

THE KEY											
Fundamentals of Acids, Bases & Ionic Equilibrium											
Acids & Bases	Page 2 of 24 IONIC EQULIBRIUM										
When dissolved in water, acids release H^+ ions, base release OH^- ions.	б										
Arrhenius Theory	Ŭ C										
When dissolved in water, the substances which release	Ž										
(i) H^+ ions are called acids (ii) OH^- ions are call	ed bases Q										
Bronsted & Lowry Concept	f 24										
Acids are proton donors, bases are proton acceptors	20										
Note that as per this definition, water is not necessarily the solvent. When a substance is dissolved in water, it is said to react with water e.g.	age										
HCl + H ₂ O \rightarrow H ₃ O ⁺ + Cl ⁻ ; HCl donates H ⁺ to water, hence acid.	н										
$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$; NH_3 takes H ⁺ from water, hence base.	AL										
For the backward reaction, NH_4^+ donates H ⁺ , hence it is an acid; OH ⁻ accepts	H ⁺ , hence it is base.										
NH ₃ (base) & NH ₄ ⁺ (acid) from conjugate acid base pair.											
\mathcal{C}_{1}	Ξ.										
 Conjugate acid and bases To get <i>conjugate acid</i> of a given species add H⁺ to it. e.g. conjugate acid of N₂H 	IieNH+										
To get <i>conjugate base</i> of any species subtract H^+ from it. e.g. Conjugate base of	$f_{4} = 15 + 12 + 12 = 15$										
Note: Although Cl ⁻ is conjugate base of HCl, it is not a base as an independent species.	In fact.										
anions of all strong acid like Cl^- , NO_3^- , ClO_4^- etc. are neutral anions. Same is tru	gate acid and bases To get <i>conjugate acid</i> of a given species add H ⁺ to it. e.g. conjugate acid of N_2H_4 is $N_2H_5^+$. To get <i>conjugate base</i> of any species subtract H ⁺ from it. e.g. Conjugate base of NH_3 is NH_2^- . Although Cl ⁻ is conjugate base of HCl, it is not a base as an independent species. In fact, anions of all strong acid like Cl ⁻ , NO_3^- , ClO ₄ ⁻ etc. are neutral anions. Same is true for cations										
	for the second										
with water (i.e. they do not undergo hydrolysis) and <i>these ions</i> do not cause any c	change in (0122)- 32 00 000 K. K. Sir) PH: (0122)										
\mathbf{y} pH of water (others like CN ⁻ do).	8										
pH of water (others like CN^- do). Some examples of : <u>Basic Anions</u> : CH_3COO^- , OH^- , CN^- (Conjugate bases of weak acids) <u>Acid Anions</u> : HSO_3^- , HS^- etc. Note that these ions are <i>amphoteric</i> , i.e. they can behave both as an acid and as a base. e.g. for $H_2PO_4^-$: $HS^- + H_2O \rightleftharpoons S^{2-} + H_3O^+$ (functioning as an acid) $HS^- + H_2O \rightleftharpoons H_2S + OH^-$ (functioning as a base) <u>Acid Cations</u> : NH_4^+ , H_3O^+ etc. (Conjugate acids of weak bases) <i>Note</i> : Acid anions are rare.	33										
$\frac{Basic Anions}{A aid A nions} : CH_3COO^-, OH^-, CN^- (Conjugate bases of weak acids)$	55)-										
Acid Anions: HSO_3^- , HS^- etc. Note that these ions are <i>amphoteric</i> , i.e. they can behave both as an acid and as a base. e.g. for $H_2PO_4^-$:	(07:										
$HS^{-} + H_2O \rightleftharpoons S^{2-} + H_3O^{+} \text{ (functioning as an acid)}$	Ï										
$HS^{-} + H_2O \rightleftharpoons H_2S + OH (functioning as a base)$	н Г										
Acid Cations: NH_4^{+} , H_3O^+ etc. (Conjugate acids of weak bases)	io L										
Note : Acid anions are rare.	بر بر										
Evis Concept : Acids are substances which accept a pair of electrons to form a coor	dinate .										
bond and bases are the substances which donate a pair of electrons to	N E										
form a coordinate bond.	KRI Y										
	X										
e.g. $H - N$: + $B - F \longrightarrow H - N \rightarrow B - F$	ц. Ц										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	НАС										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ins										
bond and bases are the substances which donate a pair of electrons to form a coordinate bond. H F H F e.g. H - N: + B - F \longrightarrow H - N \rightarrow B - F H F (Lewis base) (Lewis acid)											
Important : Ca + S \rightarrow Ca ²⁺ + S ²⁻ is not a Lewis acid–base reaction since	e dative bond is not										
formed.	Dire										
Lewis Acids: As per Lewis concept, following species can acts as Lewis Acids:	e dative bond is not SSES, Director : SUHAG R. KARIYA (S										
(i) Molecules in which central atom has <i>incomplete octet</i> . (e.g. BF_3 , AlCl ₃ e	etc.)										

- Molecules in which central atom has *incomplete octet*. (e.g. BF_3 , AlCl₃ etc.) Molecules which have a central atom with empty d-orbitals (e.g. SiX_4 , GeX_4 , (1) (ii) PX_3 , TiCl₄ etc.)
- *Simple Cations:* Though all cations can be expected to be Lewis acids, Na⁺, Ca⁺⁺, K⁺ etc. show no tendency to accept electrons. However H⁺, Ag⁺ etc. act as Lewis acids. (iii)

Molecules having multiple bond between atoms of dissimilar electronegativity. (iv) e.g. CO_2 , SO_2 , $SO_3 \longrightarrow (O = C = O + OH^- \longrightarrow O - C = O \text{ or } HCO_3^-)$ Lewis acid Lewis base | OH Lewis bases are typically : Neutral species having at least one lone pair of electrons. (i) e.g. $NH_2 - NH_2$, R - Q - HNegatively charged species (anions). e.g. CN⁻, OH⁻, Cl⁻ etc. (ii) $pH = -log_{10} [H_3O^+], pOH = -log_{10} [OH^-]$ pH and pOH Note : * pH of very dilute (~ 10^{-8} M or Lower) acids (or bases) is nearly 7 (not simply -log[acid] etc. due to ionization of water. * pH of strong acids with concentration > 1M is never negative. It is zero only. At 25° C, if pH = 7, then solution is neutral, pH > 7 than solution is basic. Autoprotolysis of water (or any solvent) Autoprotolysis (or self-ionization) constant $(K_w) = [H_3O^+] [OH^-]$ Hence, $pH + pOH = pK_w$ at all temperatures **Condition of neutrality** $[H_3O^+] = [OH^-]$ (for water as solvent) At 25°C, $K_w = 10^{-14}$. K_w increases with increase in temperature. Accordingly, the neutral point of water $(pH = 7 at 25^{\circ}C)$ also shifts to a value lower than 7 with increase in temperature. *Important*: $K_W = 10^{-14}$ is a value at (i) 25°C (ii) for water only. If the temperature changes or if some other solvent is used, autoprotolysis constant will not be same. **Ionisation Constant** * For dissociation of weak acids (eg. HCN), HCN + $H_2O \Rightarrow H_3O^+ + CN^-$ the equilibrium constant expression is written as $K_a = \frac{[H_3O^+][CN^-]}{[HCN]}$ * For the Polyprotic acids (e.g. H₃PO₄), sucessive ionisation constants are denoted by K_1 , K_2 , K_3 etc. For H_3PO_4 , $K_{1} = \frac{[H_{3}O^{+}][H_{2}PO_{4}^{-}]}{[H_{3}PO_{4}]} \qquad \qquad K_{2} = \frac{[H_{3}O^{+}][HPO_{4}^{2-}]}{[H_{3}PO_{4}^{-}]} \qquad \qquad K_{3} = \frac{[H_{3}O^{+}][PO_{4}^{3-}]}{[HPO_{4}^{2-}]}$ Similarly, K_b denotes basic dissociation constant for a base. Also, $pK_a = -log_{10}K_a$, $pK_b = -log_{10}K_b$ Some Important Results: [H⁺] concentration of Case (i) A weak acid in water (a) if $\alpha = \sqrt{\frac{K_a}{C}}$ is < 0.1, then [H⁺] $\approx \sqrt{K_a c_0}$. (b) General Expression : $[H^+] = 0.5(-K_a + \sqrt{K_a^2 + 4K_a c_o})$ Similarly for a weak base, substitute [OH⁻] and K_b instead of [H⁺] and K_a respectively in these expressions.

FREE Download Study Package from website: www.tekoclasses.com

Case (ii)(a) A weak acid and a strong acid [H⁺] is entirely due to dissociation of strong acid

(b) A weak base and a strong base $[H^+]$ is entirely due to dissociation of strong base Neglect the contribution of weak acid/base usually.

Condition for neglecting : If c_0 = concentration of strong acid, c_1 = concentration of weak acid then neglect the contribution of weak acid if $K_a \le 0.01 c_0^{2} / c_1$

Case (iii) Two (or more) weak acids

Proceed by the general method of applying two conditions

(i) of electroneutrality (ii) of equilibria.

The accurate treatement yields a cubic equation. Assuming that acids dissociate to $[H^+] = (K_1c_1 + K_2c_2 + ... + K_w)^{1/2}$ a negligible extent [i.e. $c_0 - x \approx c_0$]

<u>Case (iv)</u> When dissociation of water becomes significant:

Dissociation of water contributes significantly to [H⁺] or [OH⁻] only when for

(i) strong acids (or bases): 10^{-8} M < c₀ < 10^{-6} M. Neglecting ionisation of water at

10⁻⁶M causes 1% error (approvable). Below 10⁻⁸M, contribution of acid (or base) can be neglected and pH can be taken to be practically 7.

Weak acids (or bases): When $K_a c_0 < 10^{-12}$, then consider dissociation of water as well.

HYDROLYSIS

* Salts of strong acids and strong bases do not undergo hydrolysis.

* Salts of a strong acids and weak bases give an acidic solution. e.g. NH₄Cl when dissolved, it dissociates to give NH_4^+ ions and $NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+$. $K_{h} = [NH_{3}][H_{3}O^{+}] / [NH_{4}^{+}] = K_{w}/K_{h}$ of conjugate base of NH_{4}^{+}

Important! In general :
$$K_{h}$$
 (of an acid) xK_{h} (of its conjugate base) = K_{u}

If the degree of hydrolysis(h) is small (<<1), h=

Otherwise h =
$$\frac{-K_h + \sqrt{K_h^2 + 4K_h c_0}}{2c_0}$$
, [H⁺] = c_0 h

* Salts of strong base and weak acid give a basic solution (pH>7) when dissolved in water, e.g. NaCN, $CN^- + H_2O \implies HCN + OH^- [OH^-] = c_0h, h = \sqrt{K_h c_0}$

* Salts of weak base and weak acid

Assuming degree of hydrolysis to be same for the both the ions,

 $K_{h} = K_{w} / (K_{a} K_{h}), [H^{+}] = [K_{a} K_{w} / K_{h}]^{1/2}$

Note: Exact treatment of this case is difficult to solve. So use this assumption in general cases. Also, degree of anion or cation will be much higher in the case of a salt of weak acid and weak base. This is because each of them gets hydrolysed, producing H⁺ and OH⁻ ions. These ions combine to form water and the hydrolysis equilibrium is shifted in the forward direaction.

Buffer Solutions are the solutions whose pH does not change significantly on adding a small quantity of strong base or on little dilution.

These are typically made by mixing a weak acid (or base) with its conjugate base (or acid). e.g. CH₂COOH with

 CH_3COONa , $NH_3(aq)$ with NH_4Cl etc.

If K_a for acid (or K_b for base) is not too high, we may write :

Henderson's Equation

 $pH = pK_a + \log \{ [salt] / [acid] \}$ for weak acid with its conjugate base. or $pOH = pK_b + \log \{[salt] / [base]\}\$ for weak base with its conjugate acid.

Important : For good buffer capacity, [salt] : [acid ratios should be as close to one as possible. In such a case,

 $pH = pK_a$. (This also is the case at midpoint of titration)

Buffer capacity = (no. of moles of acid (or base) added to 1L) / (change in pH)

Page 4 of 24 IONIC EQULIBRIUM

Indicators. Indicator is a substance which indicates the point of equivalence in a titration by undergoing a change in its colour. They are weak acids or weak bases.

Theory of Indicators. The ionized and unionized forms of indicators have different colours. If 90 % or more of a particular form (ionised or unionised) is present, then its colour can be distincly seen. In general, for an indicator which is weak acid, $HIn \rightleftharpoons H^+ + In^-$, the ratio of ionized to unionized form can be determined from

$$pH = pK_a + \log \frac{[In^-]}{[HIn]}$$

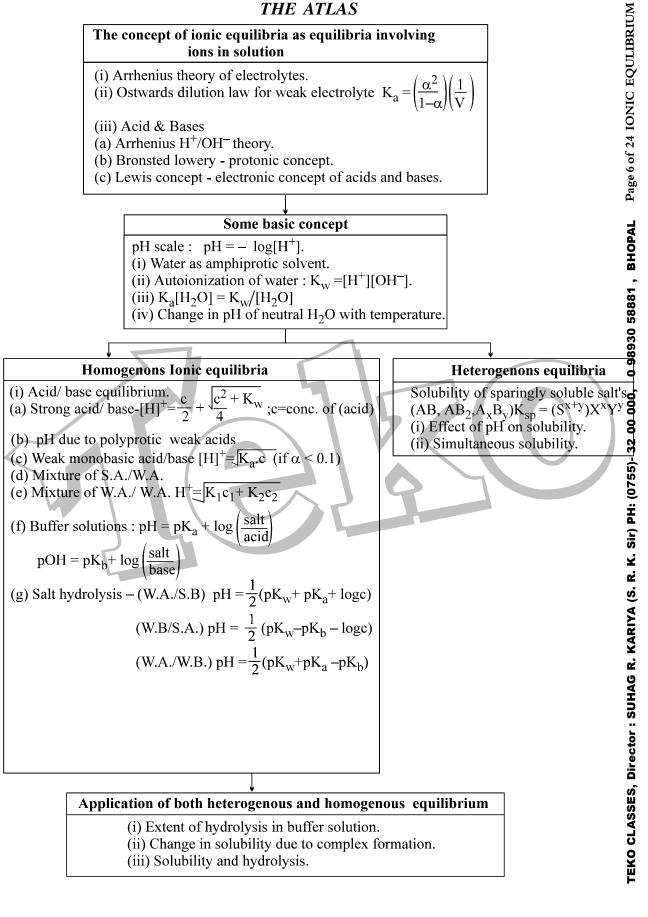
So, for detectable colour change, $pH = pK_a \pm 1$

This roughly gives the range of indicators. Ranges for some popular indicators are

Table 1 · Indicators

Indicators	pH range	Colour			
		acid medium	basic medium		
Methyl Orange	3.1-4.4	pink	yellow		
Methyl red	4.2-6.3	red	yellow		
Litmus	5.5-7.5	red	blue		
Phenol red	6.8-8.4	yellow	red		
Phenolphathlene	8.3-10	colourless	pink		
Thymol blue	1.2-2.8	red	yello		

Equivalence point. The point at which exactly equivalent amounts of acid and base have been mixed.


Acid Base Titration. For choosing a suitable indicator titration curves are of great help. In a titration curve, change in pH is plotted against the volume of alkali to a given acid. Four cases arise.
(a) Strong acid vs strong base. The curve is almost vertical over the pH range 3.5-10. This abrupt change corresponds to equivalence point. Any indicator suitable.
(b) Weak acid vs strong base. Final solution is basic 9 at equivalence point. Vertical region (not so sharp) lies in pH range 6.5-10. So, phenolphathlene is suitable.
(c) Strong acid vs weak base. Final solution acidic. Vertical point in pH range 3.8-7.2. Methyl red or methyl orange suitable.
(d) Weak acid vs weak base. No sharp change in pH. No suitable indicator.
Note : at midpoint of titration, pH = pK_a, thus by pH measurements, K_a for weak acids (or K_b for weak bases) can be determined.
Polyprotic acids and bases. Usually K₂, K₃ etc. can be safely neglected and only K₁ plays a significant role.
Solubility product (K_{sp}). For sparingly soluble salts (eg. Ag₂C₂O₄) an equilibrium which exists is Ag₂C₂O₄ = 2Ag⁺ (aq.) C₂O₄²⁻ [C₂O₄²⁻]
Precipitation. Whenever the product of concentrations (raised to appropriate power) exceeds the solubility product, precipitation occurs.

$$Ag_2C_2O_4 \rightleftharpoons 2Ag^+ (aq.) C_2O_4^{-2}$$
 (aq.
Then $K_{sp} = [Ag^+]^2 [C_2O_4^{-2}]$

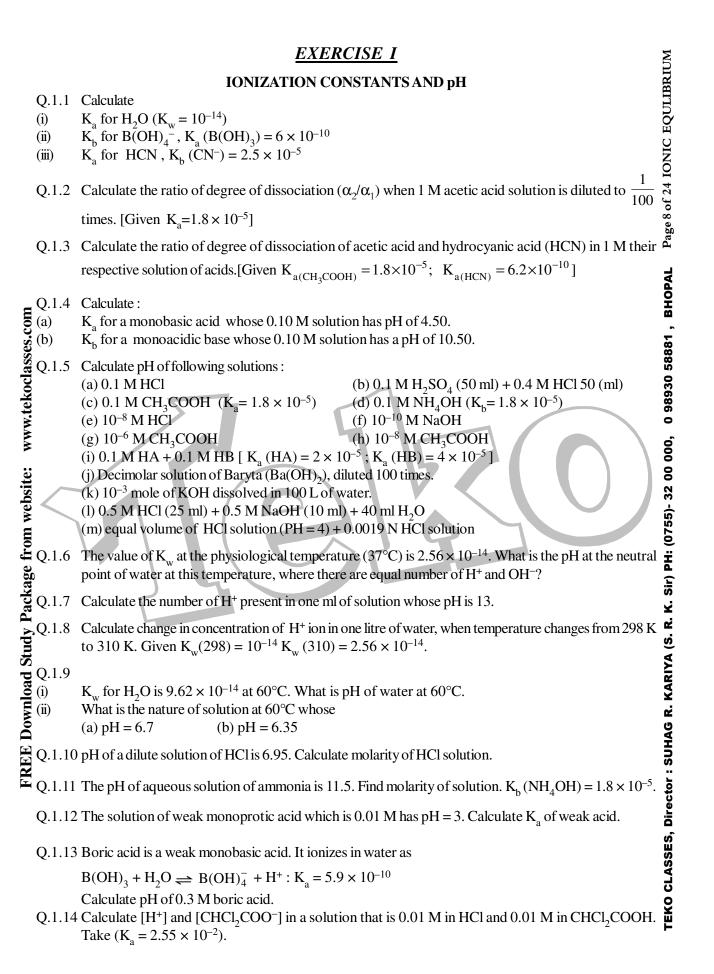
Common ion effects. Suppression of dissociation by adding an ion common with dissociation products. e.g. Ag⁺ or $C_2O_4^{2-}$ in the above example.

Simultaneous solubility. While solving these problems, go as per general method i.e.

- (i) First apply condition of electroneutrality and
- (ii) Apply the equilibria conditions.

FREE Download Study Package from website: www.tekoclasses.com

GLOSSARY age 7 of 24 IONIC EQULIBRIUM Amphoteric substance. A molecule which can act both as an acid and as a base. Autoprotolysis constant. The equilibrium constant for the reaction in which one solvent molecule loses a proton to another, as $2H_2O \rightleftharpoons H_2O^+ + OH^-$. Amphiprotic solvent. A solvent which possesses both acidic and basic properties. Aprotic solvent. A solvent which is neither appreciably acidic or basic. Bronsted acid. A substance which furnishes a proton. Bronsted base. A substance which accepts a proton. **Buffer capacity.** A measure of the effectiveness of a buffer in resisting changes in pH; the capacity is greater the concentrations of the conjugate acid-base pair. BHOPAL Buffer solution. A solution which contains a conjugated acid-base pair. Such a solution resists large changes in pH when H₂O⁺ or OH⁻ ions are added and when the solution is diluted. Charge-balance equation. The equation expressing the electroneutrality principle; i.e., the total concentration of positive charge must equal the total concentration of negative charge. **Common-ion effect.** The effect produced by an ion, say from a salt, which is the same ion produced by the dissociation of a weak electrolyte. The "common" ion shifts the dissociation equilibrium in accordance with 0 98930 LeChatelier's principle. Central metal atom. A cation which accepts electrons from a ligand to form a complex ion. 000 000, Conjugate acid-base pair. An acid-base pair which differ only by a proton, as HCl and Cl-. **Diprotic acid.** An acid which furnishes two protons. **Electrolyte.** A compound which produces positive and dissociated, whereas weak electrolytes are only part 32 Electrolyte. A compound which produces positive and negative ions in solution. Strong electrolytes are completely (0755)dissociated, whereas weak electrolytes are only partially dissociated. Hydrolysis. An acid-base reaction of a cation or anion with water. Isoelectric point. The pH at which there is an exact balance of positive and negative charge on an amino acid. Indicator. A visual acid-base indicator is a weak organic acid or base which shows different colors in the molecular and ionic forms. ¥. Director : SUHAG R. KARIYA (S. R. Ligand. An anion or neutral molecule which forms a complex ion with a cation by donating one or more pairs of electrons. Nonelectrolyte. A substance which does not dissociate into ions in solution. **pH.** The negative logarithm of the hydrogen ion concentration. **pK.** The negative logarithm of an equilibrium constant. Polyprotic acid. An acid which furnishes two or more protons. Range of an indicator. That portion of the pH scale over which an indicator changes color, roughly the pK of the indicator ± 1 unit. **Salt.** The product other than water which is formed when an acid reacts with a base; usually an ion solid. CLASSES, Simultaneous equilibria. Equilibria established in the same solution in which one molecule or ions is a participant in more than one of the equilibria. Solubility product constant, K_s. The constant for the equilibrium established between a slightly soluble salt and its ions in solution.


ww.tekoclasses.com

lirom

Download Study

FREE

Stability constant. The equilibrium constant for a reaction in which a complex is formed. Also called a formation constant.

- Q.1.15 Calculate the percent error in the $[H_3O^+]$ concentration made by neglecting the ionization of water in a \ge 10⁻⁶M NaOH solution.
- Q.1.16 Calculate [H⁺], [CH₃COO⁻] and [C₇H₅O₂⁻] in a solution that is 0.02 M in acetic acid and 0.01M in benzoic acid. $K_a(acetic) = 1.8 \times 10^{-5}$, $K_a(benzoic) = 6.4 \times 10^{-5}$.
- Q.1.17 At 25°C, the dissociation constant of HCN and HF are 4×10^{-10} and 6.7×10^{-4} . Calculate the pH of a mixture of 0.1 M HF and 0.1 M HCN.

POLYPROTIC ACIDS & BASES

- Q.2.1 Determine the $[S^{2-}]$ in a saturated (0.1M) H₂S solution to which enough HCl has been added to produce a [H⁺] of 2 × 10⁻⁴. K₁ = 10⁻⁷, K₂ = 10⁻¹⁴.
- Q.2.2 Calculate [H⁺], [H₂PO₄⁻], [HPO₄²⁻] and [PO₄³⁻] in a 0.01M solution of H₃PO₄. Take $K_1 = 7.225 \times 10^{-3}$, $K_2 = 6.8 \times 10^{-8}$, $K_3 = 4.5 \times 10^{-13}$.
- Q.2.3 Calculate the pH of a 0.1M solution of H₂NCH₂CH₂NH₂; ethylenediamine (en). Determine the en H_2^{2+} . Concentration in the solution. K_{b_1} and K_{b_2} values of ethylenediamine are 8.5×10^{-5} and 7.1×10^{-8} respectively.
- Q.2.4 What are the concentrations of H⁺, HSO_4^- , SO_4^{2-} and H_2SO_4 in a 0.20 M solution of sulphuric acid?

 \rightarrow H⁺ + HSO₄⁻; strong Given: H_2SO_4

$$\text{HSO}_4^- \rightleftharpoons \text{H}^+ + \text{SO}_4^{2-}$$
; $\text{K}_2 = 1.3 \times 10^{-2} \text{ M}$

- Q.2.5 What are the concentration of H⁺, $H_2C_2O_4$, $HC_2O_4^-$ and $C_2O_4^{2-}$ in a 0.1 M solution of oxalic acid? $[K_1 = 5.9 \times 10^{-2} \text{ M and } K_2 = 6.4 \times 10^{-5} \text{ M}]$
- Q.2.6 Nicotine, $C_{10}H_{14}N_2$, has two basic nitrogen atoms and both can react with water to give a basic solution Nic (aq) + H₂O (l) \rightleftharpoons NicH⁺ (aq) + OH⁻ (aq) NicH⁺ (aq) + $H_2O(l) \rightleftharpoons NicH_2^{2+}$ (aq) + OH^- (aq)
 - K_{b1} is 7×10^{-7} and K_{b2} is 1.1×10^{-10} . Calculate the approximate pH of a 0.020 M solution.
- **FREE Download Study Package from website:** www.tekoclasses.com Q.2.7 Ethylenediamine, $H_2N-C_2H_4-NH_2$, can interact with water in two steps, giving OH⁻ in each step. Calculate the concentration of OH⁻ and [H₃N-C₂H₄-NH₃]²⁺ in a 0.15 M aqueous solution of the amine. $K_1 = 8.5 \times 10^{-5}$, $K_2 = 2.7 \times 10^{-8}$ for the base.

BUFFER SOLUTION

- Q.3.1 Determine $[OH^{-}]$ of a 0.050 M solution of ammonia to which has been added sufficient NH_4 Cl to make the total [NH₄⁺] equal to 0.100.[K_{b(NH₂)} = 1.8×10^{-5}]
- Q.3.2 Calculate the pH of a solution prepared by mixing 50.0 mL of 0.200 M HC₂H₃O₂ and 50.0 mL of 0.100 M NaOH.[$K_{a(CH_{3}COOH)} = 1.8 \times 10^{-5}$]
- Q.3.3 A buffer of pH 9.26 is made by dissolving x moles of ammonium sulphate and 0.1 mole of ammonia into 100 mL solution. If pK_{b} of ammonia is 4.74, calculate value of x.
- Q.3.4 50 mL of 0.1 M NaOH is added to 75 mL of 0.1 M NH_4Cl to make a basic buffer. If pK_a of NH_4^+ is 9.26, calculate pH.

Q.3.5

- Determine the pH of a 0.2 M solution of pyridine C_5H_5N . $K_b = 1.5 \times 10^{-9}$ (a)
- IONIC EQULIBRIUM Predict the effect of addition of pyridinium ion $C_5H_5NH^+$ on the position of the equilibrium. Will the pH (b) be raised or lowered?
- Calculate the pH of 1.0 L of 0.10 M pyridine solution to which $0.3 \text{ mol of pyridinium chloride } C_5H_5NH^+Cl$, (c) has been added, assuming no change in volume.
- Q.3.6 Calculate the pH of a solution which results from the mixing of 50.0 ml of 0.3 M HCl with 50.0 ml of 0.4 M NH_3 . [K_b (NH₃) = 1.8×10^{-5}]
- Q.3.7 Calculate the pH of a solution made by mixing 50.0 ml of 0.2 M NH₄Cl & 75.0 ml of 0.1 M NaOH. $[K_{h}(NH_{3}) = 1.8 \times 10^{-5}]$
- Q.3.8 A buffer solution was prepared by dissolving 0.02 mol propionic acid & 0.015 mol sodium propionate in enough water to make 1.00 L of solution .(K_a for propionic acid is 1.34×10^{-5})
- (a) What is the pH of the buffer?
- What would be the pH if 1.0×10^{-5} mol HCl were added to 10 ml of the buffer ?
- What would be the pH if 1.0×10^{-5} mol NaOH were added to 10 ml of the buffer.
- Also report the percent change in pH of original buffer in cases (b) and (c).
- www.tekoclasses.com Q.3.9 A solution was made up to be 0.01 M in chloroacetic acid, ClCH₂COOH and also 0.002 M in sodium chloroacetate ClCH₂COONa . What is [H⁺] in the solution ? $K_a = 1.5 \times 10^{-3}$.

INDICATORS

- Q.4.1 A certain solution has a hydrogen ion concentration 4×10^{-3} M. For the indicator thymol blue, pH is 2.0 when half the indicator is in unionised form. Find the % of indicator in unionised form in the solution with $[H^+] = 4 \times 10^{-3} \text{ M}.$
- FREE Download Study Package from website: Q.4.2 At what pH does an indicator change colour if the indicator is a weak acid with $K_{ind} = 4 \times 10^{-4}$. For which one(s) of the following neutralizations would the indicator be useful ? Explain. (a) NaOH + $CH_{3}COOH$ (b) $HCl + NH_{3}$ (c) HCl + NaOH
- Q.4.3 What indicator should be used for the titration of 0.10 M KH₂BO₃ with 0.10 M HCl? $K_a (H_3 BO_3) = 7.2 \times 10^{-10}$.
- Q.4.4 Bromophenol blue is an indicator with a K_a value of 6×10^{-5} . What % of this indicator is in its basic form at a pH of 5?
- Q.4.5 An acid base indicator has a K_a of 3×10^{-5} . The acid form of the indicator is red & the basic form is blue. By how much must the pH change in order to change the indicator form 75% red to 75% blue?

HYDROLYSIS

Q.5.1 What is the OH⁻ concentration of a 0.08 M solution of CH₃COONa. [K_a(CH₃COOH)= 1.8×10^{-5}]

- Q.5.2 Calculate the pH of a 2.0 M solution of NH_4Cl . [K_b (NH₃) = 1.8×10^{-5}]
- Q.5.3 0.25 M solution of pyridinium chloride $C_5H_6N^+Cl^-$ was found to have a pH of 2.699. What is K_b for pyridine, C₅H₅N?
- Q.5.4 Calculate the extent of hydrolysis & the pH of $0.02 \text{ M CH}_3\text{COONH}_4$. $[K_{h} (NH_{3}) = 1.8 \times 10^{-5}, K_{a} (CH_{3}COOH) = 1.8 \times 10^{-5}]$
- Q.5.5 Calculate the percent hydrolysis in a 0.06 M solution of KCN. $[K_a(HCN) = 6 \times 10^{-10}]$

- Q.5.6 Calculate the extent of hydrolysis of 0.005 M K₂CrO₄. [K₂ = 3.1×10^{-7} for H₂CrO₄] (It is essentially strong for first ionization).
- Q.5.7 Calculate the percent hydrolysis in a 0.0100 M solution of KCN.($K_a = 6.2 \times 10^{-10}$)
- Q.5.8 A 0.010 M solution of $PuO_2(NO_3)_2$ was found to have a pH of 4.0. What is the hydrolysis constant, K_h for PuO_2^{2+} , and what is K_h for PuO_2OH^+ ?
- Q.5.9 Calculate the pH of 1.0×10^{-3} M sodium phenolate, NaOC₆H₅. K_a for HOC₆H₅ is 1.05×10^{-10} .
- Q.5.10 What is the pH of 0.1M NaHCO₃? $K_1 = 4.5 \times 10^{-7}$, $K_2 = 4.5 \times 10^{-11}$ for carbonic acids.
- Q.5.11 Calculate pH of 0.05M potassium hydrogen phthalate, $KHC_8H_4O_4$.

$$H_{2}C_{8}H_{4}O_{4} + H_{2}O \implies H_{3}O^{+} + HC_{8}H_{4}O_{4}^{-} \qquad pK_{1} = 2.94$$
$$HC_{8}H_{4}O_{4}^{-} + H_{2}O \implies H_{3}O^{+} + C_{8}H_{4}O_{4}^{2-} \qquad pK_{2} = 5.44$$

- Q.5.12 Calculate OH- concentration at the equivalent point when a solution of 0.1 M acetic acid is titrated with a solution of 0.1 M NaOH. K_a for the acid = 1.9×10^{-5} .
- Q.5.13 The acid ionization (hydrolysis) constant of Zn^{2+} is 1.0×10^{-9}
- (a) Calculate the pH of a 0.001 M solution of ZnCl,

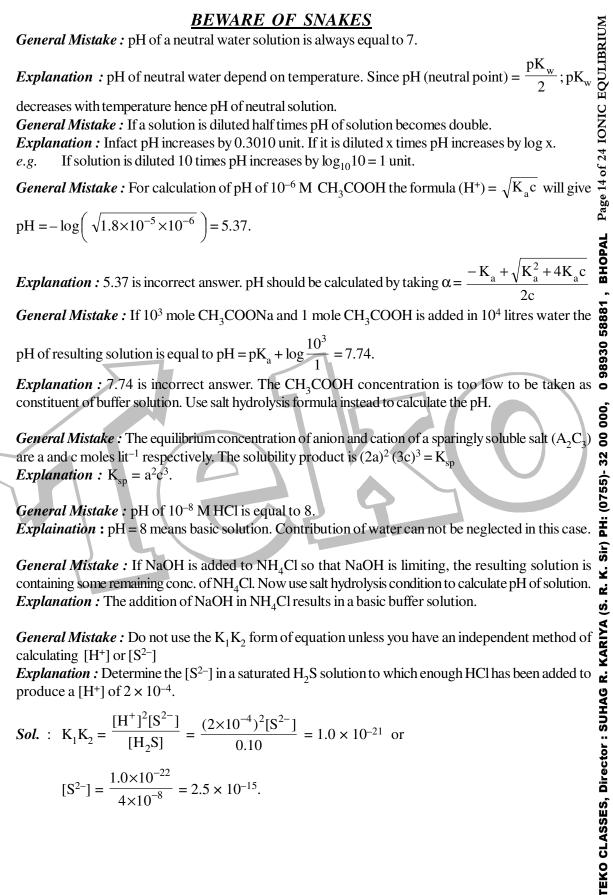
Η

(b) What is the basic dissociation constant of Zn(OH)+?

ACID BASE REACTIONS & TITRATIONS

- 000 000 Q.6.1 Calculate the hydronium ion concentration and pH at the equivalence point in the reaction of 22.0 mL of 0.10M acetic acid, CH₃COOH, with 22.0 mL of 0.10 M NaOH.
- Q.6.2 Calculate the hydronium ion concentration and the pH at the equivalence point in a titration of 50.0 mL of 0.40 M NH₃ with 0.40M HCl.
- FREE Download Study Package from website: www.tekoclasses.com 0755)-Q.6.3 In the titration of a solution of a weak acid HX with NaOH, the pH is 5.8 after 10.0 mL of NaOH solution has been added and 6.402 after 20.0 mL of NaOH has been added. What is the ionization constant of HX?
 - Sir) Q.6.4 The equivalent point in a titration of 40.0 mL of a solution of a weak monoprotic acid occurs when 35.0 mL of a 0.10M NaOH solution has been added. The pH of the solution is 5.75 after the addition ż of 20.0 mL of NaOH solution. What is the dissociation constant of the acid? છં
 - Q.6.5 Phenol, C₆H₅OH, is a weak organic acid that has many uses, and more than 3 million ton are produced annually around the world. Assume you dissolve 0.515 g of the compound in exactly 100mL of water and then titrate the resulting solution with 0.123M NaOH.

 $C_6H_5OH(aq) + OH^-(aq) \rightarrow C_6H_5O^-(aq) + H_2O(l)$ What are the concentrations of all of the following ions at the equivalence point: Na⁺, H₃O⁺, OH⁻ and $C_6H_5O^-$? What is the pH of the solution ? [K_a (phenol) = 1.3×10^{-10}]


- ector : SUHAG R. KARIYA Q.6.6 A weak base (50.0mL) was titrated with 0.1 M HCl. The pH of the solution after the addition of 10.0 mL and 25.0 mL were found to be 9.84 and 9.24, respectively. Calculate K_{b} of the base and pH ä at the equivalence point.
- Q.6.7 A weak acid (50.0mL) was titrated with 0.1 M NaOH. The pH values when 10.0 mL and 25.0 mL of base have been added are found to be 4.16 and 4.76, respectively. Calculate K_a of the acid and pH at the equivalence point.
- LEKO Q.6.8 CH₃COOH (50 ml, 0.1 M) is titrated against 0.1 M NaOH solution. Calculate the pH at the addition of 0 ml, 10 ml 20 ml, 25 ml, 40 ml, 50 ml of NaOH. K_a of CH₃COOH is 2×10^{-5} .

32

SOLUBILITY & SOLUBILITY PRODUCT'S

		SOLUBILITY & SOLUBILITY PRODUCT'S	M
	Q.7.1	The values of K_{sp} for the slightly soluble salts MX and QX_2 are each equal to 4.0×10^{-18} . Which salt is more soluble? Explain your answer fully.	ULIBRIL
	Q.7.2	The solubility of $PbSO_4$ water is 0.038 g/L. Calculate the solubility product constant of $PbSO_4$.	Б Е С Е
	Q.7.3	Calculate the solubility of Mg(OH) ₂ in water. $K_{sp} = 1.2 \times 10^{-11}$.	IONIC
	Q.7.4	How many mol CuI ($K_{sp} = 5 \times 10^{-12}$) will dissolve in 1.0 L of 0.10 M NaI solution ?	24 IC
	Q.7.5	A solution of saturated CaF_2 is found to contain 4.1×10^{-4} M fluoride ion. Calculate the K_{sp} of CaF_2 . Neglect hydrolysis.	ge 12 of
	Q.7.6	The solubility of ML ₂ (formula weight, 60 g/mol) in water is 2.4×10^{-5} g/100 mL solution. Calculate the solubility product constant for ML ₂ .	AL Pa
-	Q.7.7	What is the solubility (in mol/L) of Fe(OH) ₃ in a solution of pH = 8.0? [K_{sp} for Fe(OH) ₃ = 1.0 × 10 ⁻³⁶]	HOP
com	Q.7.8	The solubility of Ag_2CrO_4 in water is 0.044 g/L. Determine the solubility product constant.	
classes.	Q.7.9	Calculate the solubility of A_2X_3 in pure water, assuming that neither kind of ion reacts with water. For A_2X_3 , $[K_{sp} = 1.1 \times 10^{-23}]$	0 58881
teko	Q.7.10	Determine the solubility of AgCl in 0.1 M BaCl ₂ . [K _{sp} for AgCl = 1×10^{-10}]	9893
www.teko	Q.7.11	What mass of Pb ²⁺ ion is left in solution when 50.0 mL of 0.20M Pb(NO ₃) ₂ is added to 50.0 mL of 1.5 M NaCl ?[Given K_{sp} for PbCl ₂ = 1.7 ×10 ⁻⁴]	000, 0
from website:	Q.7.12	of the solution is $[K_{sp} = 1.2 \times 10^{-11}]$ (a) 10^{-5} mol/L (b) 10^{-3} mol/L?	
rom	Q.7.13	Calculate solubility of PbI ₂ ($K_{sp} = 1.4 \times 10^{-8}$) in water at 25°, which is 90% dissociated.	: (0
ige f	Q.7.14	Calculate solubility of AgCN ($K_{sp} = 4 \times 10^{-16}$) in a buffer solution of PH = 3.	HH (
Package	0.01	SIMULTANEOUS SOLUBILITY	c. Sil
N	•	Calculate the Simultaneous solubility of AgSCN and AgBr. K_{sp} (AgSCN) = 1.1 × 10 ⁻¹² , K_{sp} (AgBr) = 5 × 10 ⁻¹³ .	(S. R. J
ad Stu	Q.8.2	Calculate F ⁻ in a solution saturated with respect of both MgF ₂ and SrF ₂ . $K_{sp}(MgF_2) = 9.5 \times 10^{-9}$, $K_{sp}(SrF_2) = 4 \times 10^{-9}$.	ARIYA
Downlo	Q.8.2 Q.8.3 Q.9.1	Equal volumes of 0.02M AgNO ₃ and 0.02M HCN were mixed. Calculate [Ag ⁺] at equilibrium. Take $K_a(HCN) = 9 \times 10^{-10}$, $K_{sp}(AgCN) = 4 \times 10^{-16}$.	Director : SUHAG R. KARIYA
EE]		COMPLEXATION EQUILIBRIA	SUH
FR	Q.9.1	Assuming no change in volume, calculate the minimum mass of NaCl necessary to dissolve 0.010 mol	or ::
		AgCl in 100 L solution. $[K_f(AgCl_2^-) = 3 \times 10^5, K_{sp} = (AgCl) = 1 \times 10^{-10}]$	irect
	Q.9.2	A recent investigation of the complexation of NUN, with e^{-3} lea of 150, to and 1 0 for K K and	TEKO CLASSES, D
	Q.9.3	How much AgBr could dissolve in 1.0 L of 0.40 M NH_3 ? Assume that $\text{Ag}(\text{NH}_3)_2^+$ is the only complex	0 Cl
		formed. $[K_f (Ag(NH_3)_2^+) = 1 \times 10^8; K_{sp} (AgBr) = 5 \times 10^{-13}]$	TEK

	PROFICIENCY TEST
Q.1	True / False. When a solution of a weak monoprotic acid is titrated against a strong base, at half-neutralization point, $pH = \frac{1}{2}pK_a$. True / False. A solution of sodium acetate and ammonium acetate can act as a buffer.
	half-neutralization point, $pH = \frac{1}{2}pK_a$.
Q.2	True / False. A solution of sodium acetate and ammonium acetate can act as a buffer. \vec{Q}
Q.3	True / False. If the solubility of the salt $\text{Li}_3\text{Na}_3(\text{AlF}_6)_2$ is x, then its solubility product would be 2916 x ⁸ . True / False. A buffer has maximum buffer capacity when the ratio of salt to acid is 10.
Q.4	True / False. A buffer has maximum buffer capacity when the ratio of salt to acid is 10.
Q.5	True / False. In the presence of a common ion (incapable of froming complex ion), the solubility of salt decreases.
Q.6	In a mixture of waek acid and its salt, the ratio of concentration of salt to acid is increased ten fold. The pH of the solution would by unit.
Q.7	The solubility of CH ₂ COOAg in water considering hydrolysis of CH ₂ COO ⁻ ions would be
u 03 ^{Q.8}	than that ignoring the hydrolysis. From an equimolar solution of Cl ⁻ and Br ⁻ ions, the addition of Ag ⁺ will selectively precipitates (K _{sp} of AgCl & AgBr are $1 \times 10^{-10} \& 1 \times 10^{-13}$ respectively).
e.9	The solubility of AgCl in NH_3 is than the solubility in pure water because of complex ion, $[Ag(NH_3)_2]^+$ formation.
www.tekoclasses.com 01.0 01.1 0	The hydrolytic constant K_h for the hydrolytic equilibrium $H_2PO_4^- + H_2O \longrightarrow H_3PO_4 + OH^-$ is 1.4×10^{-12} What is the value of ionization constant for the $H_3PO_4 + H_2O \longrightarrow H_2PO_4^- + H_3O^+$? Given the equilibrium constants
from website:	Given the equilibrium constants $HgCl^+ + Cl^- \rightleftharpoons HgCl_2$; $K_1 = 3 \times 10^6$ $HgCl_2 + Cl^- \rightleftharpoons HgCl_3^-$; $K_2 = 8.9$ The equilibrium constant for the dispropotionation equilibrium. $2HgCl_2 \rightleftharpoons HgCl^+ + HgCl_3^-$ is
uou Q.12	Under which set of conditions is the ionic product of water, K_w , constant at a given temperature in δ aqueous system?
ackage 0.13 0.14	If the salts M_2X , QY_2 and PZ_3 have same solubilities (<<<1), their K_{sp} values are related as
P Q.14	K_a for an acid HA is 1×10^{-6} . K_b for A ⁻ would be
Q.15	An aqueous solution of K_2SO_4 has pH nearly equal to
pny Q.16	The pH of a solution which is 0.1 M in sodium acetate and 0.01 M in acetic acid ($pK_a = 4.74$) would be
PQ .17	The conjugate acid of sulphate (SO_4^{2-}) is
Q .18	The value of K_w with increase in temperature.
o Q.19	AgCl is soluble in aqueous sodium chloride solution than in pure water. 9
EXECT Download EXEC Download EXEC Download EXEC Download EXEC Download EXEC Download EXEC Download	The buffer HCOOH / HCOONa will have pH than 7.
Q .21	In the reaction $I_2 + I^- \longrightarrow I_3^-$, I_2 acts as
Q .22	An equimolar solution of $NaNO_2$ and HNO_2 can act as a solution.
Q.23	Larger the value of pK_{a} , is the acid.
Q.24	An aqueous solution of potash alum is in nature.
Q.25	Salts of strong acids and weak bases undergo hydrolysis.
Q.26	The pH of a solution which is 0.1 M in sodium acetate and 0.01 M in acetic acid ($pK_a = 4.74$)would be The conjugate acid of sulphate (SO_4^{2-}) is The value of K _w with increase in temperature. AgCl is soluble in aqueous sodium chloride solution than in pure water. The buffer HCOOH / HCOONa will have pH than 7. In the reaction $I_2 + I^- \longrightarrow I_3^-$, I_2 acts as An equimolar solution of NaNO ₂ and HNO ₂ can act as a solution. Larger the value of pK_a , is the acid. An aqueous solution of potash alum is in nature. Salts of strong acids and weak bases undergo hydrolysis. For salts of weak acid with weak bases, degree of hydrolysis is of concentration of the salt in solution.

calculating $[H^+]$ or $[S^{2-}]$

Explanation : Determine the [S²⁻] in a saturated H₂S solution to which enough HCl has been added to produce a [H⁺] of 2×10^{-4} .

Sol. :
$$K_1 K_2 = \frac{[H^+]^2 [S^{2^-}]}{[H_2 S]} = \frac{(2 \times 10^{-4})^2 [S^{2^-}]}{0.10} = 1.0 \times 10^{-21} \text{ or}$$

$$[S^{2-}] = \frac{1.0 \times 10^{-22}}{4 \times 10^{-8}} = 2.5 \times 10^{-15}.$$

1.

2.

3.

EXERCISE II

		EXERCISE II	M
(Q.1	At 25°C, the degree of dissociation of water was found to be 1.8×10^{-9} . Calculate the ionization constant and ionic product of water at this temperature.	ULIBRI
(Q.2	A solution contains HCl, Cl_2HC COOH & CH_3 COOH at concentrations 0.09 M in HCl, 0.09 M in Cl_2HC COOH & 0.1 M in CH_3 COOH. pH for the solution is 1. Ionization constant of CH_3 COOH = 10 ⁻⁵ . What is the magnitude of K for dichloroacetic acid ?	of 24 IONIC EQULIBRIUM
(Q.3	A solution of chloroacetic acid, ClCH ₂ COOH containing 9.45 grams in 500 ml of the solution has a pH of 2.0. What is the degree of ionization of the acid.	Page 15 of 2
(Q.4	A solution of ammonia bought for cleaning the windows was found to be 10% ammonia by mass, having a density of 0.935 g. ml ⁻¹ . What is the pH of the solution. Take K_b for protonation of ammonia = 5.5 x 10 ⁻⁶ .	BHOPAL Pag
E (Q.5	The K_w of water at two different temperatures is :	BHG
s.cc		T 25° C 50° C K _w 1.08×10^{-14} 5.474×10^{-14}	81,
www.tekoclasses.com		Assuming that ΔH of any reaction is independent of temperature, calculate the enthalpy of neutralization	0 98930 5888'
www.tel	Q.6	so that the relative constraints a prime the original value $C_{\rm even} K = 1.8 \times 10^{-5}$	-
;; (Q.7	A handbook states that the solubility of methylamine $CH_3NH_2(g)$ in water at 1 atm pressure at 25°C is	00 000,
Package from website:	\square	959 volumes of $CH_3NH_2(g)$ per volume of water ($pk_b = 3.39$)	
9 M ((a)	Estimate the max. pH that can be attained by dissolving methylamine in water. What molarity NaOH (aq.) would be required to yield the same pH?	Sir) PH: (0755)- 32
fron	(0)	what motanty would be required to yield the same pri :	9 Ŧ
age	Q.8	The equilibrium constant of the reaction $2A_{1}(x) + 2A_{2}(x) + 11(x) + 2OH$	J DI
ack:		$2Ag(s) + 2I^{-} + 2H_2O \rightleftharpoons 2AgI(s) + H_2(g) + 2OH^{-}$ is 1.2×10^{-23} at 25°C. Calculate the pH of a solution at equilibrium with the iodine ion	
~		concentration = 0.10 and the pressure of H_2 gas = 0.60 atm.	Ř
ad Stud	Q.9	For the reaction $A + B \rightleftharpoons C + D$	RIYA (S
FREE Download Study		(all reactants in solution) calculate the value of the equilibrium constant for the following percentages of conversion of A and B into products. (Assume the initial concentrations of A and B are each 1.0 M) (a) 67%; (b) 95%; (c) 99%.	SSES, Director : SUHAG R. KARIYA (S
REF	Q.10	Mixtures of soutions. Calculate the pH of the following solutions. (Use data of Q.14)	: SU
(u)	50 ml of 0.12 M $H_3PO_4 + 20$ ml of 0.15 M NaOH; 50 ml of 0.12 M H PO_4 + 40 ml of 0.15 M NaOH;	ctor
	(b) (c)	50 ml of 0.12 M H ₃ PO ₄ + 40 ml of 0.15 M NaOH; 40 ml of 0.12 M H ₃ PO ₄ + 40 ml of 0.18 M NaOH;	Dire
	(d)	$40 \text{ ml of } 0.10 \text{ M H}_3\text{PO}_4 + 40 \text{ ml of } 0.25 \text{ M NaOH}.$	ES,
			SS

- Q.11 Mixtures of solution. Calculate the pH of the following solution. (Use data of Q.14)
- 40 ml of 0.050 M Na₂CO₃ + 50 ml of 0.040 M HCl; (a)
- $40 \text{ ml of } 0.020 \text{ M Na}_{3}\text{PO}_{4} + 40 \text{ ml of } 0.040 \text{ M HCl};$ (b)
- $50 \text{ ml of } 0.10 \text{ M Na}_{3}\text{PO}_{4} + 50 \text{ ml of } 0.10 \text{ M NaH}_{2}\text{PO}_{4};$ (c)
- 40 ml of 0.10 M $H_3 PO_4 + 40$ ml of 0.10 M $Na_3 PO_4$. (d)
- The electrolytic reduction of an organic nitro compound was carried out in a solution buffered by acetic O.12 acid and sodium acetate. The reaction was

 $RNO_2 + 4H_3O^+ + 4e \longrightarrow RNHOH + 5H_2O$

300 ml of a 0.0100 M solution of RNO₂ buffered initially at pH 5.00 was reduced, with the reaction above going to completion. The total acetate concentration, [HOAc] + [OAc⁻], was 0.50 M.Calculate the pH of the solution after the reduction is complete.

- Q.13(a) It is desired to prepare 100 ml of a buffer of pH 5.00. Acetic, benzoic and formic acids and their salts are available for use. Which acid should be used for maximum effectiveness against increase in pH? What acid-salt ratio should be used ?pK_a values of these acids are : acetic 4.74; benzoic 4.18 and formic 3.68.
 - (b) If it is desired that the change in pH of the buffer be no more than 0.10 unit for the addition of 1 m mol of either acid or base, what minimum concentrations of the acid and salt should be used ?
- Calculate the pH of 0.1 M solution of (i) NaHCO₃, (ii) Na₂HPO₄ and (iii) NaH₂PO₄. Given that: Q.14

$$CO_2 + H_2O \rightleftharpoons H^+ + HCO_3^-;$$
 $K_1 = 4.2 \times 10^{-7} M$ $HCO_3^- \rightleftharpoons H^+ + CO_3^{2-};$ $K_2 = 4.8 \times 10^{-11} M$ $H_3PO_4 \rightleftharpoons H^+ + H_2PO_4^-;$ $K_1 = 7.5 \times 10^{-3} M$ $H_2PO_4^- \rightleftharpoons H^+ + HPO_4^{2-};$ $K_2 = 6.2 \times 10^{-8} M$ $HPO_4^{2-} \rightleftharpoons H^+ + PO_4^{3-};$ $K_3 = 1.0 \times 10^{-12} M$

- When a 40 mL of a 0.1 M weak base is titrated with 0.16M HCl, the pH of the solution at the end point Q.15 is 5.23. What will be the pH if 15 mL of 0.12 M NaOH is added to the resulting solution.
- FREE Download Study Package from website: www.tekoclasses.com Q.16 A buffer solution was prepared by dissolving 0.05 mol formic acid & 0.06 mol sodium formate in enough water to make 1.0 L of solution. K_a for formic acid is 1.80×10^{-4} . (a) Calculate the pH of the solution.
 - (b) If this solution were diluted to 10 times its volume, what would be the pH?
 - (c) If the solution in (b) were diluted to 10 times its volume, what would be the pH?
 - Q.17 How many moles of sodium hydroxide can be added to 1.00 L of a solution 0.1 M in NH₃ & 0.1 M in NH₄Cl without changing the pOH by more than 1.00 unit ? Assume no change in volume. $K_{h}(NH_{3}) = 1.8 \times 10^{-5}$.
 - 20 ml of a solution of 0.1 M CH₃COOH solution is being titrated against 0.1 M NaOH solution. The pH Q.18 values after the addition of 1 ml & 19 ml of NaOH are $(pH)_1 \& (pH)_2$, what is ΔpH ?
 - Calculate the OH⁻ concentration and the H_3PO_4 concentration of a solution prepared by dissolving 0.1 mol Q.19 of Na₃ PO₄ in sufficient water to make 1L of solution. $K_1 = 7.1 \times 10^{-3}$, $K_2 = 6.3 \times 10^{-8}$, $K_3 = 4.5 \times 10^{-13}$.
 - Q.20 Find the pH of 0.068M Na₂HPO₄ solution. Use K values from the above problem if required.

- Calculate the values of the equilibrium constants for the reactions with water of $H_2PO_4^{-}$, HPO_4^{2-} , and PO_4^{3-} as bases. Comparing the relative values of the two equilibrium constants of $H_2PO_4^{-}$ with water, deduce whether solutions of this ion in water are acidic or basic. Deduce whether solutions of HPO_4^{2-} are acidic or basic. Take $K_1 = 5 \times 10^{-3}$, $K_2 = 5 \times 10^{-8}$, $K_3 = 5 \times 10^{-13}$. Determine the equilibrium carbonate ion concentration after equal volumes of 1.0M sodium carbonate and 1.0M HCl are mixed. $K_1 = 5 \times 10^{-7}$, $K_2 = 5 \times 10^{-11}$. K_1 and K_2 for oxalic acid, $H_2C_2O_4$, are 5.6×10^{-2} and 5.0×10^{-5} . What is $[OH^-]$ in a 0.4mM solution of Na₂C₂O₄? If 0.00050 mol NaHCO₂ is added to 1 litre of a buffered solution at pH 8.00, how much material will Q.21
- Q.22
- Q.23
- Q.24 If 0.00050 mol NaHCO₃ is added to 1 litre of a buffered solution at pH 8.00, how much material will exist in each of the three forms H_2CO_3 , HCO_3^- and CO_3^{2-2} . For H_2CO_3 , $K_1 = 5 \times 10^{-7}$, $K_2 = 5 \times 10^{-13}$.
- Equilibrium constant for the acid ionization of Fe^{3+} to $Fe(OH)^{+2}$ and H^{+} is 6.5 ×10⁻³. What is the max.pH, which could be used so that at least 95% of the total Fe^{3+} in a dilute solution. exists as Fe^{3+} .
- Hydrazine, N_2H_4 , can interact with water in two stages.

 $K_{b1} = 8.5 \times 10^{-7}$ $N_2H_4(aq) + H_2O(l) \rightleftharpoons N_2H_5^+(aq) + OH^-(aq.)$

- $K_{h2}^{01} = 8.9 \times 10^{-16}$ $N_2H_5^+(aq) + H_2O(l) \rightleftharpoons N_2H_6^{2+}(aq) + OH^-(aq.)$ What are the concentration of OH^- , $N_2H_5^+$ and $N_2H_6^{2+}$ in a 0.010 M aqueous solution of hydrazine?
- What is pH of the 0.010 M solution of hydrazine?
- How much Na₂HPO₄ must be added to one litre of 0.005M solution of NaH₂PO₄ in order to make a 1L of the solution of pH 6.7? $K_1 = 7.1 \times 10^{-3}$, $K_2 = 6.3 \times 10^{-8}$, $K_3 = 4.5 \times 10^{-13}$ for H₃PO₄.
- A solution of volume V contains n, moles of QCl and n, moles of RCl where QOH and ROH are two weak bases of dissociation constants K₁ and K₂ respectively. Show that the pH of the solution is given

by pH =
$$\frac{1}{2} \log \left[\left(\frac{K_1 K_2}{K_W} \right) \frac{V}{(n_1 K_2 + K_1 n_2)} \right]$$

State assumptions, if any.

- The indicator phenol red is half in the ionic form when pH is 7.2. If the ratio of the undissociated form to the ionic form is 1:5, find the pH of the solution. With the same pH for solution, if indicator is altered such that the ratio of undissociated form to dissociated form becomes 1:4, find the pH when 50 % of the new indicator is in ionic form.
 - A buffer solution, 0.080 M in Na₂HPO₄ and 0.020 M in Na₂PO₄, is prepared. The electrolytic oxidation of 1.00 mmol of the organic compound RNHOH is carried out in 100 ml of the buffer. The reaction is $RNHOH + H_2O \longrightarrow RNO_2 + 4H^+ + 4e$

Calculate the approximate pH of the solution after the oxidation is complete.

A solution of weak acid HA was titrated with base NaOH. The equivalence point was reached when 0.31 36.12 ml of 0.1 M NaOH has been added. Now 18.06 ml of 0.1 M HCl were added to titrated solution, the pH was found to be 4.92. What will be the pH of the solution obtained by mixing 10 ml of 0.2 M NaOH and 10 ml of 0.2 M HA.

Q.32 A weak base BOH was titrated against a strong acid. The pH at 1/4th equivalence point was 9.24. Enough strong base was now added (6m.eq.) to completely convert the salt. The total volume was 0 98930 58881, BHOPAL Page 18 of 24 IONIC E between one fourth and three fourth stages of neutralization? If at one third stage of neutralization, the pH is 4.45 what is the dissociation constant of the acid? Between what stages of neutralisation may the pH change by 2 units? 50 ml of a solution which is 0.050 M in the acid HA, $pK_a = 3.80$ and 0.10 M in HB, $pK_a = 8.20$, is Q.34 titrated with 0.2 M NaOH. Calculate the pH at the first equivalence point and (a) (b) at the second equivalence point. Q.35 Calculate the solubility of solid zinc hydroxide at a pH of 5, 9 and 13. Given FREE Download Study Package from website: www.tekoclasses.com $K_1 = 10^{-6} M$ $Zn(OH)_2(s) \rightleftharpoons Zn(OH)_2(aq)$ (1) $K_2 = 10^{-7} M$ $Zn(OH)_2(aq) \rightleftharpoons Zn(OH)^+ + OH^-$ (2) $K_{3} = 10^{-4} \text{ M}$ $Zn(OH)^{+} \Longrightarrow Zn^{2+} + OH^{-}$ (3) $Zn(OH)_{2}(aq) + OH^{-} \rightleftharpoons Zn(OH)_{3}^{-}$ $K_{A} = 10^{3} M^{-1}$ (4) $K_5 = 10 M^{-1}$ $Zn(OH)_3^- + OH^- \rightleftharpoons Zn(OH)_4^{2-}$ (5)The salt $Zn(OH)_2$ is involved in the following two equilibria. 0.36 Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, ; $K_{sp} = 1.2 \times 10^{-17}$ $Zn(OH)_{2}(s) \rightleftharpoons Zn^{2+}(aq) + 2OH^{-}(aq)$ $Zn(OH)_{2}(s) + 2OH^{-}(aq) \rightleftharpoons [Zn(OH)_{4}]^{2-}(aq.)$ $K_c = 0.13$ Calculate the pH of solution at which solubility is minimum Q.37 What is the solubility of AgCl in 0.20 M NH₃? Given : $K_{sp}(AgCl) = 1.7 \times 10^{-10} M^2$, $K_1^3 = [Ag(NH_3)^+] / [Ag^+][NH_3] = 2.33 \times 10^3 M^{-1}$ and $K_2 = [Ag(NH_3)_2^+] / [Ag(NH_3)^+] [NH_3] = 7.14 \times 10^3 M^{-1}.$ Q.38 H_2S is bubbled into a 0.2 M NaCN solution which is 0.02 M in each $Ag(CN)_2^-$ and $Cd(CN)_4^2$ Determine which sulphide precipitates first. $K_{sp}(Ag_2S) = 1.0 \times 10^{-50} M^3$ $K_{sp}(CdS) = 7.1 \times 10^{-28} M^2$ Given: $K_{inst}(Ag(CN)_{2}^{-}) = 1.0 \times 10^{-20} M^{2}$ $K_{inst}(Cd(CN)_4^{2-}) = 7.8 \times 10^{-18} M^4$ Predict whether or not AgCl will be precipitated from a solution which is 0.02 M in NaCl and 0.05 M in Q.39 KAg(CN)_2 . Given $\text{K}_{\text{inst}}(\text{Ag(CN)}_2^-) = 4.0 \times 10^{-19} \text{ M}^2$ and $\text{K}_{\text{sp}}(\text{AgCl}) = 2.8 \times 10^{-10} \text{ M}^2$. Show that solubility of a sparingly soluble salt $M^{2+}A^{2-}$ in which A^{2-} ions undergoes hydrolysis is given by Q.40

:
$$S = \sqrt{K_{sp} \left(1 + \frac{[H^+]}{K_2} + \frac{[H^+]^2}{K_1 K_2} \right)}.$$

where K_1 and K_2 are the dissociation constant of acid H_2A . K_{sp} is solubility product of MA.

Q.1	.1 The conjugate acid of NH_2^- is										
	$(A) \operatorname{NH}_3$	(B) NH ₂ OH	I (C) NH_4^+	$(D) N_2 H_4$							
Q.2	pH of an ac (A) 7	qeous solution of NaCl at (B) > 7	t 85°C should be (C) < 7	(D) 0							
Q.3	1 CC of 0.1 (A) 7	N HCl is added to 99 C (B) 3	C solution of NaCl. The j (C) 4	bH of the resulting solution (D) 1	will be						
Q.4	10 ml of $\frac{1}{2}$	10 ml of $\frac{M}{200}$ H ₂ SO ₄ is mixed with 40 ml of $\frac{M}{200}$ H ₂ SO ₄ . The pH of the resulting solution is									
	(A) 1	(B) 2	(C) 2.3	(D) none of these	e						
www.tekoclasses.com	The pH of a (A) 1	an aqueous solution of 1. (B) 2	0 M solution of a weak m (C) 3	onoprotic acid which is 1% (D) 11	ionised is						
Q.6	If K ₁ & K ₂	If $K_1 \& K_2$ be first and second ionisation constant of H_3PO_4 and $K_1 >> K_2$ which is incorrect.									
ekoc	$(A) [H^+] =$	[H ₂ PO ₄ ⁻]	(B) $[H^+] = \sqrt{1}$	(B) [H ⁺] = $\sqrt{K_1[H_3PO_4]}$							
www.t	(C) K ₂ = [HPO ₄]	(D) [H ⁺] = 3	(D) $[H^+] = 3[PO_4^{3-}]$							
07	The degree		weak acid and weak base M, the percentage hydroly (C) 25%	in it's 0.1 M solution is foun sis of the salt should be (D) none of these							
Q .8		What is the percentage hydrolysis of NaCN in N/80 solution when the dissociation constant for HCN is 1.2×10^{-9} at 1.0×10^{-14}									
age fr	(A) 2.48	and $K_w = 1.0 \times 10^{-14}$ (B) 5.26	(C) 8.2	(D) 9.6							
Study Package from website:	(A) Ammor	ound whose 0.1 M solution nium acetate nium sulphate	on is basic is (B) Ammoniu (D) Sodium a								
FREE Download Str 17 Developed Str 17 Developed Str	(A) 100 ml (B) 55 ml c (C) 10 ml c	 Which of the following solution will have pH close to 1.0? (A) 100 ml of M/100 HCl + 100 ml of M/10 NaOH (B) 55 ml of M/10 HCl + 45 ml of M/10 NaOH (C) 10 ml of M/10 HCl + 90 ml of M/10 NaOH (D) 75 ml of M/5 HCl + 25 ml of M/5 NaOH 									
ER G	1 The \approx pH o (A) 1	of the neutralisation point (B) 6	of 0.1 N ammonium hydr (C) 7	roxide with 0.1 N HCl is (D) 9							
Q.12	CH_3COOH Is 1.8×10^{-1}	im constant of $H + H_2O \rightleftharpoons CH_3COO^{-1}$ H^{-5} , equilibrium constant for $H + OH^{-1} \rightleftharpoons CH_3COO^{-1}$ O^{-9} (B) 1.8×10^{-1}	or $+ H_2O$ is	D^{-9} (D) 5.55 × 10 ¹⁰							

(Q.13 If 40 ml of 0.2 M KOH is added to 160 ml of 0.1 M HCOOH [$K_a = 2 \times 10^{-4}$], the pOH of t										
		solution is (A) 3.4	(B) 3.7	(C) 7		(D) 10.3		IBRIC			
(Q.14	The range of most suitable indicator which should be used for titration of X ⁻ Na ⁺ (0.1 M, 10 ml) with 0.1 M HCl should be (Given: $k_{b(X^{-})} = 10^{-6}$)									
		(A) 2–3	(B) 3–5	(C) 6	-8	(D) 8–10		ION			
(Q.15	When NO ₂ is bubble $2NO_2 + H_2$	$O(l) \longrightarrow NHC$), (aq.) + HNO	. (aq.)	-	U	e 20 of 24 IONIC			
		The concentration o	$f NO_2^-$ in a soluti	on prepared by	dissolving 0.05	mole of NO_2 g	as in 1 litre H ₂ O is	Page			
		{K _a (HNO ₂) = 5 × (A) ~ 5 × 10 ⁻⁴		10^{-5} (C) -	-4.8×10^{-3}	(D) ~ 2.55 :	× 10 ⁻²	BHOPAL			
usses.com	Q.16	Which of the followi (A) MnS ($K_{sp} = 8 \times 1$ (C) Bi ₂ S ₃ ($K_{sp} = 1 \times 1$	0-37)		ZnS ($K_{sp} = 7 \times 10^{-10}$ Ag ₃ (PO ₄) ($K_{sp} = 7 \times 10^{-10}$	0 ⁻¹⁶) = 1.8×10 ⁻¹⁸)		58881, BI			
www.tekoclasses.com	Q.17	The precipitate of C (A) 10^{-4} M Ca ³⁺ + (C) 10^{-5} M Ca ²⁺ +	$aF_2(K_{sp} = 1.7 \times 1)$ $10^{-4} M F^-$ $10^{-3} M F^-$	0 ⁻¹⁰) is obtained (B) 1 (D) 1	l when equal vo 0^{-2} M Ca ²⁺ + 10^{-3} M Ca ²⁺ +	lumes of the fo 10 ⁻³ M F ⁻ 10 ⁻⁵ M F ⁻	llowing are mixed	0 98930			
```	Q.18	The solubility of AgCl in water, 0.01 M CaCl ₂ , 0.02 M NaCl and 0.05 M AgNO ₃ are denoted by S ₁ , S ₂ , S ₃ and S ₄ respectively. Which of the following relationship is correct? (A) S ₁ > S ₂ > S ₃ > S ₄ (C) S ₁ > S ₃ > S ₂ > S ₁ (D) S ₁ > S ₂ = S ₃ > S ₄ (D) S ₁ > S ₂ = S ₃ > S ₄									
Package from website:	Q.19	How many moles NH ₃ must be added to 2.0 litre of 0.80 M AgNO ₃ in order to reduce the Ag ⁺ concentration to $5 \times 10^{-8}$ M. K _f of [Ag(NH ₃ ) ₂ ⁺ ] = $10^{8}$ (A) 0.4 (B) 2 (C) 3.52 (D) 4									
Packa	Q.20	The solubility of me				= <b>0.1 M</b> }can be	e represented by	R. K. Si			
udy		MS	+ 2H⁺ <b>⇐</b> M ²⁺ +	$+ H_2 S; K_{eq} = \frac{1}{2}$	$\frac{M^{2+}][H_2S]}{[H^+]^2}$			(S. F			
<b>FREE Download Study</b>		The value of K _{eq} is g metal sulphides are s	iven for few meta	al sulphide. If co	nc. of each meta	al ion in solutior S solution.	1 is <b>0.01 M</b> , which	ctor : SUHAG R. KARIYA (S			
Dow		Metal sulp	hides	MnS	ZnS	CoS	PbS	AG F			
FREE		$\mathbf{K}_{\mathbf{eq}} = \frac{[\mathbf{M}^{2}]}{[\mathbf{H}]}$	$\frac{1}{\left[\frac{H_2S}{H^+}\right]^2}$	$3 \times 10^{10}$	$3 \times 10^{-2}$	3	$3 \times 10^{-7}$	tor : SUF			
		$(\Lambda)$ Mpg 7pg Cog	$(\mathbf{D})$ <b>D</b> bC <b>7</b> .	$\mathbf{T}$ $(\mathbf{C})$ $\mathbf{C}$	16 7 c	$(\mathbf{D})$ <b>DbC</b>		Š			

(A) MnS, ZnS, CoS (B) PbS, ZnS, CoS (C) PbS, ZnS (D) PbS

2 **TEKO CLASSES, Director : S** 

# EXERCISE IV

				MU							
Q	.1	In the reaction $I^- + I_2^-$	[ <b>JEE</b> '97, 1]	EQULIBRIUM							
Q	.2	Between Na ⁺ & Ag ⁺ w	- , -								
Q	.3	Select the correct alter If $pK_b$ for fluoride ion temperature is :	[JEE'97,1+1] in water at this	Page 21 of 24 IONIC							
		(A) $1.74 \times 10^{-5}$	(B) $3.52 \times 10^{-3}$	(C) $6.75 \times 10^{-4}$	(D) 5.38 × 10	-2	ge 21 c				
Q	.4	The solubility of $A_2X_3$ (A) 6 y ²	is y mol dm ⁻³ . Its solubil (B) 64 y ⁴	lity product is (C) 36 y ⁵	(D) 108 y ⁵	[JEE 97]					
www.tekoclasses.com	2.5	Which of the following (A) the pH of $1.0 \times 10$ (B) the conjugate base (C) autoprotolysis con (D) when a solution of a pH = (1/2) pKa.	[ <b>JEE '98, 2</b> ]	0 98930 58881 , BHOPAI							
	.6										
Package from website:	.7	The pH of 0.1 M solut (A) NaCl $<$ NH ₄ Cl $<$ (C) NaCN $<$ NH ₄ Cl $<$		s increases in the order (B) HCl < NH ₄ Cl < N (D) HCl < NaCl < Na		[JEE 99]	Sir) PH: (0755)- 32 00 000,				
$\mathbf{N}$	.8	-	f 6.3 g oxalic acid dihydr neutralise 10 mL of this (B) 20 mL	-		of 0.1 N NaOH [ <b>JEE 2001</b> ]	ra (s. r. k.				
FREE Download Stud	.9		alt ApBq, the relationship (B) Ls = $S^{p+q}$ , $p^p$ . $q^p$		t (Ls) with its sol (D) Ls = $S^{pq}$ , (	•	: SUHAG R. KARIYA (S.				
FREE D	.10	A solution which is 10 ⁻ MnS, FeS, ZnS and Hg (A) FeS	⁻³ M each in Mn ²⁺ , Fe ²⁺ , 7 gS are 10 ⁻¹⁵ , 10 ⁻²³ , 10 ⁻²⁰ (B) MnS	Zn ²⁺ and Hg ²⁺ is treated v and 10 ⁻⁵⁴ respectively, (C) HgS	with 10 ⁻¹⁶ M sulp which one will p (D) ZnS	recipitate first?					
Q	.11		= $10^{-5}$ ). It forms a salt N	NaX (0.1 M) on reacting	g with caustic so	[JEE 2003] da. The degree	Director				
		of hydrolysis of NaX (A) 0.01%	18 (B) 0.0001%	(C) 0.1%	(D) 0.5%	[ <b>JEE 2004</b> ]	SSES,				
Q	.12		$5 = 5 \times 10^{-4}$ ) is added to (	).08 moles of HCl and th	e solution is dilu	ted to one litre,	TEKO CLASSES,				
		resulting hydrogen ion (A) $1.6 \times 10^{-11}$	(B) $8 \times 10^{-11}$	(C) $5 \times 10^{-5}$	(D) $2 \times 10^{-2}$	[JEE 2005]	TEK				

## SUBJECTIVES

	SUDJECTIVES
Q.13	An acid type indicator, HIn differs in colour from its conjugate base $(In^{-})$ . colour differences only when the ratio $[In^{-}]/[HIn]$ is greater than 10 or sma the minimum change in the pH of the solution to observe a complete colour difference.
Q.14	A sample of AgCl was treated with 5.00 ml of 1.5 M Na ₂ CO ₃ solution to solution contained 0.0026 g of Cl ⁻ per litre . Calculate the solubility product $(K_{sp} Ag_2CO_3 = 8.2 \times 10^{-12})$
Q.15	Given : $Ag(NH_3)_2^+ \rightleftharpoons Ag^+ + 2 NH_3$ , $K_c = 6.2 \times 10^{-8} \& K_{sp}$ of Ag Calculate the concentration of the complex in 1.0 M aqueous ammonia.
Q.16	What will be the resultant pH when 200 ml of an aqueous solution of H $300 \text{ ml}$ of an aqueous solution of NaOH (pH = 12.0) ?
asses.con d.17	The solubility of $Pb(OH)_2$ in water is $6.7 \times 10^{-6}$ M. Calculate the solub solution of pH = 8.
www.tekoclasses.com	The average concentration of $SO_2$ in the atmosphere over a city on a cert average temperature is 298 K. Given that the solubility of $SO_2$ in water at and the pK _a of H ₂ SO ₃ is 1.92, estimate the pH of rain on that day.
0.19	500 ml of 0.2 M aqueous solution of acetic acid is mixed with 500 mL of
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Calculate the degree of dissociation of acetic acid in the resulting solution If 6 g of NaOH is added to the above solution, determine final pH. Assume on mixing, $K_a$ of acetic acid is $1.75 \times 10^{-5}$ M.
Q.20	Will the pH of water be same at 4°C and 25°C? Explain.
<b>96</b> Q.21	0.1 M of HA is titrated with 0.1 M NaOH, calculate the pH at end point. C
7 Pack	<i>α</i> << 1.
itudy	
ad S	
ownle	
FREE Download St	
FRE	

IONIC EQULIBRIUM tor, HIn differs in colour from its conjugate base (In⁻). The human eye is sensitive to nly when the ratio  $[In^{-}]/[HIn]$  is greater than 10 or smaller than 0.1. What should be e in the pH of the solution to observe a complete colour change  $(K_a = 1.0 \times 10^{-5})$ ? [JEE '97, 2] vas treated with 5.00 ml of 1.5 M Na₂CO₃ solution to give Ag₂CO₃. The remaining 0.0026 g of C^{$\Box$} per litre . Calculate the solubility product of AgCl. of 24 [JEE '97, 5]  $Ag^+ \Rightarrow Ag^+ + 2 \text{ NH}_3$ ,  $K_c = 6.2 \times 10^{-8} \& K_{sp} \text{ of } AgCl = 1.8 \times 10^{-10} \text{ at } 298 \text{ K}$ . [JEE '98, 5] BHOPAI sultant pH when 200 ml of an aqueous solution of HCl (pH = 2.0) is mixed with [JEE '98, 2]  $b(OH)_2$  in water is  $6.7 \times 10^{-6}$ M. Calculate the solubility of Pb(OH)₂ in a buffer 58881 [JEE '99, 4] 0 98930 ntration of  $SO_2$  in the atmosphere over a city on a certain day is 10 ppm, when the e is 298 K. Given that the solubility of SO₂ in water at 298 K is 1.3653 moles litre⁻¹ [JEE 2000] TEKO CLASSES, Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, ueous solution of acetic acid is mixed with 500 mL of 0.2 M HCl at 25°C. e of dissociation of acetic acid in the resulting solution and pH of the solution. ded to the above solution, determine final pH. Assume there is no change in volume [JEE 2002] [JEE 2003] ted with 0.1 M NaOH, calculate the pH at end point. Given  $Ka(HA) = 5 \times 10^{-6}$  and [JEE 2004]

# **ANSWER KEY** EXERCISE I

			WER <b>F</b> ERCISE								
	ION	IZATION	CONSTA	NTS A N	DnH						
Q.1.1 Q.1.4	(i) $1.8 \times 10^{-16}$ , (ii) $1.66 \times 10^{-16}$ , (iii) $1.66 \times 10^{-16}$ , (i) K _a = 10 ⁻⁸ , (b) K _b = 10 ⁻¹⁶ , (c) K _b = 10 ⁻	10 ⁻⁵ , (iii) 4 > ) ⁻⁶	< 10 ⁻¹⁰	Q.1.2	10	Q.1.3	170.4				
Q.1.5	(a) +1, (b) $0.522$ , (c) $2.87$ , (l) 1, (m) 3						(j) 11.30 (k) 9				
Q.1.6	6.81 Q.1.7		$10^{7}$		0.6 ×10	Q.1.11	0.556 M				
Q.1.9 Q.1.12	(i) 6.51 ; (ii) (a) Basic , (b) $1.11 \times 10^{-4}$ Q.1.13 4.87	Q.1.14	(H ⁺ ] =1	$2.51 \times 10$	⁻² M, [CH0						
Q.1.15	error = 1% Q.1.16[H ⁺ ] =										
Q.1.17	2.08 B			C & DAC	FS						
<b>POLYPROTIC ACIDS &amp; BASES</b> Q.2.1 $[S^{2-}] = 2.5 \times 10^{-15}$ Q.2.2 $[H^+] = [H_2PO_4^{-}] = 5.623 \times 10^{-3}, [HPO_4^{2-}] = 6.8 \times 10^{-8}, [PO_4^{-3-}] = 5.441 \times 10^{-18}$											
3 Q.2.3	$pH = 11.46$ , $[enH_2^{2+}] = 7$ .				•						
Q.2.1 Q.2.2 Q.2.3 Q.2.5 Q.2.5 Q.2.7 Q.2.7 Q.3.1 Q.3.4 Q.3.4	p.2.3 pH = 11.46, $[enH_2^{2+}] = 7.1 \times 10^{-8} \text{ M}$ Q.2.4 0.2116 M, 0.1884 M, 0.0116 M, 0 0.2.5 0.0528 M, 0.0472 M, 0.0528 M, 0.000064 M Q.2.6 10.07 0.2.7 $[OH^{-}] = 3.57 \times 10^{-3} \text{ M}$ , $[H_2en]^{2+} = 2.7 \times 10^{-8} \text{ M}$ BUFFER SOLUTION										
v.tel			ER SOLU	TION							
Q.3.1	$[OH^{-}] = 9.0 \times 10^{-6}$	Q.3.2	4.74	0.220 (b)	Q.3.3	0.05  mo					
U 1 1	9.56 8.7782	Q.3.3 Q.3.7	(a) pH = 9.7324	= 9.239 (D	) lowered (	(c) pH = 4	.099				
website: 0.3.8 0.3.9	(a) 4.7525 (b) 4.697, (c) 4.			id additio	n 0.96% or	n base addi	ition.				
<b>ep</b> Q.3.9	$[H^+]=2.5\times10^{-3}$						$\mathbf{\nabla}$				
N U			DICATO	RS							
<b>5</b> Q.4.1	$[HI_n] = 28.57\%$	Q.4.2	(b), (c)								
- Q.4.3	(methyl red), one with pH = 85.71%	Q.4.5	$\Delta pH = 0$		e						
<b>Jackage from</b> Q.4.1 Q.4.3 Q.4.4 Q.5.1			DROLYS								
<b>e</b> Q.5.1	$[OH^{-}] = 6.664 \times 10^{-6}$		pH = 4.4		Q.5.3	$K_{b} = 6.2$	$25 \times 10^{-10}$				
<b>Approx</b> Q.5.4 Q.5.7	0.56%, pH = 7	Q.5.5	1.667%		Q.5.6	0.26%					
<b>g</b> Q.5.7	4.0%	Q.5.8	$10^{-6}$ ; 10	0-8	Q.5.9	pH = 10					
<b>peolino</b> Q.5.10 Q.5.13	8.34	Q.5.11	4.19		Q.5.12	5.12 ×1	0 ⁻⁶ M				
	(a) 6, (b) $1 \times 10^{-5}$		CTIONS	0 71770							
<b>6</b> 061	8.71 ACID I	BASE REA Q.6.2	4.98	& IIIK	Q.6.3	6.1					
$\square Q.0.1$	$2.37 \times 10^{-6}$	-		73 [Na+]	Q.0.3 = 0.0379,		= 0.0373				
<b>HRE</b> Q.6.4 Q.6.6 <b>H</b> Q.6.8	$K_{\rm b} = 1.8 \times 10^{-5}, 5.27$	Q.6.7	8.73	, o, [1 (u ]	0.0077,	[061150]	0.0272				
\Xi Q.6.8	(i) 2.85, (ii) 4.0969, (iii) 4.5			301, (vi) 8	3.699						
	SOLUB	SILITY & S	OLUBIL	ITY PRO	DUCT'S						
Q.7.1	OV is more soluble	072	1.6 × 10	)-8		072	1.4 ×10 ⁻⁴				
Q.7.1 Q.7.4	$QX_2$ is more soluble $[Cu^+] = 5 \times 10^{-11} \text{ M}$	Q.7.2	$1.0 \times 10$ $3.4 \times 10$			Q.7.3 Q.7.6	$2.6 \times 10^{-16}$				
Q.7.4 Q.7.7	$1.0 \times 10^{-18} \text{ M}$	Q.7.8				Q.7.9	$1.0 \times 10^{-5}$ mol/lit				
Q.7.10	$5 \times 10^{-10} \text{ M}$	Q.7.11	12 mg			<b>~</b>	III04 III				
Q.7.12 Q.7.14	(a) no precipitation will occur $2.1 \times 10^{-5}$	· ·	•	l form		Q.7.13	$1.6 \times 10^{-3}$				

Q.8.1 Q.8.3											Page 24 of 24 IONIC EQULIBRIUM			
Q.9.1	19.3	3 kg		Q.9.2				0-4		2.8	$\times 10^{-3}$	Μ		C EO
	PROFICIENCY TEST												ĬZ	
Q.1	False		Q.2	False		Q.3	True		Q.4	False		Q.5	True	<b>0</b>
Q.6						Q.8			Q.9					24
Q.10	7.14 ×	$10^{-3}$	Q.11	$3 \times 10$	)-6	Q.12	in bot	h dil acidi	ic and al	kaline so	olution			4 of
Q.13	$M_2X =$	$= QY_2 >$	$> PZ_3$											ge 2
Q.14	10-8		Q.15	7		Q.16	5.74		Q.17	HSO	-			Pag
Q.18		Sec	Q.19	less		-	less		Q.21					-
Q.10 Q.22			-	Weak	er	-	acidic		-			6 indepe	ndent	PA
<u>ح</u> 2	Duner		2.25	weak		-			2.25	cution	IC Q.2	omacpe	naem	BHOPAL
www.tekoclasses.com 9.0 0.1 0.13 0.13					<u> </u>	EXER	<b>SISE</b>	<u>11</u>						
<b>š</b> Q.1	$1.8 \times$	$10^{-16}, 1$	$0^{-14}$		Q.2	$K_{a} = 1$	$.25 \times 1$	10-2			Q.3	$\alpha = 0.0$	05	381
<b>S</b> Q.4	11.74				Q.5	$\Delta \ddot{H}_{neu}$	t = -51	.963 kJ r	nol ⁻¹					0 98930 58881
ି ପୁ Q.6	V = 2.	$77 \times 10$			Q.7			).13 M		Q.8	1.650			30
<b>y</b> Q.9	(a) 4.1			, (c) 9.8				(a) 2.1	2 (b) 4.	66 (c) 7	.2 (d) 1	2		89
<b>Q</b> .11	(a) 8.3			9.6 (d) 7			Q.12	5.158						0
<b>≩</b> Q.13	(a) ace			id molar										ő
	=			4	-	$Ac^{-}] = 0$								8
Q.14 نو	8.35, 9	9.60, 4.0	66					H = 3.83						8
<b>is</b> Q.17	0.0818	8 moles		Q.18	2.558	Q.19	[OH-	] = 3.73	$\times 10^{-2}$ M	Л, [Н ₃ Р	$O_4] = 6$	$\times 10^{-18}$	М	32
Q.20	9.7736			0.12 77	1120.2		10.7.7			10.2				2
	$K_h(H_2)$	$PO_4^{-}) =$	$= 2 \times 10^{-31}$	$0^{-12}; K_{h}$	$(HPO_4^2)$			$K_h(PO_4^{3-})$		10-2; a	cidic, ba	ISIC		075
<b>D</b> Q.22	$100_3^2$	[] = 4.9	× 10 ⁻⁵	М -6м. гі	100 -1	-Q.23	10-4 IC	$] = 3 \times 1$ $CO_3^{2-}] =$	$0^{-1}$ M	10-8				K. Sir) PH: (0755)- 32 00 000,
<b>G</b> Q.24	0.908	$J_{3} = 9.$	$0.3 \times 10$	(a) 0	$100_{3}$ J	= 4.9 X -5 M 0	$10^{-1}$ [C	$[0_3^{-5}] = 0^{-5}, 8.9$	$2.43 \times 10^{-16}$	(b) 0	06			đ
<b>RX</b> O 27	1.6 mm					IVI, 9			× 10	(0) 9.	Q.31	8.96		Sir
Package from website: Package from website: 0.14 0.20 0.20 0.21 0.24 0.25 0.27 0.27 0.27 0.27	1.0 111			-			-				-			X.
$\sim 0.32$	11.22		0.33	0.954	2. pK =	4.751.	$\frac{1}{-}$ th &	$\frac{10}{11}$ th s	stages c	of neutra	lisation			Ŕ
<b>A</b> Q.32 <b>S</b> Q.34				01201										s) 1
<b>5</b> Q.34	(a) 5.8	85 (b) 1	0.48	_				$10^{-6}$ M,	$2 \times 10^{-4}$					Σ
<b>Q.36</b>	9.99, 8	s = 2.5	× 10 ⁻⁵ N	М	Q.37	9.66 ×	: 10-3			Q.38	$[Cd^{2*}]$			AR
<b>EKEE Download</b> (0.34 (0.39) (0.39) (0.39) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36) (	Precipi	itation w	vill occui	r	7	WDD								ž
<b>NO</b>		<b>•</b> •	a	<b>a a</b>		<u>EXERC</u>			a	0 (	Ð	~ -	P	9
$\square Q.1$	A	Q.2	C	Q.3	B	Q.4	B	Q.5	C	Q.6	D	Q.7	B	H
Q.8	A	Q.9	D	Q.10	D	Q.11	В	-	В	Q.13	D	Q.14	В	SU
<b>P</b> Q.15	А	Q.16	D	Q.17	В	Q.18		Q.19	D		Q.20	D		2
						EXERC								ect
Q.1	$I_2$							accept e⁻			Q.4	D		DİŽ
Q.5	B, C		Q.6	А, В,	С	Q.7			Q.8	А	Q.9	А		ທີ່
Q.10			Q.11	А		Q.12	В							3SE
	<u>ECTIVE</u>		0.14	17	1 71	10.10		0.15	F.4. (3)		0.070	0		ΓĂ
	∆pH =	:2 11.2010	Q.14	$K_{sp} =$	1./I X	10 ⁻¹⁰				$[\mathrm{H}_3)_2^+]$ :	= 0.0539	9		0 0
	pH = 1							Q.18	think ?			n		TEKO CLASSES, Director : SUHAG R. KARIYA (S.
Q.19	(a) 0.0	11/3%,	(D) 4./	51	Q.20	No it	will be	>		Q.21	рН = 9	9		F