[As	s per Choice B	NALOG ELECTR Sased Credit Sys SMESTER – III ()	stem (CBCS) scheme]
Subject Code	15EC32	IA Marks	20	
Number of Lecture Hours/Week	04	Exam Marks	80	
Total Number of Lecture Hours	50	Exam Hours		
		CREDITS – 0		
Course objectives				
• Explain and Der	monstrate BJT	Amplifier, Hybr	id Equivaler	nd configurations. It and Hybrid Models. ETs and MOSFETs.
 various frequence Define, Demons operation. Demonstrate an Modules	trate and Analy	ack and Oscillat		in different modes of using FET. Revised Bloom's Taxonomy (RBT)
Module -1			Hours	Level
BJT AC Analysis Transistor Modelin Common emitter fix Emitter follower connection-DC bia	g, The re trai ked bias, Voltag configuration	nsistor model, ge divider bias,		

Module -2		
 Field Effect Transistors: Construction and Characteristics of JFETs, Transfer Characteristics, Depletion type MOSFET, Enhancement type MOSFET. FET Amplifiers: JFET small signal model, Fixed bias configuration, Self bias configuration, Voltage divider configuration, Common Gate configuration. Source-Follower Configuration, Cascade configuration. 	10 Hours	L1, L2, L3
Module -3	1	
BJT and JFET Frequency Response: Logarithms, Decibels, Low frequency response – BJT Amplifier with RL, Low frequency response- FET Amplifier, Miller effect capacitance, High frequency response – BJT Amplifier, High frequency response-FET Amplifier, Multistage Frequency Effects.	10 Hours	L1, L2, L3
Module -4		I
Feedback and Oscillator Circuits: Feedback concepts, Feedback connection types, Practical feedback circuits, Oscillator operation, FET Phase shift oscillator, Wein bridge oscillator, Tuned Oscillator circuit, Crystal oscillator, UJT construction, UJT Oscillator.	10 Hours	L1,L2, L3, L4
Module -5		
Power Amplifiers: Definition and amplifier types, Series fed class A amplifier, Transformer coupled class A amplifier, Class B amplifier operation and circuits, Amplifier distortion, Class C and Class D amplifiers. Voltage regulators: Discrete transistor voltage regulation - Series and Shunt Voltage regulators.	10 Hours	L1, L2, L3

Course outcomes:

After studying this course, students will be able to:

- Acquire knowledge of
 - Working principles, characteristics and basic applications of BJT and FET.
 - Single stage, cascaded and feedback amplifier configurations.
 - Frequency response characteristics of BJT and FET.
 - Power amplifier classifications such as Class A, Class B, etc.
- Analyse the performance of
 - FET amplifier in CS configuration.
 - Power Amplifiers and Oscillator circuits.
- Interpretation of performance characteristics of transistors amplifiers, frequency Response and Oscillators.
- Apply the knowledge gained in the design of transistorized circuits, amplifiers and Oscillators.

Graduate Attributes (as per NBA):

- Engineering Knowledge.
- Problem Analysis.
- Design / development of solutions (partly).
- Interpretation of data.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module.

• Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

Robert L. Boylestad and Louis Nashelsky, "Electronics devices and Circuit theory", Pearson, 10th Edition, 2012, ISBN: 978-81-317-6459-6.

- 1. Adel S. Sedra and Kenneth C. Smith, "Micro Electronic Circuits Theory And Applicatication," 5th Edition ISBN:0198062257
- 2. Fundamentals of Microelectronics, Behzad Razavi, John Weily ISBN 2013 978-81-265-2307-8
- 3. J.Millman & C.C.Halkias–Integrated Electronics, 2nd edition, 2010, TMH. ISBN 0-07-462245-5
- **4.** K. A. Navas, "Electronics Lab Manual", Volume I, PHI, 5th Edition, 2015, ISBN:9788120351424.

[As	per Choice Base	AL ELECTRONIC: d Credit System (STER – III (EC/TC	CBCS) scheme]	
Subject Code	15EC33	IA Marks	20		
Number of	04	Exam Marks	80		
Lecture					
Hours/Week					
Total Number of	50	Exam Hours	03		
Lecture Hours					
	(CREDITS – 04			
 Algebraic Equat Define and De Subtractors, Bir Describe, Dem 	ate and Analyze C ions using Karnau escribe Decoders, nary comparators, onstrate, Analyze	ombinational Logic ogh Maps and Quin Encoders, Digit Latches and Mast and Design of State diagrams an	c circu ne Mc tal m er-Sla f Mea	Clusky Techn ultiplexers, ve Flip-Flops aly and Mo	iques. Adders and ore Models,
	1				Revised
	Modules			Teaching	Bloom's
				Hours	Taxonomy (RBT) Level
Module – 1					
Principles of comb logic, canonical forr truth tables, Karn specified functions equations, Quine-M McCluskey using do Tables. (Text 1, Chapter 3)	ns, Generation of s augh maps-3,4,5 Don't care terms IcCluskey minimiza on't care terms, Re	witching equations variables, Incomp) Simplifying Max ation technique, Q	from letely term uine-	10 Hours	L2, L3
Module -2					
Analysis and des approach to comb decoders, Encoders as Boolean function Cascading full adder (Text 1, Chapter 4)	pinational logic d , digital multiplexe on generators, Ac rs, Look ahead car	esign, Decoders, ers, Using multipl lders and subtrac	BCD exers ctors,	10 Hours	L1, L2, L3
Module -3					
Flip-Flops: Basic considerations, Th flip-flops): SR flip-fl Characteristic equa	e master-slave fli ops, JK flip-flops, 1	ip-flops(pulse-trig Edge triggered flip-	-	10 Hours	L1,L2

Module -4 Simple Flip-Flops Applications: Registers, binary ripple	10 Hours	L1,L2
counters, synchronous binary counters, Counters based on	10 Hours	L1,L2
shift registers, Design of a synchronous counters, Design of a		
synchronous mod-n counter using clocked T, JK, D and SR		
flip-flops. (Text 2, Chapter 6)		
Module -5		
Sequential Circuit Design: Mealy and Moore models, State	10 Hours	L2, L3,L4
machine notation, Synchronous Sequential circuit analysis,		
Construction of state diagrams, counter design.		
(Text 1, Chapter 6)		
Course outcomes:		
After studying this course, students will be able to:		
Acquire knowledge of		
 Combinational Logic. 		
 Simplification Techniques using Karnaugh Maps, Quine 	e-McClusky '	Technique.
o Operation of Decoders, Encoders, Multiplexers, Adders	and Subtrac	ctors.
 Working of Latches, Flip-Flops, 		
 Designing Registers, Counters. 		
• Mealy, Moore Models and State Diagrams		
• Analyse the performance of		
• Simplification Techniques using Karnaugh Maps, Quine	e-McClusky	l'echnique.
• Synchronous Sequential Circuits.		
• Design and Develop Mealy and Moore Models for digital cir		
• Apply the knowledge gained in the design of Counters and Graduate Attributes (as per NBA):	Registers.	
• Engineering Knowledge.		
 Problem Analysis. 		
 Design / development of solutions (partly). 		
 Interpretation of data. 		
Question paper pattern:		
• The question paper will have ten questions.		
• Each full question consists of 16 marks.		
• There will be 2 full questions (with a maximum of four su	ab questions) from each
module.	-	,
Each full question will have sub questions covering all the top	oics under a	module. The
students will have to answer 5 full questions, selecting one fu	ll question f	rom each
module.		
Text Books:		
1. Digital Logic Applications and Design, John M Yarbrough, 2001. ISBN 981-240-062-1.	Thomson Le	earning,
2. Donald D. Givone, "Digital Principles and Design", Mc Grav 0-07-052906-9.	w Hill, 2002.	ISBN 978-

- 1. D. P. Kothari and J. S Dhillon, "Digital Circuits and Design", Pearson, 2016, ISBN:9789332543539.
- 2. Morris Mano, *—Digital design*, Prentice Hall of India, Third Edition.
- 3. Charles H Roth, Jr., "Fundamentals of logic design", Cengage Learning.
- 4. K. A. Navas, "Electronics Lab Manual", Volume I, PHI, 5th Edition, 2015, ISBN: 9788120351424.

	[As per Choice	NETWORK ANALYSI Based Credit System EMESTER – III (EC/'	(CBCS) scheme]
Subject Code	15EC34	IA Marks	20
Number	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
	·	CREDITS – 04	•

Course objectives: This course enables students to:

- Describe, Apply and Analyze basic network concepts emphasizing Series and Parallel Combination of Passive Components, Source Transformation and Shifting.
- Describe, Apply and Analyze use of mesh and nodal techniques for Formulating the Transfer Function of Networks.
- Apply and Analyze various network theorems in solving the problems related to Electrical Circuits.
- Describe and Analyze two port networks and methods of analyzing the Electrical Networks.

Modules	Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module -1		·
Basic Concepts: Practical sources, Source transformations, Network reduction using Star – Delta transformation, Loop and node analysis With linearly dependent and independent sources for DC and AC networks, Concepts of super node and super mesh.	10 Hours	L1, L2,L3,L4
Module -2	•	
Network Theorems: Superposition, Reciprocity, Millman's theorems, Thevinin's and Norton's theorems, Maximum Power transfer theorem and Millers Theorem.	10 Hours	L1, L2, L3,L4
Module -3	•	·
Transient behavior and initial conditions: Behavior of circuit elements under switching condition and their Representation, evaluation of initial and final conditions in RL, RC and RLC circuits for AC and DC excitations.	10 Hours	L1, L2, L3,L4
Laplace Transformation & Applications : Solution of networks, step, ramp and impulse responses, waveform Synthesis.		

Module -4		
Resonant Circuits: Series and parallel resonance, frequency- response of series and Parallel circuits, Q–Factor, Bandwidth.	10 Hours	L1, L2, L3,L4
Module -5	L	1
Two port network parameters: Definition of z, y, h and transmission parameters, modeling with these parameters, relationship between parameters sets.	10 Hours	L1, L2, L3,L4
 Course outcomes: Acquire knowledge for solving problems related to Series and Parallel combination of Passive Components Source Shifting. Network Theorems and Electrical laws to reduce circuit feasible solutions. Various Two port Parameters and their Relationship for Analyze the Performance of various Types of Networks U principles. 	complexities finding Netw	and to arrive at ork Solutions.
 Graduate Attributes (as per NBA) Engineering Knowledge. Problem Analysis. Design / development of solutions. 		
 Question paper pattern: The question paper will have ten questions. Each full question consists of 16 marks. There will be 2 full questions (with a maximum of four module. Each full question will have sub questions covering all The students will have to answer 5 full questions, sele each module. 	l the topics u	nder a module.
Text Books: M.E. Van Valkenberg (2000), "Network analysis", Prenedition, 2000, ISBN: 9780136110958. 	ntice Hall of I	ndia, 3 rd
 Roy Choudhury, "Networks and systems", 2nd edition Publications, 2006, ISBN: 9788122427677. 	, New Age Inte	ernational
Reference Books:		
 Hayt, Kemmerly and Durbin "Engineering Circuit Ana 2010. J. David Irwin /R. Mark Nelms, "Basic Engineering C 	0	
 2. J. David frwin / R. Mark Neifils, Basic Engineering C 8th ed, 2006. 3. Charles K Alexander and Mathew N O Sadiku, "Fundamental Structure Struct	Ū.	
Circuits", Tata McGraw-Hill, 3 rd Ed, 2009.	uamentais of	

	ELECT	RONIC INSTRUMENT	TATION	
[A	-	Based Credit System	· / ·	
		EMESTER – III (EC/T		
Subject Code	15EC35	IA Marks	20	
Number of	04	Exam Marks	80	
Lecture				
Hours/Week	50		0.0	
Total Number of	50	Exam Hours	03	
Lecture Hours		CREDITS – 04		
Course objectives	• This course	will enable students to	0.	
 probability at Describe bas instruments. Describe bas Describe and generators, A 	nalysis. ic functional o ic concepts of discuss func of and DC bri	acy and precision, typ concepts of various ar microprocessor based tioning and types of o dges. significance and	nalog and digital d instruments. scilloscopes and	measuring I signal
transducers.		_		
	Module	5	Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Precision, Resoluti	on and Signi ient error c	Definitions, Accura ificant Figures, Types ombinations, Basics	s of	L1, L2, L3
Ayrton Shunt or Shunt, Extending of	Universal S of Ammeter Ra	ultirange Ammeter, Shunt, Requirements anges, RF Ammeter hermocouple. (Text 1	of	
as a DC Voltmeter, Extending Voltme Voltmeter using Re Differential Voltme Considerations in Multimeter. (Text 2)	DC Voltmeter eter Ranges ctifiers. T ter, True RMS Choosing an	ransistor Voltmeter, Voltmeter,		
Module -2				
Slope Integrating T Commonly used Approximations, C Resolution and S	ype DVM, Int principles Continuous B ensitivity of	n, RAMP technique, E egrating Type DVM, M of ADC, Succes calance DVM, 3 ¹ / ₂ -D Digital Meters, Gen occssor based Ramp t	Iost sive igit, eral	L1, L2, L3

Digital Instruments: Introduction, Digital Multimeters, Digital Frequency Meter, Digital Measurement of Time,		
Universal Counter, Digital Tachometer, Digital pH Meter, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based Instruments. (Text 1)		
Module -3		·
Oscilloscopes: Introduction, Basic principles, CRT features, Block diagram of Oscilloscope, Simple CRO, Vertical Amplifier, Horizontal Deflecting System, Sweep or Time Base Generator, Storage Oscilloscope, Digital Readout Oscilloscope, Measurement of Frequency by Lissajous Method, Digital Storage Oscilloscope. (Text 1)	10 Hours	L1, L2, L3
Signal Generators: Introduction, Fixed and Variable AF Oscillator, Standard Signal Generator, Laboratory Type Signal Generator, AF sine and Square Wave Generator, Function Generator, Square and Pulse Generator, Sweep Generator. (Text 1)		
Module -4		·
 Measuring Instruments: Output Power Meters, Field Strength Meter, Stroboscope, Phase Meter, Vector Impedance Meter, Q Meter, Megger, Analog pH Meter. (Text 1) Bridges: Introduction, Wheatstone's bridge, Kelvin's 	10 Hours	L1, L2, L3
Bridge; AC bridges, Capacitance Comparison Bridge, Inductance Comparison Bridge, Maxwell's bridge, Wein's bridge, Wagner's earth connection. (Text 1)		
Bridge; AC bridges, Capacitance Comparison Bridge, Inductance Comparison Bridge, Maxwell's bridge, Wein's		
Bridge; AC bridges, Capacitance Comparison Bridge, Inductance Comparison Bridge, Maxwell's bridge, Wein's bridge, Wagner's earth connection. (Text 1)	10 Hours	L1, L2, L3

- Apply the knowledge of passive component measurement
- Interpretation of performance characteristics of analog and digital measuring instruments.
- Understand the importance of life-long learning in the field of electronic instrumentation.

Graduate Attributes (as per NBA)

- Engineering Knowledge.
- Problem Analysis (partly).
- o Life-long learning.

Question paper pattern:

- The question paper will have ten questions.
- Each full question consists of 16marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- **1.** H. S. Kalsi, "Electronic Instrumentation", McGraw Hill, 3rd Edition, 2012, ISBN:9780070702066.
- **2.** David A. Bell, "Electronic Instrumentation & Measurements", Oxford University Press PHI 2nd Edition, 2006 ISBN 81-203-2360-2.

- 1. A. D. Helfrick and W.D. Cooper, "Modern Electronic Instrumentation and Measuring Techniques", Pearson, 1st Edition, 2015,ISBN:9789332556065.
- 2. A. K. Sawhney, "Electronics and Electrical Measurements", Dhanpat Rai &Sons. ISBN -81-7700-016-0

ENGINEERING ELECTROMAGNETICS

[As per Choice Based Credit System (CBCS) scheme]

SEMEST	TER – III (EC/TC)	, <u> </u>	
Subject Code	15EC36	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
CF	REDITS – 04		
Course objectives: This course will ena	able students to:		
• Define and Describe Coluomb's law	and electric field in	tensity.	
Define and Explain electric flux den	sity Gauss's law or	d divergence	

- Define and Explain electric flux density, Gauss's law and divergence.
- Describe energy and potential along with concepts of current and conductors.
- Describe Poisson's and Laplace's Equations, and Uniqueness Theorem.
- Define and Describe basic concepts of Magnetostatics by studying the various laws, Stoke's Theorem and scalar and vector magnetic flux density.
- Explain Magnetic Forces, Materials and Inductance.
- Describe the concepts of time varying fields and Develop Maxwell's equations in Point and Integral Forms.
- Describe and Compare different Types of Wave Propagation.

Modules	Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module - 1		
Coulomb's Law, Electric Field Intensity and Flux density Experimental law of Coulomb, Electric field intensity, Field due to continuous volume charge distribution, Field of a line charge, Electric flux density.	10 Hours	L1, L2
Module -2		
 Gauss's law and Divergence Gauss' law, Divergence. Maxwell's First equation (Electrostactics), Vector Operator ▼ and divergence theorem. Energy, Potential and Conductors Energy expended in moving a point charge in an electric field, The line integral, Definition of potential difference and potential, The potential field of point charge, Current and Current density, Continuity of current. 	10 Hours	L1, L2
Module -3	1	I
 Poisson's and Laplace's Equations Derivation of Poisson's and Laplace's Equations, Uniqueness theorem, Examples of the solution of Laplace's equation. Steady Magnetic Field Biot-Savart Law, Ampere's circuital law, Curl, Stokes' theorem, Magnetic flux and magnetic flux density, Scalar and Vector Magnetic Potentials. 	10 Hours	L1, L2

Magnetic Forces	10 Hours	L1, L2
Force on a moving charge, differential current elements, Force between differential current elements.		,
Magnetic Materials		
Magnetisation and permeability, Magnetic boundary		
conditions, Magnetic circuit, Potential Energy and forces		
on magnetic materials.		
Module -5		
Time-varying fields and Maxwell's equations Farday's law, displacement current, Maxwell's equations in point form, Maxwell's equations in integral form.	10 Hours	L1, L2, L3
Uniform Plane Wave		
Wave propagation in free space and good conductors.		
Poynting's theorem and wave power, Skin Effect.		
 Basic Concepts of Electric Fields, Magnetic Fields a Basic Concepts to Solve Complex Problems in Elect and Electromagnetic Waves. Time-varying fields and Maxwell's equations. Wave propagation in free space and dielectrics. Analyze Different Charge and Current Configurations to der Equations. 	ric Fields, M	Agnetic Fields
 Equations. Poisson's and Laplace's Equations, Uniqueness the Laplace's equation. Time-varying fields, Maxwell's equations, wave prop dielectrics. Interpretation of 		
 Poisson's and Laplace's Equations, Uniqueness the Laplace's equation. Time-varying fields, Maxwell's equations, wave prop 	bagation in t ns. nd Electronic	free space and
 Poisson's and Laplace's Equations, Uniqueness the Laplace's equation. Time-varying fields, Maxwell's equations, wave prop dielectrics. Interpretation of Gradient, Divergence and Curl Operators. Maxwell's Equations in differential and integral form Wave propagation in free space and dielectrics. Apply the knowledge gained in the design of Electric an Electrical Machines and Antenna's and Communication 	bagation in t ns. nd Electronic	free space and
 Poisson's and Laplace's Equations, Uniqueness the Laplace's equation. Time-varying fields, Maxwell's equations, wave prop dielectrics. Interpretation of Gradient, Divergence and Curl Operators. Maxwell's Equations in differential and integral form Wave propagation in free space and dielectrics. Apply the knowledge gained in the design of Electric an Electrical Machines and Antenna's and Communication Engineering Knowledge 	bagation in t ns. nd Electronic	free space and
 Poisson's and Laplace's Equations, Uniqueness the Laplace's equation. Time-varying fields, Maxwell's equations, wave prop dielectrics. Interpretation of Gradient, Divergence and Curl Operators. Maxwell's Equations in differential and integral form Wave propagation in free space and dielectrics. Apply the knowledge gained in the design of Electric an Electrical Machines and Antenna's and Communication 	bagation in t ns. nd Electronic	free space and

Question paper pattern:

- The question paper will have ten questions.
- Each full question consisting of 16 marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

W.H. Hayt and J.A. Buck, "Engineering Electromagnetics", 7th Edition, Tata McGraw-Hill, 2009, ISBN-978-0-07-061223-5.

- **1.** John Krauss and Daniel A Fleisch, " Electromagnetics with applications", Mc Graw-Hill.
- 2. N. Narayana Rao, "Fundamentals of Electromagnetics for Engineering", Pearson.

	ANALOG ELECTRONICS LABORATORY	7	
	[As per Choice Based Credit System (CBCS) sc	heme]	
	SEMESTER – III (EC/TC)		
Laboratory Code	15ECL37	IA	20
-		Marks	
Number of	01Hr Tutorial (Instructions)	Exam Marks	s 80
Lecture	+ 02 Hours Laboratory		
Hours/Week			
		Exam Hours	6 03
N	CREDITS – 02		·
-	es: This laboratory course enables students to	get practical	experien
0	bly, testing and evaluation of		
	Voltage Regulators.		
	ristics and Amplifiers.		
	teristics and Amplifiers.		
	racteristics and Amplifiers		
Power Amplif			
RC-Phase shi	ft, Hartley, Colpitts and Crystal Oscillators.		
aboratory Expe	riments:	Revise	ed
		Bloom	ı's
NOTE: The experiments are to be carried using discrete components			omy
only.		(RBT)	Level
1. Design and se	t up the following rectifiers with and without fi	lters L1. L2	2, L3, L4
•	e ripple factor and rectifier efficiency:		.,,
(a) Full Wave I			
()	iment to test diode clipping (single/double ende	ed) and L1 L2	1.3 1.4
	(positive/negative).	u) and D1, D2	, DJ, D T
lamping circuits	(positive/negative).		
3. Conduct an ex	periment on Series Voltage Regulator using Zer	ner L2, L3	8, L4
liode and power	transistor to determine line and load regulation	L	
characteristics.			
4. Realize BJT Da	rlington Emitter follower with and without	L2, L3	B. L4
	d determine the gain, input and output impeda		,
·····			
•	up the BJT common emitter amplifier using vo	oltage L2, L3	8, L4, L5
livider bias with	and without feedback and determine the gain-		
pandwidth produ	ct from its frequency response.		
6. Plot the transf	er and drain characteristics of a JFET and calc	ulate L1. L2	2, L3, L4
	ce, mutual conductance and amplification facto	,	, -,
	,		
7. Design, setup a	and plot the frequency response of Common So	urce L2, L3	8, L4, L5

8. Plot the transfer and drain characteristics of n-channel MOSFET and calculate its parameters, namely; drain resistance, mutual	L1, L2, L3, L4	
conductance and amplification factor.		
9. Set-up and study the working of complementary symmetry class B push pull power amplifier and calculate the efficiency.	L2, L3, L4, L5	
10. Design and set-up the RC-Phase shift Oscillator using FET, and calculate the frequency of output waveform.	L2, L3, L4, L5	
11. Design and set-up the following tuned oscillator circuits using	L2, L3, L4, L5	
BJT, and determine the frequency of oscillation.		
(a) Hartley Oscillator (b) Colpitts Oscillator		
12. Design and set-up the crystal oscillator and determine the	L2, L3, L4, L5	
frequency of oscillation.		
Course outcomes: On the completion of this laboratory course, the s	tudents will be	
able to:		
• Design and Test rectifiers, clipping circuits, clamping circuits and	d voltage	
regulators.		
• Compute the parameters from the characteristics of JFET and M	OSFET devices.	
• Design, test and evaluate BJT amplifiers in CE configuration.		
 Design and Test JFET/MOSFET amplifiers. 		
• Design and Test a power amplifier.		
Design and Test a power amplifier.Design and Test various types of oscillators.		
• Design and Test various types of oscillators.		
• Design and Test various types of oscillators.		
Design and Test various types of oscillators. Graduate Attributes (as per NBA)		
 Design and Test various types of oscillators. Graduate Attributes (as per NBA) Engineering Knowledge. 		
 Design and Test various types of oscillators. Graduate Attributes (as per NBA) Engineering Knowledge. Problem Analysis. Design/Development of solutions. 		
 Design and Test various types of oscillators. Graduate Attributes (as per NBA) Engineering Knowledge. Problem Analysis. Design/Development of solutions. 	nation.	
 Design and Test various types of oscillators. Graduate Attributes (as per NBA) Engineering Knowledge. Problem Analysis. Design/Development of solutions. Conduct of Practical Examination: 	nation.	
 Design and Test various types of oscillators. Graduate Attributes (as per NBA) Engineering Knowledge. Problem Analysis. Design/Development of solutions. Conduct of Practical Examination: All laboratory experiments are to be included for practical examination 		
 Design and Test various types of oscillators. Graduate Attributes (as per NBA) Engineering Knowledge. Problem Analysis. Design/Development of solutions. Conduct of Practical Examination: All laboratory experiments are to be included for practical examination. Students are allowed to pick one experiment from the lot. 		

[As n	DIGITAL ELECTRONICS LABORATO ber Choice Based Credit System (CBCS) sc		
[115 p	SEMESTER – III (EC/TC)	memej	
Laboratory Code	15ECL38	IA Marks	20
Number of Lecture	01Hr Tutorial (Instructions)	Exam	50
Hours/Week	+ 02 Hours Laboratory	Mark	
		Exam	03
		Hour	
	CREDITS – 02		
experience in design, r o Demorgan's The o Full/Parallel Ad o Multiplexer usir o Demultiplexers			гасиса
Laboratory Experime		Revised I	Bloom's
j			
NOTE: Use discrete co	Taxonomy (RBT)		
	s given are suggestive; any	Level	
equivalent ICs can be	used.		
1. Verify		L1, L2, L3	
	orem for 2 variables.	21, 22, 20	
	luct and product-of-sum expressions		
using universal gat			
2. Design and implem		L3, L4	
(a) Full Adder using			
	using basic logic gates.		
3. Design and implem	L3, L4, L5		
using IC 7483. 4. Design and Implen	L3, L4, L5		
Comparator using			
5. Realize	L2, L3, L4		
(a) 4:1 Multiplexer u			
(b) 3-variable function	ion using IC 74151(8:1MUX).		
6. Realize 1:8 Demux	L2, L3, L4		
7. Realize the following	L2, L3		
(a) Clocked SR Flip-			
8. Realize the following (a) SISO (b) SIPO (c	L2, L3		
9. Realize the Ring Co	L2, L3		
IC7476.		, -	
10. Realize the Mod-N	L2, L3		
11. Simulate Full- Add	L2, L3, L4		
	L2, L3, L4		
12. Simulate Mod-8 S	ynchronous UP/DOWN Counter using	L2, L3, L4	

Course outcomes: On the completion of this laboratory course, the students will be able to:

- Demonstrate the truth table of various expressions and combinational circuits using logic gates.
- Design, test and evaluate various combinational circuits such as adders, subtractors, comparators, multiplexers and demultiplexers.
- Construct flips-flops, counters and shift registers.
- Simulate full adder and up/down counters.

Graduate Attributes (as per NBA)

- Engineering Knowledge.
- Problem Analysis.
- Design/Development of solutions.

Conduct of Practical Examination:

- All laboratory experiments are to be included for practical examination.
- Students are allowed to pick one experiment from the lot.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made zero.

NOTE:

For experiment 11 and 12 any open source or licensed simulation tool may be used.