

Notes for School Exams
Physics XI

## Fluid Mechanics

# Mechanical Properties of Matter 

Author: P. K. Bharti (B. Tech., IIT Kharagpur)
H. O. D. Physics, Concept Bokaro Centre

Mb: 7488044834

2013-2015

Prerequisite: Laws of motion (F. B.D.)

## Content

- Introduction
- Fluids
- Density \& specific volume
- Specific weight \& specific gravity
- Compressibility \& viscosity
- Ideal fluid
- Pressure
- Hydrostatics
- Gauge pressure \& vacuum pressure
- Mercury barometer
- Manometer
- Pascal's Law
- Hydraulic lift
- Buoyant force
- Archimedes’ Principle
- Fluids in motion
- Reynolds number
- Equation of continuity
- Bernoulli’s Principle
- Torricelli's theorem (speed of efflux)
- Venturimeter
- Viscosity
- Coefficient of viscosity
- Stokes law
- Terminal velocity
- Terminal velocity of a small sphere
- Surface tension
- Reason for surface tension
- Definition of surface tension
- Surface energy
- Excess pressure inside a soap bubble
- Capillary rise

NOTE: I have followed NCERT Physics book to prepare this notes. Even IIT-JEE (now JEE Advanced) follows NCERT. Please refer NCERT whenever two books disagree on a particular topic. All the best for Boards, JEE Main \& JEE Advanced.

## Pranjal K. Bharti

H. O. D. Physics at Concept Bokaro Centre
B. Tech., I.I.T. Kharagpur

Mb: 7488044834
Email: pkbharti.iit@gmail.com
Website: www.vidyadrishti.org

## Introduction

- A fluid is any substance which flows because its particles are not rigidly attached to one another.
This includes liquids, gases and even some materials which are normally considered solids, such as glass.
- Fluid mechanics is the study of fluids either in motion (fluid dynamics) or at rest (fluid statics) and the subsequent effects of the fluid upon the boundaries, which may be either solid surfaces or interfaces with other fluids.


## Fluids

- From the point of view of fluid mechanics, all matter consists of only two states, fluid and solid. Both liquids and gases are fluids.
- Thus all The technical distinction lies with the reaction of the two to an applied shear or tangential stress. A solid can resist a shear stress by a static deformation; a fluid cannot. Any shear stress applied to a fluid, no matter how small, will result in motion of that fluid. The fluid moves and deforms continuously as long as the shear stress is applied.
- Hence, we can define fluid as substance which cannot resist any shear stress applied to it.


## Density \& Specific Volume

- Density: The mass per unit volume of material is called the density, which is generally expressed by the symbol $\rho$.

$$
\rho=\frac{m}{V}
$$

- The SI unit of density is $\mathbf{k g} / \mathbf{m}^{3}$.
- The density of water at $4^{\circ} \mathrm{C}$ and 1 atm $(101325 \mathrm{~Pa}$, standard atmospheric pressure) is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ or $1 \mathrm{~g} / \mathrm{cm}^{3}$.
- The density of mercury is taken as $13600 \mathrm{~kg} / \mathrm{m}^{3}$.
- Specific volume: The reciprocal of density, i.e. the volume per unit mass, is called the specific volume.
specific volume $=\frac{1}{\rho}=\frac{V}{m}$
- SI Unit : $\mathrm{m}^{3} / \mathrm{kg}$


## Specific Weight \& Specific Gravity

- Specific weight: The specific weight of a fluid, denoted by $\gamma$, is its weight per unit volume.
- Therefore,

$$
\gamma=\frac{m g}{V}=\rho g
$$

- Specific gravity or relative density (Important): Specific gravity, denoted by $S G$ or $R D$, is the ratio of a fluid density to a standard reference fluid, water (for liquids), and air (for gases):

Relative density of a liquid $=\frac{\text { density of liquid }}{\text { density of water at } 4^{\circ} \mathrm{C}}$

$$
\mathrm{SG}_{\text {liquid }}=\frac{\rho_{\text {liquid }}}{\rho_{\text {water }}}
$$

- $\quad$ Similarly, $\mathrm{SG}_{\text {gas }}=\frac{\rho_{\text {gas }}}{\rho_{\text {air }}}$
- For example, the specific gravity of mercury $(\mathrm{Hg})$ is $\mathrm{SG}_{\mathrm{Hg}}=13,600 / 1000 \approx 13.6$.


## Exercise 1

1. Find the dimensions of a) density and b) specific gravity.
2. Find the specific density of a liquid whose density is a) $8300 \mathrm{~kg} / \mathrm{m}^{3}$ and b) $2 \mathrm{~g} / \mathrm{cm}^{3}$.
3. If the relative density of a fluid is 11.1 find its density in S.I. and CGS units.

## Answers

1. a) $M L^{-3} T^{0}$
b) $M^{0} L^{0} T^{0}$
2. a) $8.3 \quad$ b) 2
3. $11100 \mathrm{~kg} / \mathrm{m}^{3}, 11.1 \mathrm{~g} / \mathrm{cm}^{3}$

## Compressibility \& viscosity

- Compressibility: Compressibility is the measure of the change in volume a substance undergoes when a pressure is exerted on the substance.
- Liquids are generally considered to be incompressible, meaning density of the liquid is independent of the variation in pressure and always remains constant.
- Viscosity: Viscosity is a fluid property that measures the resistance of the fluid to deforming due to a shear force.
- Viscosity is the internal friction of a fluid which makes it resist flowing past a solid surface or other layers of the fluid. Viscosity can also be considered to be a measure of the resistance of a fluid to flowing. A thick oil has a high viscosity; water has a low viscosity.


## Ideal Fluid

- An ideal fluid is one that is incompressible and has no viscosity.
- Ideal fluids do not actually exist. We are going to assume given fluid to be ideal, meaning incompressible and nonviscous fluid unless or otherwise stated.


## Pressure

1. Pressure ( $\mathbf{P}$ ) is the force per unit area applied on a surface in a direction perpendicular to that surface.
2. We can classify pressure in two categories: Average pressure and pressure at a point.
3. Average Pressure: Suppose a force $F$ is applied to a surface of area A. Then, average pressure is defined as $P=\frac{F_{\perp}}{A}$

where $F_{\perp}$ is the component of force $F$ perpendicular to the surface.
4. Pressure at a point: Suppose a infinitesimally small surface area dA centred at a point. Suppose a force $d F_{\perp}$ acts perpendicular to this force at that surface $d A$. Then, pressure at that point is given by

$$
P=\frac{d F_{\perp}}{d A}
$$


5. Pressure in a fluid at a particular point acts equally in all direction.


Here $P_{1}=P_{2}=P_{3}=P_{4}=P_{5}$

## Important point about pressure

- S.I unit of pressure is $\mathbf{N} / \mathbf{m}^{2}$ called Pascal (Pa).
$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$.
- Pressure is a scalar quantity (at school level).

6. Pressure in a fluid at a particular point acts equally in all direction.

- The atmosphere (atm) exerts certain pressure at a point depending on the column or height of atmosphere lying above that point. The average pressure of the atmosphere at sea level is known as atmospheric pressure (atm).
- The atmospheric pressure is about $1.013 \times 10^{5} \mathrm{~Pa}$ and is denoted by $P_{0}$. Thus, $\boldsymbol{P}_{\mathbf{0}}=1.013 \times 1 \mathbf{1 0}^{5} \mathbf{~ P a}$
- This gives us another unit for pressure, the atmosphere ( atm ), where $1 \mathbf{~ t t m}=1.013 \times 10 \mathbf{~ P a}$
- There is one more unit prevalent in laboratory, known as Bar. $1 \mathrm{Bar}=10{ }^{5} \mathrm{~Pa}$


## Hydrostatics

- Hydrostatics is about the pressures exerted by a fluid at rest. Any fluid is meant, not just water.


## Pressure variation with depth in Hydrostatic

- Let us consider an incompressible fluid of uniform density $\rho$ at rest.
- Consider an imaginary fluid volume (a cube, each face having area A) at rest. The sum of all the forces on this volume must be zero as it is in equilibrium.
- There are three vertical forces:
$\checkmark \quad$ The weight: $m g=\rho V g=\rho h A g$
$\checkmark$ The upward force from the pressure $P_{2}$ on the bottom surface: $F_{2}=P_{2} A$
$\checkmark$ The downward force from the pressure $P_{1}$ on the top surface: $F_{1}=P_{1} A$
. Therefore, at equilibrium, we have,
$F_{2}-F_{1}-m g=0$
$\Leftrightarrow P_{2} A-P_{1} A-m g=0$
$\Leftrightarrow\left(P_{2}-P_{1}\right) A-\rho h A g=0$
$\Leftrightarrow \quad\left(P_{2}-P_{1}\right)-\rho h g=0$
$\Leftrightarrow P_{2}-P_{1}=\rho g h$


$\Leftrightarrow \underset{2}{P}$| $P_{1}-P^{2}$ |
| :---: |

- Therefore, pressure $P_{2}$ at depth $h$ is $\rho g h$ greater than pressure $P_{1}$.
- Hence, pressure increases with depth.


## Important Points in Hydrostatics

1. Pressure in a continuously distributed uniform, incompressible static fluid varies only with vertical distance and is independent of the shape of the container. The pressure increases with depth in the fluid. Pressure $P_{2}$ at depth $h$ is $\rho g h$ greater than pressure $P_{1}$. Thus,
$P_{2}-P_{1}=\rho g h$
Taking variation in acceleration due to gravity with depth or height into account we have, $\frac{d p}{d h}=-\rho g$
2. Pressure in a fluid at a particular point acts equally in all direction.

Here $P_{1}=P_{2}=P_{3}=P_{4}=P_{5}$

3. The pressure is the same at all points on a given horizontal plane in the fluid.

- An illustration of this is shown in the given Fig. The free surface of the container is atmospheric and forms a horizontal plane. Points $A, B, C$, and $D$ are at equal depth in a horizontal plane and are interconnected by the same fluid; therefore all points have the same pressure. The same is true of points $P, Q$, and $R$ which all have the same lower pressure than at $A, B, C$, and $D$. However, point $S$, although at the same depth as $A, B$, and $C$, has a different pressure because it lies beneath a different fluid. Please note that points $T$ and $U$ have same pressure.


4. Forces acting on a fluid in equilibrium have to perpendicular to its surface, because it cannot sustain the shear stress.
5. Free body diagram of a liquid: Forces on a fluids in equilibrium are (neglecting viscous forces) are:

- Weight $m g$ in downward direction
- Force $P_{0} A_{1}$ from atmospheric pressure in downward direction
- Normal force $\left(P_{0}+\rho g h\right) A_{2}$ from bottom surface in upward direction (how?)
All of these forces are in vertical direction. By calculation it is found that net force is not zero. It means there must be some force in the vertical direction to maintain the equilibrium. Where does this force comes from? Yes! This force is due to walls of the container. Hence there is a fourth force:
- Force $F_{\text {wall }}$ from walls of the container in the vertical (say upward) direction.


6. Pressure difference in an accelerating fluids:

Consider a liquid kept at rest in a beaker as shown in figure. In this case we know that pressure do not change in horizontal direction ( $x$-direction), it decreases upward along $y$-direction. So, we can write the equations,
$\frac{d p}{d x}=0$ and $\frac{d p}{d y}=-\rho g$


But, suppose the beaker is accelerated and it has components of acceleration $a_{x}$ and $a_{y}$ in $x$ and $y$ directions respectively, then the pressure decreases along both $x$ and $y$ direction. The above equation in that case reduces to,
$\frac{d p}{d x}=-\rho a_{x} \quad$ and $\quad \frac{d p}{d y}=-\rho\left(g+a_{y}\right)$

7. Free surface of a liquid accelerated in horizontal direction:
Consider a liquid placed in a beaker which is accelerating horizontally with an acceleration $a$. Then, $\tan \theta=\frac{a}{g}$
Proof: Consider a fluid particle of mass $m$ at point $P$ on the surface of liquid. From the accelerating frame of reference, two forces are acting on it,
(i) pseudo force (ma)
(ii) weight (mg)


- Net force in equilibrium should be perpendicular to the surface.
$\therefore \tan \theta=\frac{m a}{m g}$
or $\tan \theta=\frac{a}{g}$


## Gauge Pressure and Vacuum Pressure

- Absolute pressure (P): The pressure at a point is known as absolute pressure.
- Gauge Pressure (when $\boldsymbol{P}>\boldsymbol{P}_{\mathbf{0}}$ ): The excess pressure above atmospheric pressure is called as gauge pressure. Therefore,

Gauge Pressure $=P-P_{o}$

- Vacuum Pressure (when $\boldsymbol{P}<\boldsymbol{P}_{\mathbf{0}}$ )

Vacuum Pressure
= Atmospheric Pressure - Absolute Pressure
$\Leftrightarrow$ Vacuum Pressure $=\boldsymbol{P}_{\boldsymbol{o}}-\boldsymbol{P}$

## The Mercury Barometer

- Figure shows a very basic mercury barometer, a device used to measure the pressure of the atmosphere. The long glass tube is filled with mercury and inverted with its open end in a dish of mercury, as the figure shows. The space above the mercury column contains only mercury vapor, whose pressure is so small at ordinary temperature that it can be neglected.
Thus
$P_{2}-P_{1}=\rho g h$
$\Leftrightarrow \quad P_{0}=\rho g h$
where $\rho=$ density of the mercury.

- The atmospheric pressure is often given as the length of mercury column in a barometer. Thus, a pressure of 76 cm of mercury means, 1 atmospheric pressure.


## Manometer

- Manometer is a simple device to measure the pressure in a closed vessel containing a gas. It consists of a U-shape tube having some liquid. One end of the tube is open to the atmosphere and the other end is connected to the vessel as shown in figure. The pressure of the gas is equal to $P_{1}$. From hydrostatic,
$P_{2}-P_{1}=\rho g h$
$\Leftrightarrow P_{\text {gas }}-P_{\mathrm{o}}=\rho g h$
$\Leftrightarrow P_{\text {gas }}=P_{\mathrm{o}}+\rho g h$
where $P_{\text {gas }}=$ pressure of the gas

$P_{\mathrm{o}}=$ the atmospheric pressure
$h=$ difference in levels of the liquid in the two arms
$\rho=$ the density of the liquid.


## Pascal's Law

- Pascal's law states that "if a pressure is applied to an enclosed fluid, it is transmitted undiminished to every portion of the fluid and the walls of the containing vessel."
- Applications of Pascal's law:

Hydraulic lift
Hydraulic brakes
Cycle pump

## Hydraulic Lift

- A hydraulic lift uses Pascal's principle. Hydraulic lift is used to raise heavy loads such as car. It contains of two vertical cylinders $A$ and $B$ of different cross sectional areas $\mathrm{A}_{1}$ and $\mathrm{A}_{2}$. Pistons are fitted in both the cylinders as shown in fig.
- A small force is applied $\mathrm{F}_{1}$ to a small piston of area $\mathrm{A}_{1}$ and cause a pressure increase on the fluid.
- According to Pascal’s Law this increase in pressure P is transmitted to the larger piston of area $\mathrm{A}_{2}$ and the fluid exerts a force $\mathrm{F}_{2}$ on this piston.
- Thus, from Pascal's Law
$P=F_{1} / A_{1}=F_{2} / A_{2}$
$\Leftrightarrow F=F(A / A)$

- Thus if $A_{2} \gg A_{1}$, even a small force $F_{1}$ is able to generate a large force $F_{2}$ which can raise the load.


## Buoyant Force

- When an object is fully or partially submersed in a fluid, the surrounding fluid exerts a net upward force which is known as the buoyant force or upthrust.
- It is easier to lift a bucket immersed in water because of buoyant force.
- NOTE:

1. The buoyant force comes from the pressure exerted on the object by the surrounding fluid.
2. When showing F.B.D., we need to show either buoyant force in the upward direction or forces due to pressure. We never show both buoyant force and forces due to pressure in the same F.B.D.

## Archimedes Principle <br> (Buoyant Forces)

Archimedes' Principle states that a body which is completely or partially submerged in a fluid experiences a net upward force called the buoyant force, B , which is equal in magnitude to the weight of the fluid displaced by the object. Thus,
Buoyant force = weight of the displaced liquid
$B=V_{\text {im liquid }} g \quad$ (Buoyant force)
where,
$B=$ magnitude of Buoyant force
$V_{\mathrm{im}}=$ volume of displaced liquid = immersed volume of solid
$\rho_{\text {liquid }}=$ density of liquid

## Proof:

- As shown in Fig., consider a body of height $h$ lying inside a liquid of density $\rho$,. Area of cross-section of the body is A. The forces on the sides of the body cancel out.
- There are two vertical forces due to pressures:
$\checkmark$ The upward force from the
pressure $P_{2}$ on the bottom surface:
$F_{2}=P_{2} A$
$\checkmark \quad$ The downward force from the
pressure $P_{1}$ on the top surface:
$F_{1}=P_{1} A$

- The resultant force $\left(F_{2}-F_{1}\right)$ is acting on the body in the upward direction and is called upthrust or buoyant force (B).
$\therefore \mathrm{B}=F_{2}-F_{1}=\mathrm{P}_{2} \mathrm{~A}-\mathrm{P}_{1} \mathrm{~A}=\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right) A=h \rho g A$
$\left(\because P_{2}-P_{1}=\rho g h\right)$
- But $A h=V$, the volume of the body $=$ volume of liquid displaced
$\therefore B=V \rho g=M g$
( $\because M=V \rho=$ mass of liquid displaced)
i.e., upthrust or buoyant force= Weight of liquid displaced
- This proves the Archimedes’ principle.


## Law of floatation

- Consider an object of volume $V$ and density $\rho_{\text {solid }}$ floating in a liquid of density $\rho_{\text {liquid }}$. Let $V_{\text {im }}$ be the volume of object immersed in the liquid. For equilibrium of the object,
Weight $=$ upthrust
$V \rho_{\text {solid }} g=V_{\text {im }} \rho_{\text {liquid }} g$
$\Leftrightarrow \frac{V_{i m}}{V}=\frac{\rho_{\text {solid }}}{\rho_{\text {liquid }}} \quad$ (fraction of volume immersed in liquid)
- This is the fraction of volume immersed in liquid.
- Three possibilities may arise:
i. $\quad \rho_{\text {solid }}<\rho_{\text {liquid }}$ : Body is partially submerged in liquid. The fraction submerged is given by the relation

$$
\frac{V_{i m}}{V}=\frac{\rho_{\text {solid }}}{\rho_{\text {liquid }}}
$$

ii. $\quad \rho_{\text {solid }}=\rho_{\text {liquid }}$ : Body is completely submerged in liquid. Body remains floating in liquid.
iii. $\quad \boldsymbol{\rho}_{\text {solid }}>\boldsymbol{\rho}_{\text {liquid }}$ : Body will sink in liquid.

## Apparent Weight

- If an object is placed inside a fluid then, Apparent weight $=($ Actual weight $) \boldsymbol{-}$ (Buoyant force)


## Buoyant Force in Accelerating Fluids

- $\quad$ Suppose a body is dipped inside a liquid of density $\rho_{\text {liquid }}$ placed in an elevator moving with an acceleration $\vec{a}$. The buoyant force $F$ in this case becomes,
$F=V_{\text {im }} \rho_{\text {liquid }} g_{\text {eff }}$
Here, $g_{\text {eff }}=|\vec{g}-\vec{a}|$
- Concept of $g_{\text {eff }}$ is explained in chapter Simple Harmonic Motion.
- For example, if the lift is moving upwards with an acceleration a, the value of $g_{\text {eff }}$ is $g+a$ and if it is moving downwards with acceleration a, the $g_{\text {eff }}$ is $g-a$. In a freely falling lift $g_{\text {eff }}$ is zero (as $a=g$ ) and hence, net buoyant force is zero. This is why, in a freely falling vessel filled with some liquid, the air bubbles do not rise up ( which otherwise move up due to buoyant force ).


## Space for notes:

## Fluids in Motion

- All fluid flow is classified into one of two broad categories or regimes. These two flow regimes are laminar flow and turbulent flow.
- Laminar Flow: Laminar flow is also referred to as streamline or viscous flow or steady flow. When a liquid flows such that each particle of the passing a given point moves along the same path and has the same velocity as its predecessor, the flow is called streamline flow or steady flow.
- Streamline: A streamline may be defined as the path, the tangent to which at any point gives the direction of the flow of liquid at that point.
- Tube of flow. A bundle of streamline forming a tubular region is called a tube of flow.

- Turbulent Flow: Turbulent flow is characterized by the irregular movement of particles of the fluid. The particles travel in irregular paths with no observable pattern and no definite layers.
- Critical velocity. The critical velocity of a liquid is that limiting (maximum) value of its velocity of flow upto which the flow is streamlined and above which the flow becomes turbulent.


## Reynolds Number

- The Reynolds number is a dimensionless number comprised of the physical characteristics of the flow. The flow regime (either laminar or turbulent) is determined by evaluating the Reynolds number of the flow .
- The Reynolds number for fluid flow is given by
$R_{e}=\frac{\rho v D}{\eta} \quad$ (Reynolds number)
where
$R_{e}=$ Reynolds number (dimensionless; have not any unit)
$v=$ average velocity
$D=$ diameter of pipe
$\eta=$ viscosity of fluid (to be studied later)
$\rho=$ fluid density
- Important point to note about Reynolds number:
i. For practical purposes (as per NCERT), if the Reynolds number is less than 1000, the flow is laminar. If it is greater than 2000, the flow is turbulent.
ii. Flows with Reynolds numbers between 1000 and 2000 are sometimes referred to as unsteady flows.
iii. $\quad R_{e}$ represents the ratio of inertial force (force due to inertia i.e. mass of moving fluid or due to inertia of obstacle in its path) to viscous force.


## Equation of Continuity

- Equation of continuity states that total mass of fluids going into the tube through any cross-section should be equal to the total mass coming out of the same tube from any other cross section in the same time. The continuity equation results from conservation of mass.
- Let us consider mass is entering with speed $v_{1}$ at left end and flowing out with speed $v_{2}$.

- Clearly, in a time interval $\Delta \mathrm{t}$, mass entering $=($ mass per unit time $) \times$ time $=\rho A_{1} v_{1} \Delta t$.
(Hint: mass $=\rho V=\rho A l$
Hence, mass per unit time $=m / t=\rho A l / t=\rho A v$ )
- And, in same time interval $\Delta t$, mass leaving
$=($ mass per unit time $) \times$ time
$=\rho A_{2} v_{2} \Delta t$
- Hence, from conservation of mass we have,

$$
\begin{aligned}
& \rho A_{1} v_{1} \Delta t=\rho A_{2} v_{2} \Delta t \\
\Leftrightarrow & \begin{array}{|cc}
A_{1} v_{1}=A_{2} v_{2} & \text { (Equation of Continuity) } \\
\hline
\end{array}
\end{aligned}
$$

- The product of the area of cross section and the speed remains the same at all points of a tube of flow. This is called the "equation of continuity" and expresses the law of conservation of mass in fluid dynamics.


## Bernoulli’s Principle

- Bernoulli’s Principle relates the speed of a fluid at a point the pressure at that point and the height of that point above a reference level. It is just the application of workenergy theorem in the case of fluid flow.
- We here consider the case of irrotational and steady flow of an incompressible and non viscous liquid.
- Bernoulli's Principle states that the sum of pressure energy per unit volume, kinetic energy per unit volume and potential energy per unit volume of an incompressible, non-viscous fluid in a streamlined irrotational flow remains constant along a streamline. Mathematically,
$p+\frac{1}{2} \rho v^{2}+\rho g h=$ constant
$\Leftrightarrow p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g h_{1}=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g h_{2}$


## Proof of Bernoulli's Principle

- One end of the pipe is horizontal at a height $h_{1}$ above some reference level and has uniform cross-sectional area $A_{1}$ up to some length. The other end is at a height $h_{2}$ from the reference level and has uniform cross-sectional area $A_{2}$.
- Now consider the portion of fluid shown by shaded volume as the system. Suppose the system of fluid gets displaced from the position1 shown in figure to that in position 2 in a small time interval.
- Now, we shall find out the work done by different forces to use Work-Kinetic Energy theorem.
- Here four forces are acting on the system. Normal force from wall, force $P_{1} A_{1}$ on left portion, force $P_{2} A_{2}$ on right portion and force of gravity mg .

- Work done $W_{\mathrm{N}}$ by normal force from the walls:

$$
\begin{equation*}
W_{\mathrm{N}}=0 \tag{i}
\end{equation*}
$$

(because normal force is perpendicular to motion of fluid)

- Work done $W_{1}$ by force $P_{1} A_{1}$ at the left end:

$$
\begin{equation*}
W_{1}=\text { force } \times \text { displacement }=P_{1} A_{1} \Delta x_{1} \tag{ii}
\end{equation*}
$$

- Work done $W_{2}$ by force $P_{2} A_{\mathbf{2}}$ at the right end:
$W_{2}=$ force $\times$ displacement $=-P_{2} A_{2} \Delta x_{2}$
(negative sign because force $P_{2} A_{2} \&$ displacement $\Delta x_{2}$ are in opposite directions)
- The work done on the system $W_{3}$, by the gravitational force mg :

$$
\begin{equation*}
W_{g}=\text { force } \times \text { displacement }=m g\left(h_{1}-h_{2}\right) \tag{iv}
\end{equation*}
$$

- $\quad \therefore$ the total work done on the system, by using Work- KE theorem, we have:
$W_{\mathrm{T}}=\Delta K E$
$\Leftrightarrow W_{\mathrm{N}}+W_{1}+W_{2}+W_{\mathrm{g}}=1 / 2 m v_{2}^{2}-1 / 2 m v_{1}^{2}$
$\Leftrightarrow P_{1} A_{1} \Delta x_{1}-P_{2} A_{2} \Delta x_{2}+m g\left(h_{1}-h_{2}\right)=1 / 2 m v_{2}^{2}-1 / 2 m v_{1}^{2}$
... ( v )
- As the liquid is incompressible (means density $\rho$ is uniform), the mass flow rate at both the ends must be the same.

$$
\rho A_{1} \Delta x_{1}=\rho A_{2} \Delta x_{2}=m
$$

(because, mass $=$ density $x$ volume

$$
\begin{equation*}
=\text { density } \mathrm{x} \text { area } \mathrm{x} \text { length) } \tag{vi}
\end{equation*}
$$

- $\Leftrightarrow A_{1} \Delta x_{1}=A_{2} \Delta x_{2}=m / \rho$
- From equations (v) and ( vi ), we have
$P_{1} m / \rho-P_{2} m / \rho+m g\left(h_{1}-h_{2}\right)=1 / 2 m v_{2}^{2}-1 / 2 m v_{1}^{2}$
$\Leftrightarrow P_{1}-P_{2}+\rho g\left(h_{1}-h_{2}\right)=1 / 2 \rho v_{2}-1 / 2 \rho v_{1}$
(multiplying both sides by $\rho / m$ )
$\Leftrightarrow \Leftrightarrow p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g h_{1}=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g h_{2}$
(rearranging)
$\Leftrightarrow p+\frac{1}{2} \rho v^{2}+\rho g h=$ constant


## Memory Map for proof of Bernoulli's theorem

- $\quad$ Step 1: Find out the work done by normal force, forces due to pressures at left and right ends and force due to gravity.
- Step 2: Use Work Kinetic Energy theorem: $W_{\mathrm{T}}=\Delta K E$
$\Leftrightarrow W_{\mathrm{N}}+W_{1}+W_{2}+W_{\mathrm{g}}=1 / 2 m v_{2}^{2}-1 / 2 m v_{1}^{2}$
$\Leftrightarrow P_{1} A_{1} \Delta x_{1}-P_{2} A_{2} \Delta x_{2}+m g\left(h_{1}-h_{2}\right)=1 / 2 m v_{2}^{2}-1 / 2 m v_{1}^{2}$
- Step 3: Mass flow rate at both the ends must be the same.
$\rho A_{1} \Delta x_{1}=\rho A_{2} \Delta x_{2}=m$
$\Leftrightarrow A_{1} \Delta x_{1}=A_{2} \Delta x_{2}=m / \rho$
- Use these two equations and rearrange to get Bernoulli's theorem.


## Another form of Bernoulli's Equation

- Bernoulli's Equation,
$p+\frac{1}{2} \rho v^{2}+\rho g h=$ constant
- If we divide both sides by $\boldsymbol{\rho g}$ we get
- $\frac{p}{\rho g}+\frac{1}{2} \frac{V^{2}}{g}+h=$ constant
- Each term in the above equation has the dimension of length and hence every term is known as 'head'.
$\checkmark \quad$ The first term $\frac{p}{\rho g}$ is called 'pressure head'.
$\checkmark \quad$ The second term $\frac{1}{2} \frac{V^{2}}{g}$ is called 'velocity head'.
$\checkmark \quad$ The third term $h$ is known as the 'elevation head'.


## Torricelli's Theorem (Speed of Efflux)

- Consider liquid of density $\rho$ in a tank of large cross sectional area $A_{1}$. There is a very small hole of crosssectional area $A_{2}$ at the bottom with liquid flowing out as shown in figure. Such a hole is called an orifice.
- Let $v_{1}$ and $v_{2}$ be the speed and $P_{1}$ and $P_{2}$ be the speed of the liquid at position 1 and 2 respectively.
- The idea here is that both the tank and the narrow opening (orifice) are open to the atmosphere. The pressure will be the same at 1 and 2 because they are open to the atmosphere. Therefore, $P_{1}=P_{2}=P_{0}=$ atmospheric pressure.
- From the equation of continuity, we get
$A_{1} v_{1}=A_{2} v_{2}$ or $v_{1}=\frac{A_{2}}{A_{1}} v_{2}$
- As $A_{1} \gg A_{2}$, so the liquid may be taken at rest at the top, i.e., $v_{1}=0$. Applying Bernoulli's equation at points 1 and 2 , we get

- Now, applying Bernoulli's equation at positions 1 and 2, we have
$P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g h_{2}$
$\Leftrightarrow P_{0}+\frac{1}{2} \rho(0)^{2}+\rho g(h)=P_{0}+\frac{1}{2} \rho v_{2}^{2}+\rho g(0)$
$\Leftrightarrow \rho g h=\frac{1}{2} \rho v_{2}^{2}$
$\Leftrightarrow \quad v_{2}=\sqrt{ }(2 g h) \quad$ (speed of efflux)
- The speed of liquid coming out though a small hole (orifice) at a depth ' $h$ ' below the free surface is same as that of a particle fallen freely through the height ' $h$ ' under gravity. This is known as Torricelli's theorem.
- The speed of the liquid coming out is called the speed of efflux.


## Venturimeter

- Venturimeter: It is a device used to measure the rate of flow of a liquid through a pipe. It is an application of Bernoulli's principle. It is also called flow meter or venture tube.
- Construction. It consists of a horizontal tube having wider opening of cross-section $A_{1}$ and a narrow neck of cross-section $\mathrm{A}_{2}$. These two regions of the horizontal tube are connected to a manometer, containing a liquid of density $\rho_{m}$.

- Working. Let the liquid velocities be $v_{1}$ and $v_{2}$ at the wider and the narrow portions. Let $P_{1}$ and $P_{2}$ be the liquid pressures at these regions. By the equation of continuity,

$$
A_{1} v_{1}=A_{2} v_{2} \Rightarrow \frac{A_{1}}{A_{2}}=\frac{v_{2}}{v_{1}}
$$

- If the liquid has density $\rho$ and is flowing horizontally, then from Bernoulli's equation,
$P_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g h_{2}$
or $\quad P_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\frac{1}{2} \rho v_{2}^{2} \quad\left(\because h_{1}=h_{2}\right)$
or $P_{1}-P_{2}=\frac{1}{2} \rho\left(v_{2}^{2}-v_{1}^{2}\right)$

$$
\begin{array}{ll}
=\frac{1}{2} \rho v_{1}^{2}\left(\frac{v_{2}^{2}}{v_{1}^{2}}-1\right) & \\
=\frac{1}{2} \rho v_{1}^{2}\left(\frac{A_{1}^{2}}{A_{2}^{2}}-1\right) & {\left[\because \frac{A_{1}}{A_{2}}=\frac{v_{2}}{v_{1}}\right]} \\
=\frac{1}{2} \rho v_{1}^{2}\left(\frac{A_{1}^{2}-A_{2}^{2}}{A_{2}^{2}}\right) &
\end{array}
$$

- If $h$ is the height difference in the two arms of the manometer tube, then

$$
P_{1}-P_{2}=\rho_{m} h g
$$

$$
\therefore \rho_{m} h g=\frac{1}{2} \rho v_{1}^{2}\left(\frac{A_{1}^{2}-A_{2}^{2}}{A_{2}^{2}}\right)
$$

$$
\therefore \quad v_{1}=\sqrt{\frac{2 h \rho_{m} g}{\rho} \times \frac{A_{2}^{2}}{A_{1}^{2}-A_{2}^{2}}}
$$

- Volume flow rate of the liquid,
$Q=A_{1} v_{1}=A_{1} A_{2} \sqrt{\frac{2 h \rho_{m} g}{\rho\left(A_{1}^{2}-A_{2}^{2}\right)}}$.


## Viscosity

- Informally, viscosity is the quantity that describes a fluid's resistance to flow.
- Fluids resist the relative motion of immersed objects through them as well as to the motion of layers with differing velocities within them.
- In a laminar flow, the relative velocity between the consecutive layers of fluid results in tangential force at the surfaces of the layers known as viscous force and the property of the fluid causing it is known as viscosity.

- The layer of the liquid in contact with the surface remain stuck to it due to adhesive force and has zero velocity. The velocity of layer gradually increases on moving upwards from the surface and is the largest at the top.
- If a liquid flow easily, it means it has less viscosity; e.g., kerosene is less viscous than diesel. Similarly, honey is more viscous than water.
- Hard materials such as rock can be considered as liquids, because they can flow - although extremely slowly. Glass windows in very old buildings are often thicker at the bottom than the top because over hundreds of years the glass has flowed downwards.


## Coefficient of viscosity

- Consider the steady flow of liquid on some horizontal stationary surface as shown in the figure.

- According to Newton, the viscous force $F$ between two adjacent layers of a laminar flow at a given temperature is
i. directly proportional to the area (A) of the layers in contact
$F \propto A$
ii. directly proportional to the velocity gradient $\frac{d v}{d x}$
$F \propto \frac{d v}{d x}$
Combining (i) \& (ii)
$F \propto A \frac{d v}{d x}$
$\Leftrightarrow F=-\eta A \frac{d v}{d x}$
(viscous force)
where $\eta$ is the constant of proportionality known as the coefficient of viscosity of the fluid. Its magnitude depends on the type of the fluid and its temperature.
- Negative sign states that the direction of viscous force is opposite to that of relative velocity of the layer wrt another layer.
- S.I. Unit of $\boldsymbol{\eta}: \mathrm{Ns} / \mathrm{m}^{2}$ which is same as Pa-s
- CGS Unit of $\boldsymbol{\eta}$ : dyne-s/cm ${ }^{2}$ which is also known as poise.
$1 \mathrm{~Pa}-\mathrm{s}=10$ poise
- Its dimensional formula is $\mathrm{M}^{-1} \mathrm{~T}^{-1}$.


## Definition of $\boldsymbol{\eta}$

- Taking $A=1$ square unit and $\frac{d v}{d x}=1$ unit in the equation
$F=\eta A \frac{d v}{d y}$, we get $\eta=F$.
Thus, the coefficient of viscosity can be defined as the viscous force acting per unit surface area of contact and per unit velocity gradient between two adjacent layers in a laminar flow of a fluid.
- Note that the co-efficient of viscosity of liquids decrease with increase in temperature, while that of gases increase with the increase in temperature.


## Stokes Law

- When an object moves through a fluid, it experiences a viscous force which acts in opposite direction of its velocity.
- The resistive force ( viscous force ) on a small, smooth, solid spherical body of radius $R$, moving with velocity $v$ through a laminar viscous medium of large dimensions, having co-efficient of viscosity $\eta$ is given by
$F=6 \pi \eta R v \quad$ (Stokes law)
- This equation is called Stokes’ Law which can be verified using dimensional analysis. This relationship is valid only for 'laminar flow'.
- This viscous force F acts opposite to velocity $v$ of the object.
Proof:
- Viscous force depends on R, v and $\eta$.
- Let $F=k R^{a} v^{b} \eta^{c}$
$\Rightarrow[F]=k[R]^{a}[v]^{b}[\eta]^{c}$
$\Rightarrow\left[M L T^{-2}\right]=k[L]^{a}\left[L T^{-1}\right]^{b}\left[M L^{-1} T^{-1}\right]^{c}$
- Comparing coefficients of $M, L$ and $T$
$c=1$
$a+b-c=1$
$-b-c=-2$
- Solving we get,
$a=b=c=1$.
- Thus,
$F=k R^{1} v^{1} \eta^{1}=k R v \eta$
- Value of $k$ is $6 \pi$. Therefore,
$F=6 \pi \eta R v$


## Terminal velocity

- In fluid dynamics, terminal velocity or settling velocity is the velocity at which the net force acting on an object moving through fluid becomes zero.
- Terminal velocity varies directly with the ratio of viscosity to weight. More viscosity means a lower terminal velocity, while increased weight means a higher terminal velocity.


## Terminal velocity of a small sphere

- Suppose a small, smooth, solid sphere of radius r of material having density $\rho$ falls freely in a laminar fluid of density $\sigma(<\rho)$ and co-efficient of viscosity $\eta$ as shown in the figure.
- Let its terminal velocity be v in the downward direction.
- The FBD in this figure lists three forces acting on the sphere:
- Weight mg downward:

Therefore, weight

$$
\begin{equation*}
m g=\left(\frac{4}{3}\right) \rho \pi r^{3} g \tag{i}
\end{equation*}
$$

- Buoyant force B upward:
$B=V_{i m} \rho_{\text {liquid }} g$


$$
\begin{equation*}
\Leftrightarrow B=\left(\frac{4}{3}\right) \pi r^{3} \sigma g \tag{ii}
\end{equation*}
$$

- Viscous force $F_{\mathbf{v}}$ upward:

From Stokes' Law :
$F_{v}=6 \pi \eta r v$

- At terminal velocity there is no acceleration, therefore from Newton's $2{ }^{\text {nd }}$ law, we have: $m g-B-F=0$
$\left(\frac{4}{3}\right) \rho \pi r^{3} g-\left(\frac{4}{3}\right) \pi r^{3} \sigma g-6 \pi \eta r v=0$
$\Leftrightarrow v=\left(\frac{2}{9}\right) r^{2} g\left(\frac{\rho-\sigma}{\eta}\right) \quad$ (terminal velocity)


## Surface Tension

- Liquids sometimes form drops, and sometimes spread over a surface and wet it. Why does this happen, and why are raindrops never a metre wide?
- The reason is that a fluids try to occupy minimum surface area. This is because of a fluid property known as surface tension.


## Definition of surface tension

Let us consider an imaginary line $A B$ drawn in any direction in a liquid surface. The surface on either side of the liquid exerts a pulling force $F$ on the other side.

- This force $F$ is perpendicular to the line $A B$ and tangential to surface of the fluid.

- We give the definition of surface tension as:
"The force exerted by the molecules lying on one side of an imaginary line of unit length, on the molecules lying on the other side of the line, which is perpendicular to the line and parallel to the surface is defined as the surface tension ( $S$ ) of the liquid."
- In simple words, surface tension is perpendicular force (from either side of line $A B$ ) per unit length.
- Thus, if $F$ be the force acting on either side of the line $A B$ of length $L$, then the surface tension $S$ is given by:

$$
S=\frac{F}{L} \quad \text { (Surface tension) }
$$

Clearly, the SI unit of surface tension is $\mathbf{N} / \mathbf{m}$

## Surface Potential Energy

- Surface energy. The free surface of a liquid possesses minimum area due to surface tension. To increase the surface area, molecules have to be brought from interior to the surface. Work has to be done against the forces of attraction. This work is stored as the potential energy of the molecules on the surface. So the molecules at the surface have extra energy compared to the molecules in the interior.
- The extra energy possessed by the molecules of surface film of unit area compared to the molecules in the interior is called surface energy. It is equal to the work done in increasing the area of the surface film by unit amount.

$$
\text { Surface energy }=\frac{\text { work done }}{\text { increase in surface area }}
$$

- Surface tension can also be defined as "the potential energy ( U ) stored in the surface of the liquid per unit area."

$$
S=\frac{U}{A}
$$

$\Leftrightarrow \boldsymbol{U}=\boldsymbol{A S} \quad$ (surface potential energy)

- By this definition, its SI unit is $\mathbf{J m}^{-2}$ which is the same as $\mathbf{N m}^{\mathbf{- 1}}$.


## Drops and bubbles

- Let us assume that the pressures inside and outside are $\mathrm{P}_{i}$ and $P_{0} \quad\left(\mathrm{P}_{i}>P_{0}\right)$ respectively.
- The pressure on the concave surface is always more than that on the convex surface.
- Let the surface tension of the liquid forming the wall of the bubble be $T$.
- Suppose, on blowing the bubble, its radius increases from $R$ to $R+d R$. The work done in this process can be calculated in two ways.
- $1^{\text {st }}$ way:
$W=($ force $) \times($ displacement $)$

$\Leftrightarrow W=$ pressure difference $\times$ area $\times$ displacement
$\Leftrightarrow \quad W=\left(P_{i}-P_{o}\right) 4 \pi R^{2} d R$
$2^{\text {nd }}$ way:
- The surface area of the bubble of radius $R$ is, $S=4 \pi R^{2}$
- $\quad \therefore$ the increase in the surface area is,
$\mathrm{dS}=4 \pi(\mathrm{R}+\mathrm{dR})^{2}-4 \pi \mathrm{R}^{2}$
$\Leftrightarrow d S=4 \pi\left(R^{2}+\mathrm{dR}^{2}+2 \mathrm{R} . \mathrm{dR}-\mathrm{R}^{2}\right)$
$\Leftrightarrow \mathrm{dS}=4 \pi\left(\mathrm{dR}^{2}+2 \mathrm{R} . \mathrm{dR}\right)$
$\Leftrightarrow \mathrm{dS}=8 \pi \mathrm{R} . \mathrm{dR}$
(because $\mathrm{dR}^{2}$ is very small, we can ignore it )
- $\mathrm{W}=$ surface tension $\times$ total increase in area
$\Leftrightarrow \quad W=8 \pi S R d R$
- Equating equations (i) and (ii ), we get:
$\left(P_{i}-P_{o}\right) 4 \pi R^{2} \cdot d R=8 \pi S R d R$
$\Leftrightarrow p_{i}-p_{o}=\frac{2 S}{R}$
(Excess pressure inside a liquid drop)
- For a soap bubble which has tow surface areas,
$p_{i}-p_{o}=\frac{4 S}{R} \quad$ (Excess pressure inside a soap bubble)
- Try to prove it yourself. Hint: Equation (ii) will be $\mathrm{W}=16 \pi \mathrm{~S} \mathrm{R} \mathrm{dR}$ as soap bubble has two surfaces.


## Drops and bubbles (Quick recap)

- The pressure on the concave surface is always more than that on the convex surface. $\mathrm{P}_{\mathrm{i}}>\mathrm{P}_{\mathrm{o}}$
- For the case of air bubble inside water, only one surface is formed. Therefore, for air bubble (or for any bubble or drop where single surface is formed) $p_{i}-p_{o}=\frac{2 S}{R}$
- For the case of soap bubble where two surfaces are formed: $p_{i}-p_{0}=\frac{4 S}{R}$


## Shape of Liquid Surface

- You must have seen water wets a glass container whereas mercury does not. Why?
- Before that let us familiarize with two new kind of intermolecular forces.:
- Cohesive force : Inter-molecular attractive force between molecules of the same matter.
- Adhesive force : Attractive force between molecules of different matters.
- Water molecules, for instance, are more attracted to glass than they are to one another. It means in case of water cohesive forces are stronger than adhesive forces. Water will therefore climb up a narrow glass tube that is dipped into a beaker of water, because the water would rather be in contact with the glass than with itself.
- Mercury molecules, on the other hand, are more attracted to each other than they are to glass. It means in case of mercury cohesive forces are lesser than adhesive forces. Mercury will avoid contact with a narrow glass tube that is dipped into a beaker of mercury.


## Capillary Action and Contact angle

- Capillarity: Liquids display a behavior called capillarity or capillary action (capillary is a kind of narrow glass tube) because their molecules are more or less attracted to the surface they contact than they are to themselves.
- "The phenomenon of rise or fall of a liquid in a capillary, held vertical in a liquid, due to its property of surface tension is called capillarity."
- Capillary action is the result of surface tension and adhesive forces.

- Contact Angle: The tangent drawn at a point , where the surface of meniscus is in contact with wall of the capillary, makes an angle $\theta$ with the wall. $\theta$ is known as the contact angle of the liquid with the matter of the capillary.

- Case 1: The adhesive forces (liquid-glass) are greater than the cohesive forces (liquid-liquid)
- The liquid clings to the walls of the container the liquid "wets" the surface, e.g., water. The meniscus of water in the capillary is concave.
- In this case contact angle, $\boldsymbol{\theta}<\mathbf{9 0}^{\circ}$.
- Case 2: The adhesive forces (liquid-glass) are lesser than the cohesive forces (liquid-liquid)
- The liquid curves downward the liquid does not "wet" the surface, e.g., mercury. The meniscus of mercury in the capillary is convex.
- In this case contact angle, $\boldsymbol{\theta}>\mathbf{9 0}^{\circ}$.


## CAPILLARY RISE

- We are going to derive capillary rise $h$ (the height or depth) above which liquid rises or falls in a capillary tube when it is inserted in fluid).
- Suppose liquid rises to height $h$ in a capillary of radius $r$ held vertical in the liquid as shown in the figure.
- The radius of concave meniscus of liquid in the capillary is $R$.

- From second figure, it is clear that
$\cos \theta=\frac{r}{R}$
$\Leftrightarrow R=\frac{r}{\cos \theta}$
- The pressure on the concave surface of the meniscus ( $\mathrm{P}_{\mathrm{o}}$ ) is greater than the pressure on the convex surface ( $\mathrm{P}_{\mathrm{i}}$ ).
$\therefore P_{o}-p_{i}=\frac{2 S}{R}$
( because, the liquid has one free surface.)
- Also, for equilibrium, the pressure at point $B$ is the same as at point A which is $P_{o}$ as both are at the same horizontal level.
$\therefore P_{o}-P_{i}=h \rho g$
where $\rho=$ density of the liquid and $g=$ acceleration due to gravity.
- Comparing equations ( 2 ) and ( 3 ),
$\frac{2 S}{R}=h \rho g$
$\Leftrightarrow h=\frac{2 R S}{\rho g}=\frac{2 S \cos \theta}{r \rho g}$
( putting the value of R from equation (i))
- Hence, capillary rise is given by
$h=\frac{2 S \cos \theta}{r \rho g} \quad$ (Capillary rise)
- For mercury and glass, $\theta>90^{\circ}$. Hence, $\cos \theta$ is negative. Therefore, mercury falls in a glass capillary and its meniscus is convex.


## Mechanical Properties of Matter

Elasticity

- Elasticity: If a body regains its original size and shape after the removal of deforming force, it is said to be elastic body and this property is called elasticity.
- Perfectly elastic body: If a body regains its original size and shape completely and immediately after the removal of deforming force, it is said to be a perfectly elastic body. The nearest approach to a perfectly elastic body is quartz fibre.
- Plasticity: If a body does not regain its original size and shape even after the removal of deforming force, it is said to be a plastic body and this property is called plasticity.
- Perfectly plastic body: If a body does not show any tendency to regain its original size and shape even after the removal of deforming force, it is said to be a perfectly plastic body. Putty and paraffin wax are nearly perfectly plastic bodies.
- Note: No body is perfectly elastic or perfectly plastic. All the bodies found in nature lie between these two limits. When the elastic behavior of a body decreases, its plastic behavior increases.


## Stress

- Stress: The internal restoring force set up per unit area of cross-section of the deformed body is called stress. As the restoring force is equal and opposite to the external deforming force $F$ under equilibrium, therefore
Stress $=\frac{F}{A} \quad$ (stress)
The SI unit of stress is $\mathrm{Nm}^{-2}$ and the CGS unit is dyne $\mathrm{cm}^{-2}$. The dimensional formula of stress is $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$.
- Types of stress:
(a) Tensile stress: It is the restoring force set up per unit cross-sectional area of a body when the length of the body increases in the direction of the deforming, force. It is also known as longitudinal stress.
(b) Compressive stress: It is the restoring force set up per unit cross-sectional area of a body when its length decreases under a deforming force.
(c) Hydrostatic stress: If a body is subjected to a uniform force from all sides, then the corresponding stress is called hydrostatic stress or volume stress.
(d) Tangential or Shearing stress: When a deforming force acts tangentially to the surface of a body, it produces a change in the shape of the body. The tangential force applied per unit area is equal to the tangential stress.


## Strain

- Strain: The ratio of the change in any dimension produced in the body to the original dimension is called strain.
Strain $=\frac{\text { Change in dimension }}{\text { Original dimension }}$
Strain has no units and dimensions.


## Types of strain

(a) Longitudinal strain: It is defined as the increase in length per unit original length, when the body is deformed by external forces.

$$
\text { Longitudinal strain }=\frac{\text { Change in length }}{\text { Original length }}=\frac{\Delta l}{l}
$$

(b) Volumetric strain: It is defined as the change in volume per unit original volume, when the body is deformed by external forces.

$$
\text { Volumetric strain }=\frac{\text { Change in volume }}{\text { Original volume }}=\frac{\Delta V}{V}
$$

(c) Shear strain: It is defined as the angle $\theta$ (in radian), through which a face originally perpendicular to the fixed face gets turned on applying tangential deforming force.

$$
\begin{array}{|l|}
\text { Shear strain }=\theta=\tan \theta \\
=\frac{\text { Relative displacement between } 2 \text { parallel planes }}{\text { Distance between parallel planes }}
\end{array}
$$

- Elastic limit: The maximum stress within which the body regains its original size and shape after the removal of deforming force is called elastic limit. If the deforming force exceeds the elastic limit, the body acquires a permanent set or deformation and is said to be overstrained.


## HOOKE'S LAW \& MODULUS OF ELASTICITY

- Hooke's law: It states that within the elastic limit, the stress is directly proportional to strain. Thus within the elastic limit,

$$
\begin{aligned}
& \text { Stress } \propto \text { Strain } \\
\Rightarrow & \frac{\text { Stress }}{\text { Strain }}=\text { Constant }
\end{aligned}
$$

Modulus of elasticity: The modulus of elasticity or coefficient of elasticity of a body is defined as the ratio of stress to the corresponding strain, within the elastic limit. $E=\frac{\text { Stress }}{\text { Strain }}$
The SI unit of modulus of elasticity is $\mathrm{Nm}^{-2}$ and its dimensions are $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$.

Units and dimensions of moduli of elasticity: The SI unit of moduli of elasticity is $\mathrm{Nm}^{-2}$ and its CGS unit is dyne $\mathrm{cm}^{-2}$. Its dimensional formula is $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$. Its value depends on the nature of the material of the body and the manner in which it is deformed.

- Different types of moduli of elasticity.: Corresponding to the three types of strain, we have three important moduli of elasticity:
(a) Young's modulus ( $\mathbf{Y}$ ): Within the elastic limit, the ratio of longitudinal stress to the longitudinal strain is called Young's modulus. Thus,

$$
Y=\frac{\text { Longitudinal Stress }}{\text { Longitudinal Strain }} \quad \text { (Young's modulus) }
$$

- $\quad \therefore Y=\frac{F / A}{\Delta l / l}$
$\Rightarrow Y=\frac{F}{A} \cdot \frac{l}{\Delta l}$
(b) Modulus of rigidity or shear modulus or torsional modulus ( $\boldsymbol{\eta}$ ): Within the elastic limit, the ratio of shear stress to shear strain is called modulus of rigidity. Thus
$\eta=\frac{\text { Shear stress }}{\text { Shear strain }}$

- Shear strain $=\theta \approx \tan \theta=\frac{A A^{\prime}}{A B}=\frac{\Delta l}{l}$
- The modulus of rigidity is given by
$\eta=\frac{\text { Shear stress }}{\text { Shear strain }}=\frac{F / A}{\theta}=\frac{F}{A \theta}=\frac{F}{A} \cdot \frac{l}{\Delta l}$
(c) Bulk modulus (B): Within the elastic limit, the ratio of volume stress to the volumetric strain is called bulk modulus of elasticity.
- Consider a body of volume $V$ and surface area $A$. Suppose a force $F$ acts uniformly over the whole surface of the body and it decreases the volume by $\Delta V$, then bulk modulus of elasticity is given by

[^0]$\therefore B=-\frac{F / A}{\Delta V / V}=\frac{F}{A} \cdot \frac{V}{\Delta V}$
$\Rightarrow B=-\frac{p V}{\Delta V}$
where $p(=F / A)$ is the normal pressure. Negative sign shows that the volume decreases with the increase in stress.

- Compressibility (K): The reciprocal of the bulk modulus of a material is called its compressibility. Thus,
$K=\frac{1}{B}=-\frac{\Delta V}{p V} \quad$ (Compressibility)


## Poisson's ratio

- When a wire is loaded, its length increases but its diameter decreases. The strain produced in the direction of applied force is called longitudinal strain and that produced in the perpendicular direction is called lateral strain.
- Definition: Within the elastic limit, the ratio of lateral strain to the longitudinal strain is called Poisson's ratio. Suppose the length of the loaded wire increases from $l$ to $l+\Delta l$ and its diameter decreases from $D$ to $D-\Delta D$.
Longitudinal strain $=\frac{\Delta l}{l}$
Lateral strain $=-\frac{\Delta D}{D}$
Poisson's ratio is
$\Rightarrow \begin{aligned} & \sigma=\frac{\text { Lateral strain }}{\text { Longitudinal strain }} \\ & \sigma=\frac{-\Delta D / D}{\Delta l / l}\end{aligned}$

- The negative sign indicates that longitudinal and lateral strains are in opposite sense.
- As the Poisson's ratio is the ratio of two strains, it has no units and dimensions.


## SPACE FOR NOTES

## Stress-strain curve

- Figure shows a stress-strain curve for a metal wire which is gradually being loaded.
(a) The initial part $O A$ of the graph is a straight line indicating that stress is proportional to strain. Upto the point $A$ Hooke's law is obeyed. The point $A$ is called the proportional limit. In this region, the wire is perfectly elastic.
(b) After the point $A$, the stress is not proportional to strain and a curved portion $A B$ is obtained. However, if the load is removed at any point between $O$ and $B$, the curve is retraced along $B A O$ and the wire attains its original length. The portion $O B$ of the graph is called elastic region and the point $B$ is called elastic limit or yield point. The stress corresponding to the yield point is called yield strength $\left(S_{y}\right)$.

(c) Beyond the point $B$, the strain increases more rapidly than stress. If the load is removed at any point $C$, the wire does not come back to its original length but traces dashed line $C E$. Even on reducing the stress to zero, a residual strain equal to $O E$ is left in the wire. The material is said to have acquired a permanent set. The fact that the stress-strain curve is not retraced on reversing the strain is called elastic hysteresis.
(d) If the load is increases beyond the point $C$, there is large increase in the strain or the length of the wire. In this region, the constrictions (called necks and waists) develop at few points along the length of the wire and the wire ultimately breaks at the point $D$, called the fracture point. In the region between $B$ and $D$, the length of wire goes on increasing even without any addition of load. This region is called plastic region and the material is said to undergo plastic flow or plastic deformation. The stress corresponding to the breaking point is called ultimate strength or tensile strength of the material.
Elastic potential energy of a stretched wire
To prove:
Elastic potential energy $=\frac{1}{2} \times$ Stress $\times$ strain $\times$ volume


## Proof:

- $\quad$ Suppose a force $F$ applied on a wire of length $l$ increases its length by $\Delta l$. Initially, the internal restoring force in the wire is zero. When the length is increased by $\Delta l$, the internal force increases from zero to $F$ (= applied force).
$\therefore$ Average internal force for an increase in length $\Delta l$ of wire $=\frac{0+F}{2}=\frac{F}{2}$
Work done on the wire is
$W=$ Average force $\times$ increase in length $=\frac{F}{2} \times \Delta l$
- This work done is stored as elastic potential energy U in the wire.
$\therefore U=\frac{1}{2} F \times \Delta l=\frac{1}{2}$ Stretching force $\times$ increase in length
- Let $A$ be the area of cross-section of the wire. Then
$\therefore U=\frac{1}{2} \frac{F}{A} \times \frac{\Delta l}{l} \times A l$
$\therefore U=\frac{1}{2} \times$ Stress $\times$ strain $\times$ volume
- Elastic potential energy per unit volume of the wire or elastic energy density is

$$
u=\frac{U}{\text { Volume }}
$$

or $u=\frac{1}{2}$ stress $\times$ strain

- But stress $=$ Young's modulus $\times$ strain

$$
\therefore u=\frac{1}{2} \times \text { Young's modulus } \times \text { strain }^{2}
$$

## SPACE FOR NOTES

## Physics Classes by Pranjal Sir

(Admission Notice for XI \& XII - 2014-15)

## Batches for Std XIIth

Batch 1 (Board + JEE Main + Advanced): (Rs. 16000)
Batch 2 (Board + JEE Main): (Rs. 13000)
Batch 3 (Board): (Rs. 10000)
Batch 4 (Doubt Clearing batch): Rs. 8000

## Bokaro Centre

## About P. K. Bharti Sir (Pranjal Sir)

- B. Tech., IIT Kharagpur (2009 Batch)
- H.O.D. Physics, Concept Bokaro Centre
- Visiting faculty at D. P. S. Bokaro
- Produced AIR 113, AIR 475, AIR 1013 in JEE Advanced
- Produced AIR 07 in AIEEE (JEE Main)

Address: Concept, JB 20, Near Jitendra Cinema, Sec 4, Bokaro Steel City
Ph: 9798007577, 7488044834
Email: pkbharti.iit@gmail.com
Website: www.vidyadrishti.org

## Physics Class Schedule for Std XIIth (Session 2014-15) by Pranjal Sir

| Sl. No. | Main Chapter | Topics | Board level | JEE Main Level | JEE Adv Level |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Basics from XIth |  | Vectors, FBD, Work, Energy, Rotation, SHM | $3^{\text {rd }}$ Mar to $4^{\text {th }}$ Apr 14 |  |  |
| 1. | Electric Charges and Fields | Coulomb's Law | $5^{\text {th }} \& 6^{\text {th }}$ Apr | $5^{\text {th }} \& 6^{\text {th }} \mathrm{Apr}$ | $5^{\text {th }} \& 6^{\text {th }}$ Apr |
|  |  | Electric Field | $10^{\text {th }} \& 12^{\text {th }}$ Apr | $10^{\text {th }} \& 12^{\text {th }}$ Apr | $10^{\text {th }} \& 12^{\text {th }}$ Apr |
|  |  | Gauss's Law | $13^{\text {th }} \& 15^{\text {th }}$ Apr | $13^{\text {th }} \& 15^{\text {th }}$ Apr | $13^{\text {th }}$ \& $15^{\text {th }}$ Apr |
|  |  | Competition Level | NA | $17^{\text {th }} \& 19^{\text {th }}$ Apr | $17^{\text {th }} \& 19^{\text {th }}$ Apr |
| 2. | Electrostatic Potential and Capacitance | Electric Potential | $20^{\text {th }} \& 22^{\text {nd }}$ Apr | $20^{\text {th }} \& 22^{\text {nd }}$ Apr | $20^{\text {th }} \& 22^{\text {nd }}$ Apr |
|  |  | Capacitors | $24^{\text {th }} \& 26^{\text {th }}$ Apr | $24^{\text {th }} \& 26^{\text {th }}$ Apr | $24^{\text {th }} \& 26^{\text {th }}$ Apr |
|  |  | Competition Level | NA | $27^{\text {th }} \& 29^{\text {th }}$ Apr | $\begin{aligned} & 27^{\text {th }} \& 29^{\text {th }} \text { Apr, } 1^{\text {st }}, \\ & 3^{\text {rd }} \& 4^{\text {th }} \text { May } \end{aligned}$ |
| PART TEST 1 |  | Unit $1 \& 2$ | $4^{\text {th }}$ May | NA | NA |
|  |  | NA | $11^{\text {th }}$ May | $11^{\text {th }}$ May |
| 3. | Current Electricity |  | Basic Concepts, Drift speed, Ohm's Law, Cells, Kirchhoff's Laws, Wheatstone bridge, Ammeter, Voltmeter, Meter Bridge, Potentiometer etc. | $\begin{aligned} & 6^{\text {th }}, 8^{\text {th }}, 10^{\text {th }}, 13^{\text {th }} \\ & \text { May } \end{aligned}$ | $\begin{aligned} & 6^{\text {th }}, 8^{\text {th }}, 10^{\text {th }}, 13^{\text {th }} \\ & \text { May } \end{aligned}$ | $6^{\text {th }}, 8^{\text {th }}, 10^{\text {th }}, 13^{\text {th }}$ May |
|  |  | Competition Level | NA | $15^{\text {th }}$ \& $16^{\text {th }}$ May | $\begin{aligned} & 15^{\text {th }}, 16^{\text {th }}, 17^{\text {th }}, 18^{\text {th }} \& \\ & 19^{\text {th }} \text { May } \end{aligned}$ |
| PART TEST 2 |  | Unit 3 | $18^{\text {th }}$ May | NA | NA |
|  |  | NA | $20^{\text {th }}$ May | $20^{\text {th }}$ May |
| SUMMER BREAK 21 May 2013 to |  |  | $3{ }^{\text {th }}$ May 2013 |  |  |
| 4. | Moving charges and Magnetism |  | Force on a charged particle (Lorentz force), Force on a current carrying wire, Cyclotron, Torque on a current carrying loop in magnetic field, magnetic moment | $\begin{aligned} & \mathbf{3 1}^{\text {st }} \text { May, } 1^{\text {st }} \& \\ & 3^{\text {rd }} \text { Jun } \end{aligned}$ | $\begin{aligned} & \mathbf{3 1}^{\text {st }} \text { May, } 1^{\text {st }} \& \\ & 3^{\text {rd }} \text { Jun } \end{aligned}$ | $\mathbf{3 1}^{\text {st }}$ May, $\mathbf{1}^{\text {st }} \boldsymbol{*} 3^{\text {rd }}$ Jun |
|  |  | Biot Savart Law, Magnetic field due to a circular wire, Ampere circuital law, Solenoid, Toroid | $5^{\text {th }}, 7^{\text {th }} \& 8^{\text {th }}$ Jun | $5^{\text {th }}, 7^{\text {th }} \& 8^{\text {th }}$ Jun | $5^{\text {th }}, 7^{\text {th }}$ \& $8^{\text {th }}$ Jun |
|  |  | Competition Level | NA | $10^{\text {th }} \& 12^{\text {th }}$ Jun | $\begin{aligned} & 10^{\text {th }}, 12^{\text {th }}, 14^{\text {th }} \& 15^{\text {th }} \\ & \text { Jun } \end{aligned}$ |
| PART TEST 3 |  | Unit 4 | $15^{\text {th }}$ Jun | NA | NA |

Fluid Mechanics
Author: P. K. Bharti (B. Tech., IIT Kharagpur), H.O.D. Physics at Concept Bokaro Centre

|  |  |  | NA | $22^{\text {nd }}$ Jun | $22^{\text {nd }}$ Jun |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5. | Magnetism and Matter |  | $\begin{aligned} & 17^{\text {th }}, 19^{\text {th }} \& 21^{\text {st }} \\ & \text { Jun } \end{aligned}$ | $\begin{aligned} & 17^{\text {th }}, 19^{\text {th }} \& 21^{\text {st }} \\ & \text { Jun } \end{aligned}$ | Not in JEE Advanced Syllabus |
| 6. | Electromagnetic Induction | Faraday's Laws, Lenz's Laws, A.C. Generator, Motional Emf, Induced Emf, Eddy Currents, Self Induction, Mutual Induction | $\begin{aligned} & 24^{\text {th }}, 26^{\text {th }} \& 28^{\text {th }} \\ & \text { Jun } \end{aligned}$ | $\begin{aligned} & 24^{\text {th }}, 26^{\text {th }} \& 28^{\text {th }} \\ & \text { Jun } \end{aligned}$ | $24^{\text {th }}, 26^{\text {th }}$ \& $28^{\text {th }}$ Jun |
|  |  | Competition Level | NA | $\begin{aligned} & 29^{\text {th }} \text { Jun } \& 1^{\text {st }} \\ & \text { Jul } \end{aligned}$ | $\begin{aligned} & 29^{\text {th }} \text { Jun, } 1^{\text {st }}, 3^{\text {rd }} \& 5^{\text {th }} \\ & \text { Jul } \end{aligned}$ |
| PART TEST 4 |  | Unit 5 \& 6 | $6^{\text {th }} \mathrm{Jul}$ | NA | NA |
|  |  | NA | $13^{\text {th }}$ Jul | $13^{\text {th }} \mathrm{Jul}$ |
| 7. | Alternating current |  | AC, AC circuit, Phasor, transformer, resonance, | $\begin{aligned} & 8^{\text {th }}, 10^{\text {th }} \& 12^{\text {th }} \\ & \text { Jul } \end{aligned}$ | $\begin{aligned} & 8^{\text {th }}, 10^{\text {th }} \& 12^{\text {th }} \\ & \text { Jul } \end{aligned}$ | $8^{\text {th }}, 10^{\text {th }} \& 12^{\text {th }} \mathrm{Jul}$ |
|  |  | Competition Level | NA | 15 ${ }^{\text {th }}$ July | $15^{\text {th }} \& 17^{\text {th }}$ July |
| 8. | Electromagnetic Waves |  | $19^{\text {th }} \& 20^{\text {th }}$ July | $19^{\text {th }} \& 20^{\text {th }}$ July | Not in JEE Advanced Syllabus |
| PART TEST 5 |  | Unit 7 \& 8 | $27^{\text {th }} \mathrm{Jul}$ | $27^{\text {th }} \mathrm{Jul}$ | $27^{\text {th }} \mathrm{Jul}$ |
| Revision Week |  | Upto unit 8 | $\begin{aligned} & 31^{\text {st }} \text { Jul \& } 2^{\text {nd }} \\ & \text { Aug } \end{aligned}$ | $\begin{aligned} & \mathbf{3 1}^{\text {st }} \text { Jul \& } 2^{\text {nd }} \\ & \text { Aug } \end{aligned}$ | 31 ${ }^{\text {st }}$ Jul \& $2^{\text {nd }}$ Aug |
| Grand Test 1 |  | Upto Unit 8 | $3{ }^{\text {rd }}$ Aug | $3{ }^{\text {rd }}$ Aug | $3^{\text {rd }}$ Aug |
| 9. | Ray Optics | Reflection | $5^{\text {th }} \& 7^{\text {th }}$ Aug | $5^{\text {th }} \& 7^{\text {th }}$ Aug | $5^{\text {th }} \& 7^{\text {th }}$ Aug |
|  |  | Refraction | $9^{\text {th }} \& 12^{\text {th }}$ Aug | $9^{\text {th }} \& 12^{\text {th }}$ Aug | $9^{\text {th }} \& 12^{\text {th }}$ Aug |
|  |  | Prism | $14^{\text {th }}$ Aug | $14^{\text {th }}$ Aug | 14 ${ }^{\text {th }}$ Aug |
|  |  | Optical Instruments | $16{ }^{\text {th }}$ Aug | $16^{\text {th }}$ Aug | Not in JEE Adv Syllabus |
|  |  | Competition Level | NA | $19^{\text {th }} \& 21^{\text {st }}$ Aug | $\begin{aligned} & 19^{\text {th }}, 21^{\text {st }}, 23^{\text {rd }}, 24^{\text {th }} \\ & \text { Aug } \end{aligned}$ |
| 10. | Wave Optics | Huygens Principle | 26 ${ }^{\text {th }}$ Aug | 26 ${ }^{\text {th }}$ Aug | $26^{\text {th }}$ Aug |
|  |  | Interference | $28^{\text {th }} \& 30^{\text {th }}$ Aug | $28^{\text {th }}$ \& 30 ${ }^{\text {th }}$ Aug | $28^{\text {th }}$ \& $30^{\text {th }}$ Aug |
|  |  | Diffraction | $31^{\text {st }}$ Aug | $31^{\text {st }}$ Aug | $31^{\text {st }}$ Aug |
|  |  | Polarization | $2^{\text {nd }}$ Sep | $2^{\text {nd }}$ Sep | $2^{\text {nd }}$ Sep |
|  |  | Competition Level | NA | $4^{\text {th }}$ \& $6^{\text {th }}$ Sep | $\begin{aligned} & 4^{\text {th }}, 6^{\text {th }}, 7^{\text {th }}, 9^{\text {th }}, 11^{\text {th }} \\ & \text { Sep } \end{aligned}$ |
|  | PART TEST 6 | Unit 9 \& 10 | $14^{\text {th }}$ Sep | $14^{\text {th }} \mathrm{Sep}$ | $14^{\text {th }}$ Sep |


| REVISION ROUND 1 (For JEE Main \& JEE Advanced Level): $13^{\text {th }}$ Sep to $27{ }^{\text {th }}$ Sep |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Grand Test 2 | Upto Unit 10 | $28^{\text {th }}$ Sep | $28^{\text {th }}$ Sep | $28^{\text {th }}$ Sep |

DUSSEHRA \& d-ul-Zuha Holidays: $29^{\text {th }}$ Sep to $8^{\text {th }}$ Oct

| 11. | Dual Nature of Radiation and Matter | Photoelectric effect etc | $9^{\text {th }} \& 11^{\text {th }}$ Oct | $9^{\text {th }} \& 11^{\text {th }}$ Oct | $9^{\text {th }} \& 11^{\text {th }}$ Oct |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Grand Test 3 |  | Upto Unit 10 | $12^{\text {th }}$ Oct | $12^{\text {th }}$ Oct | $12^{\text {th }}$ Oct |
| 12. | Atoms |  | $14^{\text {th }} \& 16^{\text {th }}$ Oct | $14^{\text {th }} \& 16^{\text {th }}$ Oct | $14^{\text {th }} \& 16^{\text {th }}$ Oct |
| 13. | Nuclei |  | $18^{\text {th }} \& 19^{\text {th }}$ Oct | $18^{\text {th }} \& 19^{\text {th }}$ Oct | $18^{\text {th }} \& 19^{\text {th }}$ Oct |
| X-Rays |  |  | NA | $21{ }^{\text {st }}$ Oct | $21^{\text {st }} \& 25^{\text {th }}$ Oct |
| PART TEST 7 |  | Unit 11, 12 \& 13 | $26^{\text {th }}$ Oct | NA | N |
| 14. | Semiconductors | Basic Concepts and Diodes, transistors, logic gates | $\begin{aligned} & 26^{\text {th }}, \quad 28^{\text {th }}, \quad 30^{\text {th }} \\ & \text { Oct \& } 1^{\text {st }} \text { Nov } \end{aligned}$ | $\begin{aligned} & 26^{\text {th }}, \quad 28^{\text {th }}, \quad 30^{\text {th }} \\ & \text { Oct \& } 1^{\text {st }} \text { Nov } \end{aligned}$ | Not in JEE Adv Syllabus |
| 15. | Communication System |  | $2^{\text {nd }} \& 4^{\text {th }}$ Nov | $2^{\text {nd }} \& 4^{\text {th }}$ Nov | Not in JEE Adv Syllabus |
| PART TEST 8 |  | Unit 14 \& 15 | $9^{\text {th }}$ Nov | $9^{\text {th }}$ Nov | NA |
| Unit 11, 12 \& 13 |  | Competition Level | NA | $\begin{aligned} & 8^{8^{\text {th }}, 9^{\text {th }} \& 11^{\text {th }}} \\ & \text { Nov } \end{aligned}$ | $\begin{aligned} & 8^{\text {th }}, 9^{\text {th }}, 11^{\text {th }}, 13^{\text {th }} \& \\ & 15^{\text {th }} \text { Nov } \end{aligned}$ |
| PART TEST 9 |  | Unit 11, 12, 13, X-Rays | NA | $16^{\text {th }}$ Nov | $16^{\text {th }} \mathrm{Nov}$ |
| Revision Round 2 <br> (Board Level) |  | Mind Maps \& Back up classes for late registered students | $18^{\text {th }}$ Nov to Board Exams | $18^{\text {th }}$ Nov to Board Exams | $18^{\text {th }}$ Nov to Board Exams |
| Revision Round 3 (XIth portion for JEE) |  |  | $18^{\text {th }}$ Nov to JEE | $18^{\text {th }}$ Nov to JEE | $18^{\text {th }}$ Nov to JEE |
|  | 30 Full Test Series | Complete Syllabus | Date will be published after Oct 2014 |  |  |


[^0]:    $B=\frac{\text { Volumetric stress }}{\text { Volumetric strain }}$
    (Bulk modulus)

