
1

T.Y.B.Sc.(cs)

Paper II

Advanced Java Syllabus

UNIT I
Introduction to JFC and Swing, Features of the Java Foundation
Classes, Swing API Components, JComponent Class, Windows,
Dialog Boxes, and Panels, Labels, Buttons, Check Boxes, Menus,
Toolbars, Implementing Action interface, Pane, JScrollPane,
Desktop pane, Scrollbars, Lists and Combo Boxes, Text-Entry
Components, Colors and File Choosers, Tables and Trees, Printing
with 2D API and Java Print Service API.
JDBC Introduction, JDBC Architecture, Types of JDBC Drivers, The
Connectivity Model, The java.sql package, Navigating the
ResultSet object’s contents, Manipulating records of a ResultSet
object through User Interface , The JDBC Exception classes,
Database Connectivity, Data Manipulation (using Prepared
Statements, Joins, Transactions, Stored Procedures), Data
navigation.
UNIT II
Threads and Multithreading, The Lifecycle of a thread, Creating and
running threads, Creating the Service Threads, Schedules Tasks
using JVM, Thread-safe variables, Synchronizing threads,
Communication between threads.
Overview of Networking, Working with URL, Connecting to a
Server, Implementing Servers, Serving multiple Clients, Sending E-
Mail, Socket Programming, Internet Addresses, URL Connections,
Accessing Network interface parameters, Posting Form Data,
Cookies, Overview of Understanding the Sockets Direct Protocol.
Introduction to distributed object system, Distributed Object
Technologies, RMI for distributed computing, RMI Architecture, RMI
Registry Service, Parameter Passing in Remote Methods, Creating
RMI application, Steps involved in running the RMI application,
Using RMI with Applets.

Unit III
What Is a Servlet? The Example Servlets, Servlet Life Cycle,
Sharing Information, Initializing a Servlet, Writing Service Methods,
Filtering Requests and Responses, Invoking Other Web
Resources, Accessing the Web Context, Maintaining Client State,
Finalizing a Servlet.
What Is a JSP Page?, The Example JSP Pages, The Life Cycle of
a JSP Page, Creating Static Content, Creating Dynamic Content,
Unified Expression Language, JavaBeans Components,
JavaBeans Concepts, Using NetBeans GUI Builder Writing a
Simple Bean, Properties: Simple Properties, Using Custom tags,

2

Reusing content in JSP Pages, Transferring Control to Another
Web Component, Including an Applet.
Unit IV
Introduction to EJB, Benefits of EJB, Types of EJB, Session Bean:
State Management Modes; Message-Driven Bean, Differences
between Session Beans and Message- Driven Beans,
Defining Client Access with Interfaces: Remote Access, Local
Access, Local Interfaces and Container-Managed Relationships,
Deciding on Remote or Local Access, Web Service Clients, Method
Parameters and Access, The Contents of an Enterprise Bean,
Naming Conventions for Enterprise Beans, The Life Cycles of
Enterprise Beans, The Life Cycle of a Stateful Session Bean,
The Life Cycle of a Stateless Session Bean, The Life Cycle of a
Message-Driven Bean
Building Web Services with JAX-WS: Setting the Port, Creating a
Simple Web Service and Client with JAX-WS.

3

1

INTRODUCTION TO SWING

Unit Structure:

1.0 Objectives

1.1 Introduction to JFC and Swing

1.2 Swing Features and Concepts

1.3 Heavy Weight Containers

1.4 Top-Level Containers

1.5 Intermediate Swing Containers

1.6 Internal Frames

1.7 Summary

1.8 Unit end exercise

1.9 Further Reading

1.0 OBJECTIVES

The objective of this chapter is to learn the basics of how
Swing containers can be used to create good Graphical User
Interfaces. Here we will start with the heavy weight containers and
some very important intermediate containers.

1.1 INTRODUCTION TO JFC AND SWING

JFC is short for Java Foundation Classes, which encompass
a group of features for building graphical user interfaces (GUIs) and
adding rich graphics functionality and interactivity to Java
applications. It is defined as containing the features shown in the
table below.

Features of the Java Foundation Classes

Feature Description

Swing GUI
Components

Includes everything from buttons to split panes
to tables. Many components are capable of
sorting, printing, and drag and drop, to name a
few of the supported features.

4

Pluggable Look-
and-Feel Support

The look and feel of Swing applications is
pluggable, allowing a choice of look and feel.
For example, the same program can use either
the Java or the Windows look and feel.
Additionally, the Java platform supports the
GTK+ look and feel, which makes hundreds of
existing look and feels available to Swing
programs. Many more look-and-feel packages
are available from various sources.

Accessibility API Enables assistive technologies, such as screen
readers and Braille displays, to get information
from the user interface.

Java 2D API Enables developers to easily incorporate high-
quality 2D graphics, text, and images in
applications and applets. Java 2D includes
extensive APIs for generating and sending
high-quality output to printing devices.

Internationalization Allows developers to build applications that can
interact with users worldwide in their own
languages and cultural conventions. With the
input method framework developers can build
applications that accept text in languages that
use thousands of different characters, such as
Japanese, Chinese, or Korean.

How Are Swing Components Different from AWT
Components?

The AWT components are those provided by the JDK 1.0
and 1.1 platforms. Although the Java 2 Platform still supports the
AWT components. You can identify Swing components because
their names start with J. The AWT button class, for example, is
named Button, while the Swing button class is named JButton.
Additionally, the AWT components are in the java.awt package,
while the Swing components are in the javax.swing package.

The biggest difference between the AWT components and
Swing components is that the Swing components are implemented
with absolutely no native code. Since Swing components aren't
restricted to the least common denominator -- the features that are
present on every platform -- they can have more functionality than
AWT components. Because the Swing components have no native
code, they can be be shipped as an add-on to JDK 1.1, in addition
to being part of the Java 2 Platform.

5

Swing lets you specify which look and feel your program's
GUI uses. By contrast, AWT components always have the look and
feel of the native platform.

Example: Write a progam to create a Login Screen.

//Step 1 – import all the required packages

import javax.swing.*;

import java.awt.*;

//Step 2 – Decide the class name & Container class
//(JFrame/JApplet) to be used

public class Login extends JFrame

{

//Step 3 – Create all the instances required

JTextField txtName,txtPass;

JLabel lblName, lblPass;

JButton cmdOk,cmdCancel;

public Login()

{

//Step 4- Create objects for the declared instances

txtName=new JTextField();

txtPass =new JTextField();

lblName=new JLabel(“User Name”);

lblPass =new JLabel(“Password”);

cmdOk =new JButton(“Ok”);

cmdCancel=new JButton(“Cancel”);

//Step 5 – Add all the objects in the Content Pane with
//Layout

Container con=getContentPane();

con.setLayout(new FlowLayout());

con.add(lblName); con.add(txtName);

con.add(lblPass); con.add(txtPass);

con.add(cmdOk); con.add(cmdCancel);

}//constructor

//Step 6 – Event Handling. (Event handling code will come
//here)

6

public static void main(String args[])

{

//Step 7 – Create object of class in main method

Login l=new Login();

l.setSize(150,200);

l.setVisible(true);

}//main

}//class

The code in Login.java accomplishes the following tasks:
 Import all the required packages
 Decide the class name & Container class (JFrame/JApplet)

to be used
 Create all the instances required
 Create objects for the declared instances
 Add all the objects in the Content Pane with Layout
 Event Handling.
 Creating object of the class in main method.

Importing required packages

The following line imports the main Swing package:
import javax.swing.*;

Most Swing programs also need to import the two main AWT
packages:

import java.awt.*;
import java.awt.event.*;

Decide the class name & Container class

Every program that presents a Swing GUI contains at least
one top-level Swing container. For most programs, the top-level
Swing containers are instances of JFrame, JDialog, or JApplet.
Each JFrame object implements a single main window, and each
JDialog implements a secondary window. Each JApplet object
implements an applet's display area within a browser window. A
top-level Swing container provides the support that Swing
components need to perform their painting and event handling.

Create all the instances required
In the above example, first instances are created so that

they can be accessed from anywhere in the program and then the
objects are created inside the constructor.

7

Adding Components to Containers
Every Container has a default layout manger that places the

components inside the container according to the available size of
the conent pane.

In swing we cannot add a component directly to the heavy
weight, we need to get the object of the content pane and add all
the components to the content pane. We use the method
getContentPane() of the heavy container to get a Container object.
We then add all the components to the Container object.

Creating object of the class in main method

If the heavy weight continer is JFrame the we need to write
the main(). The main() will include the object of the class. Two
important properties we need to set is the size and visibility. The
methods used are setSize() and setVisible().

1.2 SWING FEATURES AND CONCEPTS

 Swing Components and the Containment Hierarchy - Swing
provides many standard GUI components such as buttons, lists,
menus, and text areas, which you combine to create your
program's GUI. It also includes containers such as windows and
tool bars.

 Layout Management - Layout management is the process of
determining the size and position of components. By default,
each container has a layout manager -- an object that performs
layout management for the components within the container.
Components can provide size and alignment hints to layout
managers, but layout managers have the final say on the size
and position of those components.

 Event Handling - Event handling is how programs respond to
external events, such as the user pressing a mouse button.
Swing programs perform all their painting and event handling in
the event-dispatching thread. Every time the user types a
character or pushes a mouse button, an event occurs. Any
object can be notified of the event. All it has to do is implement
the appropriate interface and be registered as an event listener
on the appropriate event source. Swing components can
generate many kinds of events. Here are a few examples:

8

Act that results in the event Listener type

User clicks a button, presses Return while typing
in a text field, or chooses a menu item

ActionListener

User closes a frame (main window) WindowListener

User presses a mouse button while the cursor is
over a component

MouseListener

User moves the mouse over a component MouseMotionListener

Component becomes visible ComponentListener

Component gets the keyboard focus FocusListener

Table or list selection changes ListSelectionListener

 Each event is represented by an object that gives information
about the event and identifies the event source. Event sources
are typically components, but other kinds of objects can also be
event sources. Each event source can have multiple listeners
registered on it. Conversely, a single listener can register with
multiple event sources.

 Painting - Painting means drawing the component on-screen.
Although it's easy to customize a component's painting, most
programs don't do anything more complicated than customizing
a component's border.

 Threads and Swing - If you do something to a visible
component that might depend on or affect its state, then you
need to do it from the event-dispatching thread. This isn't an
issue for many simple programs, which generally refer to
components only in event-handling code.

 More Swing Features and Concepts - Swing offers many
features, many of which rely on support provided by the
JComponent class. Some of the interesting features include
support for icons, actions, Pluggable Look & Feel technology,
assistive technologies, and separate models.

1.3 SWING API COMPONENTS – HEAVY WEIGHT
CONTAINERS

1.3.1 JFrames

A frame, implemented as an instance of the JFrame class, is
a window that has decorations such as a border, a title, and buttons
for closing and iconifying the window. Applications with a GUI
typically use at least one frame. By default, when the user closes a

9

frame onscreen, the frame is hidden. Although invisible, the frame
still exists and the program can make it visible again. If you want
different behavior, then you need to either register a window
listener that handles window-closing events, or you need to specify
default close behavior using the setDefaultCloseOperation method.
You can even do both.

The argument to setDefaultCloseOperation must be one of
the following values, which are defined in the WindowConstants
interface:

 DO_NOTHING_ON_CLOSE -- Don't do anything when the
user's requests that the frame close. Instead, the program
should probably use a window listener that performs some other
action in its windowClosing method.

 HIDE_ON_CLOSE (the default) -- Hide the frame when the user
closes it. This removes the frame from the screen.

 DISPOSE_ON_CLOSE -- Hide and dispose of the frame when
the user closes it. This removes the frame from the screen and
frees up any resources used by it.

Constructors:

JFrame()
JFrame(String)

Create a frame that is initially invisible. Call
setVisible(true) on the frame to make it visible. The
String argument provides a title for the frame. You
can also use setTitle to set a frame's title.

Methods:

1 Container getContentPane() - Returns the contentPane object
for this frame.

2 JMenuBar getJMenuBar() - Returns the menubar set on this
frame.

3 void setDefaultCloseOperation(int operation) - Sets the
operation that will happen by default when the user initiates a
"close" on this frame.

4 void setJMenuBar(JMenuBar menubar) - Sets the menubar for
this frame.

5 void setVisible(boolean b) - Shows or hides this component
depending on the value of parameter b.

6 void setLocation(int x,int y) - Moves this component to a new
location. The top-left corner of the new location is specified by
the x and y parameters in the coordinate space of this
component's parent.

10

7 void pack() - Causes this Window to be sized to fit the preferred
size and layouts of its subcomponents. If the window and/or its
owner are not yet displayable, both are made displayable
before calculating the preferred size. The Window will be
validated after the preferredSize is calculated.

8 void setTitle(String title) - Sets the title for this frame to the
specified string.

1.3.2 JDialog

The JDialog is the main class for creating a dialog window.
You can use this class to create a custom dialog, or invoke the
many class methods in JOptionPane to create a variety of standard
dialogs. Every dialog is dependent on a frame. When that frame is
destroyed, so are its dependent dialogs. When the frame is
iconified, its dependent dialogs disappear from the screen. When
the frame is deiconified, its dependent dialogs return to the screen.

A dialog can be modal. When a modal dialog is visible, it
blocks user input to all other windows in the program. The dialogs
that JOptionPane provides are modal. To create a non-modal
dialog, you must use the JDialog class directly. To create simple,
standard dialogs, you use the JOptionPane class. The
ProgressMonitor class can put up a dialog that shows the progress
of an operation. Two other classes, JColorChooser and
JFileChooser, also supply standard dialogs.

Constructors :

1 JDialog(Frame owner) Creates a non-modal dialog without a title
with the specifed Frame as its owner.

2 JDialog(Frame owner,
String title,
boolean modal)

Creates a modal or non-modal dialog
with the specified title and the specified
owner Frame.

Methods:

1 protected void dialogInit() - Called by the constructors to init the
JDialog properly.

2 Container getContentPane() - Returns the contentPane object for
this dialog.

3 void setDefaultCloseOperation(int operation) - Sets the operation
which will happen by default when the user initiates a "close" on
this dialog.

11

4 void setLayout(LayoutManager manager) - By default the layout
of this component may not be set, the layout of its contentPane
should be set instead.

1.3.3 JApplet

JApplet is an extended version of java.applet.Applet that
adds support for the JFC/Swing component architecture. The
JApplet class is slightly incompatible with java.applet.Applet.
JApplet contains a JRootPane as it's only child. The contentPane
should be the parent of any children of the JApplet.

To add the child to the JApplet's contentPane we use the
getContentPane() method and add the components to the
contentPane. The same is true for setting LayoutManagers,
removing components, listing children, etc. All these methods
should normally be sent to the contentPane() instead of the JApplet
itself. The contentPane() will always be non-null. Attempting to set it
to null will cause the JApplet to throw an exception. The default
contentPane() will have a BorderLayout manager set on it.

JApplet adds two major features to the functionality that it
inherits from java.applet.Applet. First, Swing applets provide
support for assistive technologies. Second, because JApplet is a
top-level Swing container, each Swing applet has a root pane. The
most noticeable results of the root pane's presence are support for
adding a menu bar and the need to use a content pane.

Constructors :

JApplet() - Creates a swing applet instance.

Methods:

1 Container getContentPane() - Returns the contentPane object
for this applet.

2 void setJMenuBar(JMenuBar menuBar) - Sets the menubar for
this applet.

3 void setLayout(LayoutManager manager) - By default the
layout of this component may not be set, the layout of its
contentPane should be set instead.

4 void update(Graphics g) - Just calls paint(g).

Example: Define a class that enables the drawing of freehand
lines on a screen through mouse clicking and dragging. The
drawing should be cleared when a key is pressed and the line
color should be selectable.

12

import java.awt.event.*;

import java.awt.*;

import javax.swing.*;

import java.applet.JApplet;

/* <applet code="FreeHand.class" width=500 height=500 >
</applet> */

public class FreeHand extends JApplet

{

int lastx,lasty,newx,newy;

JButton b1=new JButton("Color Chooser");

JColorChooser c1= new JColorChooser();

Graphics g;

Color ss;

public void init()

{

FreeHandListener fhl=new FreeHandListener(this);

g=getGraphics();

JPanel jp=(JPanel)getContentPane();

jp.setLayout(new FlowLayout());

b1.addActionListener(fhl);

jp.add(b1);

addMouseListener(fhl);

addMouseMotionListener(fhl);

addKeyListener(fhl);

}

}// Class FH

class FreeHandListener implements

ActionListener,MouseMotionListener,MouseListener,KeyListener

{

FreeHand fh;

public FreeHandListener(FreeHand fh)

{

this.fh=fh;

}

public void actionPerformed(ActionEvent e)

{

JDialog jd=JColorChooser.createDialog(fh,"Choose

Color",true,fh.c1,new SetColor(fh),null);

jd.setVisible(true);

}

public class SetColor implements ActionListener

13

{

FreeHand fh;

public SetColor(FreeHand fh)

{

this.fh=fh;

}

public void actionPerformed(ActionEvent e)

{

fh.ss=fh.c1.getColor();

}

}// inner class

public void mousePressed(MouseEvent e)

{

fh.lastx=e.getX();

fh.lasty=e.getY();

}

public void mouseDragged(MouseEvent e)

{

fh.g.setColor(fh.ss);

fh.newx=e.getX();

fh.newy=e.getY();

fh.g.drawLine(fh.lastx,fh.lasty,fh.newx,fh.newy);

fh.lastx=fh.newx;

fh.lasty=fh.newy;

}

public void keyPressed(KeyEvent e)

{

if(e.getKeyCode()==KeyEvent.VK_C)

fh.repaint();

}

public void keyTyped(KeyEvent e){}

public void keyReleased(KeyEvent e){}

public void mouseReleased(MouseEvent e){}

public void mouseExited(MouseEvent e) {}

public void mouseClicked(MouseEvent e) {}

public void mouseMoved(MouseEvent e) {}

public void mouseEntered(MouseEvent e) {}

}//class fhl

14

Example: Create a class called “ColouredCanvas” which
extends Canvas and whose constructor takes three
arguments, its color, width and height. When a
“ColouredCanvas” is initialized, it should set its size and
background color as per the arguments. Create a class which
extents JApplet and adds to the Applet a “ColouredCanvas” of
red color with size 50,100.

import javax.swing.JApplet;

import java.awt.Container;

import java.awt.GridBagLayout;

import java.awt.GridBagConstraints;

import java.awt.Color;

import java.awt.Canvas;

import java.awt.event.*;

/* <applet code=MyColoredCanvas.class height=500 width=500 >
</applet> */

class ColoredCanvas extends Canvas

{

public ColoredCanvas(Color c,int w,int h)

{

setSize(w,h);

setBackground(c);

}

}

public class MyColoredCanvas extends JApplet

{

public void init()

{

ColoredCanvas cc=new ColoredCanvas

(new Color(1,1,250),100,50);

Container con=getContentPane();

con.setLayout(new GridBagLayout());

GridBagConstraints gbc=new GridBagConstraints();

gbc.gridx=2;

gbc.gridy=2;

con.add(cc,gbc);

}

}

15

1.3.4 JWindow

A JWindow is a container that can be displayed anywhere on
the user's desktop. It does not have the title bar, window-
management buttons, or other trimmings associated with a JFrame,
but it is still a "first-class citizen" of the user's desktop, and can exist
anywhere on it. The JWindow component contains a JRootPane as
its only child. The contentPane should be the parent of any children
of the JWindow. From the older java.awt.Window object you would
normally do something like this:

window.add(child);
However, using JWindow you would code:

window.getContentPane().add(child);

The same is true of setting LayoutManagers, removing
components, listing children, etc. All these methods should
normally be sent to the contentPane instead of the JWindow itself.
The contentPane will always be non-null. Attempting to set it to null
will cause the JWindow to throw an exception. The default
contentPane will have a BorderLayout manager set on it.

Constructors:

1 JWindow() - Creates a window with no specified owner.

2 JWindow(Frame owner) - Creates a window with the specified
owner frame.

Methods :

1 Conatiner getContentPane() - Returns the contentPane object
for this applet.

2 void setLayout(LayoutManager manager) - By default the layout
of this component may not be set, the layout of its contentPane
should be set instead.

3 void update(Graphics g) - Just calls paint(g).

4 void windowInit() - Called by the constructors to init the
JWindow properly.

1.4 SWING API COMPONENTS - TOP-LEVEL
CONTAINERS

Swing provides three generally useful top-level container
classes: JFrame JDialog, and JApplet. To appear onscreen, every
GUI component must be part of a containment hierarchy. Each
containment hierarchy has a top-level container as its root. Each

16

top-level container has a content pane that, generally speaking,
contains the visible components in that top-level container's GUI.
You can optionally add a menu bar to a top-level container. The
menu bar is positioned within the top-level container, but outside
the content pane.

Top-Level Containers and Containment Hierarchies

Each program that uses Swing components has at least one
top-level container. This top-level container is the root of a
containment hierarchy -- the hierarchy that contains all of the Swing
components that appear inside the top-level container. As a rule, a
standalone application with a Swing-based GUI has at least one
containment hierarchy with a JFrame as its root.

Adding Components to the Content Pane

Here's the code that is used to get a frame's content pane
and add the yellow label to it:

frame.getContentPane().add(yellowLabel,
BorderLayout.CENTER);

As the code shows, you find the content pane of a top-level
container by calling the getContentPane method. The default
content pane is a simple intermediate container that inherits from
JComponent, and that uses a BorderLayout as its layout manager.
It's easy to customize the content pane -- setting the layout
manager or adding a border, for example. The getContentPane
method returns a Container object, not a JComponent object.

17

Adding a Menu Bar

All top-level containers can, in theory, have a menu bar. In
practice, however, menu bars usually appear only in frames and
perhaps in applets. To add a menu bar to a frame or applet, you
create a JMenuBar object, populate it with menus, and then call
setJMenuBar. To adds a menu bar to its frame use this code:

frame.setJMenuBar(MenuBar_Name);

The Root Pane

Each top-level container relies on a reclusive intermediate
container called the root pane. The root pane manages the content
pane and the menu bar, along with a couple of other containers. If
you need to intercept mouse clicks or paint over multiple
components, you should get acquainted with root panes.

We've already discussed about the content pane and the
optional menu bar. The two other components that a root pane
adds are a layered pane and a glass pane. The layered pane
directly contains the menu bar and content pane, and enables Z-
ordering of other components you might add. The glass pane is
often used to intercept input events occuring over the top-level
container, and can also be used to paint over multiple components.

JRootPane's layeredPane

The layeredPane is the parent of all children in the
JRootPane. It is an instance of JLayeredPane, which provides the
ability to add components at several layers. This capability is very
useful when working with popup menus, dialog boxes, and
dragging -- situations in which you need to place a component on
top of all other components in the pane.

JRootPane's glassPane

The glassPane sits on top of all other components in the
JRootPane. This positioning makes it possible to intercept mouse
events, which is useful for dragging one component across another.
This positioning is also useful for drawing.

1.5 SWING API COMPONENTS - INTERMEDIATE
SWING CONTAINERS

1.5.1 JPanel

JPanel is a generic lightweight container. JPanel is the most
flexible, frequently used intermediate container. Implemented with
the JPanel class, panels add almost no functionality beyond what

18

all JComponent objects have. They are often used to group
components, whether because the components are related or just
because grouping them makes layout easier. A panel can use any
layout manager, and you can easily give it a border. The content
panes of top-level containers are often implemented as JPanel
instances.

When you add components to a panel, you use the add
method. Exactly which arguments you specify to the add method
depend on which layout manager the panel uses. When the layout
manager is FlowLayout, BoxLayout, GridLayout, or GridBagLayout,
you'll typically use the one-argument add method, like this:

aFlowPanel.add(aComponent);
aFlowPanel.add(anotherComponent);

When the layout manager is BorderLayout, you need to
provide a second argument specifying the added component's
position within the panel. For example:

aBorderPanel.add(aComponent,
BorderLayout.CENTER);
aBorderPanel.add(anotherComponent,
BorderLayout.SOUTH);

Constructors :

Constructor Purpose

JPanel()
JPanel(LayoutManager)

Create a panel. The LayoutManager
parameter provides a layout manager for
the new panel. By default, a panel uses a
FlowLayout to lay out its components.

Methods :

Method Purpose

void add(Component)
void add(Component, int)
void add(Component,
Object)
void add(Component,
Object, int)

Add the specified component to the
panel. When present, the int parameter
is the index of the component within
the container. By default, the first
component added is at index 0, the
second is at index 1, and so on. The
Object parameter is layout manager
dependent and typically provides
information to the layout manager
regarding positioning and other layout
constraints for the added component.

19

void remove(Component)
void remove(int)
void removeAll()

Remove the specified component(s).

void
setLayout(LayoutManager)
LayoutManager
getLayout()

Set or get the layout manager for this
panel. The layout manager is
responsible for positioning the panel's
components within the panel's bounds
according to some philosophy.

1.5.2 JSrollPane
JScrollPane provides a scrollable view of a component. A

JScrollPane manages a viewport, optional vertical and horizontal
scroll bars, and optional row and column heading viewports.

The JViewport provides
a window, or "viewport" onto a
data source -- for example, a
text file. That data source is
the "scrollable client"
displayed by the JViewport
view. A JScrollPane basically
consists of JScrollBars, a
JViewport, and the wiring
between them, as shown in
the diagram at right.

In addition to the scroll bars
and viewport, a JScrollPane
can have a column header and a row header. Each of these is a
JViewport object that you specify with setRowHeaderView, and
setColumnHeaderView.

To add a border around the main viewport, you can use
setViewportBorder. A common operation to want to do is to set the
background color that will be used if the main viewport view is
smaller than the viewport. This can be accomplished by setting the
background color of the viewport, via

scrollPane.getViewport().setBackground().

Constructors :

Constructor Purpose

JScrollPane()
JScrollPane(Component)
JScrollPane(int, int)
JScrollPane(Component,
int, int)

Create a scroll pane. The Component
parameter, when present, sets the scroll
pane's client. The two int parameters,
when present, set the vertical and
horizontal scroll bar policies
(respectively).

20

Methods:

1.5.3 Tabbed Panes

A component that lets the user switch between a group of
components by clicking on a tab with a given title and/or icon.
Tabs/components are added to a TabbedPane object by using the
addTab and insertTab methods. A tab is represented by an index
corresponding to the position it was added in, where the first tab
has an index equal to 0 and the last tab has an index equal to the
tab count minus 1.

The TabbedPane uses a SingleSelectionModel to represent
the set of tab indices and the currently selected index. If the tab
count is greater than 0, then there will always be a selected index,
which by default will be initialized to the first tab. If the tab count is
0, then the selected index will be -1.

Method Purpose

void setVerticalScrollBarPolicy(int)
int getVerticalScrollBarPolicy()
SAME FOR HORIZONTAL

Set or get the vertical scroll
policy. ScrollPaneConstants
defines three values for
specifying this policy:
VERTICAL_SCROLLBAR_AS_
NEEDED (the default),
VERTICAL_SCROLLBAR_AL
WAYS, and
VERTICAL_SCROLLBAR_NEV
ER.

void setViewportBorder(Border)
Border getViewportBorder()

Set or get the border around
the viewport.

void
setColumnHeaderView(Componen
t)
void
setRowHeaderView(Component)

Set the column or row
header for the scroll
pane.

void setCorner(Component, int)
Component getCorner(int)

Set or get the corner specified.
The int parameter specifies
which corner and must be one
of the following constants
defined in
ScrollPaneConstants:
UPPER_LEFT_CORNER,
UPPER_RIGHT_CORNER,
LOWER_LEFT_CORNER, and
LOWER_RIGHT_CORNER.

21

Constructors:

Constructor Purpose

JTabbedPane()
JTabbedPane(int tabPlacement)
JTabbedPane(int tabPlacement,
int tabLayoutPolicy)

Creates a tabbed pane. The
first optional argument specifies
where the tabs should appear.
By default, the tabs appear at
the top of the tabbed pane.You
can specify these positions
TOP, BOTTOM, LEFT, RIGHT.
The second optional argument
specifies the tab layout policy.

Methods:

Method Purpose

JTabbedPane()
JTabbedPane(int)

Create a tabbed pane. The optional
argument specifies where the tabs should
appear. By default, the tabs appear at the top
of the tabbed pane. You can specify these
positions (defined in the SwingConstants
interface, which JTabbedPane implements):
TOP, BOTTOM, LEFT, RIGHT.

addTab(String, Icon,
Component, String)
addTab(String, Icon,
Component)
addTab(String,
Component)

Add a new tab to the tabbed pane. The first
argument specifies the text on the tab. The
optional icon argument specifies the tab's
icon. The component argument specifies the
component that the tabbed pane should
show when the tab is selected. The fourth
argument, if present, specifies the tool tip text
for the tab.

insertTab(String,
Icon, Component,
String, int)

Insert a tab at the specified index, where the
first tab is at index 0. The arguments are the
same as for addTab.

void set
SelectedIndex (int)
void set Selected
Component
(Component)

Select the tab that has the specified
component or index. Selecting a tab has the
effect of displaying its associated component.

void set EnabledAt
(int, boolean)
boolean is
EnabledAt (int)

Set or get the enabled state of the tab at the
specified index.

22

Example: Demo example to use JTabbedPane. Create a tabbed
pane and add three tabs using JPanel class.

import javax.swing.*;

/*<applet code="TabbedPaneDemo.class" height=500
width=500></applet> */

public class TabbedPaneDemo extends JApplet {

public void init() {

JTabbedPane jtp=new JTabbedPane();

jtp.addTab("Cities",new CitiesPanel());

jtp.addTab("Color",new ColorPanel());

jtp.addTab("Flavour",new FlavourPanel());

getContentPane().add(jtp);

}

}

class CitiesPanel extends JPanel {

public CitiesPanel() {

add(new JButton("Mumbai"));

add(new JButton("Delhi"));

add(new JButton("Banglore"));

add(new JButton("Chennai"));

}

}

class ColorPanel extends JPanel {

public ColorPanel() {

add(new JCheckBox("Red"));

add(new JCheckBox("Yellow"));

add(new JCheckBox("Green"));

add(new JCheckBox("Blue"));

}

}

class FlavourPanel extends JPanel {

public FlavourPanel() {

String item[]={"Vanila","Stroberry","Chocolet"};

JComboBox jcb=new JComboBox(item);

add(jcb);

}

}

23

1.6 SWING API COMPONENTS - INTERNAL FRAMES

A lightweight object that provides many of the features of a
native frame, including dragging, closing, becoming an icon,
resizing, title display, and support for a menu bar.

Rules of Using Internal Frames

 You must set the size of the internal frame - If you don't set the
size of the internal frame, it will have zero size and thus never
be visible. You can set the size using one of the following
methods: setSize, pack, or setBounds.

 As a rule, you should set the location of the internal frame - If
you don't set the location of the internal frame, it will come up at
0,0 (the upper left of its container). You can use the setLocation
or setBounds method to specify the upper left point of the
internal frame, relative to its container.

 To add components to an internal frame, you add them to the
internal frame's content pane.

 You must add an internal frame to a container - If you don't add
the internal frame to a container (usually a JDesktopPane), the
internal frame won't appear.

 You need to call show or setVisible on internal frames.

 Internal frames fire internal frame events, not window events.

Constructors:

Constructor Summary

JInternalFrame() - Creates a non-resizable, non-closable, non-
maximizable, non-iconifiable JInternalFrame with no title.

JInternalFrame(String title, boolean resizable, boolean closable) -
Creates a non-maximizable, non-iconifiable JInternalFrame with the
specified title, resizability, and closability.

Methods:

Method Purpose

void
setVisible(boolean)

Make the internal frame visible (if true) or
invisible (if false). You should invoke
setVisible(true) on each JInternalFrame
before adding it to its container. (Inherited
from Component).

24

void pack () Size the internal frame so that its
components are at their preferred sizes.

void setLocation(Point)
void setLocation(int,
int)

Set the position of the internal frame.
(Inherited from Component).

void
setBounds(Rectangle)
void setBounds(int, int,
int, int)

Explicitly set the size and location of the
internal frame. (Inherited from Component).

void
setSize(Dimension)
void setSize(int, int)

Explicitly set the size of the internal frame.
(Inherited from Component).

void set Closed
(boolean)
boolean is Closed()

Set or get whether the internal frame is
currently closed. The argument to
setClosed must be true. When reopening a
closed internal frame, you make it visible
and add it to a container (usually the
desktop pane you originally added it to).

Example: Demo example to use internal frames. Create three
internal frames and add them to the main frame.

//First internal frame

import javax.swing.*;

import java.awt.Dimension;

public class CitiesPanel extends JInternalFrame

{

public CitiesPanel()

{

super("Select Cities",true,true);

JPanel jp=new JPanel();

jp.add(new JButton("Mumbai"));

jp.add(new JButton("Pune"));

jp.add(new JButton("Kolkata"));

getContentPane().add(jp);

setPreferredSize(new Dimension(300,300));

setDefaultCloseOperation(HIDE_ON_CLOSE);

}

}

//Second internal frame

import javax.swing.*;

import java.awt.Dimension;

public class ColorPanel extends JInternalFrame

25

{

public ColorPanel()

{

super("Select Colors",true,true);

JPanel jp=new JPanel();

jp.add(new JButton("Red"));

jp.add(new JButton("Blue"));

jp.add(new JButton("Green"));

getContentPane().add(jp);

setPreferredSize(new Dimension(300,300));

setDefaultCloseOperation(HIDE_ON_CLOSE);

}

}

//Third internal frame

import javax.swing.*;

import java.awt.Dimension;

public class FlavourPanel extends JInternalFrame

{

public FlavourPanel()

{

super("Select Flavours",true,true);

JPanel jp=new JPanel();

jp.add(new JButton("Vanilla"));

jp.add(new JButton("Chocolate"));

jp.add(new JButton("Strawberry"));

getContentPane().add(jp);

setPreferredSize(new Dimension(300,300));

setDefaultCloseOperation(HIDE_ON_CLOSE);

}

}

//Main Frame

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class IFrameDemo extends JFrame implements
ActionListener

{

CitiesPanel c1=new CitiesPanel();

ColorPanel c2=new ColorPanel();

FlavourPanel c3=new FlavourPanel();

public IFrameDemo()

26

{

JMenuBar mb=new JMenuBar();

JMenu select=new JMenu("Select");

JMenuItem city=new JMenuItem("City");

JMenuItem color=new JMenuItem("Color");

JMenuItem flavour=new JMenuItem("Flavour");

select.add(city);

select.add(color);

select.add(flavour);

mb.add(select);

setJMenuBar(mb);

city.addActionListener(this);

color.addActionListener(this);

flavour.addActionListener(this);

JDesktopPane dp=new JDesktopPane();

dp.setLayout(new FlowLayout());

dp.add(c1);

dp.add(c2);

dp.add(c3);

getContentPane().add(dp,BorderLayout.CENTER);

}

public void actionPerformed(ActionEvent e)

{

String args=e.getActionCommand();

if(args.equals("City"))

{

c1.setVisible(true);

c2.setVisible(false);

c3.setVisible(false);

}

else if(args.equals("Color"))

{

c1.setVisible(false);

c2.setVisible(true);

c3.setVisible(false);

}

else if(args.equals("Flavour"))

{

c1.setVisible(false);

c2.setVisible(false);

27

c3.setVisible(true);

}

}

public static void main(String args[])

{

IFrameDemo f1=new IFrameDemo();

f1.setVisible(true);

f1.setSize(500,500);

f1.setTitle("Internal Frame Demo");

f1.setDefaultCloseOperation(EXIT_ON_CLOSE);

}

}

1.7 SUMMARY

 Swing provides many standard GUI components such as
buttons, lists, menus, and text areas, which you combine to
create your program's GUI.

 A frame, implemented as an instance of the JFrame class, is
a window that has decorations such as a border, a title, and
buttons for closing and iconifying the window.

 JApplet is an extended version of java.applet.Applet that
adds support for the JFC/Swing component architecture.

 JPanel is a generic lightweight container. JPanel is the most
flexible, frequently used intermediate container.

 Tabs/components are added to a TabbedPane object by
using the addTab and insertTab methods.

 JInternalFrame is used to create a MDI Form with the help of
other Swing Containers

1.8 UNIT END EXERCISE

1) Explain different types of panes used in swing?

2) What is the purpose of using the getContentPane() in swing
program ?

3) Write a short note on JFC?

4) How Are Swing Components Different from AWT Components?

5) Explain any 5 Swing features.

6) Write a short note on JFrame?

28

7) Explain with an example JScrollPane.

8) How can we use Internal Frames?

9) Write a program to create a JFrame containing JDesktopPane
which has a single internal frame ?

10) What is JTabbed Pane ? Explain with an example.

1.9 FURTHER READING

 Joe Wigglesworth and Paula McMillan, Java Programming:
Advanced Topics, Thomson Course Technology (SPD), Third
Edition, 2004

 Cay S. Horstmann, Gary Cornell, Core Java™ 2: Volume II–
Advanced Features Prentice Hall PTR, 2001

29

2

BASIC SWING COMPONENTS

Unit Structure:

2.0 Objectives

2.1 The JComponent Class & Swing Components

2.2 Interface Action

2.3 Printing with 2D API

2.4 Java Print Service API

2.5 Summary

2.6 Unit end exercise

2.7 Further Reading

2.0 OBJECTIVES

The objective of this chapter is to lear how to use the Swing
Components to create a user interface. We will start the chapter
with a few components and then lear how to incorporate the Java
Print API.

2.1 THE JCOMPONENT CLASS

With the exception of top-level containers, all Swing
components whose names begin with "J" descend from the
JComponent class. For example, JLabel, JButton, JTree, and
JTable all inherit from JComponent. However, JFrame doesn't
because it implements a top-level container.

The JComponent class extends the Container class, which
itself extends Component. The Component class includes
everything from providing layout hints to supporting painting and
events. The Container class has support for adding components to
the container and laying them out.

JComponent Features

The JComponent class provides the following functionality to its
descendants:

30

 Tool tips - By specifying a string with the setToolTipText
method, you can provide help to users of a component. When
the cursor pauses over the component, the specified string is
displayed in a small window that appears near the component.

 Borders - The setBorder method allows you to specify the
border that a component displays around its edges.

 Keyboard-generated actions - Using the
registerKeyboardAction method, you can enable the user to use
the keyboard, instead of the mouse, to operate the GUI. The
combination of character and modifier keys that the user must
press to start an action is represented by a KeyStroke object.
The resulting action event must be handled by an action
listener. Each keyboard action works under exactly one of three
conditions: only when the actual component has the focus, only
when the component or one of its containers has the focus, or
any time that anything in the component's window has the
focus.

 Application-wide pluggable look and feel - Behind the
scenes, each JComponent object has a corresponding
ComponentUI object that performs all the drawing, event
handling, size determination, and so on for that JComponent.
Exactly which ComponentUI object is used depends on the
current look and feel, which you can set using the
UIManager.setLookAndFeel method.

 Support for layout - To give you a way to set layout hints, the
JComponent class adds setter methods -- setPreferredSize,
setMinimumSize, setMaximumSize, setAlignmentX, and
setAlignmentY.

 Double buffering - Double buffering smooths on-screen
painting.

 Methods to increase efficiency - JComponent has a few
methods that provide more efficient ways to get information than
the JDK 1.1 API allowed. The methods include getX and getY,
which you can use instead of getLocation; and getWidth and
getHeight, which you can use instead of getSize. It also adds
one-argument forms of getBounds, getLocation, and getSize for
which you specify the object to be modified and returned, letting
you avoid unnecessary object creation. These methods have
been added to Component for Java 2 (JDK 1.2).

2.1.2 JLabel

A label object is a single line of read only text. A common
use of JLabel objects is to position descriptive text above or
besides other components. JLabel extends the JComponent class.
It can display text and/or icon.

31

Method or Constructor Purpose

JLabel(Icon)
JLabel(Icon, int)

JLabel(String)
JLabel(String, Icon, int)
JLabel(String, int)
JLabel()

Creates a JLabel instance,
initializing it to have the specified
text/image/alignment. The int
argument specifies the horizontal
alignment of the label's contents
within its drawing area. The
horizontal alignment must be one
of the following constants defined
in the SwingConstants interface
(which JLabel implements):
LEFT, CENTER, RIGHT,
LEADING, or TRAILING. For
ease of localization, we strongly
recommend using LEADING and
TRAILING, rather than LEFT and
RIGHT.

void setText(String)
String getText()

Sets or gets the text displayed by
the label.

void setIcon(Icon)
Icon getIcon()

Sets or gets the image displayed
by the label.

void
setDisplayedMnemonicIndex(int)
int
getDisplayedMnemonicIndex()

Sets or gets a hint as to which
character in the text should be
decorated to represent the
mnemonic. This is useful when
you have two instances of the
same character and wish to
decorate the second instance.
For example,
setDisplayedMnemonicIndex(5)
decorates the character that is at
position 5 (that is, the 6th
character in the text). Not all
types of look and feel may
support this feature.

void setDisabledIcon(Icon)
Icon getDisabledIcon()

Sets or gets the image displayed
by the label when it is disabled. If
you do not specify a disabled
image, then the look and feel
creates one by manipulating the
default image.

32

2.1.3 JTextField

A text field is a basic text control that enables the user to
type a small amount of text. When the user indicates that text entry
is complete (usually by pressing Enter), the text field fires an action
event. If you need to obtain more than one line of input from the
user, use a text area. The horizontal alignment of JTextField can be
set to be left justified, leading justified, centered, right justified or
trailing justified. Right/trailing justification is useful if the required
size of the field text is smaller than the size allocated to it. This is
determined by the setHorizontalAlignment and
getHorizontalAlignment methods. The default is to be leading
justified.

Method or Constructor Purpose

JTextField()
JTextField(String)
JTextField(String, int)
JTextField(int)

Creates a text field. When present, the
int argument specifies the desired
width in columns. The String argument
contains the field's initial text.

void setText(String)
String getText()

Sets or obtains the text displayed by
the text field.

void setEditable(boolean)
boolean isEditable()

Sets or indicates whether the user can
edit the text in the text field.

void setColumns(int)
int getColumns()

Sets or obtains the number of columns
displayed by the text field. This is really
just a hint for computing the field's
preferred width.

void
setHorizontalAlignment(int)
int
getHorizontalAlignment()

Sets or obtains how the text is aligned
horizontally within its area. You can
use JTextField.LEADING,
JTextField.CENTER, and
JTextField.TRAILING for arguments.

2.1.4 JButton

A JButton class provides the functionality of a push button.
JButton allows an icon, a string or both to be associated with the
push button. JButton is a subclass of AbstractButton which extends
JComponent.

Method or Constructor Purpose

JButton(Action) Create a JButton instance, initializing it to

33

JButton(String, Icon)
JButton(String)
JButton(Icon)
JButton()

have the specified text/image/action.

void setAction(Action)
Action getAction()

Set or get the button's properties
according to values from the Action
instance.

void setText(String)
String getText()

Set or get the text displayed by the button.

void setIcon(Icon)
Icon getIcon()

Set or get the image displayed by the
button when the button isn't selected or
pressed.

void
setDisabledIcon(Icon)
Icon getDisabledIcon()

Set or get the image displayed by the
button when it is disabled. If you do not
specify a disabled image, then the look
and feel creates one by manipulating the
default image.

void
setPressedIcon(Icon)
Icon getPressedIcon()

Set or get the image displayed by the
button when it is being pressed.

Example: Write a program to create a user interface for
students biodata. (Demo example for JLabel, JTextfield and
JButton).

//Step 1 – import all the required packages

import javax.swing.*;

import java.awt.*;

/* Step 2 – Decide the class name & Container class
(JFrame/JApplet) to be used */

public class StudentBioData01 extends JFrame

{

//Step 3 – Create all the instances required

JTextField txtName,txtMobNo;

JLabel lblName, lblMobNo;

JButton cmdOk,cmdCancel;

public StudentBioData01(){

//Step 4- Create objects for the declared instances

txtName=new JTextField(20);

txtMobNo=new JTextField(20);

lblName=new JLabel("Student Name");

34

lblMobNo=new JLabel("Mobile No.");

cmdOk =new JButton("Ok");

cmdCancel=new JButton("Cancel");

//Step 5 – Add all the objects in the Content Pane with Layout

Container con=getContentPane();

con.setLayout(new FlowLayout());

con.add(lblName); con.add(txtName);

con.add(lblMobNo); con.add(txtMobNo);

con.add(cmdOk); con.add(cmdCancel);

}//constructor

//Step 6 – Event Handling. (Event handling code will come here)

public static void main(String args[])

{

//Step 7 – Create object of class in main method

StudentBioData01 sbd=new StudentBioData01();

sbd.setSize(150,200);

sbd.setVisible(true);

}//main

}//class

2.1.5 JCheckBox

A JCheckBox class provides the functionality of a Check
box. Its immediate super class is JToggleButton which provides
support for 2 state buttons.

Constructor Purpose

JCheckBox(String)
JCheckBox(String, boolean)
JCheckBox(Icon)
JCheckBox(Icon, boolean)
JCheckBox(String, Icon)
JCheckBox(String, Icon,
boolean)
JCheckBox()

Create a JCheckBox instance. The
string argument specifies the text, if
any, that the check box should
display. Similarly, the Icon argument
specifies the image that should be
used instead of the look and feel's
default check box image. Specifying
the boolean argument as true
initializes the check box to be
selected. If the boolean argument is
absent or false, then the check box is
initially unselected.

String getActionCommand() Returns the action command for this
button.

35

String getText() Returns the button's text.

boolean isSelected() Returns the state of the button.

void setEnabled(boolean b) Enables (or disables) the button.

void setSelected(boolean b) Sets the state of the button.

void setText(String text) Sets the button's text.

2.1.6 JRadioButton

A JRadioButton class provides the functionality of a radio
button. Its immediate super class is JToggleButton which provides
support for 2 state buttons.

Constructor Purpose

JRadioButton(String)
JRadioButton(String,
boolean)
JRadioButton(Icon)
JRadioButton(Icon,
boolean)
JRadioButton(String, Icon)
JRadioButton(String, Icon,
boolean)
JRadioButton()

Create a JRadioButton instance. The
string argument specifies the text, if
any, that the radio button should
display. Similarly, the Icon argument
specifies the image that should be
used instead of the look and feel's
default radio button image. Specifying
the boolean argument as true
initializes the radio button to be
selected, subject to the approval of the
ButtonGroup object. If the boolean
argument is absent or false, then the
radio button is initially unselected.

Methods same as JCheckBox

Example: Write a program to create a user interface for
students biodata. (Demo example for JCheckbox,
JRadioButton).

//Step 1 – import all the required packages

import javax.swing.*;

import java.awt.*;

/* Step 2 – Decide the class name & Container class
(JFrame/JApplet) to be used */

public class StudentBioData02 extends JFrame

{

//Step 3 – Create all the instances required

36

JLabel lbllang,lblstream;

JCheckBox cbeng,cbhin,cbmar;

JRadioButton rbart,rbcomm,rbsci;

ButtonGroup bg;

public StudentBioData02()

{

//Step 4- Create objects for the declared instances

lbllang=new JLabel("Languages Known");

lblstream=new JLabel("Stream");

cbeng=new JCheckBox("English",true);

cbhin=new JCheckBox("Hindi");

cbmar=new JCheckBox("Marathi");

rbart=new JRadioButton("Arts");

rbcomm=new JRadioButton("Commerce");

rbsci=new JRadioButton("Science");

bg=new ButtonGroup();

bg.add(rbart); bg.add(rbcomm); bg.add(rbsci);

//Step 5 – Add all the objects in the Content Pane with Layout

Container con=getContentPane();

con.setLayout(new FlowLayout());

con.add(lbllang);

con.add(cbeng); con.add(cbhin); con.add(cbmar);

con.add(lblstream);

con.add(rbart); con.add(rbcomm);con.add(rbsci);

}//constructor

//Step 6 – Event Handling. (Event handling code will come here)

public static void main(String args[])

{

//Step 7 – Create object of class in main method

StudentBioData02 sbd=new StudentBioData02();

sbd.setSize(150,200);

sbd.setVisible(true);

}//main

}//class

37

2.1.7 JComboBox

A component that combines a button or editable field and a
drop-down list. The user can select a value from the drop-down list,
which appears at the user's request. If you make the combo box
editable, then the combo box includes an editable field into which
the user can type a value.

Constructors & Method Purpose

JComboBox()
JComboBox(Object[])
JComboBox(Vector)

Create a combo box with the
specified items in its menu. A
combo box created with the
default constructor has no items
in the menu initially. Each of the
other constructors initializes the
menu from its argument: a
model object, an array of
objects, or a Vector of objects.

void addItem(Object)
void insertItemAt(Object, int)

Add or insert the specified object
into the combo box's menu. The
insert method places the
specified object at the specified
index, thus inserting it before the
object currently at that index.
These methods require that the
combo box's data model be an
instance of
MutableComboBoxModel.

Object getItemAt(int)
Object getSelectedItem()

Get an item from the combo
box's menu.

void removeAllItems()
void removeItemAt(int)
void removeItem(Object)

Remove one or more items from
the combo box's menu. These
methods require that the combo
box's data model be an instance
of MutableComboBoxModel.

int getItemCount() Get the number of items in the
combo box's menu.

void
addActionListener(ActionListener)

Add an action listener to the
combo box. The listener's
actionPerformed method is
called when the user selects an
item from the combo box's menu
or, in an editable combo box,

38

when the user presses Enter.

void
addItemListener(ItemListener)

Add an item listener to the
combo box. The listener's
itemStateChanged method is
called when the selection state
of any of the combo box's items
change.

2.1.8 JList

A component that allows the user to select one or more
objects from a list. A separate model, ListModel, represents the
contents of the list. It's easy to display an array or vector of objects,
using a JList constructor that builds a ListModel instance for you.

Method or Constructor Purpose

JList(Object[])
JList(Vector)
JList()

Create a list with the initial list items
specified. The second and third
constructors implicitly create an
immutable ListModel; you should not
subsequently modify the passed-in
array or Vector.

void setListData(Object[])
void setListData(Vector)

Set the items in the list. These methods
implicitly create an immutable
ListModel.

void
setVisibleRowCount(int)
int getVisibleRowCount()

Set or get the visibleRowCount
property. For a VERTICAL layout
orientation, this sets or gets the
preferred number of rows to display
without requiring scrolling. For the
HORIZONTAL_WRAP or
VERTICAL_WRAP layout orientations,
it defines how the cells wrap. The
default value of this property is
VERTICAL.

void setSelectionMode(int)
int getSelectionMode()

Set or get the selection mode.
Acceptable values are:
SINGLE_SELECTION,
SINGLE_INTERVAL_SELECTION, or
MULTIPLE_INTERVAL_SELECTION
(the default), which are defined in
ListSelectionModel.

39

int
getAnchorSelectionIndex()
int
getLeadSelectionIndex()
int getSelectedIndex()
int getMinSelectionIndex()
int getMaxSelectionIndex()
int[] getSelectedIndices()
Object getSelectedValue()
Object[]
getSelectedValues()

Get information about the current
selection as indicated.

Example: Write a program to create a user interface for
students biodata. (Demo example for JComboBox, JList).

//Step 1 – import all the required packages

import javax.swing.*;

import java.awt.*;

/* Step 2 – Decide the class name & Container class
(JFrame/JApplet) to be used */

public class StudentBioData03 extends JFrame

{

//Step 3 – Create all the instances required

JLabel lblplang,lblyear;

JList lst;

JComboBox jcb;

public StudentBioData03()

{

//Step 4- Create objects for the declared instances

lblplang=new JLabel("Programming Lang.");

lblyear=new JLabel("Academic Year");

Object obj[]={"C","C++","C#","Java"};

lst=new JList(obj);

jcb=new JComboBox();

jcb.addItem("First Year");

jcb.addItem("Second Year");

jcb.addItem("Third Year");

//Step 5 – Add all the objects in the Content Pane with Layout

Container con=getContentPane();

con.setLayout(new FlowLayout());

con.add(lblplang);

con.add(lst);

40

con.add(lblyear);

con.add(jcb);

}//constructor

//Step 6 – Event Handling. (Event handling code will come here)

public static void main(String args[])

{

//Step 7 – Create object of class in main method

StudentBioData03 sbd=new StudentBioData03();

sbd.setSize(150,200);

sbd.setVisible(true);

}//main

}//class

2.1.9 Menus

JMenuBar
An implementation of a menu bar. You add JMenu objects to

the menu bar to construct a menu. When the user selects a JMenu
object, its associated JPopupMenu is displayed, allowing the user
to select one of the JMenuItems on it.

JMenu
An implementation of a menu -- a popup window containing

JMenuItems that is displayed when the user selects an item on the
JMenuBar. In addition to JMenuItems, a JMenu can also contain
JSeparators.

In essence, a menu is a button with an associated
JPopupMenu. When the "button" is pressed, the JPopupMenu
appears. If the "button" is on the JMenuBar, the menu is a top-level
window. If the "button" is another menu item, then the JPopupMenu
is "pull-right" menu.

JMenuItem
An implementation of an item in a menu. A menu item is

essentially a button sitting in a list. When the user selects the
"button", the action associated with the menu item is performed. A
JMenuItem contained in a JPopupMenu performs exactly that
function.

Constructor or Method Purpose

JMenuBar() Creates a menu bar.

JMenu()
JMenu(String)

Creates a menu. The string
specifies the text to display for

41

the menu.

JMenuItem()
JMenuItem(String)
JMenuItem(Icon)
JMenuItem(String, Icon)
JMenuItem(String, int)

Creates an ordinary menu item.
The icon argument, if present,
specifies the icon that the menu
item should display. Similarly,
the string argument specifies the
text that the menu item should
display. The integer argument
specifies the keyboard
mnemonic to use. You can
specify any of the relevant VK
constants defined in the
KeyEvent class. For example, to
specify the A key, use
KeyEvent.VK_A.

JMenuItem add(JMenuItem)
JMenuItem add(String)

Adds a menu item to the current
end of the popup menu. If the
argument is a string, then the
menu automatically creates a
JMenuItem object that displays
the specified text.

JMenu add(JMenu) Creates a menu bar.

void setJMenuBar(JMenuBar)
JMenuBar getJMenuBar()

Sets or gets the menu bar of an
applet, dialog, frame, internal
frame, or root pane.

void setEnabled(boolean) If the argument is true, enable
the menu item. Otherwise,
disable the menu item.

void setMnemonic(int) Set the mnemonic that enables
keyboard navigation to the menu
or menu item. Use one of the VK
constants defined in the
KeyEvent class.

void setAccelerator(KeyStroke) Set the accelerator that activates
the menu item.

void
addActionListener(ActionListener)
void
addItemListener(ItemListener)

Add an event listener to the
menu item. See Handling Events
from Menu Items for details.

Example:Create an animation with a single line, which
changes its position in a clock-wise direction. This line should

42

produce an effect of a spinning line. In the same example give
option for clock-wise or anti-clock-wise spinning. Also provide
options to start and stop the animation. Demonstrate the
animation on the screen.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class LineAnimation extends JFrame implements
ActionListener

{

Timer t;

JLabel lblText;

JMenuBar mb;

JMenu m1,m2;

JMenuItem mi1,mi2,mi3,mi4;

double theta=0.0;

int x,y,incr=-1;

//Graphics g;

Container con;

public LineAnimation()

{

super("Line Animation");

lblText=new JLabel("Line Animation");

mb=new JMenuBar();

m1=new JMenu("Motion");

m2=new JMenu("Direction");

mi1=new JMenuItem("Start");

mi2=new JMenuItem("Stop");

mi3=new JMenuItem("Clock-wise");

mi4=new JMenuItem("Anti-Clock-wise");

t=new Timer(100,this);

mi1.addActionListener(this);

mi2.addActionListener(this);

mi3.addActionListener(this);

mi4.addActionListener(this);

con=getContentPane();

con.setLayout(new FlowLayout());

con.add(lblText);

43

m1.add(mi1); m1.add(mi2);

m2.add(mi3); m2.add(mi4);

mb.add(m1); mb.add(m2);

setJMenuBar(mb);

//g=getGraphics();

setDefaultCloseOperation(EXIT_ON_CLOSE);

}

public void actionPerformed(ActionEvent ae)

{

if(ae.getSource()==t)

repaint();

if(ae.getSource()==mi1)

t.start();

if(ae.getSource()==mi2)

t.stop();

if(ae.getSource()==mi3)

incr=1;

if(ae.getSource()==mi4)

incr=-1;

}

public void paint(Graphics g)

{

g.clearRect(0,0,300,300);

x=(int)(100*Math.cos(theta*Math.PI/180));

y=(int)(100*Math.sin(theta*Math.PI/180));

g.drawLine(150+x,150+y,150-x,150-y);

theta+=incr;

}

public static void main(String args[])

{

LineAnimation la=new LineAnimation();

la.setVisible(true);

la.setSize(300,300);

}//main

}//class

44

2.1.10 JTable

The JTable is used to display and edit regular two-
dimensional tables of cells. The JTable has many facilities that
make it possible to customize its rendering and editing but provides
defaults for these features so that simple tables can be set up
easily.

The JTable uses integers exclusively to refer to both the
rows and the columns of the model that it displays. The JTable
simply takes a tabular range of cells and uses getValueAt(int, int) to
retrieve the values from the model during painting. By default,
columns may be rearranged in the JTable so that the view's
columns appear in a different order to the columns in the model.
This does not affect the implementation of the model at all: when
the columns are reordered, the JTable maintains the new order of
the columns internally and converts its column indices before
querying the model.

Constructors

JTable() Constructs a default JTable that is
initialized with a default data model, a
default column model, and a default
selection model.

JTable(int numRows,
int numColumns)

Constructs a JTable with numRows
and numColumns of empty cells
using DefaultTableModel.

JTable(Object[][] rowData,
Object[] columnNames)

Constructs a JTable to display the
values in the two dimensional array,
rowData, with column names,
columnNames.

JTable(Vector rowData,
Vector columnNames)

Constructs a JTable to display the
values in the Vector of Vectors,
rowData, with column names,
columnNames.

Methods

void clearSelection() Deselects all selected columns and
rows.

int getColumnCount() Returns the number of columns in the
column model.

45

String
getColumnName(int column)

Returns the name of the column
appearing in the view at column
position column.

int getRowCount() Returns the number of rows in this
table's model.

int getRowHeight() Returns the height of a table row, in
pixels.

int getSelectedColumn() Returns the index of the first selected
column, -1 if no column is selected.

int getSelectedRow() Returns the index of the first selected
row, -1 if no row is selected.

Object getValueAt(int row,
int column)

Returns the cell value at row and
column.

void selectAll() Selects all rows, columns, and cells
in the table.

void
setValueAt(Object aValue,
int row, int column)

Sets the value for the cell in the table
model at row and column.

Example: Write a program to create a user interface for
students biodata. (Demo example for JTable, JScrollPane).

//Step 1 – import all the required packages

import javax.swing.*;

import java.awt.*;

/* Step 2 – Decide the class name & Container class
(JFrame/JApplet) to be used */

public class StudentBioData04 extends JFrame

{

//Step 3 – Create all the instances required

JLabel lbldata;

JTable tbldata;

JScrollPane jsp;

public StudentBioData04()

{

//Step 4- Create objects for the declared instances

lbldata=new JLabel("Educational Details");

Object header[]={"Year","Degree","Class"};

46

Object rowdata[][]={

{"2005","SSC","First"},

{"2007","HSC","Second"},

{"2011","BSc","Distinction"}

};

tbldata=new JTable(rowdata,header);

jsp=new JScrollPane(tbldata);

//Step 5 – Add all the objects in the Content Pane with Layout

Container con=getContentPane();

con.setLayout(new FlowLayout());

con.add(lbldata);

con.add(jsp);

}//constructor

//Step 6 – Event Handling. (Event handling code will come here)

public static void main(String args[])

{

//Step 7 – Create object of class in main method

StudentBioData04 sbd=new StudentBioData04();

sbd.setSize(150,200);

sbd.setVisible(true);

}//main

}//class

Note: If you combine all the four student bio-data program, you would end
up with the final program with all the components included. Just remove
the common code from all the files.

2.1.11 JTree

A JTree is a component that displays information in a
hierarchical format. Steps for creating a JTree are as follows:

 Create an Instance of JTree.

 Create objects for all the nodes required with the help of
DefaultMutableTreeNode, which implemets Mutable TreeNode
interface which extends the TreeNode interface. The TreeNode
interface declares methods that obtains information about a
TreeNode. To create a heirarchy of TreeNodes the add() of the
DefaultMutableTreeNode can be used.

47

Methods of TreeNode interface

TreeNode
getChildAt(int childIndex)

Returns the child TreeNode at index
childIndex.

int getChildCount() Returns the number of children
TreeNodes the receiver contains.

int
getIndex(TreeNode node)

Returns the index of node in the
receivers children.

TreeNode getParent() Returns the parent TreeNode of the
receiver.

Methods of MutuableTreeNode

void
insert(MutableTreeNode child,
int index)

Adds child to the receiver at index.

void remove(int index) Removes the child at index from
the receiver.

void remove

(MutableTreeNode node)

Removes node from the receiver.

void setParent

(MutableTreeNode newParent)

Sets the parent of the receiver to
newParent.

Methods of DefaultMutableTreeNode

void add

(MutableTreeNode newChild)

Removes newChild from its parent
and makes it a child of this node by
adding it to the end of this node's
child array.

int getChildCount() Returns the number of children of
this node.

TreeNode[] getPath() Returns the path from the root, to
get to this node.

TreeNode getRoot() Returns the root of the tree that
contains this node.

boolean isRoot() Returns true if this node is the root
of the tree.

48

 Create the object of the tree with the top most node as an
argument.

 Use the add method to create the heirarchy.
 Create an object of JScrollpane and add the JTree to it. Add the

scroll pane to the content pane.

Event Handling
The JTree generates a TreeExpansionEvent which is in the

package javax.swing.event. The getPath() of this class returns a
Tree Path object that describes the path to the changed node. The
addTreeExpansionListener and removeTreeExpansionListener
methods allows listeners to register and unregister for the
notifications. The TreeExpansionListener interface provides two
methods:

void treeCollapsed
(TreeExpansionEvent event)

Called whenever an item in the tree
has been collapsed.

void treeExpanded
(TreeExpansionEvent event)

Called whenever an item in the tree
has been expanded.

Example: Demo example for tree.

import java.awt.*;

import javax.swing.*;

import javax.swing.tree.*;

import java.awt.event.*;

//<applet code="TreeDemo" height=150 width=120></applet>

public class TreeDemo extends JApplet

{

JTree tree;

JTextField txt1;

public void init()

{

Container con=getContentPane();

con.setLayout(new BorderLayout());

DefaultMutableTreeNode top=new

DefaultMutableTreeNode("Option");

DefaultMutableTreeNode stream=new

DefaultMutableTreeNode("Stream");

49

DefaultMutableTreeNode arts=new

DefaultMutableTreeNode("Arts");

DefaultMutableTreeNode science=new

DefaultMutableTreeNode("Science");

DefaultMutableTreeNode comm=new

DefaultMutableTreeNode("Commerce");

DefaultMutableTreeNode year=new

DefaultMutableTreeNode("Year");

DefaultMutableTreeNode fy=new

DefaultMutableTreeNode("FY");

DefaultMutableTreeNode sy=new

DefaultMutableTreeNode("SY");

DefaultMutableTreeNode ty=new

DefaultMutableTreeNode("TY");

top.add(stream);

stream.add(arts); stream.add(comm); stream.add(science);

top.add(year);

year.add(fy); year.add(sy); year.add(ty);

tree=new JTree(top);

JScrollPane jsp=new JScrollPane(

tree,

JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED,

JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED);

con.add(jsp,BorderLayout.CENTER);

txt1=new JTextField("",20);

con.add(txt1,BorderLayout.SOUTH);

tree.addMouseListener(new MouseAdapter()

{

public void mouseClicked(MouseEvent me)

{

doMouseClicked(me);

}

});

50

}// init()

void doMouseClicked(MouseEvent me)

{

TreePath tp=tree.getPathForLocation(me.getX(),me.getY());

if(tp!=null)

{

txt1.setText(tp.toString());

}

else

{

txt1.setText("");

}

}//doMouse

}//class

2.1.12 JToolBar

A JToolBar is a container that groups several components —
usually buttons with icons — into a row or column. Often, tool bars
provide easy access to functionality that is also in menus. The
following images show an application named ToolBarDemo that
contains a tool bar above a text area.

By default, the user can drag the tool bar to another edge of
its container or out into a window of its own. The next figure shows
how the application looks after the user has dragged the tool bar to
the right edge of its container.

51

For the drag behavior to work correctly, the tool bar must be
in a container that uses the BorderLayout layout manager. The
component that the tool bar affects is generally in the center of the
container. The tool bar must be the only other component in the
container, and it must not be in the center.

Method or
Constructor

Purpose

JToolBar()
JToolBar(int)
JToolBar(String)
JToolBar(String, int)

Creates a tool bar. The optional int
parameter lets you specify the orientation;
the default is HORIZONTAL. The optional
String parameter allows you to specify the
title of the tool bar's window if it is dragged
outside of its container.

Component
add(Component)

Adds a component to the tool bar. You can
associate a button with an Action using the
setAction(Action) method defined by the
AbstractButton.

void addSeparator() Adds a separator to the end of the tool bar.

void
setFloatable(boolean)
boolean isFloatable()

The floatable property is true by default, and
indicates that the user can drag the tool bar
out into a separate window. To turn off tool
bar dragging, use
toolBar.setFloatable(false). Some types of
look and feel might ignore this property.

void
setRollover(boolean)
boolean isRollover()

The rollover property is false by default. To
make tool bar buttons be indicated visually
when the user passes over them with the
cursor, set this property to true. Some types
of look and feel might ignore this property.

52

Example: Demo example for JToolbar

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class ToolBarDemo extends JFrame implements
ActionListener

{

JToolBar toolBar;

JButton cmdPrev,cmdUp,cmdNext;

JTextArea textArea;

JScrollPane scrollPane;

String newline = "\n";

public ToolBarDemo()

{

super("Tool bar Demo");

toolBar = new JToolBar("Still draggable");

cmdPrev=new JButton("Prev",new ImageIcon("Back24.gif"));

cmdUp=new JButton("Up",new ImageIcon("Up24.gif"));

cmdNext=new JButton("Next",new ImageIcon("Forward24.gif"));

toolBar.add(cmdPrev);

toolBar.add(cmdUp);

toolBar.add(cmdNext);

textArea = new JTextArea(5, 30);

textArea.setEditable(false);

scrollPane = new JScrollPane(textArea);

cmdPrev.addActionListener(this);

cmdUp.addActionListener(this);

cmdNext.addActionListener(this);

Container con=getContentPane();

con.setLayout(new BorderLayout());

con.add(toolBar, BorderLayout.NORTH);

con.add(scrollPane, BorderLayout.CENTER);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

53

public void actionPerformed(ActionEvent e)

{

String cmd = e.getActionCommand();

String description = null;

if(cmd.equals("Prev"))

{description = "taken you to the previous <something>.";}

if(cmd.equals("Up"))

{description = "taken you up one level to <something>.";}

if(cmd.equals("Next"))

{description = "taken you to the next <something>.";

}

textArea.append("If this were a real app, it would have
"+description + newline);

textArea.setCaretPosition(textArea.getDocument().getLength());

}

public static void main(String[] args)

{

ToolBarDemo tb=new ToolBarDemo();

tb.setSize(300,300);

tb.setVisible(true);

}

}

2.1.13 JColorChooser

JColorChooser provides a pane of controls designed to allow a
user to manipulate and select a color. This class provides three
levels of API:

1. A static convenience method which shows a modal color-
chooser dialog and returns the color selected by the user.

2. A static convenience method for creating a color-chooser dialog
where ActionListeners can be specified to be invoked when the
user presses one of the dialog buttons.

3. The ability to create instances of JColorChooser panes directly
(within any container). PropertyChange listeners can be added
to detect when the current "color" property changes.

54

Creating and Displaying the Color Chooser

Method or Constructor Purpose

JColorChooser()
JColorChooser(Color)
JColorChooser(ColorSelecti
onModel)

Create a color chooser. The default
constructor creates a color chooser
with an initial color of Color.white.
Use the second constructor to specify
a different initial color. The
ColorSelectionModel argument, when
present, provides the color chooser
with a color selection model.

Color
showDialog(Component,
String, Color)

Create and show a color chooser in a
modal dialog. The Component
argument is the parent of the dialog,
the String argument specifies the
dialog title, and the Color argument
specifies the chooser's initial color.

JDialog
createDialog(Component,
String,
boolean, JColorChooser,
ActionListener,
ActionListener)

Create a dialog for the specified color
chooser. As with showDialog, the
Component argument is the parent of
the dialog and the String argument
specifies the dialog title. The other
arguments are as follows: the
boolean specifies whether the dialog
is modal, the JColorChooser is the
color chooser to display in the dialog,
the first ActionListener is for the OK
button, and the second is for the
Cancel button.

Setting or Getting the Current Color

Method Purpose

void setColor(Color)
void setColor(int, int, int)
void setColor(int)
Color getColor()

Set or get the currently selected color.
The three integer version of the setColor
method interprets the three integers
together as an RGB color. The single
integer version of the setColor method
divides the integer into four 8-bit bytes
and interprets the integer as an RGB

color as follows:

55

2.1.14 JFileChooser

File choosers provide a GUI for navigating the file system,
and then either choosing a file or directory from a list, or entering
the name of a file or directory. To display a file chooser, you usually
use the JFileChooser API to show a modal dialog containing the file
chooser. Another way to present a file chooser is to add an
instance of JFileChooser to a container.

The JFileChooser API makes it easy to bring up open and
save dialogs. The type of look and feel determines what these
standard dialogs look like and how they differ. In the Java look and
feel, the save dialog looks the same as the open dialog, except for
the title on the dialog's window and the text on the button that
approves the operation.

Creating and Showing the File Chooser

Method or Constructor Purpose

JFileChooser()
JFileChooser(File)
JFileChooser(String)

Creates a file chooser instance.
The File and String arguments,
when present, provide the initial
directory.

int
showOpenDialog(Component)
int
showSaveDialog(Component)
int showDialog(Component,
String)

Shows a modal dialog containing
the file chooser. These methods
return APPROVE_OPTION if the
user approved the operation and
CANCEL_OPTION if the user
cancelled it. Another possible return
value is ERROR_OPTION, which
means an unanticipated error
occurred.

Selecting Files and Directories

Method Purpose

void setSelectedFile(File)
File getSelectedFile()

Sets or obtains the currently
selected file or (if directory
selection has been enabled)
directory.

void setSelectedFiles(File[])
File[] getSelectedFiles()

Sets or obtains the currently
selected files if the file chooser
is set to allow multiple
selection.

56

void setFileSelectionMode(int)
void getFileSelectionMode()
boolean is Directory Selection
Enabled()
boolean is File Selection Enabled()

Sets or obtains the file
selection mode. Acceptable
values are FILES_ONLY (the
default),
DIRECTORIES_ONLY, and
FILES_AND_DIRECTORIES.
Interprets whether directories
or files are selectable
according to the current
selection mode.

void
setMultiSelectionEnabled(boolean)
boolean isMultiSelectionEnabled()

Sets or interprets whether
multiple files can be selected at
once. By default, a user can
choose only one file.

2.1.15 Using Text Components

Swing text components display text and optionally allow the user to
edit the text. Programs need text components for tasks ranging
from the straightforward (enter a word and press Enter) to the
complex (display and edit styled text with embedded images in an
Asian language).

Swing provides six text components, along with supporting
classes and interfaces that meet even the most complex text
requirements. In spite of their different uses and capabilities, all
Swing text components inherit from the same superclass,
JTextComponent, which provides a highly-configurable and
powerful foundation for text manipulation.

The following figure shows the JTextComponent hierarchy.

The following table tells you more about what you can do with each
kind of text component.

57

Group Description Swing Classes

Text
Controls

Also known simply as text fields, text
controls can display only one line of
editable text. Like buttons, they
generate action events. Use them to
get a small amount of textual
information from the user and perform
an action after the text entry is
complete.

JTextField and its
sub classes
JPassword Field
and
JFormattedTextFi
eld

Plain
Text
Areas

JTextArea can display multiple lines of
editable text. Although a text area can
display text in any font, all of the text is
in the same font. Use a text area to
allow the user to enter unformatted text
of any length or to display unformatted
help information.

JTextArea

Styled
Text
Areas

A styled text component can display
editable text using more than one font.
Some styled text components allow
embedded images and even embedded
components. Styled text components
are powerful and multi-faceted
components suitable for high-end
needs, and offer more avenues for
customization than the other text
components.

Because they are so powerful and
flexible, styled text components
typically require more initial
programming to set up and use. One
exception is that editor panes can be
easily loaded with formatted text from a
URL, which makes them useful for
displaying uneditable help information.

JEditorPane
and its subclass
JTextPane

58

2.2 INTERFACE ACTION

The Action interface provides a useful extension to

the ActionListener interface in cases where the same functionality
may be accessed by several controls.

public interface Action extends ActionListener

In addition to the actionPerformed method defined by
the ActionListener interface, this interface allows the application to
define, in a single place:

 One or more text strings that describe the function. These
strings can be used, for example, to display the flyover text for a
button or to set the text in a menu item.

 One or more icons that depict the function. These icons can be
used for the images in a menu control, or for composite entries
in a more sophisticated user interface.

 The enabled/disabled state of the functionality. Instead of
having to separately disable the menu item and the toolbar
button, the application can disable the function that implements
this interface. All components which are registered as listeners
for the state change then know to disable event generation for
that item and to modify the display accordingly.

Certain containers, including menus and tool bars, know how
to add an Action object. When an Action object is added to such a
container, the container:

 Creates a component that is appropriate for that container (a
tool bar creates a button component, for example).

 Gets the appropriate property(s) from the Action object to
customize the component (for example, the icon image and
flyover text).

 Checks the intial state of the Action object to determine if it is
enabled or disabled, and renders the component in the
appropriate fashion.

 Registers a listener with the Action object so that is notified of
state changes. When the Action object changes from enabled to
disabled, or back, the container makes the appropriate revisions
to the event-generation mechanisms and renders the
component accordingly.

For example, both a menu item and a toolbar button could
access a Cut action object. The text associated with the object is

59

specified as "Cut", and an image depicting a pair of scissors is
specified as its icon. The Cut action-object can then be added to a
menu and to a tool bar. Each container does the appropriate things
with the object, and invokes its actionPerformed method when the
component associated with it is activated. The application can then
disable or enable the application object without worrying about what
user-interface components are connected to it.

This interface can be added to an existing class or used to
create an adapter (typically, by subclassing AbstractActio).
The Action object can then be added to multiple action-aware
containers and connected to Action-capable components. The GUI
controls can then be activated or deactivated all at once by invoking
theAction object's setEnabled method.

Note that Action implementations tend to be more expensive
in terms of storage than a typical ActionListener, which does not
offer the benefits of centralized control of functionality and
broadcast of property changes. For th is reason, you should take
care to only use Actions where their benefits are desired, and use
simple ActionListeners elsewhere.

Method Summary

void addPropertyChangeListener(PropertyChangeListener list
ener)

Adds a PropertyChange listener.

Object getValue(String key)
Gets one of this object's properties using the

associated key.

boolean isEnabled()
Returns the enabled state of the Action.

void putValue(String key, Object value)
Sets one of this object's properties using the

associated key.

void removePropertyChangeListener(PropertyChangeListener
listener)

Removes a PropertyChange listener.

void setEnabled(boolean b)
Sets the enabled state of the Action.

Methods inherited from interface java.awt.event.ActionListener

actionPerformed

60

2.3 PRINTING WITH 2D API

The Java 2D printing API is the java.awt.print package that is part
of the Java 2 SE,version 1.2 and later. The Java 2D printing API
provides for creating a PrinterJob, displaying a printer dialog to the
user, and printing paginated graphics using the same
java.awt.Graphics and java.awt.Graphics2D classes that are used
to draw to the screen.

Many of the features that are new in the Java Print Service,
such as printer discovery and specification of printing attributes, are
also very important to users of the Java 2D printing API. To make
these features available to users of Java 2D printing, the
java.awt.print package has been updated for version 1.4 of the
JavaTM 2 SE to allow access to the JavaTM Print Service from the
Java 2D printing API.

Developers of Java 2D printing applications have four ways of
using the Java Print Service with the Java 2D API:

• Print 2D graphics using PrinterJob.

• Stream 2D graphics using PrinterJob

• Print 2D graphics using using DocPrintJob and a service-
formatted DocFlavor

• Stream 2D graphics using DocPrintJob and a service-formatted
DocFlavor

2.4 JAVA PRINT SERVICES API

The Java Print Service (JPS) is a new Java Print API that is
designed to support printing on all Java platforms, including
platforms requiring a small footprint, but also supports the current
Java 2 Print API. This unified Java Print API includes extensible
print attributes based on the standard attributes specified in the
Internet Printing Protocol (IPP) 1.1 from the IETF Specification,
RFC 2911. With the attributes, client and server applications can
discover and select printers that have the capabilities specified by
the attributes. In addition to the included StreamPrintService, which
allows applications to transcode print data to different formats, a
third party can dynamically install their own print services through
the Service Provider Interface.

The Java Print Service API unifies and extends printing on
the Java platform by addressing many of the common printing
needs of both client and server applications that are not met by the

61

current Java printing APIs. In addition to supporting the current
Java 2D printing features, the Java Print Service offers many
improvements, including:

• Both client and server applications can discover and select
printers based on their capabilities and specify the properties of a
print job. Thus, the JPS provides the missing component in a
printing subsystem: programmatic printer discovery.

• Implementations of standard IPP attributes are included in the
JPS API as first-class objects.

• Applications can extend the attributes included with the JPS API.

• Third parties can plug in their own print services with the Service
Provider Interface.

How Applications Use the Java Print Service

A typical application using the Java Print Service API
performs these steps to process a print request:

1. Obtain a suitable DocFlavor, which is a class that defines the
format of the print data.

2. Create and populate an AttributeSet, which encapsulates a set of
attributes that describe the desired print service capabilities, such
as the ability to print five copies, stapled, and double-sided.

3. Lookup a print service that can handle the print request as
specified by the DocFlavor and the attribute set.

4. Create a print job from the print service.

5. Call the print job’s print method.

The application performs these steps differently depending
on what and how it intends to print. The application can either send
print data to a printer or to an output stream. The print data can
either be a document in the form of text or images, or a Java object
encapsulating 2D Graphics. If the print data is 2D graphics , the
print job can be represented by either a DocPrintJob or a
PrinterJob. If the print data is a document then a DocPrintJob must
be used.

2.5 SUMMARY

 The JComponent class extends the Container class, which itself
extends Component.

 A text field is a basic text control that enables the user to type a
small amount of text.

62

 JComboBox is a component that combines a button or editable
field and a drop-down list.

 JList is a component that allows the user to select one or more
objects from a list.

 JTable is used to display and edit regular two-dimensional
tables of cells.

 A JTree is a component that displays information in a
hierarchical format.

 A JToolBar is a container that groups several components —
usually buttons with icons — into a row or column.

 The Java 2D printing API provides for creating a PrinterJob,
displaying a printer dialog to the user, and printing paginated
graphics

2.6 UNIT END EXERCISE

1) Explain the importance of JComponent Class.

2) Write a Swing program containing a button with the caption
“Now” and a textfield. On click of the button, the current date
and time should be displayed in a textfield?

3) State and explain any three classes used to create Menus in
Swing?

4) How to create a JMenu and add it to a JMenuBar inside a
JFrame?

5) Explain the classes used to create a tree in Swing?

6) List and explain any three Text-Entry Components.

7) How Applications Use the Java Print Service?

8) Write a swing program containing three text fields. The first text
field accepts first name, second accepts last name and the third
displays full name on click of a button.

9) Define a class that enables the drawing of freehand lines on a
screen through mouse clicking and dragging. Use anonymous
inner classes to implement event listeners.

10)Define a class that displays circle when key C is typed and
rectangle when key R is typed.

11)Write a program containing JMenu. It contains menus such as
Circle, Rectangle and Exit. When the menu is clicked,
appropriate function should be executed as suggested by the
menu.

63

12)Write a program containing three text fields, out of which third is
disabled. It also contains 4 buttons representing +, - , * and /
operations. First two text fields should accept two numbers.
When any button is clicked, the appropriate result should be
displayed in the third text field.

2.7 FURTHER READING

 Joe Wigglesworth and Paula McMillan, Java Programming:
Advanced Topics, Thomson Course Technology (SPD), Third
Edition, 2004

 Cay S. Horstmann, Gary Cornell, Core Java™ 2: Volume II–
Advanced Features Prentice Hall PTR, 2001

64

3

JAVA DATABASE CONNECTIVITY

Unit Structure:

3.0 Objectives

3.1 Introduction

3.2 Load the JDBC Driver

3.3 Define the Connection URL

3.4 Establish the Connection

3.5 Create a Statement Object

3.6 Execute a Query or Update

3.7 Process the Results

3.8 Close the Connection

3.9 Summary

3.10 Unit end exercise

3.11 Further Reading

3.0 OBJECTIVES

The objective of this chapter is to learn the seven steps to
connect to a database and make transactions with the database.
The java.sql package has a lot of classes and interfaces which will
help us in connecting to a database. We will learn how to use the
classes from this package.

3.1 INTRODUCTION

JDBC provides a standard library for accessing relational
databases. By using the JDBC API, you can access a wide variety
of SQL databases with exactly the same Java syntax. It is important
to note that although the JDBC API standardizes the approach for
connecting to databases, the syntax for sending queries and
committing transactions, and the data structure representing the
result, JDBC does not attempt to standardize the SQL syntax. So,
you can use any SQL extensions your database vendor supports.
However, since most queries follow standard SQL syntax, using

65

JDBC lets you change database hosts, ports, and even database
vendors with minimal changes to your code.

Using JDBC in General

In this section we present the seven standard steps for
querying databases. Following is a summary; details are given in
the rest of the section.

 Load the JDBC driver - To load a driver, you specify the class
name of the database driver in the Class.forName method. By
doing so, you automatically create a driver instance and register
it with the JDBC driver manager.

 Define the connection URL - In JDBC, a connection URL
specifies the server host, port, and database name with which to
establish a connection.

 Establish the connection - With the connection URL,
username, and password, a network connection to the database
can be established. Once the connection is established,
database queries can be performed until the connection is
closed.

 Create a Statement object - Creating a Statement object
enables you to send queries and commands to the database.

 Execute a query or update - Given a Statement object, you
can send SQL statements to the database by using the execute,
executeQuery, executeUpdate, or executeBatch methods.

 Process the results - When a database query is executed, a
ResultSet is returned. The ResultSet represents a set of rows
and columns that you can process by calls to next and various
getXxx methods.

 Close the connection - When you are finished performing
queries and processing results, you should close the
connection, releasing resources to the database.

3.2 LOAD THE JDBC DRIVER

The driver is the piece of software that knows how to talk to
the actual database server. To load the driver, you just load the
appropriate class; a static block in the driver class itself
automatically makes a driver instance and registers it with the
JDBC driver manager. To make your code as flexible as possible,
avoid hard-coding the reference to the class name. These
requirements bring up two interesting questions. First, how do you
load a class without making an instance of it? Second, how can you
refer to a class whose name isn’t known when the code is
compiled? The answer to both questions is to use Class.forName.

66

This method takes a string representing a fully qualified class name
(i.e., one that includes package names) and loads the
corresponding class. This call could throw a Class Not Found
Exception, so it should be inside a try/catch block as shown below.
try
{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
Class.forName("oracle.jdbc.driver.OracleDriver");
Class.forName("com.sybase.jdbc.SybDriver");

}
catch(ClassNotFoundException cnfe)
{

System.err.println("Error loading driver: " + cnfe);
}

One of the beauties of the JDBC approach is that the
database server requires no changes whatsoever. Instead, the
JDBC driver (which is on the client) translates calls written in the
Java programming language into the native format required by the
server. This approach means that you have to obtain a JDBC driver
specific to the database you are using and that you will need to
check the vendor’s documentation for the fully qualified class name
to use. In principle, you can use Class.forName for any class in
your CLASSPATH. In practice, however, most JDBC driver vendors
distribute their drivers inside JAR files. So, during development be
sure to include the path to the driver JAR file in your CLASSPATH
setting. For deployment on a Web server, put the JAR file in the
WEB-INF/lib directory of your Web application. Check with your
Web server administrator, though. Often, if multiple Web
applications are using the same database drivers, the administrator
will place the JAR file in a common directory used by the server.
For example, in Apache Tomcat, JAR files common to multiple
applications can be placed in install_dir/common/lib.

Figure 1 illustrates two common JDBC driver
implementations. The first approach is a JDBC-ODBC bridge, and
the second approach is a pure Java implementation. A driver that
uses the JDBC-ODBC bridge approach is known as a Type I driver.
Since many databases support Open DataBase Connectivity
(ODBC) access, the JDK includes a JDBC-ODBC bridge to connect
to databases. However, you should use the vendor’s pure Java
driver, if available, because the JDBC-ODBC driver implementation
is slower than a pure Java implementation. Pure Java drivers are
known as Type IV. The JDBC specification defines two other driver
types, Type II and Type III; however, they are less common. Type 2
- drivers are written partly in the Java programming language and
partly in native code. These drivers use a native client library
specific to the data source to which they connect. Again, because
of the native code, their portability is limited. Type 3 - drivers use a

67

pure Java client and communicate with a middleware server using
a database-independent protocol. The middleware server then
communicates the client’s requests to the data source.

3.3 DEFINE THE CONNECTION URL

Once you have loaded the JDBC driver, you must specify
the location of the database server. URLs referring to databases
use the jdbc: protocol and embed the server host, port, and
database name (or reference) within the URL. The exact format is
defined in the documentation that comes with the particular driver,
but here are a few representative examples.

String host = "dbhost.yourcompany.com";
String dbName = "someName";
int port = 1234;
String oracleURL = "jdbc:oracle:thin:@" + host +":" + port + ":" +
dbName;
String sybaseURL = "jdbc:sybase:Tds:" + host +":" + port + ":" +
"?SERVICENAME=" + dbName;
String msAccessURL = "jdbc:odbc:" + dbName;

68

3.4 ESTABLISH THE CONNECTION

To make the actual network connection, pass the URL, database
username, and database password to the getConnection method of
the DriverManager class, as illustrated in the following example.
Note that getConnection throws an SQLException, so you need to
use a try/catch block..

String username = "jay_debesee";
String password = "secret";
Connection connection
=DriverManager.getConnection(msAccessURL, username,
password);

The Connection class includes other useful methods, which we
briefly describe below.

 prepareStatement - Creates precompiled queries for submission
to the database.

 prepareCall - Accesses stored procedures in the database.

 rollback/commit - Controls transaction management.

 close - Terminates the open connection.

 Is Closed - Determines whether the connection timed out or was
explicitly closed.

3.5 CREATE A STATEMENT OBJECT

A Statement object is used to send queries and commands
to the database. It is created from the Connection object using
create Statement as follows.

Statement statement = connection.createStatement();

Most, but not all, database drivers permit multiple concurrent
Statement objects to be open on the same connection.

3.6 EXECUTE A QUERY OR UPDATE

Once you have a Statement object, you can use it to send
SQL queries by using the executeQuery method, which returns an
object of type ResultSet. Here is an example.

String query = "SELECT col1, col2, col3 FROM sometable";
ResultSet resultSet = statement.executeQuery(query);

69

The following list summarizes commonly used methods in the
Statement class.

 executeQuery - Executes an SQL query and returns the data in
a ResultSet. The ResultSet may be empty, but never null.

 executeUpdate - Used for UPDATE, INSERT, or DELETE
commands. Returns the number of rows affected, which could
be zero. Also provides support for Data Definition Language
(DDL) commands, for example, CREATE TABLE, DROP
TABLE, and ALTER TABLE.

 executeBatch - Executes a group of commands as a unit,
returning an array with the update counts for each command.
Use addBatch to add a command to the batch group. Note that
vendors are not required to implement this method in their driver
to be JDBC compliant.

 setQueryTimeout - Specifies the amount of time a driver waits
for the result before throwing an SQLException.

 getMaxRows/setMaxRows - Determines the number of rows a
ResultSet may contain. Excess rows are silently dropped. The
default is zero for no limit.

In addition to using the methods described here to send
arbitrary commands, you can use a Statement object to create
parameterized queries by which values are supplied to a
precompiled fixed-format query using Prepared Statements.

3.7 PROCESS THE RESULTS

The simplest way to handle the results is to use the next
method of ResultSet to move through the table a row at a time.
Within a row, ResultSet provides various getXxx methods that take
a column name or column index as an argument and return the
result in a variety of different Java types. For instance, use getInt if
the value should be an integer, getString for a String, and so on for
most other data types. If you just want to display the results, you
can use getString for most of the column types. However, if you use
the version of getXxx that takes a column index (rather than a
column name), note that columns are indexed starting at 1
(following the SQL convention), not at 0 as with arrays, vectors, and
most other data structures in the Java programming language.

Here is an example that prints the values of the first two columns
and the first name and last name, for all rows of a ResultSet.

while(resultSet.next())
{
System.out.println(resultSet.getString(1) + " " +

70

resultSet.getString(2) + " " +
resultSet.getString("firstname") + " "
resultSet.getString("lastname"));
}

We suggest that when you access the columns of a
ResultSet, you use the column name instead of the column index.
That way, if the column structure of the table changes, the code
interacting with the ResultSet will be less likely to fail. In JDBC 1.0,
you can only move forward in the ResultSet; however, in JDBC 2.0,
you can move forward (next) and backward (previous) in the
ResultSet as well as move to a particular row (relative, absolute).

The following list summarizes useful ResultSet methods.

 next/previous - Moves the cursor to the next (any JDBC version)
or previous (JDBC version 2.0 or later) row in the ResultSet,
respectively.

 relative/absolute - The relative method moves the cursor a
relative number of rows, either positive (up) or negative (down).
The absolute method moves the cursor to the given row
number. If the absolute value is negative, the cursor is
positioned relative to the end of the ResultSet (JDBC 2.0).

 getXxx - Returns the value from the column specified by the
column name or column index as an Xxx Java type (see
java.sql.Types). Can return 0 or null if the value is an SQL
NULL.

 wasNull - Checks whether the last getXxx read was an SQL
NULL. This check is important if the column type is a primitive
(int, float, etc.) and the value in the database is 0. A zero value
would be indistinguishable from a database value of NULL,
which is also returned as a 0. If the column type is an object
(String, Date, etc.), you can simply compare the return value to
null.

 findColumn - Returns the index in the ResultSet corresponding
to the specified column name.

 getRow - Returns the current row number, with the first row
starting at 1 (JDBC 2.0).

 getMetaData - Returns a ResultSetMetaData object describing
the ResultSet. ResultSetMetaData gives the number of columns
and the column names.

The getMetaData method is particularly useful. Given only a
ResultSet, you have to know the name, number, and type of the
columns to be able to process the table properly. For most fixed-
format queries, this is a reasonable expectation. For ad hoc

71

queries, however, it is useful to be able to dynamically discover
high-level information about the result. That is the role of the
ResultSetMetaData class: it lets you determine the number, names,
and types of the columns in the ResultSet.

Useful ResultSetMetaData methods are described below.

 getColumnCount - Returns the number of columns in the
ResultSet.

 getColumnName - Returns the database name of a column
(indexed starting at 1).

 getColumnType - Returns the SQL type, to compare with entries
in java.sql.Types.

 isReadOnly - Indicates whether the entry is a read-only value.

 isSearchable - Indicates whether the column can be used in a
WHERE clause.

 isNullable - Indicates whether storing NULL is legal for the
column.

ResultSetMetaData does not include information about the
number of rows; however, if your driver complies with JDBC 2.0,
you can call last on the ResultSet to move the cursor to the last row
and then call getRow to retrieve the current row number. In JDBC
1.0, the only way to determine the number of rows is to repeatedly
call next on the ResultSet until it returns false.

3.8 CLOSE THE CONNECTION

To close the connection explicitly, you would do:
connection.close();

Closing the connection also closes the corresponding
Statement and ResultSet objects. You should postpone closing the
connection if you expect to perform additional database operations,
since the overhead of opening a connection is usually large. In fact,
reusing existing connections is such an important optimization that
the JDBC 2.0 API defines a ConnectionPoolDataSource interface
for obtaining pooled connections.

Example - Write a JDBC program to create a table and insert
records into it.

import java.sql.*;

public class FirstJDBC

72

{

public static void main(String args[])

{

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

}

catch(Exception e){

System.out.println("Error"+e.getMessage());}

try

{

Connection con =

DriverManager.getConnection("jdbc:odbc:myDSN");

Statement st = con.createStatement();

String str = "create table Login

(UserName text,Password text)";

st.executeUpdate(str);

System.out.println("Table Created");

st.executeUpdate("insert into Login

values ('Raj','ghf')");

st.executeUpdate("insert into Login

values ('Harsh','hhh')");

st.executeUpdate("insert into Login

values ('Ram','gfg')");

st.executeUpdate("insert into Login

values ('Raju','ggg')");

st.executeUpdate("insert into Login

values ('Ramu','mmm')");

con.commit();

System.out.println("Values Inserted");

}

catch(Exception
e){System.out.println("Error"+e.getMessage());}

}

}

73

Note: To run the program we need to create a DSN. Here are the
steps to create.

1) Click on Start Settings Control Panel Administrative
Tools

2) Click on Data Sources (ODBC) which opens a dialog box.
Click Add button.

3) Select the driver for your database and click on Finish
button.

4) Give name myDSN and select your database which was
already created.

Example - Write a JDBC program to fetch values and display
them on screen.

import java.sql.*;

public class SelDemo

{

public static void main(String args[])

{

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con =

DriverManager.getConnection("jdbc:odb
c: myDSN ");

Statement st = con.createStatement();

ResultSet sel = st.executeQuery

("select * from Login");

while(sel.next())

{

String name = sel.getString(1);

String pass = sel.getString(2);

System.out.println(name+" "+pass);

}

}

catch(Exception e)

{

System.out.println("Errooorrrr"+e.getMessage());

74

}

}

}

Example - Write a JDBC program to get the columns names
and row data from a table.

import java.sql.*;

class FetchData

{

public static void main(String args[])

{

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con=DriverManager.getConnection

("jdbc:odbc: myDSN");

System.out.println("Connecting to database....");

Statement st=con.createStatement();

ResultSet rs=st.executeQuery

("select * from dept order by deptno asc");

ResultSetMetaData rsmd = rs.getMetaData();

System.out.println("Displaying Values....");

for(int i=1;i<=rsmd.getColumnCount();i++)

System.out.print(rsmd.getColumnName(i)+"\t");

System.out.println("\n");

con.commit();

while(rs.next()) {

System.out.println(rs.getInt(1)+

"\t"+rs.getString(2)+"\t"+rs.getString(3));

}

st.close();

}

catch(Exception a){

System.out.println("ERROR"+a.getMessage());
}

}

}

75

3.9 SUMMARY

 Load the JDBC driver - To load a driver, you specify the class
name of the database driver

 Define the connection URL - In JDBC, a connection URL
specifies the server host, port, and database name with which to
establish a connection.

 Establish the connection - With the connection URL, username,
and password, a network connection to the database can be
established.

 Create a Statement object - Creating a Statement object
enables you to send queries and commands to the database.

 Execute a query or update - Given a Statement object, you can
send SQL statements to the database

 Process the results - When a database query is executed, a
ResultSet is returned.

 Close the connection - When you are finished performing
queries and processing results, you should close the
connection, releasing resources to the database.

3.10 UNIT END EXERCISE

1) What are the components of JDBC?

2) Explain the importance of the following methods:

a. Class.forName()

b. DriverManager.getConnection()

c. Connection.createStatement()

3) Explain any two drivers of JDBC.

4) Explain different types of JDBC Drivers.

5) Outline the steps to access a database using JDBC.

6) Expalin the following methods and state the class/interface
to which they belong to:

a. executeUpdate()

b. getColumnCount()

c. getString()

7) Write a JDBC program that accepts a table name and
displays total number of records present in it.

8) Write a JDBC program that accepts account number from
the user and obtains the name and current balance by
checking the appropriate fields from the customer table.

76

9) Write a JDBC program to accept and table name and to
display the total number of columns and total number of
records from it.

10) Write a JDBC program to accept name of a student, find the
student in the table and based on the date of birth calculate
and display the students age.

3.11 FURTHER READING

 Ivan Bayross, Web Enabled Commercial Applications
Development Using Java 2, BPB Publications, Revised Edition,
2006

 Joe Wigglesworth and Paula McMillan, Java Programming:
Advanced Topics, Thomson Course Technology (SPD), Third
Edition, 2004

 Cay S. Horstmann, Gary Cornell, Core Java™ 2: Volume II–
Advanced Features Prentice Hall PTR, 2001

77

4

ADVANCE JDBC

Unit Structure:

4.0 Objectives

4.1 The JDBC Exception classes

4.2 Prepared Statements

4.3 Joins

4.4 Transactions

4.5 Stored Procedures

4.6 Summary

4.7 Unit end exercise

4.8 Further Reading

4.0 OBJECTIVES

The objective of this chapter is to learn the various SQL
JDBC Exceptions and advance JDBC features such as joins, stored
procedures, prepared statements and transactions.

4.1 THE JDBC EXCEPTION CLASSES

 class java.lang.Throwable
o class java.lang.Exception

 class java.sql.SQLException
 class java.sql.BatchUpdateException
 class java.sql.SQLWarning

o class java.sql.DataTruncation
4.1.1 SQLException

An exception that provides information on a database
access error or other errors.

Each SQLException provides several kinds of information:

 a string describing the error. This is used as the Java
Exception message, available via the method getMesage.

78

 a "SQLstate" string, which follows either the XOPEN
SQLstate conventions or the SQL 99 conventions. The
values of the SQLState string are described in the
appropriate spec. The DatabaseMetaData method
getSQLStateType can be used to discover whether the
driver returns the XOPEN type or the SQL 99 type.

 an integer error code that is specific to each vendor.
Normally this will be the actual error code returned by the
underlying database.

 a chain to a next Exception. This can be used to provide
additional error information.

4.1.2 BatchUpdateException

An exception thrown when an error occurs during a batch
update operation. In addition to the information provided by
SQLException, a BatchUpdateException provides the update
counts for all commands that were executed successfully during the
batch update, that is, all commands that were executed before the
error occurred. The order of elements in an array of update counts
corresponds to the order in which commands were added to the
batch.

After a command in a batch update fails to execute properly
and a BatchUpdateException is thrown, the driver may or may not
continue to process the remaining commands in the batch. If the
driver continues processing after a failure, the array returned by the
method BatchUpdateException.getUpdateCounts will have an
element for every command in the batch rather than only elements
for the commands that executed successfully before the error. In
the case where the driver continues processing commands, the
array element for any command that failed is
Statement.EXECUTE_FAILED.

4.1.3 SQLWarning

An exception that provides information on database access
warnings. Warnings are silently chained to the object whose
method caused it to be reported.

Warnings may be retrieved from Connection, Statement, and
ResultSet objects. Trying to retrieve a warning on a connection
after it has been closed will cause an exception to be thrown.
Similarly, trying to retrieve a warning on a statement after it has
been closed or on a result set after it has been closed will cause an
exception to be thrown. Note that closing a statement also closes a
result set that it might have produced.

79

4.1.4 DataTruncation

An exception that reports a DataTruncation warning (on
reads) or throws a DataTruncation exception (on writes) when
JDBC unexpectedly truncates a data value.

The SQLstate for a DataTruncation is 01004.

4.2 PREPARED STATEMENTS:

A PreparedStatement object is more convenient for sending
SQL statements to the database. This special type of statement is
derived from the more general class, Statement. If you want to
execute a Statement object many times, use a PreparedStatement
object instead which reduces execution time.

The main feature of a Prepared Statement object is that it is
given an SQL statement when it is created. The advantage to this is
that in most cases, this SQL statement is sent to the DBMS right
away, where it is compiled. As a result, the Prepared
Statement object contains not just an SQL statement, but an SQL
statement that has been precompiled.

This means that when the PreparedStatement is executed, the
DBMS can just run the PreparedStatement SQL statement without
having to compile it first. Although PreparedStatement objects can
be used for SQL statements with no parameters, we use them most
often for SQL statements that take parameters. The advantage of
using SQL statements that take parameters is that you can use the
same statement and supply it with different values each time you
execute it.

Creating a PreparedStatement Object

A PreparedStatement objects can be created with a Connection
method.

E.g. PreparedStatement updateEmp = con.prepareStatement(
"UPDATE EMPLOYEES SET SALARY = ?
WHERE EMP_ID = ?");

Supplying Values for PreparedStatement Parameters
You need to supply values to be used in place of the

question mark placeholders (if there are any) before you can
execute a PreparedStatement object. You do this by calling one of
the setXXX methods defined in the PreparedStatement class. If the
value you want to substitute for a question mark is a Java int, you
call the method setInt. If the value you want to substitute for a

80

question mark is a Java String, you call the method setString, and
so on. In general, there is a setXXX method for each primitive type
declared in the Java programming language.

updateEmp.setInt(1, 7500);
updateEmp.setInt(2,1030);
updateEmp.executeUpdate():

The method executeUpdate was used to execute both
the Statement stmt and the Prepared Statement update Emp.
Notice, however, that no argument is supplied to execute
Update when it is used to execute update Emp. This is true
because update Emp already contains the SQL statement to be
executed.

4.3 JOINS

Sometimes we need to use two or more tables to get the data we
want. For example, suppose we want a list of the coffees we buy
from Acme, Inc. This involves information in the COFFEES table as
well as SUPPLIERS table. This is a case where a join is needed. A
join is a database operation that relates two or more tables by
means of values that they share in common. In our database, the
tables COFFEES and SUPPLIERS both have the column SUP_ID,
which can be used to join them.

The table COFFEES, is shown here:

COF_NAME SUP_ID PRICE SALES TOTAL

Colombian 101 7.99 0 0

French_Roast 49 8.99 0 0

Espresso 150 9.99 0 0

Colombian_Decaf 101 8.99 0 0

French_Roast_Decaf 49 9.99 0 0

The following code selects the whole table and lets us see what the
table SUPPLIERS looks like:
ResultSet rs = stmt.executeQuery("select * from SUPPLIERS");
The result set will look similar to this:

SUP_ID SUP_NAME STREET CITY STATE ZIP

101 Reliance 99 Market Street New Delhi Delhi 95199

49 Tata 1 Party Place Mumbai Mah 95460

150 Sahara 100 Coffee Lane Kolkata WB 93966

81

The names of the suppliers are in the table SUPPLIERS,
and the names of the coffees are in the table COFFEES. Since
both tables have the column SUP_ID, this column can be used in a
join. It follows that you need some way to distinguish
which SUP_ID column you are referring to. This is done by
preceding the column name with the table name, as in
"COFFEES.SUP_ID" to indicate that you mean the
column SUP_ID in the table COFFEES. The following code, in
which stmt is a Statement object, selects the coffees bought from
Acme, Inc.:

String query = "

SELECT COFFEES.COF_NAME " +

"FROM COFFEES, SUPPLIERS " +

"WHERE SUPPLIERS.SUP_NAME LIKE 'Reliance' " +

"and SUPPLIERS.SUP_ID = COFFEES.SUP_ID";

ResultSet rs = stmt.executeQuery(query);

System.out.println("Coffees bought from Reliance.: ");

while (rs.next()) {

String coffeeName = rs.getString("COF_NAME");

System.out.println(" " + coffeeName);

}

This will produce the following output:

Coffees bought from Reliance.:

Colombian

Colombian_Decaf

4.4 TRANSACTIONS

There are times when you do not want one statement to take
effect unless another one completes. For example, when the
proprietor of The Coffee Break updates the amount of coffee sold
each week, he will also want to update the total amount sold to
date. However, he will not want to update one without updating the
other; otherwise, the data will be inconsistent. The way to be sure
that either both actions occur or neither action occurs is to use a
transaction. A transaction is a set of one or more statements that
are executed together as a unit, so either all of the statements are
executed, or none of the statements is executed.

Disabling Auto-commit Mode
When a connection is created, it is in auto-commit mode.

This means that each individual SQL statement is treated as a
transaction and is automatically committed right after it is executed.

82

The way to allow two or more statements to be grouped into a
transaction is to disable auto-commit mode. This is demonstrated in
the following line of code, where con is an active connection:

con.setAutoCommit(false);

Committing a Transaction
Once auto-commit mode is disabled, no SQL statements are

committed until you call the method commit explicitly. All
statements executed after the previous call to the
method commit are included in the current transaction and
committed together as a unit.

The following code, in which con is an active connection, illustrates
a transaction:

con.setAutoCommit(false);

PreparedStatement updateSales = con.prepareStatement(

"UPDATE COFFEES SET SALES = ? WHERE COF_NAME
LIKE ?");

updateSales.setInt(1, 50);

updateSales.setString(2, "Colombian");

updateSales.executeUpdate();

PreparedStatement updateTotal = con.prepareStatement(

"UPDATE COFFEES SET TOTAL = TOTAL + ? WHERE
COF_NAME LIKE ?");

updateTotal.setInt(1, 50);

updateTotal.setString(2, "Colombian");

updateTotal.executeUpdate();

con.commit();

con.setAutoCommit(true);

In this example, auto-commit mode is disabled for the
connection con, which means that the two prepared
statements updateSales and updateTotal are committed together
when the method commit is called. The final line of the previous
example enables auto-commit mode, which means that each
statement is once again committed automatically when it is
completed. Then, you are back to the default state where you do
not have to call the method commit yourself. It is advisable to
disable auto-commit mode only while you want to be in transaction
mode. This way, you avoid holding database locks for multiple
statements, which increases the likelihood of conflicts with other
users.

Using Transactions to Preserve Data Integrity
In addition to grouping statements together for execution as

a unit, transactions can help to preserve the integrity of the data in

83

a table. For instance, suppose that an employee was supposed to
enter new coffee prices in the table COFFEES but delayed doing it
for a few days. In the meantime, prices rose, and today the owner
is in the process of entering the higher prices. The employee finally
gets around to entering the now outdated prices at the same time
that the owner is trying to update the table. After inserting the
outdated prices, the employee realizes that they are no longer valid
and calls the Connection method rollback to undo their effects. (The
method rollback aborts a transaction and restores values to what
they were before the attempted update.) At the same time, the
owner is executing a SELECT statement and printing out the new
prices. In this situation, it is possible that the owner will print a price
that was later rolled back to its previous value, making the printed
price incorrect.

This kind of situation can be avoided by using transactions,
providing some level of protection against conflicts that arise when
two users access data at the same time. To avoid conflicts during a
transaction, a DBMS uses locks, mechanisms for blocking access
by others to the data that is being accessed by the transaction.
Once a lock is set, it remains in force until the transaction is
committed or rolled back. For example, a DBMS could lock a row of
a table until updates to it have been committed. The effect of this
lock would be to prevent a user from getting a dirty read, that is,
reading a value before it is made permanent. (Accessing an
updated value that has not been committed is considered a dirty
read because it is possible for that value to be rolled back to its
previous value. If you read a value that is later rolled back, you will
have read an invalid value.)

Types of Result Sets
Results sets may have different levels of functionality. For

example, they may be scrollable or non-scrollable. A scrollable
result set has a cursor that moves both forward and backward and
can be moved to a particular row. Also, result sets may be sensitive
or insensitive to changes made while they are open; that is, they
may or may not reflect changes to column values that are modified
in the database. A developer should always keep in mind the fact
that adding capabilities to a ResultSet object incurs additional
overhead, so it should be done only as necessary.

Based on the capabilities of scrollability and sensitivity to
changes, there are three types of result sets available. The
following constants, defined in the ResultSet interface, are used to
specify these three types of result sets:

84

1. TYPE_FORWARD_ONLY

 The result set is nonscrollable; its cursor moves forward
only, from top to bottom.

 The view of the data in the result set depends on whether
the DBMS materializes results incrementally.

2. TYPE_SCROLL_INSENSITIVE

 The result set is scrollable: Its cursor can move forward or
backward and can be moved to a particular row or to a row
whose position is relative to its current position.

 The result set generally does not show changes to the
underlying database that are made while it is open. The
membership, order, and column values of rows are typically
fixed when the result set is created.

3. TYPE_SCROLL_SENSITIVE

 The result set is scrollable; its cursor can move forward or
backward and can be moved to a particular row or to a row
whose position is relative to its current position.

 The result set is sensitive to changes made while it is open.
If the underlying column values are modified, the new values
are visible, thus providing a dynamic view of the underlying
data. The membership and ordering of rows in the result set
may be fixed or not, depending on the implementation.

Concurrency Types
A result set may have different update capabilities. As with

scrollability, making a ResultSet object updatable increases
overhead and should be done only when necessary. That said, it is
often more convenient to make updates programmatically, and that
can only be done if a result set is made updatable. The JDBC 2.0
core API offers two update capabilities, specified by the following
constants in the ResultSet interface:

1. CONCUR_READ_ONLY

 Indicates a result set that cannot be updated
programmatically

 Offers the highest level of concurrency (allows the largest
number of simultaneous users). When a ResultSet object
with read-only concurrency needs to set a lock, it uses a
read-only lock. This allow users to read data but not to
change it. Because there is no limit to the number of read-
only locks that may be held on data at one time, there is no
limit to the number of concurrent users unless the DBMS or
driver imposes one.

85

2. CONCUR_UPDATABLE

 Indicates a result set that can be updated programmatically

 Reduces the level on concurrency. Updatable results sets
may use write-only locks so that only one user at a time has
access to a data item. This eliminates the possibility that two
or more users might change the same data, thus ensuring
database consistency. However, the price for this
consistency is a reduced level of concurrency.

To allow a higher level of concurrency, an updatable result
set may be implemented so that it uses an optimistic concurrency
control scheme. This implementation assumes that conflicts will be
rare and avoids using write-only locks, thereby permitting more
users concurrent access to data. Before committing any updates, it
determines whether a conflict has occurred by comparing rows
either by value or by a version number. If there has been an update
conflict between two transactions, one of the transactions will be
aborted in order to maintain consistency. Optimistic concurrency
control implementations can increase concurrency; however, if
there are too many conflicts, they may actually reduce
performance.

How locks are set is determined by what is called a
transaction isolation level, which can range from not supporting
transactions at all to supporting transactions that enforce very strict
access rules. One example of a transaction isolation level is
TRANSACTION_READ_COMMITTED, which will not allow a value
to be accessed until after it has been committed. In other words, if
the transaction isolation level is set
to TRANSACTION_READ_COMMITTED, the DBMS does not
allow dirty reads to occur. The interface Connection includes five
values which represent the transaction isolation levels you can use
in JDBC.

Normally, you do not need to do anything about the
transaction isolation level; you can just use the default one for your
DBMS. JDBC allows you to find out what transaction isolation level
your DBMS is set to (using the Connection method
getTransactionIsolation) and also allows you to set it to another
level (using the Connection method setTransactionIsolation). Keep
in mind, however, that even though JDBC allows you to set a
transaction isolation level, doing so has no effect unless the driver
and DBMS you are using support it.

86

static int TRANSACTION_NONE
A constant indicating that transactions are not

supported.

static int TRANSACTION_READ_COMMITTED
A constant indicating that dirty reads are

prevented; non-repeatable reads and phantom reads can
occur.

static int TRANSACTION_READ_UNCOMMITTED
A constant indicating that dirty reads, non-

repeatable reads and phantom reads can occur.

static int TRANSACTION_REPEATABLE_READ
A constant indicating that dirty reads and non-

repeatable reads are prevented; phantom reads can
occur.

static int TRANSACTION_SERIALIZABLE
A constant indicating that dirty reads, non-

repeatable reads and phantom reads are prevented.

Setting and Rolling Back to a Savepoint
The JDBC 3.0 API adds the method Connection. Set Save

point, which sets a savepoint within the current transaction.
The Connection.rollback method has been overloaded to take a
savepoint argument.

The example below inserts a row into a table, sets the
savepoint svpt1, and then inserts a second row. When the
transaction is later rolled back tosvpt1, the second insertion is
undone, but the first insertion remains intact. In other words, when
the transaction is committed, only the row containing ?FIRST? will
be added to TAB1:

Statement stmt = conn.createStatement();
int rows = stmt.executeUpdate("INSERT INTO TAB1 (COL1)
VALUES " + "(?FIRST?)");
// set savepoint
Savepoint svpt1 = conn.setSavepoint("SAVEPOINT_1");
rows = stmt.executeUpdate("INSERT INTO TAB1 (COL1) " +

"VALUES (?SECOND?)");
...
conn.rollback(svpt1);
...
conn.commit();

Releasing a Savepoint
The method Connection.rollback() release Savepoint takes

a Savepoint object as a parameter and removes it from the current
transaction. Once a savepoint has been released, attempting to

87

reference it in a rollback operation causes an SQLException to be
thrown. Any savepoints that have been created in a transaction are
automatically released and become invalid when the transaction is
committed, or when the entire transaction is rolled back. Rolling a
transaction back to a savepoint automatically releases and makes
invalid any other savepoints that were created after the savepoint in
question.

When to Call the Method rollback
As mentioned earlier, calling the method rollback aborts a

transaction and returns any values that were modified to their
previous values. If you are trying to execute one or more
statements in a transaction and get an SQLException, you should
call the method rollback to abort the transaction and start the
transaction all over again. That is the only way to be sure of what
has been committed and what has not been committed. Catching
an SQLException tells you that something is wrong, but it does not
tell you what was or was not committed. Since you cannot count on
the fact that nothing was committed, calling the method rollback is
the only way to be sure.

4.5 STORED PROCEDURES

A stored procedure is a group of SQL statements that form a
logical unit and perform a particular task, and they are used to
encapsulate a set of operations or queries to execute on a
database server. For example, operations on an employee
database (hire, fire, promote, lookup) could be coded as stored
procedures executed by application code. Stored procedures can
be compiled and executed with different parameters and results,
and they may have any combination of input, output, and
input/output parameters.

This simple stored procedure has no parameters. Even
though most stored procedures do something more complex than
this example, it serves to illustrate some basic points about them.
As previously stated, the syntax for defining a stored procedure is
different for each DBMS. For example, some use begin . . . end ,
or other keywords to indicate the beginning and ending of the
procedure definition. In some DBMSs, the following SQL statement
creates a stored procedure:

create procedure SHOW_SUPPLIERS
as
select SUPPLIERS.SUP_NAME, COFFEES.COF_NAME
from SUPPLIERS, COFFEES
where SUPPLIERS.SUP_ID = COFFEES.SUP_ID
order by SUP_NAME

88

The following code puts the SQL statement into a string and
assigns it to the variable createProcedure, which we will use later:
String createProcedure = "create procedure SHOW_SUPPLIERS "
+ "as " + "select SUPPLIERS.SUP_NAME, COFFEES.COF_NAME
" + "from SUPPLIERS, COFFEES " + "where SUPPLIERS.SUP_ID
= COFFEES.SUP_ID " + "order by SUP_NAME";

The following code fragment uses
the Connection object con to create a Statement object, which is
used to send the SQL statement creating the stored procedure to
the database:

Statement stmt = con.createStatement();
stmt.executeUpdate(createProcedure);

The procedure SHOW_SUPPLIERS is compiled and stored
in the database as a database object that can be called, similar to
the way you would call a method.

Calling a Stored Procedure from JDBC
JDBC allows you to call a database stored procedure from

an application written in the Java programming language. The first
step is to create a Callable Statement object. As
with Statement and Prepared Statement objects, this is done with
an open Connection object. A callable Statement object contains a
call to a stored procedure; it does not contain the stored procedure
itself. The first line of code below creates a call to the stored
procedure SHOW_SUPPLIERS using the connection con. The part
that is enclosed in curly braces is the escape syntax for stored
procedures. When the driver encounters "{call
SHOW_SUPPLIERS}", it will translate this escape syntax into the
native SQL used by the database to call the stored procedure
named SHOW_SUPPLIERS.

CallableStatement cs = con.prepareCall
("{call SHOW_SUPPLIERS}");

ResultSet rs = cs.executeQuery();
The ResultSet rs will be similar to the following:
SUP_NAME COF_NAME
---------------- -----------------------
Reliance Colombian
Reliance Colombian_Decaf
Tata French_Roast
Tata French_Roast_Decaf
Sahara Espresso

Note that the method used to execute cs is execute
Query because cs calls a stored procedure that contains one query
and thus produces one result set. If the procedure had contained
one update or one DDL statement, the method execute

89

Update would have been the one to use. It is sometimes the case,
however, that a stored procedure contains more than one SQL
statement, in which case it will produce more than one result set,
more than one update count, or some combination of result sets
and update counts. In this case, where there are multiple results,
the method execute should be used to execute the Callable
Statement.

The class Callable Statement is a subclass of Prepared
Statement, so a Callable Statement object can take input
parameters just as a Prepared Statement object can. In addition,
a Callable Statement object can take output parameters, or
parameters that are for both input and output. INOUT parameters
and the method execute are used rarely.

Example - Write a java code to accept the query from user at
command line argument. Then process this query and using
ResultSet and ResultSetMetaData class. Display the result on
the screen with proper title of the fields and the fields
separator should be ‘|’ (pipe) symbol.

import java.sql.*;

import java.io.*;

class CLAQuery

{

public static void main(String args[])throws SQLException

{

Connection con;

int i;

String str;

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con=DriverManager.

getConnection("jdbc:odbc:sidd");

Statement st=con.createStatement();

BufferedReader br=new BufferedReader((

new InputStreamReader(System.in)));

System.out.println("Enter The Query");

str=br.readLine();

ResultSet rs=st.executeQuery(str);

ResultSetMetaData md=rs.getMetaData();

int num=md.getColumnCount();

90

System.out.print("\n");

for(i=1;i<=num;i++)

System.out.print(md.getColumnName(i)+"\t\t");

System.out.println("");

while(rs.next())

{

for(i=1;i<=num;i++)

System.out.print(rs.getString(i)+"\t\t");

System.out.print("\n");

}

}

catch(Exception e)

{

System.out.println("Error1:"+e.getMessage());

}

}

}

Example - Create a JFrame, which will add data of Friends
(Name, DOB, Address and Tel. No.) to the database and on
click of Show All button displays the records that are there in
the database.
import java.awt.event.*;

import javax.swing.*;

import java.awt.*;

import java.sql.*;

import java.lang.*;

class FriendDatabase extends JFrame implements ActionListener

{

JLabel lblDob,lblName,lblDetails,lblPhno,lblHead;

JTextField txtName,txtDob,txtPhno;

JTextArea txtDetails;

JButton cmdAdd,cmdShowAll,cmdExit;

GridBagLayout gbl=new GridBagLayout();

GridBagConstraints gbc=new GridBagConstraints();

Container con=getContentPane();

public FriendDatabase()

{

lblHead=new JLabel("Information");

lblName=new JLabel("Friend Name");

91

lblDob=new JLabel("DOB");

lblDetails=new JLabel("Address");

lblPhno=new JLabel("Phno");

txtName=new JTextField("");

txtDob=new JTextField("");

txtDetails=new JTextArea(2,2);

int v=ScrollPaneConstants.

VERTICAL_SCROLLBAR_AS_NEEDED;

int h=ScrollPaneConstants.

HORIZONTAL_SCROLLBAR_AS_NEEDED;

JScrollPane jsp=new JScrollPane(txtDetails,v,h);

txtPhno=new JTextField("");

cmdAdd=new JButton("Add");

cmdAdd.addActionListener(this);

cmdShowAll=new JButton("Show All");

cmdShowAll.addActionListener(this);

cmdExit=new JButton("Exit");

cmdExit.addActionListener(this);

con.setLayout(new GridBagLayout());

gbc.fill=GridBagConstraints.BOTH;

gbc.weightx=1.0;

gbc.insets=new Insets(20,20,20,20);

gbc.gridx=1;gbc.gridy=0;

con.add(lblHead,gbc);

gbc.gridx=0;gbc.gridy=1;

con.add(lblName,gbc);

gbc.gridx=1;gbc.gridy=1;

con.add(txtName,gbc);

gbc.gridx=0;gbc.gridy=2;

con.add(lblDob,gbc);

gbc.gridx=1;gbc.gridy=2;

con.add(txtDob,gbc);

92

gbc.gridx=0;gbc.gridy=3;

con.add(lblDetails,gbc);

gbc.gridx=1;gbc.gridy=3;

con.add(jsp,gbc);

gbc.gridx=0;gbc.gridy=4;

con.add(lblPhno,gbc);

gbc.gridx=1;gbc.gridy=4;

con.add(txtPhno,gbc);

gbc.fill=GridBagConstraints.NONE;

gbc.gridx=0;gbc.gridy=5;

con.add(cmdAdd,gbc);

gbc.gridx=1;gbc.gridy=5;

con.add(cmdShowAll,gbc);

gbc.gridx=2;gbc.gridy=5;

con.add(cmdExit,gbc);

}

public void actionPerformed(ActionEvent ae)

{

Object obj=ae.getSource();

if(obj==cmdAdd)

{

Connection con;

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con=

DriverManager.getConnection("jdbc:odbc:sidd");

String query="insert into

FriendDatabase values(?,?,?,?)";

PreparedStatement ps;

ps=con.prepareStatement(query);
ps.setString(1,txtName.getText());

ps.setDate(2,Date.valueOf(txtDob.getText()));

ps.setString(3,txtDetails.getText());

String str=txtPhno.getText();

93

int m=Integer.parseInt(str);

ps.setInt(4,m);

ps.executeUpdate();

JOptionPane.showMessageDialog(this,

"Record Entered", "FriendsDatabase",

JOptionPane.ERROR_MESSAGE);

txtName.setText("");

txtDob.setText("");

txtDetails.setText("");

txtPhno.setText("");

ps.close();

con.close();

}

catch(Exception e)

{

System.out.println("Error:"+e.getMessage());

}

}

if(obj==cmdExit)

{

System.exit(0);

}

if(obj==cmdShowAll)

{

ShowAll as=new ShowAll(this,true);

}

}

public static void main(String args[])throws SQLException

{

FriendDatabase b=new FriendDatabase();

b.setSize(650,650);

b.setVisible(true);

}

}

class ShowAll extends JDialog

{

Object[][] rows={ {"","","",""},{"","","",""},{"","","",""},{"","","",""}};

Object[] cols={"Name","Dob","Details","Phno"};

94

int i,j;

JScrollPane p;

JTable t;

Connection con;

public ShowAll(JFrame f,boolean m)

{

super(f,m);

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con=DriverManager.

getConnection("jdbc:odbc:sidd");

Statement st=con.createStatement();

ResultSet rs=st.executeQuery

("Select * from FriendDatabase");

i=0;

while(rs.next())

{

for(j=0;j<=3;j++)

{

Object obj=rs.getObject(j+1);

rows[i][j]=obj.toString();

System.out.print(""+obj.toString()+"\t");

}

i++;

}

t=new JTable(rows,cols);

int v1=ScrollPaneConstants.

VERTICAL_SCROLLBAR_ALWAYS;

int h1=ScrollPaneConstants.

HORIZONTAL_SCROLLBAR_ALWAYS;

p=new JScrollPane(t,v1,h1);

Container con1=getContentPane();

con1.add(p,BorderLayout.CENTER);

setSize(300,300);

setVisible(true);

}

catch(Exception e)

{

95

System.out.println("Error2:"+e.getMessage());

}

}

}

4.6 SUMMARY

 An exception that provides information on a database access
error or other errors.

 A PreparedStatement object is more convenient for sending
SQL statements to the database.

 A transaction is a set of one or more statements that are
executed together as a unit, so either all of the statements are
executed, or none of the statements is executed.

 A stored procedure is a group of SQL statements that form a
logical unit and perform a particular task.

4.7 UNIT END EXERCISE

1) State and explain any two exception classes related to JDBC?

2) Explain with an example how to create and use Prepared
Statement.

3) How SQL joins are executed using JDBC?

4) Explain how a Stored Procedure can be called from JDBC.

4.8 FURTHER READING

 Ivan Bayross, Web Enabled Commercial Applications
Development Using Java 2, BPB Publications, Revised Edition,
2006

 Joe Wigglesworth and Paula McMillan, Java Programming:
Advanced Topics, Thomson Course Technology (SPD), Third
Edition, 2004

 Cay S. Horstmann, Gary Cornell, Core Java™ 2: Volume II–
Advanced Features Prentice Hall PTR, 2001

96

5

THREADS AND MULTITHREADING

Unit Structure:

5.0 Objectives

5.1 Introduction

5.2 Life Cycle of a Thread

5.3 Thread Priorities

5.4 Creating a Thread

5.5 Using Multithreading

5.6 Thread Deadlock

5.7 Summary

5.8 Unit end exercise

5.9 Further Reading

5.0 OBJECTIVES

The objective of this chapter is to learn how threads are
created and used in Java. In this chapter we will learn the lifecycle
of the thread and how various properties can be set of the thread.

5.1. INTRODUCTION

Java provides built-in support for multithreaded
programming. A multithreaded program contains two or more parts
that can run concurrently. Each part of such a program is called a
thread, and each thread defines a separate path of execution. A
multithreading is a specialized form of multitasking. Multitasking
threads require less overhead than multitasking processes.

Another term related to threads is: process: A process
consists of the memory space allocated by the operating system
that can contain one or more threads. A thread cannot exist on its
own; it must be a part of a process. A process remains running until
all of the non-daemon threads are done executing. Multithreading
enables you to write very efficient programs that make maximum
use of the CPU, because idle time can be kept to a minimum.

97

5.1 LIFE CYCLE OF A THREAD:

A thread goes through various stages in its life cycle. For
example, a thread is born, started, runs, and then dies. Following
diagram shows complete life cycle of a thread.

Above mentioned stages are explained here:

 New: A new thread begins its life cycle in the new state. It
remains in this state until the program starts the thread. It is also
referred to as a born thread.

 Runnable: After a newly born thread is started, the thread
becomes runnable. A thread in this state is considered to be
executing its task.

 Waiting: Sometimes a thread transitions to the waiting state
while the thread waits for another thread to perform a task.A
thread transitions back to the runnable state only when another
thread signals the waiting thread to continue executing.

 Timed waiting: A runnable thread can enter the timed waiting
state for a specified interval of time. A thread in this state
transition back to the runnable state when that time interval
expires or when the event it is waiting for occurs.

 Terminated: A runnable thread enters the terminated state
when it completes its task or otherwise terminates.

98

5.2 THREAD PRIORITIES:

Every Java thread has a priority that helps the operating
system determine the order in which threads are scheduled.

Java priorities are in the range between MIN_PRIORITY (a
constant of 1) and MAX_PRIORITY (a constant of 10). By default,
every thread is given priority NORM_PRIORITY (a constant of 5).

Threads with higher priority are more important to a program
and should be allocated processor time before lower-priority
threads. However, thread priorities cannot guarantee the order in
which threads execute and very much platform dependentant.

5.3 CREATING A THREAD:

Java defines two ways in which this can be accomplished:
 You can implement the Runnable interface.
 You can extend the Thread class, itself.

5.3.1 Create Thread by Implementing Runnable:

The easiest way to create a thread is to create a class that
implements the Runnable interface. To implement Runnable, a
class need only implement a single method called run(), which is
declared like this:

public void run()

You will define the code that constitutes the new thread
inside run() method. It is important to understand that run() can call
other methods, use other classes, and declare variables, just like
the main thread can.

After you create a class that implements Runnable, you will
instantiate an object of type Thread from within that class. Thread
defines several constructors. The one that we will use is shown
here:

Thread(Runnable threadOb, String threadName);

Here threadOb is an instance of a class that implements the
Runnable interface and the name of the new thread is specified
by threadName. After the new thread is created, it will not start
running until you call its start() method, which is declared within
Thread. The start() method is shown here:

void start();

99

Example:

public class RunnableThread implements Runnable

{

private int countDown = 5;

public String toString()

{

return "#" + Thread.currentThread().getName()

+": " + countDown;

}

public void run()

{

while(true)

{

System.out.println(this);

if(--countDown == 0) return;

}

}

public static void main(String[] args)

{

for(int i = 1; i <= 5; i++)

new Thread(new RunnableThread(), "" +
i).start();

}

}

5.3.2 Create Thread by Extending Thread:

The second way to create a thread is to create a new class
that extends Thread, and then to create an instance of that class.

The extending class must override the run() method, which
is the entry point for the new thread. It must also call start() to
begin execution of the new thread.

Example:
Here is the preceding program rewritten to extend Thread:

public class SimpleThread extends Thread

{

private int countDown = 5;

private static int threadCount = 0;

public SimpleThread()

{

100

super("" + ++threadCount); // Store the thread name

start();

}

public String toString()

{

return "#" + getName() + ": " + countDown;

}

public void run()

{

while(true)

{

System.out.println(this);

if(--countDown == 0) return;

}

}

public static void main(String[] args)

{

for(int i = 0; i < 5; i++)

new SimpleThread();

}

}

Thread Methods: Following is the list of important medthods
available in the Thread class.

SN Methods

1
public void start() - Starts the thread in a separate path of
execution, then invokes the run() method on this Thread
object.

2
public void run() - If this Thread object was instantiated using
a separate Runnable target, the run() method is invoked on
that Runnable object.

3
public final void setName(String name) - Changes the
name of the Thread object. There is also a getName() method
for retrieving the name.

4
public final void setPriority(int priority) - Sets the priority of
this Thread object. The possible values are between 1 and 10.

101

5
public final void setDaemon(boolean on) - A parameter of
true denotes this Thread as a daemon thread.

6

public final void join(long millisec) - The current thread
invokes this method on a second thread, causing the current
thread to block until the second thread terminates or the
specified number of milliseconds passes.

7
public void interrupt() - Interrupts this thread, causing it to
continue execution if it was blocked for any reason.

8
public final boolean isAlive() - Returns true if the thread is
alive, which is any time after the thread has been started but
before it runs to completion.

The previous methods are invoked on a particular Thread
object. The following methods in the Thread class are static.
Invoking one of the static methods performs the operation on the
currently running thread

SN Methods

1
public static void yield() - Causes the currently running
thread to yield to any other threads of the same priority that
are waiting to be scheduled

2
public static void sleep(long millisec) - Causes the
currently running thread to block for at least the specified
number of milliseconds

3
public static boolean holdsLock(Object x) - Returns true if
the current thread holds the lock on the given Object.

4
public static Thread currentThread() - Returns a reference
to the currently running thread, which is the thread that
invokes this method.

5
public static void dumpStack() - Prints the stack trace for
the currently running thread, which is useful when debugging
a multithreaded application.

102

5.4 USING MULTITHREADING:

The key to utilizing multithreading support effectively is to
think concurrently rather than serially. For example, when you have
two subsystems within a program that can execute concurrently,
make them individual threads.

With the careful use of multithreading, you can create very
efficient programs. A word of caution is in order, however: If you
create too many threads, you can actually degrade the
performance of your program rather than enhance it.

Remember, some overhead is associated with context
switching. If you create too many threads, more CPU time will be
spent changing contexts than executing your program!

5.4.1 Thread Synchronization

When two or more threads need access to a shared
resource, they need some way to ensure that the resource will be
used by only one thread at a time. The process by which this
synchronization is achieved is called thread synchronization.

The synchronized keyword in Java creates a block of code
referred to as a critical section. Every Java object with a critical
section of code gets a lock associated with the object. To enter a
critical section, a thread needs to obtain the corresponding object's
lock.

This is the general form of the synchronized statement:

synchronized(object) {
// statements to be synchronized

}

Here, object is a reference to the object being synchronized.
A synchronized block ensures that a call to a method that is a
member of object occurs only after the current thread has
successfully entered object's monitor.

5.4.2 Interthread Communication

Consider the classic queuing problem, where one thread is
producing some data and another is consuming it. To make the
problem more interesting, suppose that the producer has to wait
until the consumer is finished before it generates more data.

103

In a polling system, the consumer would waste many CPU
cycles while it waited for the producer to produce. Once the
producer was finished, it would start polling, wasting more CPU
cycles waiting for the consumer to finish, and so on. Clearly, this
situation is undesirable.

To avoid polling, Java includes an elegant interprocess
communication mechanism via the following methods:

 wait(): This method tells the calling thread to give up the
monitor and go to sleep until some other thread enters the same
monitor and calls notify().

 notify(): This method wakes up the first thread that called wait(
) on the same object.

 notifyAll(): This method wakes up all the threads that called
wait() on the same object.c The highest priority thread will run
first.

These methods are implemented as final methods in Object,
so all classes have them. All three methods can be called only from
within a synchronized context.

These methods are declared within Object. Various forms of
wait() exist that allow you to specify a period of time to wait.

5.5 THREAD DEADLOCK

A special type of error that you need to avoid that relates
specifically to multitasking is deadlock, which occurs when two
threads have a circular dependency on a pair of synchronized
objects.

For example, suppose one thread enters the monitor on
object X and another thread enters the monitor on object Y. If the
thread in X tries to call any synchronized method on Y, it will block
as expected. However, if the thread in Y, in turn, tries to call any
synchronized method on X, the thread waits forever, because to
access X, it would have to release its own lock on Y so that the first
thread could complete.

Example:

class A

{

synchronized void foo(B b)

{

String name = Thread.currentThread().getName();

104

System.out.println(name + " entered A.foo");

try{

Thread.sleep(1000);

}

catch(Exception e) {

System.out.println("A Interrupted");

}

System.out.println(name + " trying to call B.last()");

b.last();

}

synchronized void last()

{

System.out.println("Inside A.last");

}

}

class B

{

synchronized void bar(A a)

{

String name = Thread.currentThread().getName();

System.out.println(name + " entered B.bar");

try{

Thread.sleep(1000);

}

catch(Exception e) {

System.out.println("B Interrupted");

}

System.out.println(name + " trying to call A.last()");

a.last();

}

synchronized void last()

{

System.out.println("Inside A.last");

}

}

class Deadlock implements Runnable

{

A a = new A();

B b = new B();

Deadlock()

105

{

Thread.currentThread().setName("MainThread");

Thread t = new Thread(this, "RacingThread");

t.start();

a.foo(b); // get lock on a in this thread.

System.out.println("Back in main thread");

}

public void run()

{

b.bar(a); // get lock on b in other thread.

System.out.println("Back in other thread");

}

public static void main(String args[])

{

new Deadlock();

}

}

Because the program has deadlocked, you need to press
CTRL-C to end the program. You can see a full thread and monitor
cache dump by pressing CTRL-BREAK on a PC. You will see that
RacingThread owns the monitor on b, while it is waiting for the
monitor on a. At the same time, MainThread owns a and is waiting
to get b. This program will never complete. As this example
illustrates, if your multithreaded program locks up occasionally,
deadlock is one of the first conditions that you should check for.

Ordering Locks:

Acommon threading trick to avoid the deadlock is to order
the locks. By ordering the locks, it gives threads a specific order to
obtain multiple locks.

5.7 SUMMARY

 A multithreaded program contains two or more parts that can
run concurrently.

 Each part of such a program is called a thread, and each thread
defines a separate path of execution.

 A thread goes through various stages in its life cycle - New,
Runnable, Waiting, Timed waiting and Terminated.

 Every Java thread has a priority that helps the operating system
determine the order in which threads are scheduled.

106

 Java defines two ways in which this can be accomplished:

• You can implement the Runnable interface.

• You can extend the Thread class, itself.

 When two or more threads need access to a shared resource,
they need some way to ensure that the resource will be used by
only one thread at a time.

5.8 UNIT END EXERCISE

1) Write a short note on Life Cycle of a Thread?

2) Explain with an example how a Thread can be created using
Runnable Class.

3) State and explain the methods used for Thread
Synchronization?

4) Explain with an example how a Thread can be created using
Thread Class.

5) Write a program to display rotating line. It should start and stop
rotating on click of buttons. The direction should be controlled
by 2 radiobuttons – ClockWise & AntiClockWise.

6) Write a program to show bouncing ball. The ball should bounce
when you click on button.

7) Create a class FileCopy to copy contents of 1 file to other file.
The names of files should be accepted from user. Implement
threading so that many files can be copied simultaneously.

5.9 FURTHER READING

 The Java Tutorials of Sun Microsystems Inc.

 Joe Wigglesworth and Paula McMillan, Java Programming:
Advanced Topics, Thomson Course Technology (SPD), Third
Edition, 2004

 Cay S. Horstmann, Gary Cornell, Core Java™ 2: Volume II–
Advanced Features Prentice Hall PTR, 2001

107

6

NETWORKING BASICS

Unit Structure:

6.0 Objectives

6.1 Introduction to Networking

6.2 Working with URL’s

6.3 URLConnection

6.4 TCP/IP Sockets

6.5 UDP Sockets

6.6 Summary

6.7 Unit end exercise

6.8 Further Reading

6.1 INTRODUCTION TO NETWORKING

1) Sockets: Different programs can communicate through
communication channels called sockets. Sockets can be
considered as the end points in the communication link.

2) Client/Server: A server is a system that has some resource that
can be shared. There are compute servers, which provide
computing power, print servers which manage a collection of
printers and webservers which stores web pages. A client is simply
any other system that wants to gain access in a particular server.

3) Reserved Sockets: TCP/IP reserves the lower 1024 codes for
specific protocols. Port number 21 is used for FTP (File Transfer
Protocol), 23 is used for Telnet, 25 is used for E-mail, 80 is used for
HTTP etc.

4) Proxy Servers: A proxy server speaks the client side of a
protocol to another server. This is often required when clients have
contained restrictions on which servers they can connect to. Thus a
client would connect to a proxyserver and the proxyserver would in
turn communicate with the client.

108

5) Internet Addressing: An internet address is a number that
uniquely identifies each computer on the net. Every computer on
the internet has an address. There are 32-bits in an IP address and
we often refer to them as a sequence of 4 numbers between 0 and
255 separated by dots.

6) Domain Naming Service (DNS): A domain name describes a
machine location is a namespace from right to left. E.g.
www.yahoo.com is in the com domain, it is called yahoo after the
company name and www is the name of specific computer that is
yahoo’s web server www corresponds to the right most no. in the
equivalent IP address.

6.2 WORKING WITH URL’S

The class URL represents a Uniform Resource Locator, a
pointer to a resource on the World Wide Web. A resource can be
something as simple as a file or a directory, or it can be a reference
to a more complicated object such as a query to a database or to a
search engine. URL’s begin with a protocol specification such as
HTTP of FTP, followed be “://” and the host name along with
optional file and port no. Java’s URL class is used to create a URL
object, which has several constructors and each throws a
MalformedURLException.

Constructor Summary

URL(String spec)
Creates a URL object from the String representation.

URL(String protocol, String host, int port, String file)

Creates a URL object from the specified protocol, host, port
number, and file.

URL(String protocol, String host, String file)

Creates a URL from the specified protocol name, host name,
and file name.

Method Summary

String getAuthority() Gets the authority part of this URL.

Object getContent() Gets the contents of this URL.

String getFile() Gets the file name of this URL.

String getHost() Gets the host name of this URL, if
applicable.

109

String getPath() Gets the path part of this URL.

int getPort() Gets the port number of this URL.

String getProtocol() Gets the protocol name of this URL.

String getQuery() Gets the query part of this URL.

String getRef() Gets the anchor (also known as the
"reference") of this URL.

String getUserInfo() Gets the userInfo part of this URL.

URLConnection
openConnection()

Returns a URLConnection object that
represents a connection to the remote
object referred to by the URL.

InputStream
openStream()

Opens a connection to this URL and
returns an InputStream for reading from
that connection.

6.3 URLCONNECTION:

URL connection is a general purpose class for accessing the
attributes of a remote resource. Once a connection is established
with the remote server, we can inspect the properties of the remote
object before actually transporting it locally. We can obtain an
object of URL connection with the help of openConnection() of the
URL class.

Constructor Summary

URLConnection(URL url)
Constructs a URL connection to the specified URL.

Method Summary

abstract void

connect()

Opens a communications link to the
resource referenced by this URL, if such a
connection has not already been
established.

String
getContentEncoding()

Returns the value of the content-encoding
header field.

int
getContentLength()

Returns the value of the content-length
header field.

110

String
getContentType()

Returns the value of the content-type
header field.

long getDate() Returns the value of the date header field.

long getExpiration() Returns the value of the expires header
field.

String
getHeaderField(int n)

Returns the value for the nth header field.

String
getHeaderField(String
name)

Returns the value of the named header
field.

InputStream
getInputStream()

Returns an input stream that reads from this
open connection.

long
getLastModified()

Returns the value of the last-modified
header field.

OutputStream
getOutputStream()

Returns an output stream that writes to this
connection.

URL getURL() Returns the value of this URLConnection's
URL field.

Example: Define a class that displays information about a file
URL like its type, encoding, length, dates of creation, last
modification and expiry. Additionally the class should display
the request method, response message and the response
code for a Web URL.

import java.net.URL;

import java.net.URLConnection;

import java.net.HttpURLConnection;

import java.util.Date;

class URLDemo

{

long d;

public static void main(String args[])throws Exception

{

URL u=new URL("http://localhost:8080/index.html");

URLConnection uc=u.openConnection();

HttpURLConnection huc=(HttpURLConnection)uc;

111

Date d=new Date(uc.getDate());

System.out.println("File Name

="+u.getFile());

System.out.println("Host Name

="+u.getHost());

System.out.println("Path Name

="+u.getPath());

System.out.println("Port Name

="+u.getPort());

System.out.println("Protocol Name

="+u.getProtocol());

System.out.println("Reference Name

="+u.getRef());

System.out.println("User Info

="+u.getUserInfo());

System.out.println("Content Name

="+u.getContent());

System.out.println("Authority Name

="+u.getAuthority());

System.out.println("Content Type

="+uc.getContentType());

System.out.println("Length

="+uc.getContentLength());

System.out.println("Expiration Date

="+uc.getExpiration());

System.out.println("Encoding Type

="+uc.getContentEncoding());

System.out.println("Last Modified Date

="+uc.getLastModified());

System.out.println("Date

="+d.toString());

System.out.println("Request Method

="+huc.getRequestMethod());

System.out.println("Response Message

="+huc.getResponseMessage());

System.out.println("Response Code

="+huc.getResponseCode());

}

}

112

Example: Define a class to download a file from the Internet
and either copy it as a file on the local machine, or output it to
the screen.

import java.net.URL;

import java.io.InputStream;

import java.io.OutputStream;

import java.io.IOException;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

class Download

{

public static void main(String args[])throws Exception

{

int b;

char c;

if(args.length==0)

throw new Exception("Invalid Number of argument");

URL u=new URL(args[0]);

InputStream is=u.openStream();

OutputStream os;

if(args.length==1)

{

while ((b=is.read())!=-1)

System.out.print((char)b);

}

else

{ File f2=new File(args[1]);

os=new FileOutputStream(f2);

if(f2.exists()==true)

{

System.out.println("This file exists");

System.exit(0);

}

else

{

while ((b=is.read())!=-1)

os.write(b);

}

113

}

}//main

}//class

6.4 TCP/IP SOCKETS:

These are used to implement reliable, persistent, point to
point, stream based connections between hosts on the internet.
The program at the 2 ends of the socket can write to and read from
the sockets.

Advantages:
 Easy to use.
 Used for 2 way communication.
 No parts of the transmission are lost.

Disadvantages:
 It requires setup time and shutdown time.
 Delivery is slower than datagram sockets.

There are two types of TCP/IP sockets. One is used for Servers
and other is used for clients.

Socket Class:

The socket class is designed to connect to a server socket. The
creation of to a socket object implicitly establishes a connection
between client and server.

Constructor Summary

Socket(InetAddress address, int port)
Creates a stream socket and connects it to the specified port
number at the specified IP address.

Socket(InetAddress address, int port, InetAddress localAddr,
int localPort)
Creates a socket and connects it to the specified remote address
on the specified remote port.

Socket(String host, int port)
Creates a stream socket and connects it to the specified port
number on the named host.

Socket(String host, int port, InetAddress localAddr, int localPort)
Creates a socket and connects it to the specified remote host on
the specified remote port.

114

Method Summary

void close() Closes this socket.

void connect

(SocketAddress endpoint)

Connects this socket to the server.

void connect

(SocketAddress endpoint,
int timeout)

Connects this socket to the server with a
specified timeout value.

InetAddress
getInetAddress()

Returns the address to which the socket
is connected.

InputStream
getInputStream()

Returns an input stream for this socket.

InetAddress
getLocalAddress()

Gets the local address to which the
socket is bound.

int getLocalPort() Returns the local port to which this
socket is bound.

OutputStream
getOutputStream()

Returns an output stream for this
socket.

int getPort() Returns the remote port to which this
socket is connected.

int
getReceiveBufferSize()

Gets the value of the SO_RCVBUF
option for this Socket, that is the buffer
size used by the platform for input on
this Socket.

boolean isClosed() Returns the closed state of the socket.

boolean isConnected() Returns the connection state of the
socket.

ServerSocket Class:

The ServerSocket class is designed to be a listener which
waits for the clients to connect. When you create a ServerSocket it
will register itself with the system as having as interest in client
connection.

115

Constructor Summary

ServerSocket(int port)
Creates a server socket, bound to the specified port.

ServerSocket(int port, int backlog)

Creates a server socket and binds it to the specified local
port number, with the specified backlog.

Method Summary

Socket accept() Listens for a connection to be made to this
socket and accepts it.

void close() Closes this socket.

InetAddress
getInetAddress()

Returns the local address of this server
socket.

int getLocalPort() Returns the port on which this socket is
listening.

int
getReceiveBufferSize()

Gets the value of the SO_RCVBUF option
for this ServerSocket, that is the proposed
buffer size that will be used for Sockets
accepted from this ServerSocket.

boolean isClosed() Returns the closed state of the
ServerSocket.

Example: Write a simple server that reports the current time (in
textual form) to any client that connects. This server should
simply output the current time and close the connection,
without reading anything from the client. You need to choose a
port number that your service listens on.

import java.net.*;

import java.io.*;

import java.util.*;

class TimeServer

{

public static void main(String args[])throws Exception

{

ServerSocket s=new ServerSocket(1234);

Socket c=s.accept();

Calendar calendar = new GregorianCalendar();

116

PrintWriter out=new PrintWriter(c.getOutputStream());

out.println(new Date());

out.println("Time :");

out.print(

calendar.get(Calendar.HOUR)+"HRS."

+ calendar.get(Calendar.MINUTE)+"MIN."

+ calendar.get(Calendar.SECOND)+"SEC");

out.flush();

s.close();

c.close();

}

}

import java.net.*;

import java.io.*;

class TimeClient

{

public static void main(String args[])throws Exception

{

Socket c=new Socket(InetAddress.getLocalHost(),1234);

BufferedReader br=new BufferedReader(new

InputStreamReader(c.getInputStream()));

String userInput;

while((userInput=br.readLine())!=null)

{

System.out.println(userInput);

}

c.close();

}

}

6.5 UDP SOCKETS:

Datagram sockets are not connection oriented. Here we
send self contained packets of data. Each packet contains
information that identifies in addition to the content of the message.

Advantages:
 Does not require setup time and shutdown time.
 Delivery is faster than TCP/IP sockets.

117

Disadvantages:
 Datagram sockets cannot be used for two way

communication.
 Parts of the transmission are lost.

Datagram Socket Class:

A datagram socket is the sending or receiving point for a
packet delivery service. Each packet send or receive on a
datagramsocket is individually addressed or routed. Multiple
packets send from 1 machine may be routed differently and may
arrive in any order.

Constructor Summary

DatagramSocket()
Constructs a datagram socket and binds it to any available port on
the local host machine.

DatagramSocket(int port)

Constructs a datagram socket and binds it to the specified port on
the local host machine.

DatagramSocket(int port, InetAddress laddr)

Creates a datagram socket, bound to the specified local address.

Method Summary

void close() Closes this datagram socket.

void
connect(InetAddress address,
int port)

Connects the socket to a remote
address for this socket.

InetAddress getInetAddress() Returns the address to which this
socket is connected.

InetAddress
getLocalAddress()

Gets the local address to which the
socket is bound.

int getLocalPort() Returns the port number on the
local host to which this socket is
bound.

int getPort() Returns the port for this socket.

118

boolean isClosed() Returns wether the socket is closed
or not.

boolean isConnected() Returns the connection state of the
socket.

void
receive(DatagramPacket p)

Receives a datagram packet from
this socket.

void send(DatagramPacket p) Sends a datagram packet from this
socket.

DatagramPacket:
DatagramPackets are use to implement a connection less

packet delivery service. Each message is routed from one machine
to another based on the information contained within that packet.

Constructor Summary

DatagramPacket(byte[] buf, int length)
Constructs a DatagramPacket for receiving packets of

length length.

DatagramPacket(byte[] buf, int length, InetAddress address,
int port)

Constructs a datagram packet for sending packets of length
length to the specified port number on the specified host.

DatagramPacket(byte[] buf, int offset, int length,
InetAddress address, int port)

Constructs a datagram packet for sending packets of length
length with offset set to the specified port number on the specified
host.

Method Summary

InetAddress
getAddress()

Returns the IP address of the machine to which
this datagram is being sent or from which the
datagram was received.

byte[]getData() Returns the data buffer.

int getLength() Returns the length of the data to be sent or the
length of the data received.

119

Int getOffset() Returns the offset of the data to be sent or
the offset of the data received.

int getPort() Returns the port number on the remote host
to which this datagram is being sent or from
which the datagram was received.

void setAddress

(InetAddress iaddr)

Sets the IP address of the machine to which
this datagram is being sent.

void
setData(byte[] buf)

Set the data buffer for this packet.

void
setData(byte[] buf,
int offset, int length)

Set the data buffer for this packet.

void
setLength(int length)

Set the length for this packet.

void
setPort(int iport)

Sets the port number on the remote host to
which this datagram is being sent.

Example: Write a Java program for datagram communication
between two client machines using Unreliable Datagram
Protocol.

import java.net.*;

import java.io.*;

class DataGramServer{

public static DatagramSocket ds;

public static byte buffer[]=new byte[1024];

public static int cp=1510,sp=1511;

public static void main(String args[])throws Exception

{

ds=new DatagramSocket(sp);

BufferedReader br=new BufferedReader(

new InputStreamReader(System.in));

InetAddress ia=InetAddress.getByName(args[0]);

while(true)

{

String str=br.readLine();

buffer=str.getBytes();

120

ds.send(new DatagramPacket

(buffer,str.length(),ia,cp));

if(str.length()==0)

{

ds.close();

break;

}

}

}//main

}//class

import java.net.*;

import java.io.*;

class DataGramClient

{

public static DatagramSocket ds;

public static byte buffer[]=new byte[1024];

public static int cp=1510,sp=1511;

public static void main(String args[])throws Exception

{

ds=new DatagramSocket(cp);

System.out.print("Client is waiting for

server to send data....");

while(true)

{

DatagramPacket dp=new

DatagramPacket(buffer,buffer.length);

ds.receive(dp);

String str=new

String(dp.getData(),0,dp.getLength());

if(dp.getLength()==0)

break;

System.out.println(str);

}

}//main

}//class

121

6.6 SUMMARY

 URL represents a Uniform Resource Locator, a pointer to a
resource on the World Wide Web. A resource can be something
as simple as a file or a directory.

 URLConnection is a general purpose class for accessing the
attributes of a remote resource.

 Socket class is designed to connect to a server socket.

 ServerSocket class is designed to be a listener which waits for
the clients to connect.

 A datagram socket is the sending or receiving point for a packet
delivery service.

 DatagramPackets are use to implement a connection less
packet delivery service.

6.7 UNIT END EXERCISE

1) How can you get the IP Address of a machine from its
hostname?

2) What does an object of type URL represent and how is it used?

3) What is a ServerSocket and how it is used?

4) Explain the class URLConnection.

5) State the useof the following methods with their parameters:

a. InetAddress.getByName()

b. DatagramSocket.send()

6) Explain with an example the procedure to connect a client to the
server for communication using DatagramSocket and
DatagramPacket.

7) Write a java program to accept a URL and display its length of
contents and date of creation.

8) Write a java program to accept a URL and display its contents
only if the file type is HTML/ASP/JSP. (Hint : Use string function
to check whether URL ends with html/asp/jsp)

9) Write a Java program for datagram communication between two
client machines using Unreliable Datagram Protocol such that
when client passes any string, the server returns the length.

10)Write only TCP Server that listens to port 2345 to accept client
connections.

122

6.8 FURTHER READING

 Ivan Bayross, Web Enabled Commercial Applications
Development Using Java 2, BPB Publications, Revised Edition,
2006

 Joe Wigglesworth and Paula McMillan, Java Programming:
Advanced Topics, Thomson Course Technology (SPD), Third
Edition, 2004

 Cay S. Horstmann, Gary Cornell, Core Java™ 2: Volume II–
Advanced Features Prentice Hall PTR, 2001

123

7

ADVANCE NETWORKING

Unit Structure:

7.0 Objectives

7.1 Programmatic Access to Network Parameters

7.2 What Is a Network Interface?

7.3 Retrieving Network Interfaces

7.4 Listing Network Interface Addresses

7.5 Network Interface Parameters

7.6 Summary

7.7 Unit end exercise

7.8 Further Reading

7.0 OBJECTIVES

The objective of this chapter is to learn the advance
concepts of Networking. Here we will learn how to access network
parameters and how to use the network interface for programming.

7.1 PROGRAMMATIC ACCESS TO NETWORK
PARAMETERS

Systems often run with multiple active network connections,
such as wired Ethernet, 802.11 b/g (wireless), and bluetooth. Some
applications might need to access this information to perform the
particular network activity on a specific connection.

The java.net.NetworkInterface class provides access to this
information.This chapter guides you through some of the more
common uses of this class and provides examples that list all the
network interfaces on a machine as well as their IP addresses and
status.

124

7.2 WHAT IS A NETWORK INTERFACE?

A network interface is the point of interconnection between a
computer and a private or public network. A network interface is
generally a network interface card (NIC), but does not have to have
a physical form. Instead, the network interface can be implemented
in software. For example, the loopback interface (127.0.0.1 for IPv4
and ::1 for IPv6) is not a physical device but a piece of software
simulating a network interface. The loopback interface is commonly
used in test environments.

The java.net.NetworkInterface class represents both types of
interfaces. NetworkInterface is useful for a multi-homed system,
which is a system with multiple NICs. Using NetworkInterface, you
can specify which NIC to use for a particular network activity.

For example, assume you have a machine with two
configured NICs, and you want to send data to a server. You create
a socket like this:

Socket soc = new java.net.Socket();
soc.connect(new InetSocketAddress(address, port));

To send the data, the system determines which interface is
used. However, if you have a preference or otherwise need to
specify which NIC to use, you can query the system for the
appropriate interfaces and find an address on the interface you
want to use. When you create the socket and bind it to that
address, the system uses the associated interface. For example:

NetworkInterface nif = NetworkInterface.getByName("bge0");
Enumeration<InetAddress> nifAddresses = nif.getInetAddresses();
Socket soc = new java.net.Socket();
soc.bind(new InetSocketAddress(nifAddresses.nextElement(), 0));
soc.connect(new InetSocketAddress(address, port));

You can also use NetworkInterface to identify the local interface on
which a multicast group is to be joined. For example:

NetworkInterface nif = NetworkInterface.getByName("bge0");
MulticastSocket ms = new MulticastSocket();
ms.joinGroup(new InetSocketAddress(hostname, port), nif);

7.3 RETRIEVING NETWORK INTERFACES

The NetworkInterface class has no public constructor.
Therefore, you cannot just create a new instance of this class with
the new operator. Instead, the following static methods are

125

available so that you can retrieve the interface details from the
system: getByInetAddress(), getByName(), and get
NetworkInterfaces(). The first two methods are used when you
already know the IP address or the name of the particular interface.
The third method, getNetworkInterfaces() returns the complete list
of interfaces on the machine.

Network interfaces can be hierarchically organized. The
NetworkInterface class includes two methods, getParent() and
getSubInterfaces(), that are pertinent to a network interface
hierarchy. The getParent() method returns the parent
NetworkInterface of an interface. If a network interface is a
subinterface, getParent() returns a non-null value. The
getSubInterfaces() method returns all the subinterfaces of a
network interface.

7.4 NETWORK INTERFACE PARAMETERS

You can access network parameters about a network
interface beyond the name and IP addresses assigned to it. You
can discover if a network interface is “up” (that is, running) with the
isUP() method. The following methods indicate the network
interface type:

 isLoopback() indicates if the network interface is a loopback
interface.

 isPointToPoint() indicates if the interface is a point-to-point
interface.

 isVirtual() indicates if the interface is a virtual interface.

The supportsMulticast() method indicates whether the
network interface supports multicasting. The getHardwareAddress()
method returns the network interface's physical hardware address,
usually called MAC address, when it is available. The getMTU()
method returns the Maximum Transmission Unit (MTU), which is
the largest packet size.

The following example expands on the example in Listing
Network Interface Addresses by adding the additional network
parameters described on this page:

import java.io.*;
import java.net.*;
import java.util.*;
import static java.lang.System.out;

public class ListNetsEx
{

126

public static void main(String args[]) throws SocketException
{
Enumeration<NetworkInterface> nets
=NetworkInterface.getNetworkInterfaces();
for (NetworkInterface netint : Collections.list(nets))

displayInterfaceInformation(netint);
}

static void displayInterfaceInformation(NetworkInterface netint)
throws SocketException
{
out.printf("Display name: %s\n", netint.getDisplayName());
out.printf("Name: %s\n", netint.getName());
Enumeration<InetAddress> inetAddresses =

netint.getInetAddresses();
for (InetAddress inetAddress : Collections.list(inetAddresses))
{

out.printf("InetAddress: %s\n", inetAddress);
}
out.printf("Up? %s\n", netint.isUp());
out.printf("Loopback? %s\n", netint.isLoopback());
out.printf("PointToPoint? %s\n", netint.isPointToPoint());
out.printf("Supports multicast? %s\n", netint.supportsMulticast());
out.printf("Virtual? %s\n", netint.isVirtual());
out.printf("Hardware address: %s\n",
Arrays.toString(netint.getHardwareAddress()));
out.printf("MTU: %s\n", netint.getMTU());
out.printf("\n");
}
}

The following is sample output from the example program:
Display name: bge0
Name: bge0
InetAddress: /fe80:0:0:0:203:baff:fef2:e99d%2
InetAddress: /129.156.225.59
Up? true
Loopback? false
PointToPoint? false
Supports multicast? false
Virtual? false
Hardware address: [0, 3, 4, 5, 6, 7]
MTU: 1500

Display name: lo0
Name: lo0
InetAddress: /0:0:0:0:0:0:0:1%1
InetAddress: /127.0.0.1
Up? true

127

Loopback? true
PointToPoint? false
Supports multicast? false
Virtual? false
Hardware address: null
MTU: 8232

7.6 SUMMARY

 The java.net.NetworkInterface class provides access to
information to perform the particular network activity on a
specific connection.

 A network interface is the point of interconnection between a
computer and a private or public network.

 The NetworkInterface class includes two methods, getParent()
and getSubInterfaces(), that are pertinent to a network interface
hierarchy.

7.7 UNIT END EXERCISE

1) What Is a Network Interface?

2) Write a short note on Network Interface Parameters?

7.8 FURTHER READING

 Ivan Bayross, Web Enabled Commercial Applications
Development Using Java 2, BPB Publications, Revised Edition,
2006

 Joe Wigglesworth and Paula McMillan, Java Programming:
Advanced Topics, Thomson Course Technology (SPD), Third
Edition, 2004

 Cay S. Horstmann, Gary Cornell, Core Java™ 2: Volume II–
Advanced Features Prentice Hall PTR, 2001

128

8

REMOTE METHOD INVOCATIONS

Unit Structure:

8.0 Objectives

8.1 Introduction to Distributed Computing with RMI

8.2 Java RMI Architecture

8.3 RMI Architecture Layers

8.4 Naming Remote Objects

8.5 Using RMI

8.6 Summary

8.7 Unit end exercise

8.8 Further Reading

8.0 OBJECTIVES

The objectives of this chapter are to understand what is RMI
and the different layers of the RMI architecture. We will study
various classes and interface used to achieve distributed
architecture.

8.1 INTRODUCTION TO DISTRIBUTED COMPUTING
WITH RMI

Remote Method Invocation (RMI) technology, first introduced
in JDK 1.1, elevates network programming to a higher plane.
Although RMI is relatively easy to use, it is a remarkably powerful
technology and exposes the average Java developer to an entirely
new paradigm--the world of distributed object computing.

This chapter provides you with an in-depth introduction to
this versatile technology. RMI has evolved considerably since JDK
1.1, and has been significantly upgraded under the Java 2 SDK.
Where applicable, the differences between the two releases will be
indicated.

129

8.1.1 Goals
A primary goal for the RMI designers was to allow

programmers to develop distributed Java programs with the same
syntax and semantics used for non-distributed programs. To do
this, they had to carefully map how Java classes and objects work
in a single Java Virtual Machine (JVM) to a new model of how
classes and objects would work in a distributed (multiple JVM)
computing environment.

This section introduces the RMI architecture from the
perspective of the distributed or remote Java objects, and explores
their differences through the behavior of local Java objects. The
RMI architecture defines how objects behave, how and when
exceptions can occur, how memory is managed, and how
parameters are passed to, and returned from, remote methods.

8.1.2 Comparison of Distributed and Nondistributed Java
Programs

The RMI architects tried to make the use of distributed Java
objects similar to using local Java objects. While they succeeded,
some important differences are listed in the table below. You can
use this table as a reference as you learn about RMI.

Local Object Remote Object

Object
Definition

A local object is
defined by a Java
class.

A remote object's exported
behavior is defined by an
interface that must extend
the Remote interface.

Object
Implementation

A local object is
implemented by its
Java class.

A remote object's behavior
is executed by a Java class
that implements the remote
interface.

Object Creation A new instance of a
local object is
created by
the newoperator.

A new instance of a remote
object is created on the host
computer with the new
operator. A client cannot
directly create a new remote
object (unless using Java 2
Remote Object Activation).

Object Access A local object is
accessed directly via
an object reference
variable.

A remote object is accessed
via an object reference
variable which points to a
proxy stub implementation
of the remote interface.

130

References In a single JVM, an
object reference
points directly at an
object in the heap.

A "remote reference" is a
pointer to a proxy object (a
"stub") in the local heap.
That stub contains
information that allows it to
connect to a remote object,
which contains the
implementation of the
methods.

Active
References

In a single JVM, an
object is considered
"alive" if there is at
least one reference
to it.

In a distributed environment,
remote JVMs may crash,
and network connections
may be lost. A remote
object is considered to have
an active remote reference
to it if it has been accessed
within a certain time period
(the lease period). If all
remote references have
been explicitly dropped, or if
all remote references have
expired leases, then a
remote object is available
for distributed garbage
collection.

Finalization If an object
implements
the finalize() method
, it is called before
an object is
reclaimed by the
garbage collector.

If a remote object
implements the
Unreferenced interface,
the unreferenced method of
that interface is called when
all remote references have
been dropped.

Garbage
Collection

When all local
references to an
object have been
dropped, an object
becomes a
candidate for
garbage collection.

The distributed garbage
collector works with the
local garbage collector. If
there are no remote
references and all local
references to a remote
object have been dropped,
then it becomes a candidate
for garbage collection
through the normal means.

131

Exceptions Exceptions are
either Runtime
exceptions or
Exceptions. The
Java compiler forces
a program to handle
all Exceptions.

RMI forces programs to deal
with any possible Remote
Exception objects that may
be thrown. This was done to
ensure the robustness of
distributed applications.

8.2 JAVA RMI ARCHITECTURE

The design goal for the RMI architecture was to create a
Java distributed object model that integrates naturally into the Java
programming language and the local object model. RMI architects
have succeeded; creating a system that extends the safety and
robustness of the Java architecture to the distributed computing
world.

Interfaces: The Heart of RMI
The RMI architecture is based on one important principle:

the definition of behavior and the implementation of that behavior
are separate concepts. RMI allows the code that defines the
behavior and the code that implements the behavior to remain
separate and to run on separate JVMs.

This fits nicely with the needs of a distributed system where
clients are concerned about the definition of a service and servers
are focused on providing the service. Specifically, in RMI, the
definition of a remote service is coded using a Java interface. The
implementation of the remote service is coded in a class.
Therefore, the key to understanding RMI is to remember
that interfaces define behavior and classes define implementation.
While the following diagram illustrates this separation,

remember that a Java interface does not contain executable code.
RMI supports two classes that implement the same interface. The
first class is the implementation of the behavior, and it runs on the

132

server. The second class acts as a proxy for the remote service
and it runs on the client. This is shown in the following diagram.

A client program makes method calls on the proxy object,
RMI sends the request to the remote JVM, and forwards it to the
implementation. Any return values provided by the implementation
are sent back to the proxy and then to the client's program.

8.3 RMI ARCHITECTURE LAYERS

The RMI implementation is essentially built from three
abstraction layers. The first is the Stub and Skeleton layer, which
lies just beneath the view of the developer. This layer intercepts
method calls made by the client to the interface reference variable
and redirects these calls to a remote RMI service.

The next layer is the Remote Reference Layer. This layer
understands how to interpret and manage references made from
clients to the remote service objects. In JDK 1.1, this layer connects
clients to remote service objects that are running and exported on a
server. The connection is a one-to-one (unicast) link. In the Java 2
SDK, this layer was enhanced to support the activation of dormant
remote service objects via Remote Object Activation.

The transport layer is based on TCP/IP connections between
machines in a network. It provides basic connectivity, as well as
some firewall penetration strategies.

133

By using a layered architecture each of the layers could be
enhanced or replaced without affecting the rest of the system. For
example, the transport layer could be replaced by a UDP/IP layer
without affecting the upper layers.

8.3.1 Stub and Skeleton Layer
The stub and skeleton layer of RMI lie just beneath the view

of the Java developer. In this layer, RMI uses the Proxy design
pattern. In the Proxy pattern, an object in one context is
represented by another (the proxy) in a separate context. The proxy
knows how to forward method calls between the participating
objects. The following class diagram illustrates the Proxy pattern.

In RMI's use of the Proxy pattern, the stub class plays the
role of the proxy, and the remote service implementation class
plays the role of the RealSubject.

A skeleton is a helper class that is generated for RMI to use.
The skeleton understands how to communicate with the stub
across the RMI link. The skeleton carries on a conversation with the
stub; it reads the parameters for the method call from the link,
makes the call to the remote service implementation object,
accepts the return value, and then writes the return value back to
the stub.

134

In the Java 2 SDK implementation of RMI, the new wire
protocol has made skeleton classes obsolete. RMI uses reflection
to make the connection to the remote service object. You only have
to worry about skeleton classes and objects in JDK 1.1 and JDK
1.1 compatible system implementations.

8.3.2 Remote Reference Layer
The Remote Reference Layers defines and supports the

invocation semantics of the RMI connection. This layer provides
a RemoteRef object that represents the link to the remote service
implementation object.

The stub objects use the invoke() method in RemoteRef to
forward the method call. The RemoteRef object understands the
invocation semantics for remote services. The JDK 1.1
implementation of RMI provides only one way for clients to connect
to remote service implementations: a unicast, point-to-point
connection. Before a client can use a remote service, the remote
service must be instantiated on the server and exported to the RMI
system. (If it is the primary service, it must also be named and
registered in the RMI Registry).

The Java 2 SDK implementation of RMI adds a new
semantic for the client-server connection. In this version, RMI
supports activatable remote objects. When a method call is made
to the proxy for an activatable object, RMI determines if the remote
service implementation object is dormant. If it is dormant, RMI will
instantiate the object and restore its state from a disk file. Once an
activatable object is in memory, it behaves just like JDK 1.1 remote
service implementation objects.

8.3.3 Transport Layer
The Transport Layer makes the connection between JVMs.

All connections are stream-based network connections that use
TCP/IP.

Even if two JVMs are running on the same physical
computer, they connect through their host computer's TCP/IP
network protocol stack. (This is why you must have an operational
TCP/IP configuration on your computer to run the Exercises in this
course). The following diagram shows the unfettered use of TCP/IP
connections between JVMs.

135

As you know, TCP/IP provides a persistent, stream-based
connection between two machines based on an IP address and
port number at each end. Usually a DNS name is used instead of
an IP address; this means you could talk about a TCP/IP
connection between flicka. magelang. com:3452 and rosa.
jguru.com:4432. In the current release of RMI, TCP/IP connections
are used as the foundation for all machine-to-machine connections.

On top of TCP/IP, RMI uses a wire level protocol called Java
Remote Method Protocol (JRMP). JRMP is a proprietary, stream-
based protocol that is only partially specified is now in two versions.
The first version was released with the JDK 1.1 version of RMI and
required the use of Skeleton classes on the server. The second
version was released with the Java 2 SDK. It has been optimized
for performance and does not require skeleton classes. (Note that
some alternate implementations, such as BEA Weblogic and
NinjaRMI do not use JRMP, but instead use their own wire level
protocol. ObjectSpace's Voyager does recognize JRMP and will
interoperate with RMI at the wire level.) Some other changes with
the Java 2 SDK are that RMI service interfaces are not required to
extend from java.rmi.Remoteand their service methods do not
necessarily throw RemoteException.

8.4 NAMING REMOTE OBJECTS

During the presentation of the RMI Architecture, one
question has been repeatedly postponed: "How does a client find
an RMI remote service?" Now you'll find the answer to that
question. Clients find remote services by using a naming or
directory service. This may seem like circular logic. How can a
client locate a service by using a service? In fact, that is exactly the
case. A naming or directory service is run on a well-known host and
port number.

RMI can use many different directory services, including the
Java Naming and Directory Interface (JNDI). RMI itself includes a
simple service called the RMI Registry, rmiregistry. The RMI

136

Registry runs on each machine that hosts remote service objects
and accepts queries for services, by default on port 1099.

On a host machine, a server program creates a remote
service by first creating a local object that implements that service.
Next, it exports that object to RMI. When the object is exported,
RMI creates a listening service that waits for clients to connect and
request the service. After exporting, the server registers the object
in the RMI Registry under a public name.

On the client side, the RMI Registry is accessed through the
static class Naming. It provides the method lookup() that a client
uses to query a registry. The method lookup() accepts a URL that
specifies the server host name and the name of the desired
service. The method returns a remote reference to the service
object. The URL takes the form:

rmi://<host_name>
[:<name_service_port>]

/<service_name>
where the host_name is a name recognized on the local area
network (LAN) or a DNS name on the Internet.
The name_service_port only needs to be specified only if the
naming service is running on a different port to the default 1099.

8.5 USING RMI

It is now time to build a working RMI system and get hands-
on experience. In this section, you will build a simple remote
calculator service and use it from a client program.
A working RMI system is composed of several parts.

 Interface definitions for the remote services
 Implementations of the remote services
 Stub and Skeleton files
 A server to host the remote services
 An RMI Naming service that allows clients to find the remote

services
 A class file provider (an HTTP or FTP server)
 A client program that needs the remote services

In the next sections, you will build a simple RMI system in a
step-by-step fashion. You are encouraged to create a fresh
subdirectory on your computer and create these files as you read
the text.

To simplify things, you will use a single directory for the
client and server code. By running the client and the server out of
the same directory, you will not have to set up an HTTP or FTP

137

server to provide the class files. Assuming that the RMI system is
already designed, you take the following steps to build a system:

 Write and compile Java code for interfaces
 Write and compile Java code for implementation classes
 Generate Stub and Skeleton class files from the

implementation classes
 Write Java code for a remote service host program
 Develop Java code for RMI client program
 Install and run RMI system

Interfaces
The first step is to write and compile the Java code for the

service interface. The Calculator interface defines all of the remote
features offered by the service:

public interface Calculator extends java.rmi.Remote

{

public long add(long a, long b) throws java.rmi.RemoteException;

public long sub(long a, long b) throws java.rmi.RemoteException;

public long mul(long a, long b) throws java.rmi.RemoteException;

public long div(long a, long b) throws java.rmi.RemoteException;

}

Notice this interface extends Remote, and each method signature
declares that it may throw a RemoteException object.

Copy this file to your directory and compile it with the Java
compiler:

>javac Calculator.java

Implementation

Next, you write the implementation for the remote service. This is
the CalculatorImpl class:

public class CalculatorImpl extends
java.rmi.server.UnicastRemoteObject implements Calculator

{

// Implementations must have an explicit constructor in order to
//declare the RemoteException exception

public CalculatorImpl() throws java.rmi.RemoteException {

super();

}

public long add(long a, long b) throws java.rmi.RemoteException {

return a + b;

138

}

public long sub(long a, long b) throws java.rmi.RemoteException {

return a - b;

}

public long mul(long a, long b) throws java.rmi.RemoteException {

return a * b;

}

public long div(long a, long b) throws java.rmi.RemoteException {

return a / b;

}

}

Again, copy this code into your directory and compile it. The
implementation class uses UnicastRemoteObject to link into the
RMI system. In the example the implementation class directly
extends UnicastRemoteObject. This is not a requirement. A class
that does not extend UnicastRemoteObject may use
its exportObject() method to be linked into RMI.

When a class extends UnicastRemoteObject, it must provide
a constructor that declares that it may throw a Remote
Exception object. When this constructor calls super(), it activates
code in Unicast Remote Object that performs the RMI linking and
remote object initialization.

Stubs and Skeletons
You next use the RMI compiler, rmic, to generate the stub

and skeleton files. The compiler runs on the remote
service implementation class file.
>rmic CalculatorImpl

Try this in your directory. After you run rmic you should find the
file Calculator_Stub.class and, if you are running the Java 2
SDK, Calculator_Skel.class.
Options for the JDK 1.1 version of the RMI compiler, rmic, are:

Host Server
Remote RMI services must be hosted in a server process.

The class CalculatorServer is a very simple server that provides the
bare essentials for hosting.

import java.rmi.Naming;

public class CalculatorServer

{

public CalculatorServer() {

try {

139

Calculator c = new CalculatorImpl();

Naming.rebind("rmi://localhost:1099/CalculatorService", c);

}

catch (Exception e) {

System.out.println("Trouble: " + e);

}

}

public static void main(String args[]) {

new CalculatorServer();

}//main

}//class

Client

The source code for the client follows:

import java.rmi.Naming;

import java.rmi.RemoteException;

import java.net.MalformedURLException;

import java.rmi.NotBoundException;

public class CalculatorClient

{

public static void main(String[] args)

{

try {

Calculator c = (Calculator)

Naming.lookup("rmi://localhost/CalculatorService");

System.out.println(c.sub(4, 3));

System.out.println(c.add(4, 5));

System.out.println(c.mul(3, 6));

System.out.println(c.div(9, 3));

}

catch (Exception e) {

System.out.println("Trouble: " + e);

}

}//main

}//class

Running the RMI System
You are now ready to run the system! You need to start

three consoles, one for the server, one for the client, and one for
the RMIRegistry.Start with the Registry. You must be in the

140

directory that contains the classes you have written. From there,
enter the following:

rmiregistry

If all goes well, the registry will start running and you can switch to
the next console.
In the second console start the server hosting
the CalculatorService, and enter the following:

>java CalculatorServer

It will start, load the implementation into memory and wait for a
client connection.
In the last console, start the client program.

>java CalculatorClient
If all goes well you will see the following output:
1
9
18
3

That's it; you have created a working RMI system. Even
though you ran the three consoles on the same computer, RMI
uses your network stack and TCP/IP to communicate between the
three separate JVMs. This is a full-fledged RMI system.

8.6 SUMMARY

 RMI is a powerful technology and exposes the developer to the
world of distributed object computing.

 The RMI architecture is based on one important principle: the
definition of behavior and the implementation of that behavior
are separate concepts

 The RMI Registry runs on each machine that hosts remote
service objects and accepts queries for services, by default on
port 1099.

8.7 UNIT END EXERCISE

1) Explain RMI Architecture.

2) What is the role of Remote Interface in RMI?

3) What is meant by binding in RMI?

141

4) What is the difference between using bind() and rebind()
methods of Naming Class?

5) What is the use of UnicastRemoteObject in RMI?

6) Write an RMI program that returns date & time of server to
the client who requests it.

8.8 FURTHER READING

 Ivan Bayross, Web Enabled Commercial Applications
Development Using Java 2, BPB Publications, Revised Edition,
2006

 Joe Wigglesworth and Paula McMillan, Java Programming:
Advanced Topics, Thomson Course Technology (SPD), Third
Edition, 2004

 The Java Tutorials of Sun Microsystems Inc.

 Herbert Schildt, Java2: The Complete Reference, Tata McGraw-
Hill, Fifth edition, 2002

 Cay S. Horstmann, Gary Cornell, Core Java™ 2: Volume II–
Advanced Features Prentice Hall PTR, 2001

142

9

SERVLET BASICS

Unit Structure:

9.0 Objectives

9.1 Introduction to Servlet.

9.2 The Servlet Life Cycle

9.3 Reading Form Data from Servlets

9.4 Response Headers

9.5 Request Headers

9.6 Summary

9.7 Unit end exercise

9.8 Further Reading

9.0 OBJECTIVES

The objective of this chapter is to learn the basics of
Servlets, Why is it used, How it is created, Life Cycle of the Servlet,
how to read a Request, how a response object is created.

9.1 INTRODUCTION TO SERVLET

Servlets are Java programs that run on Web or application
servers, acting as a middle layer between requests coming from
Web browsers or other HTTP clients and databases or applications
on the HTTP server. Their job is to perform the following tasks, as
illustrated in Figure 1.

 Read the explicit data sent by the client - The end user
normally enters the data in an HTML form on a Web page.

143

However, the data could also come from an applet or a custom
HTTP client program.

 Read the implicit HTTP request data sent by the browser -
Figure 1 shows a single arrow going from the client to the Web
server (the layer where servlets and JSP execute), but there are
really two varieties of data: the explicit data that the end user
enters in a form and the behind-the-scenes HTTP information.
Both varieties are critical. The HTTP information includes
cookies, information about media types and compression
schemes the browser understands, and so forth.

 Generate the results - This process may require talking to a
database, executing an RMI or EJB call, invoking a Web
service, or computing the response directly. Your real data may
be in a relational database. Fine. But your database probably
doesn’t speak HTTP or return results in HTML, so the Web
browser can’t talk directly to the database. Even if it could, for
security reasons, you probably would not want it to. The same
argument applies to most other applications. You need the Web
middle layer to extract the incoming data from the HTTP stream,
talk to the application, and embed the results inside a
document.

 Send the explicit data (i.e., the document) to the client - This
document can be sent in a variety of formats, including text
(HTML or XML), binary (GIF images), or even a compressed
format like gzip that is layered on top of some other underlying
format. But, HTML is by far the most common format, so an
important servlet/JSP task is to wrap the results inside of HTML.

 Send the implicit HTTP response data - Figure 1 shows a
single arrow going from the Web middle layer (the servlet or
JSP page) to the client. But, there are really two varieties of
data sent: the document itself and the behind-the-scenes HTTP
information. Again, both varieties are critical to effective
development. Sending HTTP response data involves telling the
browser or other client what type of document is being returned
(e.g., HTML), setting cookies and caching parameters, and
other such tasks.

Why Build Web Pages Dynamically?

There are a number of reasons why Web pages need to be built
on-the-fly:

 The Web page is based on data sent by the client - For
instance, the results page from search engines and order
confirmation pages at online stores are specific to particular
user requests. You don’t know what to display until you read the
data that the user submits. Just remember that the user submits
two kinds of data: explicit (i.e., HTML form data) and implicit

144

(i.e., HTTP request headers). Either kind of input can be used to
build the output page. In particular, it is quite common to build a
user-specific page based on a cookie value.

 The Web page is derived from data that changes frequently
- If the page changes for every request, then you certainly need
to build the response at request time. If it changes only
periodically, however, you could do it two ways: you could
periodically build a new Web page on the server (independently
of client requests), or you could wait and only build the page
when the user requests it. The right approach depends on the
situation, but sometimes it is more convenient to do the latter:
wait for the user request. For example, a weather report or news
headlines site might build the pages dynamically, perhaps
returning a previously built page if that page is still up to date.

 The Web page uses information from corporate databases
or other server-side sources - If the information is in a
database, you need server-side processing even if the client is
using dynamic Web content such as an applet. Imagine using
an applet by itself for a search engine site: “Downloading 50
terabyte applet, please wait!” Obviously, that is silly; you need to
talk to the database. Going from the client to the Web tier to the
database (a three-tier approach) instead of from an applet
directly to a database (a two-tier approach) provides increased
flexibility and security with little or no performance penalty. After
all, the database call is usually the rate-limiting step, so going
through the Web server does not slow things down. In fact, a
three-tier approach is often faster because the middle tier can
perform caching and connection pooling.

The Advantages of Servlets Over “Traditional” CGI
Java servlets are more efficient, easier to use, more

powerful, more portable, safer, and cheaper than traditional
CGI(Common Gateway Interface) and many alternative CGI-like
technologies.

Efficient
With traditional CGI, a new process is started for each HTTP

request. If the CGI program itself is relatively short, the overhead of
starting the process can dominate the execution time. With servlets,
the Java virtual machine stays running and handles each request
with a lightweight Java thread, not a heavyweight operating system
process. Similarly, in traditional CGI, if there are N requests to the
same CGI program, the code for the CGI program is loaded into
memory N times. With servlets, however, there would be N threads,
but only a single copy of the servlet class would be loaded. This
approach reduces server memory requirements and saves time by
instantiating fewer objects. Finally, when a CGI program finishes
handling a request, the program terminates. This approach makes

145

it difficult to cache computations, keep database connections open,
and perform other optimizations that rely on persistent data.
Servlets, however, remain in memory even after they complete a
response, so it is straightforward to store arbitrarily complex data
between client requests.

Convenient
Servlets have an extensive infrastructure for automatically

parsing and decoding HTML form data, reading and setting HTTP
headers, handling cookies, tracking sessions, and many other such
high-level utilities. In CGI, you have to do much of this yourself.
Besides, if you already know the Java programming language, why
learn Perl too? You’re already convinced that Java technology
makes for more reliable and reusable code than does Visual Basic,
VBScript, or C++. Why go back to those languages for server-side
programming?

Powerful
Servlets support several capabilities that are difficult or

impossible to accomplish with regular CGI. Servlets can talk directly
to the Web server, whereas regular CGI programs cannot, at least
not without using a server-specific API. Communicating with the
Web server makes it easier to translate relative URLs into concrete
path names, for instance. Multiple servlets can also share data,
making it easy to implement database connection pooling and
similar resource-sharing optimizations. Servlets can also maintain
information from request to request, simplifying techniques like
session tracking and caching of previous computations.

Portable
Servlets are written in the Java programming language and

follow a standard API. Servlets are supported directly or by a plugin
on virtually every major Web server. Consequently, servlets written
for, say, Macromedia JRun can run virtually unchanged on Apache
Tomcat, Microsoft Internet Information Server (with a separate
plugin), IBM WebSphere, iPlanet Enterprise Server, Oracle9i AS,
or StarNine WebStar. They are part of the Java 2 Platform,
Enterprise Edition (J2EE), so industry support for servlets is
becoming even more pervasive.

Inexpensive
A number of free or very inexpensive Web servers are good

for development use or deployment of low- or medium-volume Web
sites. Thus, with servlets and JSP you can start with a free or
inexpensive server and migrate to more expensive servers with
high-performance capabilities or advanced administration utilities
only after your project meets initial success. This is in contrast to
many of the other CGI alternatives, which require a significant initial
investment for the purchase of a proprietary package. Price and
portability are somewhat connected.

146

Secure

One of the main sources of vulnerabilities in traditional CGI
stems from the fact that the programs are often executed by
general-purpose operating system shells. So, the CGI programmer
must be careful to filter out characters such as backquotes and
semicolons that are treated specially by the shell. Implementing this
precaution is harder than one might think, and weaknesses
stemming from this problem are constantly being uncovered in
widely used CGI libraries. A second source of problems is the fact
that some CGI programs are processed by languages that do not
automatically check array or string bounds. For example, in C and
C++ it is perfectly legal to allocate a 100-element array and then
write into the 999th “element,” which is really some random part of
program memory. So, programmers who forget to perform this
check open up their system to deliberate or accidental buffer
overflow attacks. Servlets suffer from neither of these problems.
Even if a servlet executes a system call (e.g., with Runtime.exec or
JNI) to invoke a program on the local operating system, it does not
use a shell to do so. And, of course, array bounds checking and
other memory protection features are a central part of the Java
programming language.

9.2 THE SERVLET LIFE CYCLE

When the servlet is first created, its init method is invoked,
so init is where you put one-time setup code. After this, each user
request results in a thread that calls the service method of the
previously created instance. Multiple concurrent requests normally
result in multiple threads calling service simultaneously, although
your servlet can implement a special interface (SingleThreadModel)
that stipulates that only a single thread is permitted to run at any
one time. The service method then calls doGet, doPost, or another
doXxx method, depending on the type of HTTP request it received.
Finally, if the server decides to unload a servlet, it first calls the
servlet’s destroy method.

The service Method

Each time the server receives a request for a servlet, the
server spawns a new thread and calls service. The service method
checks the HTTP request type (GET, POST, PUT, DELETE, etc.)
and calls doGet, doPost, doPut, doDelete, etc., as appropriate. A
GET request results from a normal request for a URL or from an
HTML form that has no METHOD specified. A POST request
results from an HTML form that specifically lists POST as the
METHOD. Other HTTP requests are generated only by custom
clients. Now, if you have a servlet that needs to handle both POST

147

and GET requests identically, you may be tempted to override
service directly rather than implementing both doGet and doPost.
This is not a good idea. Instead, just have doPost call doGet (or
vice versa).

The doGet, doPost, and doXxx Methods
These methods contain the real meat of your servlet. Ninety-

nine percent of the time, you only care about GET or POST
requests, so you override doGet and/or doPost. However, if you
want to, you can also override doDelete for DELETE requests,
doPut for PUT, doOptions for OPTIONS, and doTrace for TRACE.
Recall, however, that you have automatic support for OPTIONS
and TRACE. Normally, you do not need to implement doHead in
order to handle HEAD requests (HEAD requests stipulate that the
server should return the normal HTTP headers, but no associated
document). You don’t normally need to implement doHead because
the system automatically calls doGet and uses the resultant status
line and header settings to answer HEAD requests. However, it is
occasionally useful to implement doHead so that you can generate
responses to HEAD requests (i.e., requests from custom clients
that want just the HTTP headers, not the actual document) more
quickly—without building the actual document output.

The init Method
Most of the time, your servlets deal only with per-request

data, and doGet or doPost are the only life-cycle methods you
need. Occasionally, however, you want to perform complex setup
tasks when the servlet is first loaded, but not repeat those tasks for
each request. The init method is designed for this case; it is called
when the servlet is first created, and not called again for each user
request. So, it is used for one-time initializations, just as with the init
method of applets. The servlet is normally created when a user first
invokes a URL corresponding to the servlet, but you can also
specify that the servlet be loaded when the server is first started.
The init method performs two varieties of initializations: general
initializations and initializations controlled by initialization
parameters.

The destroy Method
The server may decide to remove a previously loaded

servlet instance, perhaps because it is explicitly asked to do so by
the server administrator or perhaps because the servlet is idle for a
long time. Before it does, however, it calls the servlet’s destroy
method. This method gives your servlet a chance to close database
connections, halt background threads, write cookie lists or hit
counts to disk, and perform other such cleanup activities. Be aware,
however, that it is possible for the Web server to crash. So, don’t
count on destroy as the only mechanism for saving state to disk. If
your servlet performs activities like counting hits or accumulating

148

lists of cookie values that indicate special access, you should also
proactively write the data to disk periodically.

Example: Write a Servlet program to display ‘Hello World’.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloServlet extends HttpServlet

{

public void doGet(

HttpServletRequest req,HttpServletResponse res)

throws IOException, ServletException

{

PrintWriter out = res.getWriter();

out.println("<html><head><title>First Servlet

</title></head>");

out.println("HelloServlet</html>");

}

}

Example: Write a Servlet program to display the current date.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.Date;

public class DateServlet extends HttpServlet

{

public void doGet(

HttpServletRequest req,HttpServletResponse res)

throws IOException,ServletException

{

res.setContentType("Text/Html");

PrintWriter out=res.getWriter();

Date d=new Date();

out.println("<Html><Head><Title>Today

</Title></Head>");

out.println("<Body><H1> Date: "+d+"</H1>");

out.flush();

out.println("</Body></Html>");

}

}

149

9.3 READING FORM DATA FROM SERVLETS

Reading Single Values: getParameter
To read a request (form) parameter, you simply call the

getParameter method of HttpServletRequest, supplying the case-
sensitive parameter name as an argument. You supply the
parameter name exactly as it appeared in the HTML source code,
and you get the result exactly as the end user entered it; any
necessary URL-decoding is done automatically. An empty String is
returned if the parameter exists but has no value (i.e., the user left
the corresponding textfield empty when submitting the form), and
null is returned if there was no such parameter. Parameter names
are case sensitive so, for example, request. Get Parameter
("Param1") and request. get Parameter ("param1") are not
interchangeable.

Reading Multiple Values: getParameterValues
If the same parameter name might appear in the form data

more than once, you should call getParameterValues (which
returns an array of strings) instead of getParameter (which returns
a single string corresponding to the first occurrence of the
parameter). The return value of getParameterValues is null for
nonexistent parameter names and is a one element array when the
parameter has only a single value. Now, if you are the author of the
HTML form, it is usually best to ensure that each textfield,
checkbox, or other user interface element has a unique name. That
way, you can just stick with the simpler getParameter method and
avoid getParameterValues altogether. Besides, multiselectable list
boxes repeat the parameter name for each selected element in the
list. So, you cannot always avoid multiple values.

Looking Up Parameter Names: getParameterNames
Use getParameterNames to get this list in the form of an

Enumeration, each entry of which can be cast to a String and used
in a getParameter or getParameterValues call. If there are no
parameters in the current request, getParameterNames returns an
empty Enumeration (not null). Note that Enumeration is an interface
that merely guarantees that the actual class will have
hasMoreElements and nextElement methods: there is no guarantee
that any particular underlying data structure will be used. And, since
some common data structures (hash tables, in particular) scramble
the order of the elements, you should not count on
getParameterNames returning the parameters in the order in which
they appeared in the HTML form.

150

Example: Write a Servlet that accepts name and age of student
sent from an HTML document and displays them on screen.

//Student.html file

<html>

<head><title>Student Information</title>

</head>

<form name=frm method=get
action=http:\\localhost:8080\Servlet\Student.class>

</form>

<body>

<table>

<tr><td>Student Name</td><td><input type=text
name=txtName></td></tr>

<tr><td>Student Age</td><td><input type=text
name=txtAge></td></tr>

</table>

<input type=submit name=submit>

</body>

</html>

//Student.java file

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Student extends HttpServlet

{

public void doGet(HttpServletRequest req,

HttpServletResponse res)

throws ServletException,IOException

{

res.setContentType("text/html");

String name=(String)req.getParameter("txtName");

String age=(String)req.getParameter("txtAge");

PrintWriter out=res.getWriter();

out.println(“Name = ”+name);

out.println(“Age= ”+age);

}

}//class

Example: Write a Servlet that accepts single-valued as well as
multi-valued parameters like check boxes and multiple
selection list boxes from an HTML document and outputs them
to the screen.

151

//Part I – HTML file

<html>

<head><title>Multivalued Parameter</title>

</head>

<form method=post action=http:\\localhost:8080\servlet\
MultiValued.class>

<table border=1>

<tr><td>Name</td><td><input type=text name=txtName></td></tr>

<tr><td>Tel.No</td><td><input type=text name=txtTelno></td></tr>

<tr><td>Language</td>

<td><input type=checkbox name=chk value=eng>Eng</td>

<td><input type=checkbox name=chk
value=mar>Marathi</td>

<td><input type=checkbox name=chk
value=hin>Hindi</td></tr>

<tr><td>Software</td>

<td><select multiple size=5 name=software>

<option>Excel

<option>VB

<option>Word

<option>Java

<option>C++

</select></td></tr>

<tr>

<td><input type=submit value=submit></td>

<td><input type=reset></td>

</tr>

</table>

</form>

</html>

//Part II – JAVA file

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

import java.io.*;

public class MultiValued extends HttpServlet

{

public void doPost(HttpServletResponse
res,HttpServletRequest req)

152

throws IOException,ServletException

{

try

{

res.setContentType("text/html");

Enumeration e=req.getParameterNames();

PrintWriter out=res.getWriter();

while(e.hasMoreElements())

{

String name=(String)e.nextElement();

out.println(name);

String[] value=req.getParameterValues(name);

for(int i=0;i<value.length;i++)

{

out.print(value[i]+"\t");

}

}

}//try

catch(Exception e)

{

System.out.println("ERROR "+e.getMessage());

}

}

}

Example: Write two servlets in which one servlet will display a
form in which data entry can be done for the field’s dept-no,
dept-name and location. In the same form place a button called
as submit and on click of that button this record should be
posted to the table called as DEPT in the database. This
inserting of record should be done in another servlet. The
second servlet should also display all the previous record
entered in the database.

//Part I

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class DeptForm extends HttpServlet

{

public void service(HttpServletRequest req,

HttpServletResponse res)

throws IOException,ServletException

153

{

try

{

res.setContentType("text/html");

PrintWriter out=res.getWriter();

out.println("<Html><Head><Title>Department Info

</Title></Head>");

out.println("<Form name=frm method="+"POST"+"

action=DeptEntry.class>");

out.println("DepartmentNo: <input type=text

name=txtNo>
");

out.println("DepartmentName: <input type=text

name=txtName>
");

out.println("Location: <input type=text

name=txtLoc>
");

out.println("<input type=submit name=Submit>");

out.println("<input type=reset name=Reset>");

out.println("</Form></Html>");

}

catch (Exception e)

{

System.out.println(e.getMessage());

}

}

}

//Part II

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.sql.*;

public class DeptEntry extends HttpServlet

{

public void doPost(HttpServletRequest req,

HttpServletResponse res)

throws IOException,ServletException

{

String a,b,c,d,e,f;

int i;

Connection con;

154

try

{

res.setContentType("text/html");

Class.forName("oracle.jdbc.driver.OracleDriver");

con=DriverManager.getConnection("jdbc:odbc:First”);

String Query="insert into dept Values(?,?,?)";

Statement st=con.createStatement();

PreparedStatement ps;

ps=con.prepareStatement(Query);

a=(String)req.getParameter("txtNo");

b=(String)req.getParameter("txtName");

c=(String)req.getParameter("txtLoc");

ps.setString(1,a);

ps.setString(2,b);

ps.setString(3,c);

ps.executeUpdate();

PrintWriter out=res.getWriter();

ResultSet rs=st.executeQuery("select * from dept");

ResultSetMetaData md=rs.getMetaData();

int num=md.getColumnCount();

out.println("<html><body><table border=1><tr>");

for(i=1;i<=num;i++)

{

out.print("<th>"+md.getColumnName(i)+"</th>");

}

out.println("</tr>");

while(rs.next())

{ d=rs.getString(1);

e=rs.getString(2);

f=rs.getString(3);

out.println("<tr><td>"); out.println(d);

out.println("</td><td>"); out.println(e);

out.println("</td><td>"); out.println(f);

out.println("</td></tr>");

}

out.println("</table>");

con.commit();

out.println("BACK");

out.println("</body></html>");

155

}

catch (Exception ae)

{

System.out.println(ae.getMessage());

}

}

}

9.4 RESPONSE HEADERS

Setting the HTTP response headers often goes hand in hand
with setting the status codes in the status line. For example, all the
“document moved” status codes (300 through 307) have an
accompanying Location header, and a 401 (Unauthorized) code
always includes an accompanying WWW-Authenticate header.
However, specifying headers can also play a useful role even when
no unusual status code is set. Response headers can be used to
specify cookies, to supply the page modification date (for client-side
caching), to instruct the browser to reload the page after a
designated interval, to give the file size so that persistent HTTP
connections can be used, to designate the type of document being
generated, and to perform many other tasks.

Setting Response Headers from Servlets

The most general way to specify headers is to use the
setHeader method of HttpServletResponse. This method takes two
strings: the header name and the header value. As with setting
status codes, you must specify headers before returning the actual
document.

 setHeader(String headerName, String headerValue) - This
method sets the response header with the designated name to
the given value. In addition to the general-purpose setHeader
method, HttpServletResponse also has two specialized
methods to set headers that contain dates and integers.

 setDateHeader(String header, long milliseconds) - This method
saves you the trouble of translating a Java date in milli seconds
since 1970 (as returned by System. Current TimeMillis,
Date.getTime, or Calendar.getTimeInMillis) into a GMT time
string.

 setIntHeader(String header, int headerValue) - This method
spares you the minor inconvenience of converting an int to a
String before inserting it into a header.

156

Finally, HttpServletResponse also supplies a number of
convenience methods for specifying common headers. These
methods are summarized as follows.

 setContentType(String mimeType) - This method sets the
Content-Type header and is used by the majority of servlets.

 setContentLength(int length) - This method sets the Content-
Length header, which is useful if the browser supports
persistent (keep-alive) HTTP connections.

 addCookie(Cookie c) - This method inserts a cookie into the
Set-Cookie header. There is no corresponding setCookie
method, since it is normal to have multiple Set-Cookie lines.

 sendRedirect(String address) - The sendRedirect method sets
the Location header as well as setting the status code to 302.

Understanding HTTP 1.1 Response Headers

 Allow: The Allow header specifies the request methods (GET,
POST, etc.) that the server supports.

 Connection: A value of close for this response header instructs
the browser not to use persistent HTTP connections.

 Content-Encoding: This header indicates the way in which the
page was encoded during transmission.

 Content-Language: The Content-Language header signifies the
language in which the document is written.

 Content-Length: This header indicates the number of bytes in
the response.

 Content-Type: The Content-Type header gives the MIME
(Multipurpose Internet Mail Extension) type of the response
document. Setting this header is so common that there is a
special method in HttpServletResponse for it: setContentType.

 Expires: This header stipulates the time at which the content
should be considered out-of-date and thus no longer be cached.
A servlet might use this header for a document that changes
relatively frequently, to prevent the browser from displaying a
stale cached value.

 Last-Modified: This very useful header indicates when the
document was last changed.

 Refresh: This header indicates how soon (in seconds) the
browser should ask for an updated page. For example, to tell
the browser to ask for a new copy in 30 seconds, you would
specify a value of 30 with response.setIntHeader("Refresh", 30);

 Set-Cookie: The Set-Cookie header specifies a cookie
associated with the page. Each cookie requires a separate Set-

157

Cookie header. Servlets should not use
response.setHeader("Set-Cookie", ...) but instead should use
the special-purpose addCookie method of
HttpServletResponse.

Example: Write a Servlet that creates Excel spreadsheet
comparing apples and oranges.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ApplesAndOranges extends HttpServlet

{

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType("application/vnd.ms-
excel");

PrintWriter out = response.getWriter();

out.println("\tQ1\tQ2\tQ3\tQ4\tTotal");

out.println("Apples\t78\t87\t92\t29\t=SUM(B2:E2)");

out.println("Oranges\t77\t86\t93\t30\t=SUM(B3:E3)");

}

}

9.5 REQUEST HEADERS

HTTP request headers are distinct from the form (query)
data. Form data results directly from user input and is sent as part
of the URL for GET requests and on a separate line for POST
requests. Request headers, on the other hand, are indirectly set by
the browser and are sent immediately following the initial GET or
POST request line. For instance, the following example shows an
HTTP request that might result from a user submitting a book-
search request to a servlet at http://www.somebookstore.
com/servlet/Search. The request includes the headers Accept,
Accept-Encoding, Connection, Cookie, Host, Referer, and User-
Agent, all of which might be important to the operation of the
servlet, but none of which can be derived from the form data or
deduced automatically: the servlet needs to explicitly read the
request headers to make use of this information.

GET /servlet/Search?keywords=servlets+jsp HTTP/1.1
Accept: image/gif, image/jpg, */*
Accept-Encoding: gzip

158

Connection: Keep-Alive
Cookie: userID=id456578
Host: www.somebookstore.com
Referer: http://www.somebookstore.com/findbooks.html
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)

Reading headers is straightforward; just call the getHeader
method of HttpServletRequest with the name of the header. This
call returns a String if the specified header was supplied in the
current request, null otherwise. In HTTP 1.0, all request headers
are optional; in HTTP 1.1, only Host is required. So, always check
for null before using a request header. Header names are not case
sensitive. So, for example, request.getHeader("Connection") is
interchangeable with request.getHeader("connection"). Although
getHeader is the general-purpose way to read incoming headers, a
few headers are so commonly used that they have special access
methods in HttpServletRequest.

Following is a summary.

 getCookies - The getCookies method returns the contents of the
Cookie header, parsed and stored in an array of Cookie objects.

 getAuthType and getRemoteUser - The getAuthType and
getRemoteUser methods break the Authorization header into its
component pieces.

 getContentLength - The getContentLength method returns the
value of the Content-Length header (as an int).

 getContentType - The getContentType method returns the value
of the Content-Type header (as a String).

 getDateHeader and getIntHeader - The getDateHeader and
getIntHeader methods read the specified headers and then
convert them to Date and int values, respectively.

 getHeaderNames - Rather than looking up one particular
header, you can use the getHeaderNames method to get an
Enumeration of all header names received on this particular
request.

 getHeaders - In most cases, each header name appears only
once in the request. Occasionally, however, a header can
appear multiple times, with each occurrence listing a separate
value. Accept-Language is one such example. You can use
getHeaders to obtain an Enumeration of the values of all
occurrences of the header.

Finally, in addition to looking up the request headers, you
can get information on the main request line itself (i.e., the first line

159

in the example request just shown), also by means of methods in
HttpServletRequest. Here is a summary of the four main methods.

 getMethod - The getMethod method returns the main request
method (normally, GET or POST, but methods like HEAD, PUT,
and DELETE are possible).

 getRequestURI - The getRequestURI method returns the part of
the URL that comes after the host and port but before the form
data. For example, for a URL of http://randomhost.
com/servlet/search.BookSearch?subject=jsp, get Request URI
would return "/servlet/search. Book Search".

 getQueryString - The getQueryString method returns the form
data. For example, with http://randomhost.com/servlet/search.
Book Search? subject=jsp, getQueryString would return
"subject=jsp".

 getProtocol - The getProtocol method returns the third part of
the request line, which is generally HTTP/1.0 or HTTP/1.1.
Servlets should usually check getProtocol before specifying
response headers that are specific to HTTP 1.1.

Example: Write a program which shows all the request
headers sent on the current request

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

public class ShowRequestHeaders extends HttpServlet

{

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String title = "Servlet Example: Showing Request Headers";

out.println("<HTML>\n");

out.println("<HEAD><TITLE>" + title + "</TITLE></HEAD>\n");

out.println("<BODY BGCOLOR=\"#FDF5E6\">\n");

out.println("<H1 ALIGN=\"CENTER\">" + title + "</H1>\n");

out.println("Request Method: "

+request.getMethod() + "
\n");

out.println("Request URI: " +

160

request.getRequestURI() + "
\n");

out.println("Request Protocol: " +

request.getProtocol() + "
\n");

out.println("<TABLE BORDER=1 ALIGN=\"CENTER\">\n");

out.println("<TR BGCOLOR=\"#FFAD00\">\n");

out.println("<TH>Header Name<TH>Header Value");

Enumeration headerNames = request.getHeaderNames();

while(headerNames.hasMoreElements())

{

String headerName = (String)headerNames.nextElement();

out.println("<TR><TD>" + headerName);

out.println(" <TD>" + request.getHeader(headerName));

}

out.println("</TABLE>\n</BODY></HTML>");

}

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException

{

doGet(request, response);

}

}//class

9.6 SUMMARY

 Servlets are Java programs that run on Web acting as a middle
layer between requests coming from Web browsers and
databases or applications on the HTTP server.

 Java servlets are more efficient, easier to use, more powerful,
more portable, safer, and cheaper than traditional CGI and
many alternative CGI-like technologies.

 Some servlets may not read anything from the Request object,
based on the Servlet that is invoked only the processing would
be done and the result will be returned to the client. In this case
only the service method would be called.

 In some case the servlet read the data using the Request object
process the data and return the result to the client.

 The Request object is used to read single as well as multiple
parameters from the HTML objects with the help of methods of
HttpServletRequest.

161

 The Response object is used to write the Headers by the user
on the client side, this can be achieved using various methods
from the HttpServletResponse.

9.7 UNIT END EXERCISE

1) What is a Servlet? How do they perform their tasks?

2) State any three reasons why Servlets are used to build Web
Pages Dynamically?

3) State the advantages of Servlets over “Traditional” CGI?

4) Write a short note on Servlet Life Cycle?

5) Explain the methods used for reading Form Data from Servlets.

6) State and explain any three methods of HttpServletRequest?

7) State and explain any three methods of HttpServletResponse?

8) Write a Servlet that accepts a string from the user and displayed
the string as a marquee in response.

9) Write a Servlet to accept a table name and to display all the
records in the table.

10)Write a servlet that accepts roll number from a student and
obtains the result “Pass Class”, “First Class” etc by checking the
appropriate fields from the students table.

9.8 FURTHER READING

 Eric Jendrock, Jennifer Ball, D Carson and others, The Java EE
5 Tutorial, Pearson Education, Third Edition, 2003

 Bryan Basham, Kathy Sierra, Bert Bates, Head First Servlets
and JSP, O’reilly (SPD), Second Edition, 2008

 The Java Tutorials of Sun Microsystems Inc.

162

10

ADVANCE SERVLETS

Unit Structure:

10.0 Objectives

10.1 Status Codes

10.2 Filtering Requests and Responses

10.3 Cookies

10.4 HttpSession

10.5 Summary

10.6 Unit end exercise

10.7 Further Reading

10.0 OBJECTIVES

The objective of this chapter is to learn the advance features
os servlets such as status codes, filtering, cookies and session.

10.1 STATUS CODES

The HTTP response status line consists of an HTTP version,
a status code, and an associated message. Since the message is
directly associated with the status code and the HTTP version is
determined by the server, all a servlet needs to do is to set the
status code. A code of 200 is set automatically, so servlets don’t
usually need to specify a status code at all. When they do want to,
they use response.setStatus, response.sendRedirect, or
response.sendError.

Setting Arbitrary Status Codes: setStatus
When you want to set an arbitrary status code, do so with

the setStatus method of HttpServletResponse. If your response
includes a special status code and a document, be sure to call
setStatus before actually returning any of the content with the
PrintWriter. The reason is that an HTTP response consists of the
status line, one or more headers, a blank line, and the actual
document, in that order. Servlets do not necessarily buffer the
document, so you have to either set the status code before using

163

the PrintWriter or carefully check that the buffer hasn’t been flushed
and content actually sent to the browser.

The setStatus method takes an int (the status code) as an
argument, but instead of using explicit numbers, for readability and
to avoid typos, use the constants defined in HttpServletResponse.
The name of each constant is derived from the standard HTTP 1.1
message for each constant, all upper case with a prefix of SC (for
Status Code) and spaces changed to underscores. Thus, since the
message for 404 is Not Found, the equivalent constant in
HttpServletResponse is SC_NOT_FOUND.

Setting 302 and 404 Status Codes: sendRedirect and send
Error

Although the general method of setting status codes is
simply to call response.setStatus(int), there are two common cases
for which a shortcut method in HttpServletResponse is provided.
Just be aware that both of these methods throw IOException,
whereas setStatus does not. Since the doGet and doPost methods
already throw IOException, this difference only matters if you pass
the response object to another method.

public void sendRedirect(String url) - The 302 status code
directs the browser to connect to a new location. The sendRedirect
method generates a 302 response along with a Location header
giving the URL of the new document. Either an absolute or a
relative URL is permitted; the system automatically translates
relative URLs into absolute ones before putting them in the
Location header.

public void sendError(int code, String message) - The 404
status code is used when no document is found on the server. The
sendError method sends a status code (usually 404) along with a
short message that is automatically formatted inside an HTML
document and sent to the client.

Setting a status code does not necessarily mean that you
omit the document. For example, although most servers
automatically generate a small File Not Found message for 404
responses, a servlet might want to customize this response. Again,
remember that if you do send output, you have to call setStatus or
sendError first.

These codes fall into five general categories:
100–199: Codes in the 100s are informational, indicating that the
client should respond with some other action.

200–299: Values in the 200s signify that the request was
successful.

164

300–399: Values in the 300s are used for files that have moved and
usually include a Location header indicating the new address.

400–499: Values in the 400s indicate an error by the client.

500–599: Codes in the 500s signify an error by the server.

Example: Write a Servlet that sends IE users to the Netscape
home page and Netscape (and all other) users to the Microsoft
home page

import javax.servlet.*;

import javax.servlet.http.*;

public class WrongDestination extends HttpServlet

{

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

String userAgent = request.getHeader("User-Agent");

if ((userAgent != null) &&(userAgent.indexOf("MSIE") != -1))

response.sendRedirect("http://home.netscape.com");

else

response.sendRedirect("http://www.microsoft.com");

}

}

10.2 FILTERING REQUESTS AND RESPONSES

A filter is an object that can transform the header and
content (or both) of a request or response. Filters differ from web
components in that filters usually do not themselves create a
response. Instead, a filter provides functionality that can be
“attached” to any kind of web resource. Consequently, a filter
should not have any dependencies on a web resource for which it
is acting as a filter; this way it can be composed with more than one
type of web resource.

The main tasks that a filter can perform are as follows:

 Query the request and act accordingly.

 Block the request-and-response pair from passing any further.

 Modify the request headers and data. You do this by providing a
customized version of the request.

165

 Modify the response headers and data. You do this by providing
a customized version of the response.

 Interact with external resources.

Applications of filters include authentication, logging, image
conversion, data compression, encryption, tokenizing streams, XML
transformations, and so on. You can configure a web resource to
be filtered by a chain of zero, one, or more filters in a specific order.
This chain is specified when the web application containing the
component is deployed and is instantiated when a web container
loads the component.

In summary, the tasks involved in using filters are
 Programming the filter
 Programming customized requests and responses
 Specifying the filter chain for each web resource

Programming Filters

The filtering API is defined by the Filter, FilterChain, and
FilterConfig interfaces in the javax.servlet package. You define a
filter by implementing the Filter interface. The most important
method in this interface is doFilter, which is passed request,
response, and filter chain objects. This method can perform the
following actions:

 Examine the request headers.

 Customize the request object if the filter wishes to modify
request headers or data.

 Customize the response object if the filter wishes to modify
response headers or data.

 Invoke the next entity in the filter chain. If the current filter is the
last filter in the chain that ends with the target web component
or static resource, the next entity is the resource at the end of
the chain; otherwise, it is the next filter that was configured in
the WAR. The filter invokes the next entity by calling the doFilter
method on the chain object (passing in the request and
response it was called with, or the wrapped versions it may
have created). Alternatively, it can choose to block the request
by not making the call to invoke the next entity. In the latter
case, the filter is responsible for filling out the response.

 Examine response headers after it has invoked the next filter in
the chain.

 Throw an exception to indicate an error in processing.

In addition to doFilter, you must implement the init and
destroy methods. The init method is called by the container when

166

the filter is instantiated. If you wish to pass initialization parameters
to the filter, you retrieve them from the FilterConfig object passed to
init.

10.3 COOKIES

Cookies are small bits of textual information that a Web
server sends to a browser and that the browser later returns
unchanged when visiting the same Web site or domain. By letting
the server read information it sent the client previously, the site can
provide visitors with a number of conveniences such as presenting
the site the way the visitor previously customized it or letting
identifiable visitors in without their having to reenter a password.

Benefits of Cookies

There are four typical ways in which cookies can add value
to your site. We summarize these benefits below:

 Identifying a user during an e-commerce session - This type of
short-term tracking is so important that another API is layered
on top of cookies for this purpose.

 Remembering usernames and passwords - Cookies let a user
log in to a site automatically, providing a significant convenience
for users of unshared computers.

 Customizing sites - Sites can use cookies to remember user
preferences.

 Focusing advertising - Cookies let the site remember which
topics interest certain users and show advertisements relevant
to those interests.

Sending cookies to the client involves three steps:

 Creating a Cookie object - You call the Cookie constructor with
a cookie name and a cookie value, both of which are strings.

 Setting the maximum age - If you want the browser to store the
cookie on disk instead of just keeping it in memory, you use
setMaxAge to specify how long (in seconds) the cookie should
be valid.

 Placing the Cookie into the HTTP response headers - You use
response.addCookie to accomplish this. If you forget this step,
no cookie is sent to the browser!

To read the cookies that come back from the client, you should
perform the following two tasks, which are summarized below:

 Call request.getCookies. This yields an array of Cookie objects.

167

 Loop down the array, calling getName on each one until you
find the cookie of interest. You then typically call getValue and
use the value in some application-specific way.

Here are the methods that set the cookie attributes:
public void setMaxAge(int lifetime)
public int getMaxAge()

These methods tell how much time (in seconds) should
elapse before the cookie expires. A negative value, which is the
default, indicates that the cookie will last only for the current
browsing session (i.e., until the user quits the browser) and will not
be stored on disk. Specifying a value of 0 instructs the browser to
delete the cookie.

public String getName()
The getName method retrieves the name of the cookie. The

name and the value are the two pieces you virtually always care
about. However, since the name is supplied to the Cookie
constructor, there is no setName method; you cannot change the
name once the cookie is created. On the other hand, getName is
used on almost every cookie received by the server. Since the
getCookies method of HttpServletRequest returns an array of
Cookie objects, a common practice is to loop down the array,
calling getName until you have a particular name, then to check the
value with getValue.

public void setValue(String cookieValue)
public String getValue()

The setValue method specifies the value associated with the
cookie; getValue looks it up. Again, the name and the value are the
two parts of a cookie that you almost always care about, although
in a few cases, a name is used as a boolean flag and its value is
ignored (i.e., the existence of a cookie with the designated name is
all that matters). However, since the cookie value is supplied to the
Cookie constructor, setValue is typically reserved for cases when
you change the values of incoming cookies and then send them
back out.

Example: Write a program which stores a Cookie and the read
the cookie to display the information.

//Part I

<html><body><center>

<form name=form1 method=get action=”AddCookieServlet”>

Enter a Value

<input type=text name=data>

<input type=submit>

</form></center></body></html>

168

//Part II

import javax.servlet.*;

import javax.servlet.http.*;

public class AddCookieServlet extends HttpServlet

{

public void doGet(

HttpServletRequest req, HttpServletResponse res)

throws IOException, ServletException

{

String data = req.getParametar();

Cookie c = new Cookie("My Cookie",data);

res.addCookie(c);

res.setCountentType("text/html");

PrintWriter out = res.getWriter();

out.println("My Cookie has been set to");

out.println(data);

}

}

//Part III

import javax.servlet.*;

import javax.servlet.http.*;

public class GetCookie extends HttpServlet

{

public void doGet(

HttpServletRequest req,HttpServletResponse res)

throws IOException, ServletException

{

Cookie c[] = req.getCookies();

res.setContentType("text/html");

PrintWriter out = res.getWriter();

for(int i = 0; i < c.length; i++)

{

String name = c[i].getName();

String value = c[i].getValue();

out.println(name +"\t"+ value);

}

}

}

169

10.4 HTTP SESSION

It provides a way to identify a user across more than one
page request or visit to a Web site. The servlet engine uses this
interface to create a session between an HTTP client and an HTTP
server. The session persists for a specified time period, across
more than one connection or page request from the user. A session
usually corresponds to one user, who may visit a site many times.
The server can maintain a session either by using cookies or by
rewriting URLs.

This interface allows servlets to
 View and manipulate information about a session, such as the

session identifier, creation time, or context
 Bind objects to sessions, allowing you to use an online shopping

cart to hold data that persists across multiple user connections

HttpSession defines methods that store these types of data:
 Standard session properties, such as a session identifier or

session context
 Data that the application provides, accessed using this interface

and stored using a dictionary-like interface

An HTTP session represents the server's view of the session. The
server considers a session new under any of these conditions:
 The client does not yet know about the session
 The session has not yet begun
 The client chooses not to join the session, for example, if the

server supports only cookies and the client rejects the cookies
the server sends

When the session is new, the isNew() method returns true.

Method Summary

String getId() Returns a string containing the unique
identifier assigned to this session.

Object
getValue(String name)

Returns the object bound with the
specified name in this session or null if
no object of that name exists.

String[]getValueNames() Returns an array containing the names
of all the objects bound to this session.

boolean isNew() Returns true if the Web server has
created a session but the client has not
yet joined.

170

void setAttribute(String
name, Object value)

This method binds an object to this
session, using the name specified.

Object getAttribute(String
name)

This method returns the object bound
with the specified name in this session,
or null if no object is bound under the
name.

Example: Create a form, which accepts user information such
as name and background color. Session allows storing the
client information about name and background. If the user is
new then display the page asking for name and background
else set the background and find number of visits to the page.

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class SessionServlet extends HttpServlet

{

public void service(

HttpServletResponse res,HttpServletRequest req)

throws IOException,ServletException

{

try {

res.setContentType("Text/Html");

Integer hitCount;

PrintWriter out=res.getWriter();

HttpSession s=req.getSession(true);

if(s.isNew()){

out.println("<Html>");

out.println("<Form method="+"GET"+" action

=http://localhost:8080/servlet/SessionServlet>");

out.println("Please select bgcolor");

out.println("<input type=radio name=optColor

value=red>Red");

out.println("<input type=radio name=optColor

value=green>Green");

out.println("<input type=radio name=optColor

value=blue>Blue");

out.println("<input type=text name=txtName>");

out.println("

");

out.println("<input type=submit value=Submit>");

171

out.println("</form></Html>");

}//if

else{

String name=(String)req.getParameter("txtName");

String color=(String)req.getParameter("optColor");

if(name!=null && color!=null){

out.println("Name: "+name);

hitCount=new Integer(1);

out.println("SessionServlet");

s.setAttribute("txtName",name);

s.setAttribute("optColor",color);

s.setAttribute("Hit",hitCount);

}else{

hitCount=(Integer)s.getValue("Hit");

hitCount=new Integer(hitCount.intValue()+1);

s.putValue("Hit",hitCount);

out.println("<Html><body text=cyan bgcolor="

+s.getAttribute("optColor")+">");

out.println("You Have Been Selected"

+s.getAttribute("optColor")+"Color");

out.println("

Your Name Is"

+s.getAttribute("txtName"));

out.println("

Number Of Visits==>"

+hitCount);

out.println("

");

out.println("SessionServlet");

out.println("</body></html>");

}

}

}//try

catch(Exception e){}

} }//class

172

10.5 SUMMARY

 When you want to set a status code, we use the setStatus
method of HttpServletResponse.

 A filter is an object that can transform the header and content
(or both) of a request or response.

 Cookies are small bits of textual information that a Web server
sends to a browser and that the browser later returns
unchanged when visiting the same Web site or domain.

 The session persists for a specified time period, across more
than one connection or page request from the user.

10.6 UNIT END EXERCISE

1) Explain the use of the following methods
a. setStatus
b. sendRedirect
c. sendError

2) What are Cookies? State the benefits of using Cookies?

3) Explain with an example how Cookie class is used.

4) Write a short note on HttpSession?

5) Write a servlet that accepts a number and name from an
HTML file, compares the number with predefined number
and returns a message “ You win” or “You lose” if the user’s
number matches the predefined number similar to lottery.

6) Write a Servlet that accepts user’s information using three
pages, first page accepts personal information, second
accepts academic information and the third accepts extra-
curricular information. The Servlet stores the data in
sessions and in the end displays all the information.

10.7 FURTHER READING

 Eric Jendrock, Jennifer Ball, D Carson and others, The Java EE
5 Tutorial, Pearson Education, Third Edition, 2003

 Bryan Basham, Kathy Sierra, Bert Bates, Head First Servlets
and JSP, O’reilly (SPD), Second Edition, 2008

 The Java Tutorials of Sun Microsystems Inc.

173

11

INTRODUCTION TO JSP

Unit Structure:

11.0 Objectives

11.1 Introduction to JSP

11.2 The Life Cycle of a JSP Page

11.3 JSP Syntax Basics

11.4 Unified Expression Language

11.5 Summary

11.6 Unit end exercise

11.7 Further Reading

11.0 OBJECTIVES

The objectives of this chapter are to learn what JSP is and
how to create useful JSP pages. In this chapter we will cover the
basic of JSP, lifecycle of JSP and the expression language.

11.1 INTRODUCTION TO JSP

JSP enjoys cross-platform and cross-Web-server support,
but effectively melds the power of server-side Java technology with
the WYSIWYG features of static HTML pages. JSP pages typically
comprise of:

 Static HTML/XML components.
 Special JSP tags
 Optionally, snippets of code written in the Java programming

language called "scriptlets."

JSP Advantages

 Separation of static from dynamic content: With servlets, the
logic for generation of the dynamic content is an intrinsic part of
the servlet itself, and is closely tied to the static presentation
templates responsible for the user interface. Thus, even minor
changes made to the UI typically result in the recompilation of
the servlet. This tight coupling of presentation and content
results in brittle, inflexible applications. However, with JSP, the

174

logic to generate the dynamic content is kept separate from the
static presentation templates by encapsulating it within external
JavaBeans components. These are then created and used by
the JSP page using special tags and scriptlets. When a page
designer makes any changes to the presentation template, the
JSP page is automatically recompiled and reloaded into the web
server by the JSP engine.

 Write Once Run Anywhere: JSP technology brings the "Write
Once, Run Anywhere" paradigm to interactive Web pages. JSP
pages can be moved easily across platforms, and across web
servers, without any changes.

 Dynamic content can be served in a variety of formats:
There is nothing that mandates the static template data within a
JSP page to be of a certain format. Consequently, JSP can
service a diverse clientele ranging from conventional browsers
using HTML/DHTML, to handheld wireless devices like mobile
phones and PDAs using WML, to other B2B applications using
XML.

 Completely leverages the Servlet API: If you are a servlet
developer, there is very little that you have to "unlearn" to move
over to JSP. In fact, servlet developers are at a distinct
advantage because JSP is nothing but a high-level abstraction
of servlets. You can do almost anything that can be done with
servlets using JSP--but more easily!

Comparing JSP with ASP
Although the features offered by JSP may seem similar to

that offered by Microsoft's Active Server Pages (ASP), they are
fundamentally different technologies, as shown by the following
table:

Java Server Pages Active Server Pages

Web Server
Support

Most popular web
servers including
Apache, Netscape, and
Microsoft IIS can be
easily enabled with JSP.

Native support only within
Microsoft IIS or Personal
Web Server. Support for
select servers using third-
party products.

Platform
Support

Platform independent.
Runs on all Java-enabled
platforms.

Is fully supported under
Windows. Deployment on
other platforms is
cumbersome due to
reliance on the Win32-
based component model.

175

Component
Model

Relies on reusable,
cross-platform
components like
JavaBeans, Enterprise
JavaBeans, and custom
tag libraries.

Uses the Win32-based
COM component model.

Scripting
Can use the Java
programming language
or JavaScript.

Supports VBScript and
JScript for scripting.

Security
Works with the Java
security model.

Can work with the
Windows NT security
architecture.

Database
Access

Uses JDBC for data
access.

Uses Active Data Objects
for data access.

Customizable
Tags

JSP is extensible with
custom tag libraries.

Cannot use custom tag
libraries and is not
extensible.

Example: Write a JSP page to display the current date and
time.

<Html>

<Head>

<Title>JSP Expressions</Title>

</Head>

<Body>

<H2>JSP Expressions</H2>

Current time: <%= new java.util.Date() %>

Server: <%= application.getServerInfo() %>

Session Id: <%= session.getId() %>

The <code>test param</code> form parameter:

<%= request.getParameter("testParam")%>

</Body>

</Html>

11.2 THE LIFE CYCLE OF A JSP PAGE

The purpose of JSP is to provide a declarative, presentation-
centric method of developing servlets. As noted before, the JSP

176

specification itself is defined as a standard extension on top the
Servlet API. Consequently, it should not be too surprisingly that
under the covers, servlets and JSP pages have a lot in common.

Typically, JSP pages are subject to a translation phase and
a request processing phase. The translation phase is carried out
only once, unless the JSP page changes, in which case it is
repeated. Assuming there were no syntax errors within the page,
the result is a JSP page implementation class file that implements
the Servlet interface, as shown below.

The translation phase is typically carried out by the JSP
engine itself, when it receives an incoming request for the JSP
page for the first time. Many details of the translation phase, like the
location where the source and class files are stored are
implementation dependent.

The JSP page implementation class file extends
HttpJspBase, which in turn implements the Servlet interface.
Observe how the service method of this class, _jspService(),
essentially inlines the contents of the JSP page. Although
_jspService() cannot be overridden, the developer can describe
initialization and destroy events by providing implementations for
the jspInit() and jspDestroy() methods within their JSP pages.

Once this class file is loaded within the servlet container, the
_jspService() method is responsible for replying to a client's
request. By default, the _jspService() method is dispatched on a
separate thread by the servlet container in processing concurrent
client requests, as shown below:

177

JSP Access Models
The early JSP specifications advocated two philosophical

approaches, popularly known as Model 1 and Model 2
architectures, for applying JSP technology. Consider the Model 1
architecture, shown below:

In the Model 1 architecture, the incoming request from a web
browser is sent directly to the JSP page, which is responsible for
processing it and replying back to the client. There is still separation
of presentation from content, because all data access is performed
using beans.

Although the Model 1 architecture is suitable for simple
applications, it may not be desirable for complex implementations.
Indiscriminate usage of this architecture usually leads to a
significant amount of scriptlets or Java code embedded within the

178

JSP page, especially if there is a significant amount of request
processing to be performed. While this may not seem to be much of
a problem for Java developers, it is certainly an issue if your JSP
pages are created and maintained by designers--which is usually
the norm on large projects. Another downside of this architecture is
that each of the JSP pages must be individually responsible for
managing application state and verifying authentication and
security.

The Model 2 architecture, shown below, is a server-side
implementation of the popular Model/View/Controller design
pattern. Here, the processing is divided between presentation and
front components. Presentation components are JSP pages that
generate the HTML/XML response that determines the user
interface when rendered by the browser. Front components (also
known as controllers) do not handle any presentation issues, but
rather, process all the HTTP requests. Here, they are responsible
for creating any beans or objects used by the presentation
components, as well as deciding, depending on the user's actions,
which presentation component to forward the request to. Front
components can be implemented as either a servlet or JSP page.

The advantage of this architecture is that there is no
processing logic within the presentation component itself; it is
simply responsible for retrieving any objects or beans that may
have been previously created by the controller, and extracting the
dynamic content within for insertion within its static templates.
Consequently, this clean separation of presentation from content
leads to a clear delineation of the roles and responsibilities of the
developers and page designers on the programming team. Another

179

benefit of this approach is that the front components present a
single point of entry into the application, thus making the
management of application state, security, and presentation
uniform and easier to maintain.

Example: Write a JSP file, which displays the parameters
passed to the file.

Register.jsp

<Html>

<Head>

<Title>Register</Title>

</Head>

<form method=get action="http://localhost:8080/StudentInfo.jsp">

<table border=1>

<tr><td>Name:</td><td> <input type=text name=txtName></td>

<tr><td>Age: </td><td><input type=text name=txtAge></td>

<tr><td>Tel Nos: </td><td><input type=text name=txtTelNo></td>

<tr><td><input type=submit></td><td> <input type=reset></td>

</table>

</form>

</html>

StudentInfo.jsp

<html>

<head>

<Title>Student Info</Title>

</Head>

<Body>

<table border=1>

<tr><td>Name</td><td><%=request.getParameter("txtName")
%></td></tr>

<tr><td>Age</td><td><%=request.getParameter("txtAge")
%></td></tr>

<tr><td>Tel No</td><td><%=request.getParameter("txtTelNo")
%></td></tr>

</table>

</body>

</html>

Example: Write a JSP page, which displays three text boxes
for Department Number, Department Name and Location. On
click of the submit button call another JSP page which will

180

enter the values in the database with the help of
PreparedStatement class. Also use jspInit() and jspDestroy() to
open and close the connection. (Register.jsp).

DeptForm.jsp

<html>

<Head><title>Department Form</title>

</head>

<body>

<form method=GET action="http://localhost:8080/Register1.jsp">

<table>

<tr><td>DepartmentNo: </td><td> <input type=text
name=txtNo></td></tr>

<tr><td>DepartmentName: </td><td><input type=text
name=txtName></td></tr>

<tr><td>Location:</td><td> <input type=text
name=txtLoc></td></tr>

</table>

<input type=submit name=Submit>

<input type=reset name=Reset>

</Form>

</body>

</Html>

Register1.jsp

<%@ page import="java.sql.*" %>

<%! String a,b,c,d,e,f,Query; %>

<%! Connection con;

Statement st;

PreparedStatement ps; %>

<%! int i,num; %>

<%!

public void jspInit()

{

try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

con=DriverManager.getConnection("jdbc:odbc:ty289");

st=con.createStatement();

Query="insert into Dept values(?,?,?)";

181

ps=con.prepareStatement(Query);

}

catch(Exception e){System.out.println("Error: "+e.getMessage());}

}

%>

<%

a=(String)request.getParameter("txtNo");

b=(String)request.getParameter("txtName");

c=(String)request.getParameter("txtLoc");

ps.setInt(1,Integer.parseInt(a));

ps.setString(2,b);

ps.setString(3,c);

ps.executeUpdate();

con.commit();

ResultSet rs=st.executeQuery("select * from Dept");

%>

<html><body>

<table border=1>

<tr><th>Dept No </th><th>Dept Name</th><th>Location</th></tr>

<%

while(rs.next())

{

%>

<tr>

<% for(int j=0;j<=2;j++)

{

Object obj=rs.getObject(j+1);

%>

<td><%=obj.toString()%></td>

<%

}

}

%>

</tr>

</table>

<%!

public void jspDestroy()

{ try

{

ps.close();

182

st.close();

}

catch(Exception e){System.out.println("Error:
"+e.getMessage());}

}%>

</body>

</html>

11.3 JSP SYNTAX BASICS

JSP syntax is fairly straightforward, and can be classified
into directives, scripting elements, and standard actions.

Directives
JSP directives are messages for the JSP engine. They do

not directly produce any visible output, but tell the engine what to
do with the rest of the JSP page. JSP directives are always
enclosed within the <%@ ... %> tag. The two primary directives are
page and include.

Page Directive
Typically, the page directive is found at the top of almost all

of your JSP pages. There can be any number of page directives
within a JSP page, although the attribute/value pair must be unique.
Unrecognized attributes or values result in a translation error. For
example,

<%@ page import="java.util.*, com.foo.*" buffer="16k" %>

makes available the types declared within the included packages
for scripting and sets the page buffering to 16K.

Purpose of the page Directive

• Give high-level information about the Servlet that will result from
the JSP page

• Can control

– Which classes are imported

– What class the servlet extends

– If the servlet participates in sessions

– The size and behavior of the output buffer

– What page handles unexpected errors

The import Attribute

• Format

<%@ page import="package.class" %>

183

<%@ page import="package.class1,...,package.classN" %>

• Purpose

Generate import statements at top of servlet definition

Although JSP pages can be almost anywhere on server, classes
used by JSP pages must be in normal servlet dirs

E.g.:

…/classes or

…/classes/directoryMatchingPackage

• Always use packages for utilities that will be used by JSP!

The session Attribute

• Format

<%@ page session="true" %> <%-- Default --%>

<%@ page session="false" %>

• Purpose

To designate that page not be part of a session

By default, it is part of a session

Saves memory on server if you have a high-traffic site

All related pages have to do this for it to be useful

The buffer Attribute

• Format

<%@ page buffer="sizekb" %>

<%@ page buffer="none" %>

• Purpose

To give the size of the buffer used by the out variable

Buffering lets you set HTTP headers even after some page content
has been generated (as long as buffer has not filled up or been
explicitly flushed)

Servers are allowed to use a larger size than you ask for, but not a
smaller size

Default is system-specific, but must be at least 8kb

The errorPage Attribute

• Format

<%@ page errorPage="Relative URL" %>

• Purpose

Specifies a JSP page that should process any exceptions thrown
but not caught in the current page
The exception thrown will be automatically available to the
designated error page by means of the "exception" variable

184

The web.xml file lets you specify application-wide error pages that
apply whenever certain exceptions or certain HTTP status codes
result.
• The errorPage attribute is for page-specific error pages

The isErrorPage Attribute

• Format

<%@ page isErrorPage="true" %>

<%@ page isErrorPage="false" %> <%-- Default --%>

• Purpose

Indicates whether or not the current page can act as the error page
for another JSP page

A new predefined variable called exception is created and
accessible from error pages

Use this for emergency backup only; explicitly handle as many
exceptions as possible

• Don't forget to always check query data for missing or malformed
values

The extends Attribute

• Format

<%@ page extends="package.class" %>

• Purpose

To specify parent class of servlet that will result from JSP page

Use with extreme caution

Can prevent system from using high-performance custom
superclasses

Typical purpose is to let you extend classes that come from the
server vendor (e.g., to support personalization features), not to
extend your own classes.

Declarations
JSP declarations let you define page-level variables to save

information or define supporting methods that the rest of a JSP
page may need. While it is easy to get led away and have a lot of
code within your JSP page, this move will eventually turn out to be
a maintenance nightmare. For that reason, and to improve
reusability, it is best that logic-intensive processing is encapsulated
as JavaBean components.

Declarations are found within the <%! ... %> tag. Always end
variable declarations with a semicolon, as any content must be
valid Java statements:
<%! int i=0; %>

185

You can also declare methods. For example, you can
override the initialization event in the JSP life cycle by declaring:
<%! public void jspInit() {

//some initialization code
}

%>

Expressions
With expressions in JSP, the results of evaluating the

expression are converted to a string and directly included within the
output page. Typically expressions are used to display simple
values of variables or return values by invoking a bean's getter
methods. JSP expressions begin within <%= ... %> tags and do not
include semicolons:
<%= fooVariable %>
<%= fooBean.getName() %>

Scriptlets
JSP code fragments or scriptlets are embedded within <% ...

%> tags. This Java code is run when the request is serviced by the
JSP page. You can have just about any valid Java code within a
scriptlet, and is not limited to one line of source code. For example,
the following displays the string "Hello" within H1, H2, H3, and H4
tags, combining the use of expressions and scriptlets:
<% for (int i=1; i<=4; i++) { %>

<H<%=i%>>Hello</H<%=i%>>
<% } %>

Comments
Although you can always include HTML comments in JSP

pages, users can view these if they view the page's source. If you
don't want users to be able to see your comments, embed them
within the <%-- ... --%> tag:
<%-- comment for server side only --%>

A most useful feature of JSP comments is that they can be
used to selectively block out scriptlets or tags from compilation.
Thus, they can play a significant role during the debugging and
testing process.

Object Scopes
It is important to understand the scope or visibility of Java

objects within JSP pages that are processing a request. Objects
may be created implicitly using JSP directives, explicitly through
actions, or, in rare cases, directly using scripting code. The
instantiated objects can be associated with a scope attribute
defining where there is a reference to the object and when that
reference is removed. The following diagram indicates the various
scopes that can be associated with a newly created object:

186

JSP Implicit Objects
As a convenience feature, the JSP container makes

available implicit objects that can be used within scriptlets and
expressions, without the page author first having to create them.
These objects act as wrappers around underlying Java classes or
interfaces typically defined within the Servlet API. The nine implicit
objects:

 request: represents the HttpServletRequest triggering the
service invocation. Request scope.

 response: represents HttpServletResponse to the request. Not
used often by page authors. Page scope.

 pageContext: encapsulates implementation-dependent features
in PageContext. Page scope.

 application: represents the ServletContext obtained from servlet
configuration object. Application scope.

 out: a JspWriter object that writes into the output stream. Page
scope.

 config: represents the ServletConfig for the JSP. Page scope.

 page: synonym for the "this" operator, as an HttpJspPage. Not
used often by page authors. Page scope.

 session: An HttpSession. Session scope. More on sessions
shortly.

 exception: the uncaught Throwable object that resulted in the
error page being invoked. Page scope.

Note that these implicit objects are only visible within the system
generated _jspService() method. They are not visible within
methods you define yourself in declarations.

11.4 UNIFIED EXPRESSION LANGUAGE

The primary new feature of JSP 2.1 is the unified expression
language (unified EL), which represents a union of the expression
language offered by JSP 2.0 and the expression language created
for JavaServer Faces technology

The expression language introduced in JSP 2.0 allows page
authors to use simple expressions to dynamically read data from
JavaBeans components. For example, the test attribute of the
following conditional tag is supplied with an EL expression that
compares the number of items in the session-scoped bean named
cart with 0.

187

<c:if test="${sessionScope.cart.numberOfItems > 0}">
...
</c:if>
JSP supports a simple request/response life cycle, during which a
page is executed and the HTML markup is rendered immediately.
Therefore, the simple, read-only expression language offered by
JSP 2.0 was well suited to the needs of JSP applications.

To summarize, the new, unified expression language allows
page authors to use simple expressions to perform the following
tasks:
 Dynamically read application data stored in JavaBeans

components, various data structures, and implicit objects
 Dynamically write data, such as user input into forms, to

JavaBeans components
 Invoke arbitrary static and public methods
 Dynamically perform arithmetic operations

The unified EL also allows custom tag developers to specify
which of the following kinds of expressions that a custom tag
attribute will accept:

 Immediate evaluation expressions or deferred evaluation
expressions. An immediate evaluation expression is evaluated
immediately by the JSP engine. A deferred evaluation
expression can be evaluated later by the underlying technology
using the expression language.

 Value expression or method expression. A value expression
references data, whereas a method expression invokes a
method.

 Rvalue expression or Lvalue expression. An rvalue expression
can only read a value, whereas an lvalue expression can both
read and write that value to an external object.

 Finally, the unified EL also provides a pluggable API for
resolving expressions so that application developers can
implement their own resolvers that can handle expressions not
already supported by the unified EL.

11.5 SUMMARY

 JSP pages have cross-platform and cross-Web-server support,
but effectively melds the power of server-side Java technology
with the WYSIWYG features of static HTML pages.

 JSP pages are subject to a translation phase and a request
processing phase.

188

 The incoming request from a web browser is sent directly to the
JSP page, which is responsible for processing it and replying
back to the client.

 JSP directives are messages for the JSP engine.

 The page directive is found at the top of JSP pages and gives
high-level information about the Servlet that will result from the
JSP page.

 The expression language introduced in JSP 2.0 allows page
authors to use simple expressions to dynamically read data
from JavaBeans components.

11.6 UNIT END EXERCISE

1) State and explain the advantages of JSP?

2) What are the major differences between JSP and ASP?

3) What are the advantages of using JSP over Servlets?

4) Describe various Implicit objects of the JSP? What is the scope
of those objects?

5) Write a short note on JSP Access Model?

6) Explain PAGE directive with all its attribute.

7) What is meant by declaration in JSP? How it is different from
scriplet?

8) Write a JSP page to display the current date and time.

9) Write a JSP page to connect to a database and display the
contents of a database table using the HTML TABLE tag. The
column names should also be fetched from the database.

10)Write a JSP page, which displays three text boxes for user
name, password, and email. On click of the submit button call
another JSP page which will enter the values in the database
with the help of PreparedStatement class. Also use jspInit() and
jspDestroy() to open and close the connection.

11.7 FURTHER READING

 Eric Jendrock, Jennifer Ball, D Carson and others, The Java EE
5 Tutorial, Pearson Education, Third Edition, 2003

 Bryan Basham, Kathy Sierra, Bert Bates, Head First Servlets
and JSP, O’reilly (SPD), Second Edition, 2008

 The Java Tutorials of Sun Microsystems Inc.

189

12

ADVANCE JSP

Unit Structure:

12.0 Objectives

12.1 Reusing Content in JSP Pages

12.2 Using JavaBeans Components

12.3 Using Custom tags

12.4 Transferring Control to another Web Component

12.5 Summary

12.6 Unit end exercise

12.7 Further Reading

12.0 OBJECTIVES

The objective of this chapter is to learn the advance
concepts of JSP such as reusing content, custom tags and Java
Beans Components. After this chapter you will be able to create
more advance JSP pages.

12.1 REUSING CONTENT IN JSP PAGES

There are many mechanisms for reusing JSP content in a
JSP page. Three mechanisms that can be categorized as direct
reuse are discussed here:

 The include directive
 Preludes and codas
 The jsp:include element

The include directive is processed when the JSP page is
translated into a servlet class. The effect of the directive is to insert
the text contained in another file (either static content or another
JSP page) into the including JSP page. You would probably use the
include directive to include banner content, copyright information, or
any chunk of content that you might want to reuse in another page.
The syntax for the include directive is as follows: <%@ include
file="filename" %>. For example, all the Duke’s Bookstore
application pages could include the file banner.jspf, which contains

190

the banner content, by using the following directive: <%@ include
file="banner.jspf" %>

Another way to do a static include is to use the prelude and
coda mechanisms Because you must put an include directive in
each file that reuses the resource referenced by the directive, this
approach has its limitations. Preludes and codas can be applied
only to the beginnings and ends of pages.

The jsp:include element is processed when a JSP page is
executed. The include action allows you to include either a static or
a dynamic resource in a JSP file. The results of including static and
dynamic resources are quite different. If the resource is static, its
content is inserted into the calling JSP file. If the resource is
dynamic, the request is sent to the included resource, the included
page is executed, and then the result is included in the response
from the calling JSP page. The syntax for the jsp:include element
is:
<jsp:include page="includedPage" />

Example: Write a JSP page that will include in it a simple static
file with the help of <%@ include file=”?” %> and a simple JSP
page with the help of <jsp:include page=”?”/> tag.

Include.jsp

<html>

<body bgcolor="white">

<H1 align="center">JavaServer Pages 1.0</H1>

<H2 align="center">Include Example</H2>

<P> </P>

<P> </P>

<%@ page buffer="5" autoFlush="false" %>

<p>In place evaluation of another JSP which gives you the current
time:

<%@ include file="foo.jsp" %>

<p> <jsp:include page="/examples/jsp/samples/include/foo.html"
flush="true"/> by including the output of another JSP:

<jsp:include page="foo.jsp" flush="true"/>

</html>

191

foo.jsp

<body bgcolor="white">

<%= System.currentTimeMillis() %>

12.2 USING JAVABEAN COMPONENTS

The component model for JSP technology is based on
JavaBeans component architecture. JavaBeans components are
nothing but Java objects, which follow a well-defined design/naming
pattern: the bean encapsulates its properties by declaring them
private and provides public accessor (getter/setter) methods for
reading and modifying their values.

Before you can access a bean within a JSP page, it is
necessary to identify the bean and obtain a reference to it. The
<jsp:useBean> tag tries to obtain a reference to an existing
instance using the specified id and scope, as the bean may have
been previously created and placed into the session or application
scope from within a different JSP page. The bean is newly
instantiated using the Java class name specified through the class
attribute only if a reference was not obtained from the specified
scope. Consider the tag:

<jsp:useBean id="user" class="beans.Person"
scope="session" />

In this example, the Person instance is created just once and
placed into the session. If this useBean tag is later encountered
within a different JSP page, a reference to the original instance that
was created before is retrieved from the session.

The <jsp:useBean> tag can also optionally include a body, such as

<jsp:useBean id="user" class="beans.Person" scope="session">
<%

user.setDate(DateFormat.getDateInstance().format(new
Date()));

/ /etc..
%>
</jsp:useBean>

Any scriptlet (or <jsp:setProperty> tags, which are explained
shortly) present within the body of a <jsp:useBean> tag are
executed only when the bean is instantiated, and are used to
initialize the bean's properties.

192

Once you have declared a JavaBean component, you have
access to its properties to customize it. The value of a bean's
property is accessed using the <jsp:getProperty> tag. With the
<jsp:getProperty> tag, you specify the name of the bean to use
(from the id field of useBean), as well as the name of the property
whose value you are interested in. The actual value is then directly
printed to the output:

<jsp:getProperty name="user" property="name" />

Changing the property of a JavaBean component requires you to
use the <jsp:setProperty> tag. For this tag, you identify the bean
and property to modify and provide the new value:

<jsp:setProperty name="user" property="name" value="jGuru" />

or

<jsp:setProperty name="user" property="name"
value="<%=expression %>" />

When developing beans for processing form data, you can
follow a common design pattern by matching the names of the
bean properties with the names of the form input elements. You
also need to define the corresponding getter/setter methods for
each property within the bean. The advantage in this is that you can
now direct the JSP engine to parse all the incoming values from the
HTML form elements that are part of the request object, then
assign them to their corresponding bean properties with a single
statement, like this:
<jsp:setProperty name="user" property="*"/>

This runtime magic is possible through a process called
introspection, which lets a class expose its properties on request.
The introspection is managed by the JSP engine, and implemented
through the Java reflection mechanism. This feature alone can be a
lifesaver when processing complex forms containing a significant
number of input elements.
If the names of your bean properties do not match those of the
form's input elements, they can still be mapped explicitly to your
property by naming the parameter as:
<jsp:setProperty name="user" property="address"
param="parameterName" />

193

Example: Create a java bean that gives information about the
current time. The bean has getter properties for time, hour,
minute, and second. Write a JSP page that uses the bean and
display all the information.

package myclass;

import java.util.Calendar;

import java.util.Date;

public class CalendarBean

{

private Calendar calendar;

public CalendarBean() {

calendar=Calendar.getInstance();

}

public Date getTime() {

return calendar.getTime();

}

public int getHour() {

return calendar.get(Calendar.HOUR_OF_DAY);

}

public int getMinute() {

return calendar.get(Calendar.MINUTE);

}

public int getSecond() {

return calendar.get(Calendar.SECOND);

}

}

194

BeanTime.jsp

<html>

<body>

<jsp:useBean class="myclass.CalendarBean" id="cal" />

<pre>

Time: <jsp:getProperty name="cal" property="Time" />

Hour: <jsp:getProperty name="cal" property="Hour" />

Minute:<jsp:getProperty name="cal" property="Minute"
/>

Seconds:<jsp:getProperty name="cal" property="Second"
/>

</pre>

</body>

</html>

12.3 USING CUSTOM TAGS

Custom tags are user-defined JSP language elements that
encapsulate recurring tasks. Custom tags are distributed in a tag
library, which defines a set of related custom tags and contains the
objects that implement the tags.

Custom tags have the syntax

<prefix:tag attr1="value" ... attrN="value" />

or

<prefix:tag attr1="value" ... attrN="value" >

body

</prefix:tag>

where prefix distinguishes tags for a library, tag is the tag identifier,
and attr1 ... attrN are attributes that modify the behavior of the tag.

To use a custom tag in a JSP page, you must
 Declare the tag library containing the tag
 Make the tag library implementation available to the web

application

12.4 TRANSFERRING CONTROL TO ANOTHERWEB
COMPONENT

The mechanism for transferring control to another web
component from a JSP page uses the functionality provided by the
Java Servlet API. You access this functionality from a JSP page by
using the jsp:forward element:

195

<jsp:forward page="/main.jsp" />

Note that if any data has already been returned to a client, the
jsp:forward element will fail with an IllegalStateException.

jsp:param Element
When an include or forward element is invoked, the original

request object is provided to the target page. If you wish to provide
additional data to that page, you can append parameters to the
request object by using the jsp:param element:
<jsp:include page="..." >

<jsp:param name="param1" value="value1"/>
</jsp:include>

When jsp:include or jsp:forward is executed, the included page or
forwarded page will see the original request object, with the original
parameters augmented with the new parameters and new values
taking precedence over existing values when applicable. For
example, if the request has a parameter A=foo and a parameter
A=bar is specified for forward, the forwarded request will have
A=bar,foo.Note that the new parameter has precedence.

The scope of the new parameters is the jsp:include or jsp:forward
call; that is, in the case of an jsp:include the new parameters (and
values) will not apply after the include.

12.5 SUMMARY

 Three mechanisms for reusing JSP content in a JSP page are
include directive, Preludes & codas and jsp:include element.

 The <jsp:useBean> tag tries to obtain a reference to an existing
instance using the specified id and scope, as the bean may
have been previously created and placed into the session or
application scope from within a different JSP page.

 Custom tags are distributed in a tag library, which defines a set
of related custom tags and contains the objects that implement
the tags.

 Using the jsp:forward element we can transfer control to another
web component from a JSP page.

196

12.6 UNIT END EXERCISE

1) Explain INCLUDE directive with all its attribute.

2) Describe the jsp:useBean tag with an example?

3) Expalin how control can be transferred to another Web
Component.

4) Write a JSP page that will include in it a simple static file with
the help of <%@ include file=”?” %> and a simple JSP page
with the help of <jsp:include page=”?”/> tag.

5) Create a java bean that gives information about the current
time. The bean has getter properties for time, hour, minute, and
second. Write a JSP page that uses the bean and display all
the information.

6) Create a multi-page registration form in which the user input is
spread across 3 pages. The data is stored in the session with
the help of Java Beans. After all the information is entered, read
the contents of the java bean and display the contents on a new
page.

12.7 FURTHER READING

 Eric Jendrock, Jennifer Ball, D Carson and others, The Java EE
5 Tutorial, Pearson Education, Third Edition, 2003

 Bryan Basham, Kathy Sierra, Bert Bates, Head First Servlets
and JSP, O’reilly (SPD), Second Edition, 2008

 The Java Tutorials of Sun Microsystems Inc.

197

13

INTRODUCTION TO EJB

Unit Structure:

13.0 Objectives

13.1 Introduction to EJB
13.2 Benefits of EJB

13.3 Difference between JavaBeans and Enterprise JavaBeans
13.4 JEE Architecture overview
13.5 JEE Application components
13.6 Java EE Clients

13.7 Summary

13.8 Unit end exercise

13.9 Further Reading

13.0 OBJECTIVES

The objectives of this chapter are to learn what EJB is and it
works. Here we will also understand the difference between EJB
and beans, architecture and components.

13.1 INTRODUCTION TO EJB

● EJB is defined as an architecture for the development and
deployment of component-based, robust, highly scalable
business applications. By using EJB, you can write scalable,
reliable, and secure applications without writing your own
complex distributed component framework.

● EJB is about rapid application development for the server side.
You can quickly and easily construct server-side components in
Java. This can be done by leveraging a prewritten distributed
infrastructure provided by the industry.

● EJB is designed to support application portability and reusability
across Enterprise middleware services of any vendor.

198

13.2 BENEFITS OF EJB

 Component portability - The EJB architecture provides a simple,
elegant component container model. Java server components
can be developed once and deployed in any EJB-compliant
server.

 Architecture independence - The EJB architecture is
independent of any specific platform, proprietary protocol, or
middleware infrastructure. Applications developed for one
platform can be redeployed on other platforms.

 Developer productivity - The EJB architecture improves the
productivity of application developers by standardizing and
automating the use of complex infrastructure services such as
transaction management and security checking. Developers can
create complex applications by focusing on business logic
rather than environmental and transactional issues.

 Customization - Enterprise bean applications can be customized
without access to the source code. Application behavior and
runtime settings are defined through attributes that can be
changed when the enterprise bean is deployed.

 Multitier technology - The EJB architecture overlays existing
infrastructure services.

 Versatility and scalability - The EJB architecture can be used for
small-scale or large-scale business transactions. As processing
requirements grow, the enterprise beans can be migrated to
more powerful operating environments.

13.3 DIFFERENCE BETWEEN JAVABEANS AND
ENTERPRISE JAVABEANS

Enterprise JavaBeans JavaBeans

1. They are non-visible remote
objects.

1. They can be either visible or
non-visible.

2. They are remotely executable
components deployed on the
server.

2. They are intended to be local
to a single process on the client
side.

3. They use the Deployment
Descriptor to describe
themselves.

3. They use BeanInfo classes,
and Property Editors. And they
customize to describe
themselves.

4. They cannot be deployed as
ActiveX control, since OCXs run
on desktop.

4. They can also be deployed as
ActiveX controls.

199

Enterprise JavaBeans can be used while:

● developing the reusable business logic component in enterprise

application

● developing a fast growing distributed application, which is

scalable

● application supports transaction management to ensure the

integrity of the database

● application deals with variety of clients and session

management for thousands of clients

13.4 JEE ARCHITECTURE OVERVIEW

The aim of the Java EE 5 platform is to provide developers a
powerful set of APIs. This is in order to:

● reduce development time

● reduce application complexity

● improve application performance

The Java EE platform uses a distributed Multi-Tiered
application model for Enterprise applications. The application logic
is divided to form components according to the function. The
various application components that make up a Java EE application
are installed on different machines. This installation depends on
the tier in the multi-tiered Java EE environment to which the
application component belongs.

Java EE applications are divided in the tiers described in the
following list:

● Client-Tier components run on the Client machine

● Web-Tier components run on the Java EE server

● Business-Tier components run on the Java EE server

● Enterprise Information System (EIS)-Tier software run on the
EIS server

A Java EE application can consist of three or four tiers.
However, Java EE Multi-Tiered applications are generally
considered to be Three-Tiered applications because they are
distributed over three locations:
1. the Client machines
2. the Java EE server machine
3. the database or legacy machines at the back end

200

The Three-Tiered applications that run in this manner extend
the standard Two-Tiered “Client and Server” model by placing a
“Multi-threaded application server” between the “Client application”
and the “back-end storage”.+

13.5 JEE APPLICATION COMPONENTS:

Java EE applications are made up of components. A Java EE
component is a self-contained functional software unit.

● The Java EE component is assembled in a Java EE application

with its related classes and files.

● The Java EE component communicates with other components,
as well.

The Java EE specification defines the following Java EE
components:

1. Application clients and applets: They are components that run

on the client.

2. Java Servlet, JavaServer Faces, and JavaServer Pages

technology components: They are web components that run on

the server.

3. Enterprise JavaBeans (EJB) components (Enterprise beans):

They are business components that run on the server.

Java EE components are written in the Java programming
language and are compiled in the same way as any program in the
language. However, the difference between Java EE components
and standard Java classes is that Java EE components are
assembled in a Java EE application. Here they are verified to be
well formed and in compliance with the Java EE specification. Then
they are deployed to production, where they are run and managed
by the Java EE server.

13.6 JAVA EE CLIENTS:

13.6.1. Web Clients:
A web client consists of two parts:

i. dynamic web pages that contain various types of markup
languages (HTML, XML, and so on), which are generated by
web components running in the web tier, and

ii. a web browser, which renders the pages received from the
server.

201

A web client is sometimes called a “thin client”. Thin clients
usually do not query databases, execute complex business rules,
or connect to legacy applications. When you use a “thin client”,
such heavyweight operations are off-loaded to Enterprise beans
executing on the Java EE server. Therein they can leverage the
security, speed, services, and reliability of Java EE server-side
technologies.

13.6.2. Applets:
A web page received from the web tier can include an

“embedded applet”. An applet is a small client application written in
the Java programming language that executes in the Java Virtual
Machine installed in the web browser. However, client systems will
likely need the Java Plug-in, and possibly a security policy file, for
the applet to successfully execute in the web browser.

Web components are the preferred API for creating a web
client program because no plug-ins or security policy files are
required on the client systems. The web components enable a
cleaner and more modular application design, as well. This is
because the web components provide a method to separate
“applications programming” from “web page design”. Thus the
personnel involved in web page design do not need to understand
Java programming language syntax to do their jobs.

13.6.3. Application Clients:
An application client runs on a client machine. The

application client provides a better method for users to handle
tasks, which require a richer user interface than can be provided by
a markup language. The application client typically has a graphical
user interface (GUI) created from the Swing or the Abstract Window
Toolkit (AWT) API. However, a command-line interface is certainly
possible.

Application clients directly access Enterprise beans that run
in the “business tier”. However, if application requirements warrant
it, an application client can open an HTTP connection to establish
communication with a servlet running in the “web tier”. Application
clients written in languages other than Java can interact with Java
EE 5 servers. This provision enables the Java EE 5 platform to
interoperate with legacy systems, clients, and non-Java languages.

13.7 SUMMARY

 EJB is defined as an architecture for the development and
deployment of component-based, robust, highly scalable
business applications.

202

 EJB can be used while developing the reusable business logic
component in enterprise application

 The Java EE platform uses a distributed Multi-Tiered application
model for Enterprise applications.

 A Java EE application can consist of three or four tiers.

 Java EE applications are made up of components. A Java EE
component is a self-contained functional software unit.

 Java EE components are written in the Java programming
language and are compiled in the same way as any program in
the language.

13.8 UNIT END EXERCISE

1) What is EJB? State the benefits of EJB?

2) State the difference between JavaBeans and Enterprise
JavaBeans?

3) Explain the JEE Architecture?

4) Describe the JEE Application Components?

5) State and explain Java EE clients?

13.9 FURTHER READING

 Eric Jendrock, Jennifer Ball, D Carson and others, The Java EE
5 Tutorial, Pearson Education, Third Edition, 2003

 Joe Wigglesworth and Paula McMillan, Java Programming:
Advanced Topics, Thomson Course Technology (SPD), Third
Edition, 2004

 The Java Tutorials of Sun Microsystems Inc

203

14

TYPES OF EJB’S

Unit Structure:

14.0 Objectives

14.1 Types of Enterprise JavaBeans

14.2 Session Beans

14.3 Message-driven Bean

14.4 Deciding on Remote or Local Access

14.5 Method Parameters and Access

14.6 Summary

14.7 Unit end exercise

14.8 Further Reading

14.0 OBJECTIVES

The objective of this chapter is to learn and understand the
types of EJB’s. Here we will learn about the session beans,
message beans and two types of access – Remote and Local.

14.1 TYPES OF ENTERPRISE JAVABEANS:

There are two kinds of Enterprise Beans:
• Session Beans
•Message-driven Beans

• Session Beans:
A Session Bean represents a transient conversation with a

client. When the Client completes its execution, the Session Bean
and it’s data are gone.

• Message-driven Beans:
A Message-driven Bean combines features of a session

bean and a message listener, allowing a business component to
asynchronously receive messages. Commonly, these are known as
Java Message Service (JMS) messages. In Java EE 5, the Entity
Beans have been replaced by Java Persistence API entities. An
Entity represents persistent data stored in one row of a database

204

table. If the Client terminates, or if the Server shuts down, the
Persistence Manager ensures that the entity data is saved.

14.2 SESSION BEANS:

A Session Bean represents a single Client inside the Application
Server.

 Session Beans are reusable components that contain logic for
business processes.

 For example: A Session Bean can perform price quoting, order
entry, video compression, banking transactions, stock trades,
database operations, complex calculations and more.

 To access an application that is deployed on the Server, the
Client invokes the methods of the Session Bean.

 The Session Bean performs work for its Client, thus shielding
the Client from complexity by executing business tasks inside
the Server.

 As it’s name suggests, a Session Bean is similar to an
interactive session. However, a Session Bean is not shared.

 A Session Bean can have only one client, in the same manner
as an interactive session can have only one user.

 Like an interactive session, a Session bean is not persistent.
When the client terminates, it’s Session Bean terminates and is
no longer associated with the client.

Session Beans Types:
Based on the “span of conversation” between the Client and

the Bean, there are two types of Session Beans:

1. Stateless Session Bean

2. Stateful Session Bean

All Enterprise Beans hold conversations at some level. A
“conversation” is an interaction between a Bean and a Client. It
comprises of a number of “method calls” between the Client and
the Bean.

205

Stateless Session Bean - Life Cycle:

1. Does Not Exist to Ready: The client initiates the life cycle by
obtaining a reference to a Stateless Session Bean. The container
performs any dependency injection, and then invokes the method
annotated @PostConstruct, if any. The client can now invoke the
business methods of the bean.

2. Ready to Does Not Exist: At the end of the session bean life
cycle, the EJB container calls the method annotated @PreDestroy,
if any. The Bean instance is then ready for garbage collection.

Callback Methods:

 @PostConstruct: The container invokes this method on newly

constructed Bean instances after all dependency injections are

completed, and before the first business method is invoked on

the Enterprise Bean.

 @PreDestroy: These methods are invoked after any method

annotated @Remove is completed, and before the container

removes the Enterprise Bean instance.

206

Stateful Session Bean - Life Cycle:

1. Does Not Exist to Ready: The Client initiates the life cycle by
obtaining a reference to a Stateful Session Bean. Dependency
injection is performed by container, and then invokes the
method annotated @PostConstruct, if any. The client can now
invoke the business methods of the bean.

2. Ready to Passive: In the Ready state, the EJB container may
decide to passivate the Bean by moving it from the memory to
the secondary storage.

3. Passive to Ready: If there is any @PrePassivate annotated
method, container invokes it immediately before passivating the
Bean. If a Client invokes a business method on the Bean while it
is in the Passive state, the EJB container activates the Bean.
The container then calls the method annotated with
@PostActivate and moves it to the Ready state.

4. Ready to Does Not Exist: At the end, the client calls a method
annotated with @Remove, and the EJB container calls the
method annotated with @PreDestroy. The Bean’s instance is
then ready for garbage collection. Only the method annotated
with @Remove can be controlled with your code.

Callback methods:
Given below are the annotations with the help of which you can
declare Bean Class methods as Life Cycle Callback methods:
• javax.annotation.PostConstruct
• javax.annotation.PreDestroy
• javax.ejb.PostActivate
• javax.ejb.PrePassivate

207

1. @PostConstruct: The container calls these methods on newly
constructed Bean instances after all dependency injections are
completed and before the first business method is invoked on
the Enterprise Bean.

2. @PreDestroy: These methods are called after any method
annotated with @Remove has completed its execution, and
before the container removes the Enterprise Bean instance.

3. @PostActivate: The container calls these methods after it moves
the Bean from secondary storage to the memory, i.e. Active
state.

4. @PrePassivate: The container calls these methods before it
passivates the Enterprise Bean. This means before the
container shifts the bean from memory to secondary storage.

Stateless Session Beans Stateful Session Beans

1. They do not possess Internal
state.

1. They possess Internal state.

2. They cannot be passivated. 2. They can undergo
Passivation and Activation.

3. They can serve for multiple
client.

3. They are specific to a single
client.

4. They create Network Traffic. 4. Stateful Beans hurt scalability.

When to use Session Beans?
1. Generally Session Beans are used in the following
circumstances:

 When there is only one client accessing the bean instance at a
given time.

 When the bean is not persistent, that is when the bean is going
to exist no longer.

 The bean is implementing the web services.

2. Stateful Session Beans are useful in the following circumstances:

 What information the bean wants to hold about the client across
method invocation.

 When the bean works as the mediator between the client and
the other component of the application.

 When the bean has to manage the work flow of several other
enterprise beans.

208

3. Stateless Session Beans are appropriate in the circumstances
illustrated below:

 If the bean does not contain the data for a specific client.

 If there is only one method invocation among all the clients to
perform the generic task.

14.3 MESSAGE-DRIVEN BEAN:

• A Message-driven Bean is an Enterprise Bean that allows Java
EE applications to asynchronously process messages. It normally
acts as a “JMS Message Listener”, which is similar to an “event
listener” except that it receives “JMS messages” instead of
“events”.

• The messages can be sent by any Java EE component (an
Application Client, another Enterprise Bean, or a web component),
by a JMS application, or by a system that does not use Java EE
technology.

• Message-driven Beans can process JMS messages or other kinds
of messages.

• A Message-driven Bean resembles a Stateless Session Bean:

 A Message-driven Bean instances do not retain data or

conversational state for a specific Client.

 All instances of a Message-driven Bean are equivalent.

 A single Message-driven Bean can process messages from

multiple clients

Following are the characteristics of a Message-driven Bean (MDB):

 MDBs execute upon receipt of a single Client message.

 MDBs are asynchronously invoked.

 MDBs are relatively short-lived.

 MDBs do not represent the directly shared data in the

database. However, they can access and update this data.

 MDBs can be transaction-aware.

 MDBs are stateless.

209

When to use Message Driven Bean:

 Session Beans allow sending JMS messages. However, they

allow synchronous receiving of JMS messages, and not

asynchronous.

 To avoid tying up server resources, do not use blocking

synchronous receives in a server-side component. In general,

do not send or receive JMS messages in a “synchronous”

manner.

 To “asynchronously” receive messages, use a Message-driven

Bean.

JMS Concept:
• What is Message?
Message is a unit of information or data which can be sent from
one processing computer/application to other/same
computer/applications.

• What is Messaging?
Messaging is a method of communication between software
components or applications.

• How Messaging works?
A messaging system is a peer-to-peer facility. A messaging client
can send messages to, and receive messages from, any other
client. Each client connects to a messaging agent that provides
facilities for creating, sending, receiving, and reading messages.

• What is JMS?
The Java Message service is a client-side API for accessing
messaging systems.

JMS Messaging models:
JMS communicates in synchronous or in asynchronous mode by
using “point-to-point” and the “publish-subscribe” models
respectively. Point-to-Point and Publish/Subscribe are the two most
commonly used models. These two models conclude the following
concepts:

 Producer: The client, responsible for sending the message to

the destination is known as the “producer”.

 Consumer: The client, responsible for receiving the message is

known as the “consumer”.

 Destination: Destination is the object used by the client to

specify the target that uses it to send the message to or to

receive the message from.

210

Working of Message-driven bean:

 In Message-driven beans (MDB), the client components don’t

locate Message-driven beans, and directly invoke methods.

Instead, the JMS clients send messages to message queues

managed by the JMS server (for example: an email inbox can

be a message queue) for which the javax.jms.MessageListener

interface is implemented.

 The message queue is monitored by a special kind of EJB(s) –

Message-driven Beans (MDBs) – that processes the incoming

messages and perform the services requested by the message.

 The MDBs are the end-point for JMS service request messages.

You assign a Message-driven Bean’s destination during

deployment by using Application Server resources.

Life cycle of Message-driven Bean:

 The EJB container usually creates a pool of Message-driven

Bean instances. For each instance, the EJB container

performs these tasks:

o If the Message-driven Bean uses dependency

injection, the Container injects these references

before instantiating the instance.

o The Container calls the method annotated

@PostConstruct, if any.

o Like a Stateless Session Bean, a Message-driven

Bean is never passivated. It has only two states:

 Not Exist

 Ready to receive messages

211

o At the end of the life cycle, the Container calls the

method annotated @PreDestroy, if any. The Bean

instance is then ready for garbage collection.

 To create a new instance of a Message-driven Bean, the

Container does the following: instantiates the Bean,

performs any required resource injection and calls the

@PostConstruct callback method, if it exists

 To remove an instance of a Message-driven Bean, the

Container calls the @PreDestroy callback method.

 On message arrival, the Container calls the “onMessage

method” of the Message-driven Bean to process the

message.

 The onMessage method normally casts the message to one

of the five JMS Message Types, and handles it in

accordance with the business logic of the Application.

 The onMessage method can call helper methods, or it can

invoke a Session Bean to process the information in the

message, or to store it in a database.

 A message can be delivered to a Message-driven Bean

within a transaction context, such that all operations within

the “onMessage method” are part of a single transaction. If

message processing is rolled back, the message will be

redelivered.

14.4 DECIDING ON REMOTE OR LOCAL ACCESS

When you design a Java EE application, one of the first
decisions you make is the type of client access allowed by the
enterprise beans: remote, local, or web service. Whether to allow
local or remote access depends on the following factors.

 Tight or loose coupling of related beans: Tightly coupled
beans depend on one another. For example, if a session bean
that processes sales orders calls a session bean that emails a
confirmation message to the customer, these beans are tightly
coupled. Tightly coupled beans are good candidates for local
access. Because they fit together as a logical unit, they typically
call each other often and would benefit from the increased
performance that is possible with local access.

 Type of client: If an enterprise bean is accessed by application
clients, it should allow remote access. In a production
environment, these clients almost always run on machines other

212

than those on which the GlassFish Server is running. If an
enterprise bean’s clients are web components or other
enterprise beans, the type of access depends on how you want
to distribute your components.

 Component distribution: Java EE applications are scalable
because their server-side components can be distributed across
multiple machines. In a distributed application, for example, the
server that the web components run on may not be the one on
which the enterprise beans they access are deployed. In this
distributed scenario, the enterprise beans should allow remote
access.

 Performance: Owing to such factors as network latency,
remote calls may be slower than local calls. On the other hand,
if you distribute components among different servers, you may
improve the application’s overall performance. Both of these
statements are generalizations; performance can vary in
different operational environments.Nevertheless, you should
keep in mind how your application design might affect
performance.

Although it is uncommon, it is possible for an enterprise

bean to allow both remote and local access. If this is the case,

either the business interface of the bean must be explicitly

designated as a business interface by being decorated with the

@Remote or @Local annotations, or the bean class must explicitly

designate the business interfaces by using the @Remote and

@Local annotations. The same business interface cannot be both a

local and a remote business interface.

14.5 METHOD PARAMETERS AND ACCESS

The type of access affects the parameters of the bean
methods that are called by clients. The following sections apply not
only to method parameters but also to method return values.

Isolation
The parameters of remote calls are more isolated than those

of local calls. With remote calls, the client and the bean operate on
different copies of a parameter object. If the client changes the
value of the object, the value of the copy in the bean does not
change. This layer of isolation can help protect the bean if the client
accidentally modifies the data.

In a local call, both the client and the bean can modify the
same parameter object. In general, you should not rely on this side

213

effect of local calls. Perhaps someday you will want to distribute
your components, replacing the local calls with remote ones.

As with remote clients, web service clients operate on
different copies of parameters than does the bean that implements
the web service.

Granularity of Accessed Data
Because remote calls are likely to be slower than local calls,

the parameters in remote methods should be relatively coarse-
grained. A coarse-grained object contains more data than a fine-
grained one, so fewer access calls are required. For the same
reason, the parameters of the methods called by web service
clients should also be coarse-grained.

Example: Develop “Converter” Stateless Session Bean. Write
Enterprise application for converting Japanese yen currency
to Eurodollars currency. converter consists of an enterprise
bean, which performs the calculations. Use following formula:
1 Euro = 115.3100 Yens. Develop a web client to test the
converter.

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-
8">

<title>JSP Page</title>

</head>

<body>

<form method="get"
action="http://localhost:8080/StateLessEJB/ConverterServlet">

<h2>Converter Bean</h2>

<table border=2>

<tr>

<td>Enter Amount</td>

<td><input type="Text" name=txtnum></td>

</tr>

<tr>

<td><input type=Submit name=cmdsubmit></td>

<td><input type=Reset name=cmdreset></td>

</tr>

</table>

</form>

</body>

</html>

214

ConverterBeanRemote.java

package server;

import java.math.BigDecimal;

import javax.ejb.Remote;

@Remote

public interface ConverterBeanRemote

{

public BigDecimal dollarToYen(BigDecimal dollars);

public BigDecimal yenToEuro(BigDecimal yen);

}

ConverterBean.java

package server;

import javax.ejb.Stateless;

import java.math.BigDecimal;

@Stateless

public class ConverterBean

{

private BigDecimal euroRate = new BigDecimal("0.0070");

private BigDecimal yenRate = new BigDecimal("112.58");

public BigDecimal dollarToYen(BigDecimal dollars)

{

BigDecimal result = dollars.multiply(yenRate);

return result.setScale(2, BigDecimal.ROUND_UP);

}

public BigDecimal yenToEuro(BigDecimal yen)

{

BigDecimal result = yen.multiply(euroRate);

return result.setScale(2, BigDecimal.ROUND_UP);

}

}

215

ConverterServlet.java

package server;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet(name="ConverterServlet",
urlPatterns={"/ConverterServlet"})

public class ConverterServlet extends HttpServlet {

@EJB ConverterBeanRemote conv;

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html;charset=UTF-8");

PrintWriter out = response.getWriter();

try {

out.println("<html>");

out.println("<head>");

out.println("<title>Servlet ConverterServlet</title>");

out.println("</head>");

out.println("<body>");

String str=request.getParameter("txtnum");

int number=Integer.parseInt(str);

BigDecimal num=new BigDecimal(number);

out.println("<h2>Dollor to yen "

+ conv.dollarToYen(num) +"</h2>");

out.println("<h2>Yen to euro "

+ conv.yenToEuro(num) +"</h2>");

out.println("</body>");

out.println("</html>");

} finally {

out.close();

}

}

216

Example: Develop a Stateful session bean to add items to a
cart. Develop a web client to test the converter.

CartBeanRemote.java

package server;

import java.util.Collection;

import javax.ejb.Remote;

@Remote

public interface CartBeanRemote{

public void addItem(String item);

public void removeItem(String item);

public Collection getItems();

}

CartBean.java

package server;

import java.util.ArrayList;

import java.util.Collection;

import javax.annotation.PostConstruct;

import javax.ejb.Stateful;

@Stateful

public class CartBean implements CartBeanRemote

{

private ArrayList items;

@PostConstruct

public void initialize() {

items = new ArrayList();

}

@Override

public void addItem(String item) {

items.add(item);

}

@Override

public void removeItem(String item) {

items.remove(item);

}

@Override

public Collection getItems() {

return items;

217

}

}

protected void processRequest(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException

{

response.setContentType("text/html;charset=UTF-8");

PrintWriter out = response.getWriter();

try

{

out.println("<html>");

out.println("<head>");

out.println("<title>Servlet CartServlet</title>");

out.println("</head>");

out.println("<body>");

final Context context= new InitialContext();

CartBeanRemote cart = (CartBeanRemote)context.lookup

("java:global/CartStatefulEJB/CartBean");

out.println("
Adding items to cart
");

cart.addItem("Pizza");

cart.addItem("Pasta");

cart.addItem("Noodles");

cart.addItem("Bread");

cart.addItem("Butter");

out.println("
Listing cart contents
");

Collection items = cart.getItems();

for (Iterator i = items.iterator(); i.hasNext();)

{

String item = (String) i.next();

out.println("
" + item);

}

}catch (Exception ex){

out.println("ERROR -->" + ex.getMessage());

}

out.println("</body>");

out.println("</html>");

out.close();

}

218

14.6 SUMMARY

 A Session Bean represents a transient conversation with a
client.

 A Message-driven Bean combines features of a session bean
and a message listener, allowing a business component to
asynchronously receive messages.

 Based on the “span of conversation” between the Client and the
Bean, there are two types of Session Beans:

o Stateless Session Bean

o Stateful Session Bean

 In Message-driven beans (MDB) the JMS clients send
messages to message queues managed by the JMS server for
which the javax.jms.MessageListener interface is implemented.

14.7 UNIT END EXERCISE

1. Explain the Lifecycle of Stateless Session Bean.

2. List and explain Callback methods of Stateless Session
Bean.

3. Explain the Lifecycle of Stateful Session Bean.

4. List and explain Callback methods of Stateful Session Bean.

5. What factors are considered for Remote or Local access?

6. Explain the Lifecycle of Message Driven Bean.

7. What is MessageListener? Also explain onMessage().

8. What are the various ways of passing parameters in EJB?

14.8 FURTHER READING

 Eric Jendrock, Jennifer Ball, D Carson and others, The Java EE
5 Tutorial, Pearson Education, Third Edition, 2003

 Joe Wigglesworth and Paula McMillan, Java Programming:
Advanced Topics, Thomson Course Technology (SPD), Third
Edition, 2004

 The Java Tutorials of Sun Microsystems Inc

219

15

WEB SERVICES

Unit Structure:

15.0 Objectives

15.1 Introduction to Web Services
15.2 Building Web Services with JAX-WS

15.3 Creating a Simple Web Service and Client with JAX-WS.

15.4 Summary

15.5 Unit end exercise

15.6 Further Reading

15.0 OBJECTIVES

The objective of this chapter is to learn what Web Service is
and how they are created. Here we will also understand the need
why it is used and where it is used.

15.1 INTRODUCTION TO WEB SERVICES

Web services are the mechanism to develop a Service-
Oriented-Architecture (SOA). SOA is an architectural approach for
designing large scale distributed systems to integrate
heterogeneous application on the service interfaces. Web services
technologies support to the Service-Oriented-Architecture in
various ways. Some of them are illustrated below:

 A service requestor uses the selection criteria to the query
registry for finding the services description.

 A service requestor can bind and use the service if it finds a
suitable descriptor.

Web services are used in various fields such converting a
temperature value from Fahrenheit to Celsius. More realistic
examples built using the web services are heterogeneous
applications such as billing application and report generator,
interconnected in-house architectures. A service interface is just
like an object interface with a slight difference that the contract
between the interface and the client is more flexible and the
implementation of client and the service is not much tightly coupled

220

as compared to EJB or other distributed platform. Looser coupling
allows the client and service implementation to run on various
platforms, independently such as Microsoft .NET is capable of
using a Java EE application server to access a service running on
it. From the client's point of view, web services's life cycle is more
static as compared to average objects because web services stay
around rather than pop-up and go away, even if the services are
implemented using the object technology.

15.2 BUILDING WEB SERVICES WITH JAX-WS

JAX-WS stands for Java API for XML Web Services. JAX-
WS is a technology for building web services and clients that
communicate using XML. JAX-WS allows developers to write
message-oriented as well as RPC-oriented web services.

In JAX-WS, a web service operation invocation is
represented by an XML-based protocol such as SOAP. The SOAP
specification defines the envelope structure, encoding rules, and
conventions for representing web service invocations and
responses. These calls and responses are transmitted as SOAP
messages (XML files) over HTTP.

Although SOAP messages are complex, the JAX-WS API
hides this complexity from the application developer. On the server
side, the developer specifies the web service operations by defining
methods in an interface written in the Java programming language.
The developer also codes one or more classes that implement
those methods. Client programs are also easy to code.

A client creates a proxy (a local object representing the
service) and then simply invokes methods on the proxy. With JAX-
WS, the developer does not generate or parse SOAP messages. It
is the JAX-WS runtime system that converts the API calls and
responses to and from SOAP messages.

With JAX-WS, clients and web services have a big
advantage: the platform independence of the Java programming
language. In addition, JAX-WS is not restrictive: a JAX-WS client
can access a web service that is not running on the Java platform,
and vice versa. This flexibility is possible because JAX-WS uses
technologies defined by the World Wide Web Consortium (W3C):
HTTP, SOAP, and the Web ServiceDescription Language
(WSDL).WSDL specifies an XML format for describing a service as
a set of endpoints operating on messages.

221

15.3 USING JAX-WS 2.0 TO CREATE A SIMPLE WEB
SERVICE

JAX-WS 2.0 is extremely easy to use. Below you will see
how to create a simple web service using JAX-WS 2.0 with Java
SE 6 technology. The first thing you need is a class with one or
more methods that you wish to export as a web service:

package hello;
public class CircleFunctions {

public double getArea(double radius) {
return java.lang.Math.PI * (r * r);

}
public double getCircumference(double radius) {

return 2 * java.lang.Math.PI * r;
}

}

To export these methods, you must add two things: an
import statement for the javax.jws.WebService package and a
@WebService annotation at the beginning that tells the Java
interpreter that you intend to publish the methods of this class as a
web service. The following code example shows the additions in
bold.

package hello;

import javax.jws.WebService;

@WebService

public class CircleFunctions {

public double getArea(double r) {

return java.lang.Math.PI * (r * r);

}

public double getCircumference(double r) {

return 2 * java.lang.Math.PI * r;

}

}

You can use the static publish() method of the
javax.xml.ws.Endpoint class to publish the class as a web service
in the specified context root:

import javax.xml.ws.Endpoint;

public static void main(String[] args) {

Endpoint.publish(

"http://localhost:8080/WebServiceExample/circlefunctions",

222

new CircleFunctions());

}

Now, compile the source code normally using javac. However, you
must perform one more step: Call the Wsgen tool, as follows.
> wsgen –cp . hello.CircleFunctions

The Wsgen tool will generate a number of source files in a
subdirectory called wsgen, which it then compiles. Although you
should never have to edit these files, you can browse these source
code files to get an idea of how JAX-WS 2.0 creates the
appropriate stub files for use while publishing the web service. Note
that the original source files must be located in a package when
you call the Wsgen tool. Otherwise, you may get an error that
dictates that classes annotated with @WebService, such as Circle
Functions, must declare a separate javax. jws. Web service.target
Namespace element because the source files are not part of a
package.

That's it. When you run the application, the Java SE 6
platform has a small web application server that will publish the
web service at the address http://localhost:8080/WebService
Example/circle functions while the JVM is running.* You can verify
that the web service is running by displaying the Web Services
Definition Language (WSDL) file of the circlefunctions web
service.While the JVM is still running, open a browser and go to the
following location:

http://localhost:8080/WebServiceExample/circlefunctions?WSDL

If you see a large amount of XML that describes the functionality
behind the web service, then the deployment has been successful.

15.4 SUMMARY

 Web services are the mechanism to develop a Service-
Oriented-Architecture (SOA). SOA is an architectural approach
for designing large scale distributed systems to integrate
heterogeneous application on the service interfaces.

 JAX-WS stands for Java API for XML Web Services. JAX-WS is
a technology for building web services and clients that
communicate using XML.

 JAX-WS is not restrictive: a JAX-WS client can access a web
service that is not running on the Java platform, and vice versa.

223

 JAX-WS uses technologies defined by the World Wide Web
Consortium (W3C): HTTP, SOAP, and the Web Service
Description Language (WSDL).

15.5 UNIT END EXERCISE

1. Write a short note on JAX-WS.

2. Write a Web Service which will return factorial of a number
passed to it.

15.6 FURTHER READING

 Eric Jendrock, Jennifer Ball, D Carson and others, The Java EE
5 Tutorial, Pearson Education, Third Edition, 2003

 Joe Wigglesworth and Paula McMillan, Java Programming:
Advanced Topics, Thomson Course Technology (SPD), Third
Edition, 2004

 The Java Tutorials of Sun Microsystems Inc

224

BIBLIOGRAPY

 The Java Tutorials of Sun Microsystems Inc.

 The Java EE 5 Tutorial, Pearson Education, Third Edition,
2003, Eric Jendrock, Jennifer Ball, D Carson

 Java2: The Complete Reference, Herbert Schildt

 http://java.sun.com

 http://www.roseindia.net

 http://docs.oracle.com

 www.tutorialspoint.com

 www.easywayserver.com

 www.download.oracle.com

 www.java2s.com

 www.coreservlets.com

