ratio of Static Friction to Dynamic friction is always				
	(a) Equal to 1		(b) Less than 1		
	(c) Greater than 1		(d) None		
63.	Laterite is Chemically Classified as				
	(a) Calcareous Rock		(b) Argillaceous rock		
	(c) Siliceous rock		(d) Metamorphic rock		
64.	The compressive strength of Granite is				
	(a) 50to70MN / M ²		(b) 70 to 130MN / M ²		
	(c) 130 to 170 MN / M ²		(d) 170 to 200 MN / M ²		
65.	A first class brick weight after 24 ho	of its own dry			
	(a) 10%	(b) 15%	(c) 20%	(d) 25%	
66.	For RCC Construction the maximum size of Coarse aggregate is limited to				
	(a) 10 mm	(b) 15 mm	(c) 20 mm	(d) 25 mm	
67.	The propagation of Shear Crack in prestressed concrete member depends on				
	(a) Tensile Reinforcement		(b) Compression Reinforcement		
	(c) Shear reinforcement		(d) Shape of the Cross-section of beam		
68.	A doubly Reinforced section is used,				
	a) When the members are subjected to alternate external loads and bending moment in the section reverses		(b) When the members are subjected to loading eccentric on either side of the axis		
	(c) When the members are subjected		(d) All the above		
	to accidental late				
69.	The material having particle size varying from 0.007 mm to 0.06 mm is termed as ,				
	(a) Silt	(b) Clay	(c) Sand	(d) None of the above	

70.	In a manufacture of cement, the dry and wet mixture of Calcareous and argillaceous materials are burnt at a temperature of					
	(a) 900°C to 1000° C	(b) 1000°C to 1200° C				
	(c) 1200°C to 1500° C	(d) 1500°C to 1600° C				
71.	A method of differential levelling is used in order to find the differences in elevation between the two points when,					
	(a) They are too far apart (b) There are obstacles between two					
	(c) The differences between them is too great	(d) All the above				
72.	If the depth is kept constant for a beam of uniform strength, then its width will vary in proportion to, where M is the bending moment,					
	(a) M (b) √ M	(c) M^2 (d) M^3				
73.	A lead ball with certain velocity is made to strike a wall, it falls down; but a rubber ball of the same mass and with same velocity strikes the same wall, it rebounds. Select the reason from the following:					
	(a) Both the balls under go an equal change in the momentum suffered by rubber ball is more than the lead ball					
	(c) The change in momentum (d) None of the above suffered by rubber ball is less than the lead ball					
74.	A large tank open to the Atmosphere is filled with water to a height of 5m from the outlet tap. A tap near the bottom of tank is now opened, and water flows out from the smooth and rounded outlet. Determine the Maximum velocity at the outlet,					
	(a) 9.2 m/s (b) 9.9 m/s	(c) 19.8 m/s (d) none				
75.	The loss of pressure in Venturimeter					
	(a) Reduces with decrease in cone (b) Reduces with decreasing contains angle in the outlet cone					
	(c) Increases with decreasing cone angle in the outlet cone	(d) Increase with decreasing cone angle in the inlet cone.				
76.	Bending equation is .					
	(a) M/I=R/E=F/Y	(b) I/M=E/R=Y/R				
	(c) M/I=E/R=F/Y	(d) M/I=R/E=Y/F				
77.	For a prismatic beam of length L & m is	noment of inertia I, the stiffness factor				
	a) IE/L (b) 2EI/L	(c) 3EI/L (d) 4EI/L				
78.	In case of SHM, the period of oscillation (T) is given by,					
	(a) $T=2\omega/\P^2$ (b) $T=2\P/\omega$	(c) $T=\omega/2\P$ (d) $T=\P/2\omega$				

٠	X Wallero	INDIAN SPACE RESEARCH ORGANISATION	Page 8 of 9

79.	One Newton force is,				
	(a) 10 ³ dynes	(b) 10 ⁴ dynes	(c) 10 ⁵ dynes	(d) 10 ⁶ dynes	
80.	If 2,3,4 are the Eigen values of A, then the Eigen values of 4A will be				
	(a) 2,3,16	(b) 2,12,4	(c) 8,12,16	(d) 8,3,4	

End of questions