# **BITSAT-PILANI** ENGINEERING ENTRANCE

SOLVED PAPER

#### Mathematics

- 1. The equation of a parabola which passes through the intersection of a straight line x + y = 0 and the circle  $x^2 + y^2 + 4y = 0$  is:
  - (a)  $y^2 = 4x$
- (b)  $y^2 = x$
- (c)  $y^2 = 2x$
- (d) none of these
- 2. The point (4, -3) with respect to the ellipse  $4x^2 + 5y^2 = 1$  is:
  - (a) lies on the curve
  - (b) is inside the curve
  - (c) is outside the curve
  - (d) is focus of the curve
- 3. If  $\vec{a} = \hat{i} + 2\hat{j} 3\hat{k}$  and  $\vec{b} = 3\hat{i} \hat{j} + 2\hat{k}$  then the angle between the vectors  $\vec{a} + \vec{b}$  and  $\vec{a} - \vec{b}$  is:
  - (a) 60°
- (c) 45°
- (d) 55°
- 4. Let S be a set containing n elements and we select two subsets A and B of S at random, then the probability that  $A \cup B = S$  and  $A \cap B = \phi$ , is:
  - (a)  $2^n$
- (b)  $n^2$
- (c) 1/n
- (d)  $1/2^n$
- $1 + \sin^2 \theta \qquad \sin^2 \theta$

- $\sin^2 \theta$
- 5.  $\cos^2 \theta$   $1 + \cos^2 \theta$   $\cos^2 \theta$  $4 \sin 4\theta + 4 \sin 4\theta + 1 + 4 \sin 4\theta$ 
  - then  $\sin 4\theta$  equals to:
  - (a) 1/2
- (b) 1
- (c) 1/2
- (d) -1
- 6. The value of the constant  $\alpha$  and  $\beta$  such that  $-\alpha x - \beta$  = 0 are respectively:
  - (a) (1, 1)
- (b) (-1, 1)
- (c) (1, -1)
- (d) (0, 1)

- 7. Let the homogeneous system of linear equations px + y + z = 0, x + qy + z = 0, and x + y + rz = 0, where  $p, q, r \neq 1$ , have a non-zero solution, then the value of  $\frac{1}{1-p} + \frac{1}{1-q} + \frac{1}{1-r}$  is :
- (c). 2
- (d) 1
- 8. A point  $(\alpha, \beta)$  lies on a circle  $x^2 + y^2 = 1$ , then locus of the point  $(3\alpha + 2, \beta)$  is a/an:
  - (a) straight line
- (b) ellipse
- (c) parabola
- (d) none of these
- **9.** If  $\theta$  is an acute angle and  $\sin \frac{\theta}{2} = \sqrt{\frac{x-1}{2x}}$ , then
  - tan  $\theta$  is equal to :
  - (a)  $x^2 1$
- (b)  $\sqrt{x^2 1}$
- (c)  $\sqrt{x^2+1}$
- (d)  $x^2 + 1$
- 10. The value of

$$\int_{0}^{\sin^{2}\theta} \sin^{-1}\sqrt{\phi} \ d \ \phi + \int_{0}^{\cos^{2}\theta} \cos^{-1}\sqrt{\phi} \ d \ \phi$$

- is equal to:
- (a)  $\pi$
- (c)  $\pi/3$
- **11.**  $\int_0^{2n\pi} \left\{ |\sin x| \left| \frac{1}{2} \sin x \right| \right\} dx \text{ equals :}$ 

  - (b) 2n
  - (c) -2n
  - (d) none of the above
- **12.** Range of the function  $f(x) = \frac{x^2}{x^2 + 1}$  is:
  - (a) (-1, 0)
- (b) (-1, 1)
- (c) [0, 1]
- (d) (1, 1)

- **13.** If  $\sin^{-1}(1-x) 2\sin^{-1}x = \pi/2$ , then x is equals:
  - (a)  $\{0, -1/2\}$
- (b) {1/2, 0}
- (c) {0}
- (d) (-1, 0)
- 14.  $\sin A$ ,  $\sin B$ ,  $\cos A$  are in GP. Roots of  $x^2 + 2x \cot B + 1 = 0$  are always:
  - (a) real
- (b) imaginary
- (c) greater than 1 (d) equal
- **15.** If  $\int_{\log 2}^{\infty} \frac{du}{(e^u 1)^{1/2}} = \frac{\pi}{6}$ , then  $e^x$  is equal to:
- (c) 4
- (d) -1
- **16.** Total number of books is 2n + 1. One is allowed to select a minimum of the one book and a maximum of n books. If total number of selections if 63, then value of n is:
  - (a) 3
- (b) 6
- (c) 2
- (d) none of these
- 17.  $x^2 = xy$  is a relation which is:
  - (a) symmetric
- (b) reflexive
- (c) transitive
- (d) none of these
- **18.** Let the determinant of a  $3 \times 3$  matrix A be 6, then B is a matrix defined by  $B = 5 A^2$ . Then determinant of B is:
  - (a) 180
- (b) 100
- (c) 80
- (d) none of these
- **19.** Let  $f(x) = \begin{cases} 1 & \forall x < 0 \\ 1 + \sin x & \forall 0 \le x \le \pi/2 \end{cases}$

then what is the value of f'(x) at x = 0?

- (a) 1
- (b) -1
- (c) ∞
- (d) does not exist
- **20.** The length intercepted by the curve  $y^2 = 4x$  on the line satisfying dy/dx = 1 and passing through point (0, 1), is given by:
  - (a) 1

- (d) none of these
- **21.** Area bounded by curve  $y = x^2$  and  $y = 2 x^2$ is:
  - (a) 8/3 sq units
- (b) 3/8 sq units
- (c) 3/2 sq units
- (d) none of these
- **22.**  $\lim \frac{4\theta (\tan \theta 2\theta \tan \theta)}{2\theta + 2\theta + 2\theta}$  is:  $(1-\cos 2\theta)$ 
  - (a)  $1/\sqrt{2}$
- (b) 1/2
- (c) 1
- (d) 2
- 23. The largest value of  $2x^3 3x^2 12x + 5$  for  $-2 \le x \le 4$  occurs at x is equal to:

- (a) 4
- (b) 0
- (c) 1
- (d) 4
- 24. The number of solutions for the equations |z-1| = |z-2| = |z-i| is:
  - (a) one solution
- (b) 3 solutions
- (c) 2 solutions
- (d) no solution
- **25.** Let A and B are two events and P(A') = 0.3 $P(B) = 0.4, P(A \cap B') = 0.5 \text{ then } P(A \cup B') \text{ is:}$ 
  - (a) 0.5 (c) 1
- (b) 0.8 (d) 0.1
- **26.**  $(10101101)_2 = (\dots, )_{10}$ :

  - (a) 137 (c) 170
- (b) 173 (d) none of these
- **27.** Given function  $f''(x) = \left(\frac{e^{2x}-1}{e^{2x}+1}\right)$  is:
  - (a) increasing
- (b) decreasing
- (c) even
- (d) none of these
- **28.** The solution of  $x^2 + y^2 2xy \frac{dy}{dx} = 0$  is :
  - (a)  $x^2 y^2 = cx$  (b)  $x^2 + y^2 = cx$
  - (c)  $2(x^2 y^2) = cx$  (d) none of these
- **29.**  $f(x) = ax^2 + bx + c$  and  $g(x) = px^2 + qx$  with g(1) = f(1), g(2) - f(2) = 1, g(3) - f(3) = 4,then g(4) - f(4) is:
  - (a) 0
- (c) 6
- (d) none of these
- **30.** If the vectors  $\alpha \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ ,  $\hat{\mathbf{i}} + \beta \hat{\mathbf{j}} + \hat{\mathbf{k}}$ ,  $\hat{\bf i} + \hat{\bf j} + \lambda \hat{\bf k}$  ( $\alpha$ ,  $\beta$ ,  $\gamma \neq 1$ ) are coplanar, then the value of  $\frac{1}{1-\alpha} + \frac{1}{1-\beta} + \frac{1}{1-\gamma}$  is :
  - (a) -1
- (c) 1
- (d) 1/2
- 31. The circumcentre of a triangle formed by the line xy + 2x + 2y + 4 = 0 and x + y + 2 = 0 is:
  - (a) (-1, -1)
- (b) (0, -1)
- (c) (1,1)
- (d) (-1, 0)
- 32. The number of common tangents to circle  $x^2 + y^2 + 2x + 8y - 23 = 0$  and
  - $x^{2} + y^{2} 4x 10y + 9 = 0$ , is:
  - (a) 1
- (b) 3
- (d) none of these
- **33.** If  $\frac{x}{\alpha} + \frac{y}{\beta} = 1$  touches the circle  $x^2 + y^2 = a^2$ ,
  - then point  $(1/\alpha, 1/\beta)$  lies on a/an:
  - (a) straight line
- (b) circle
- (c) parabola
- (d) ellipse

34. The point of intersection of the line  $\frac{x-1}{3} = \frac{y+2}{4} = \frac{z-3}{-2}$ plane

2x - y + 3z - 1 = 0 is:

(a) (10, -10, 3)

(b) (10, 10, -3)

- (c) (-10, 10, 3)
- (d) none of these
- **35.** The tangents from a point  $(2\sqrt{2}, 1)$  to the hyperbola  $16x^2 - 25y^2 = 400$  include an angle equal to:

(a)  $\pi/2$ 

(b)  $\pi/4$ 

- (c) π
- (d)  $\pi/3$
- **36.** Let  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\delta$  are four positive real number such that their product is unity, then the least value of  $(1 + \alpha)(1 + \beta)(1 + \gamma)(1 + \delta)$  is:

- **37.** Value of  $\sum_{k=1}^{6} \left( \frac{2k\pi}{7} \right) i \cos \left( \frac{2k\pi}{7} \right)$  is equal to:

(c) 0

- (d) none of these
- 38. The degree of the differential equation

$$y\left(x\right)=1+\frac{dy}{dx}+\frac{1}{1\cdot2}{\left(\frac{dy}{dx}\right)}^{2}+\frac{1}{1\cdot2\cdot3}{\left(\frac{dy}{dx}\right)}^{3}+\dots$$

(a) 2

(b) 3

(c) 1

- (d) none of these
- 39. Let  $P(x_1, y_1)$  and  $Q(x_2, y_2)$  are two points such that their abscissa  $x_1$  and  $x_2$  are the roots of the equation  $x^2 + 2x - 3 = 0$  while the ordinate  $y_1$ and y2 are the roots of the equation  $y^2 + 4y - 12 = 0$ . The centre of the circle with PQ as diameter is:

(a)(-1, -2)

- (b) (1,2)
- (c) (1, -2)
- (d) (-1, 2)
- 40. The equation of plane passing through a point A(2, -1, 3) and parallel to the vectors  $\vec{a} = (3, 0, -1)$  and  $\vec{b} = (-3, 2, 2)$  is:

- (a) 2x 3y + 6z 25 = 0
- (b) 2x 3y + 6z + 25 = 0
- (c) 3x 2y + 6z 25 = 0
- (d) 3x 2y + 6z + 25 = 0
- 41. The equation of a straight line drawn through the focus of the parabola  $y^2 = -4x$  at an angle of  $120^{\circ}$  to the x-axis is:

(a)  $y + \sqrt{3}(x-1) = 0$ (b)  $y - \sqrt{3}(x-1) = 0$ 

- (c)  $y + \sqrt{3}(x+1) = 0$
- (d)  $y \sqrt{3}(x+1) = 0$
- **42.** Let  $x = \alpha + \beta$ ,  $y = \alpha\omega + \beta\omega^2$ ,  $z = \alpha\omega^2 + \beta\omega$ ,  $\omega$  is an imaginary cube root of unity. Product of xyz

(a)  $\alpha^2 + \beta^2$ 

(b)  $\alpha^2 - \beta^2$ 

(c)  $\alpha^3 + \beta^3$ 

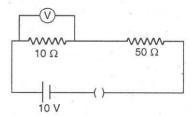
- (d)  $\alpha^3 \beta^3$
- **43.** If  $r = [2\phi + \cos^2(2\phi + \pi/4)]^{1/2}$ , then what is the value of the derivative of  $dr/d\phi$  at  $\phi = \pi/4$ ?

- **44.** If a vector  $\alpha$  lie in the plane of  $\beta$  and  $\gamma$ , then which is correct?

(a)  $[\alpha \vec{\beta} \vec{\gamma}] = 0$  (b)  $[\alpha \vec{\beta} \vec{\gamma}] = 1$ 

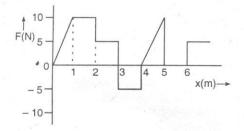
(c)  $\begin{bmatrix} \alpha & \beta & \gamma \end{bmatrix} = 3$  (b)  $\begin{bmatrix} \beta & \gamma & \alpha \end{bmatrix} = 1$ 

- $\vec{\alpha} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} \hat{\mathbf{k}}, \qquad \vec{\beta} = -\hat{\mathbf{i}} + 2\hat{\mathbf{j}} 4\hat{\mathbf{k}},$  $\vec{\gamma} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ , then what is the value of  $(\alpha \times \beta) \cdot (\alpha \times \gamma)$ ?
  - (a) 47
  - (b) 74
  - (c) -74
  - (d) none of the above


#### Physics

- 46. If M is the mass of the earth and R its radius, the ratio of the gravitational acceleration and the gravitational constants is:
- (c)  $MR^2$

- 47. A student unable to answer a question on Newton's laws of motion attempts to pull himself up by tugging on his hair. He will not succeed:
  - (a) as the force exerted is small
  - (b) the frictional force while gripping, is small


- (c) Newton's law of inertia is not applicable to living beings
- (d) as the force applied is internal to the
- 48. Which one of the following is not a unit of Young's modulus?
  - (a) Nm<sup>-1</sup>
  - (b) Nm<sup>-2</sup>
  - (c) dyne cm<sup>-2</sup>
  - (d) mega pascal
- 49. A piece of blue glass heated to a high temperature and a piece of red glass at room temperature, are taken inside a dimly lit room, then:
  - (a) the blue piece will look blue and red will look as usual
  - (b) red looks brighter red and blue looks ordinary blue
  - (c) blue shines like brighter red compared to the red piece
  - (d) both the pieces will look equally red
- 50. A 5.0 A current is setup in an external circuit by a 6.0 V storage battery for 6.0 min. The chemical energy of the battery is reduced by:
  - (a)  $1.08 \times 10^4$  J
  - (b)  $1.08 \times 10^{-4} \text{ J}$
  - (c)  $1.8 \times 10^4 \text{ J}$
  - (d)  $1.8 \times 10^{-4} \text{ J}$
- 51. The current in a simple series circuit is 5.0 A. When an additional resistance of 2.0  $\Omega$  is inserted, the current drops to 4.0 A. The original resistance of the circuit in ohms was:
  - (a) 1.25
- (b) 8
- (c) 10
- (d) 20
- 52. Two resistances are connected in two gaps of a metre bridge. The balance point is 20 cm from the zero end. A resistance of 15  $\Omega$  is connected in series with the smaller of the two. The null point shifts to 40 cm. The value of the smaller resistance in ohms is:
  - (a) 3
- (b) 6
- (c) 9
- (d) 12
- 53. By using only two resistance coils-singly, in series or in parallel one should be able to obtain resistances of 3, 4, 12 and 16  $\Omega$ . The separate resistances of the coil are:
  - (a) 3 and 4
- (b) 4 and 12
- (c) 12 and 16
- (d) 16 and 3

54. In the given circuit, the voltmeter records 5 V. The resistance of the voltmeter in ohms is:

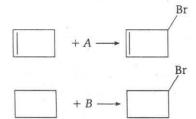


- (a) 200
- (b) 100
- (c) 10
- (d) 50
- 55. The wavelength of the radiation emitted by a body depends upon:
  - (a) the nature of the surface
  - (b) the area of the surface
  - (c) the temperature of the surface
  - (d) all of the above factors
- 56. Which mirror is to be used to obtain a parallel beam of light from a small lamp?
  - (a) Plane mirror
  - (b) Convex mirror
  - (c) Concave mirror
  - (d) Any one of the above
- **57.** Which of the following is a wrong statement?
  - (a) D = 1/f where f is the focal length and D is called the refractive power of a lens.
  - (b) Power is expressed in a diopter when f is in metres
  - (c) Power is expressed in diopter and does not depend on the system of unit used to measure f
  - (d) D is positive for convergent lens and negative for divergent lens
- 58. An electric field of 1500 V/m and a magnetic field of 0.40 Wb/m2 act on a moving electron. The minimum uniform speed along a straight line the electron could have is:
  - (a)  $1.6 \times 10^{15}$  m/s (b)  $6 \times 10^{-16}$  m/s
  - (c)  $3.75 \times 10^3$  m/s
- (d)  $3.75 \times 10^2$  m/s
- 59. In an ammeter 10% of main current is passing through the galvanometer. If the resistance of the galvanometer is G, then the shunt resistance, in ohms is:
  - (a) 9G
- (c) 90G

- **60.** Among the following properties describing diamagnetism identify the property that is wrongly stated:
  - (a) Diamagnetic material do not have permanent magnetic moment
  - (b) Diamagnetism is explained in terms of electromagnetic induction
  - (c) Diamagnetic materials have a small positive susceptibility
  - (d) The magnetic moment of individual electrons neutralize each other
- 61. The induction coil works on the principle of:
  - (a) self-induction
  - (b) mutual induction
  - (c) Ampere's rule
  - (d) Fleming's right hand rule
- **62.** The square root of the product of inductance and capacitance has the dimension of :
  - (a) length
- (b) mass
- (c) time
- (d) no dimension
- **63.** The relationship between the force F and position x of a body is as shown in figure. The work done in displacing the body from x = 1 m to x = 5 m will be:



- (a) 30 J
- (b) 15 J
- (c) 25 J
- (d) 20 J
- **64.** From the top of a tower of two stones, whose masses are in the ratio 1: 2 are thrown on straight up with an initial speed *u* and the second straight down with the same speed *u*. Then neglecting air resistance:
  - (a) the heavier stone hits the ground with a higher speed
  - (b) the lighter stone hits the ground with a higher speed
  - (c) both the stones will have the same speed when they hit the ground
  - (d) the speed cannot be determined with the given data


- 65. Infrared radiation was discovered in 1800 by:
  - (a) William Wollaston
  - (b) William Herschel
  - (c) Wilhelm Roentgen
  - (d) Thomas Young
- **66.** A particle on the trough of a wave at any instant will come to the mean position after a time : (*T* = time period)
  - (a) T/2
- (b) T/4
- (c) T
- (d) 2T
- **67.** The disc of a siren containing 60 holes rotates at a constant speed of 360 rpm. The emitted sound is in unison with a tuning fork of frequency:
  - (a) 10 Hz
- (b) 360 Hz
- (c) 216 Hz
- (d) 60 Hz
- **68.** The ratio of velocity of sound in hydrogen and oxygen at STP is:
  - (a) 16:1
- (b) 8:1
- (c) 4:1
- (d) 2:1
- 69. In an experiment with sonometer a tuning fork of frequency 256 Hz resonates with a length of 25 cm and another tuning fork resonates with a length of 16 cm. Tension of the string remaining constant the frequency of the second tuning fork is:
  - (a) 163.84 Hz
  - (b) 400 Hz
  - (c) 320 Hz
  - (d) 204.8 Hz
- **70.** The wave theory of light, in its original form, was first postulated by:
  - (a) Isaac Newton
  - (b) Christian Huygens
  - (c) Thomas Young
  - (d) Augustin Jean Fresnel
- **71.** If a liquid does not wet glass, its angle of contact is:
  - (a) zero
- (b) acute
- (c) obtuse
- (d) right angle
- **72.** Electron of mass *m* and charge *q* is travelling with a speed *v* along a circular path of radius *r* at right angles to a uniform magnetic field of intensity *B*. If the speed of the electron is doubled and the magnetic field is halved the resulting path would have a radius:
  - (a) 2r
- (b) 4r
- (c) r/4
- (d) r/2

- **73.** Two coherent light beams of intensity *I* and 4*I* are superposed. The maximum and minimum possible intensities in the resulting beam are :
  - (a) 9 I and I
- (b) 9 I and 3 I
- (c) 5 I and I
- (d) 5 I and 3 I
- **74.** The electron in a hydrogen atom makes a transition form  $n = n_1$  to  $n = n_2$  state. The time period of the electron in the initial state  $(n_1)$  is eight times that in the final state  $(n_2)$ . The possible values of  $n_1$  and  $n_2$  are:
  - (a)  $n_1 = 8$ ,  $n_2 = 1$
  - (b)  $n_1 = 4$ ,  $n_2 = 2$
  - (c)  $n_1 = 2$ ,  $n_2 = 4$
  - (d)  $n_1 = 1$ ,  $n_2 = 8$
- **75.** If the forward voltage in a diode is increased, the width of the depletion region :
  - (a) increases
  - (b) decreases
  - (c) fluctuates
  - (d) no change
- **76.** Two nucleons are at a separation of one Fermi. Protons have a charge of  $+1.6 \times 10^{-19}$  C. The net nuclear force between them is  $F_1$ , if both are neutrons,  $F_2$  if both are protons and  $F_3$  if one is proton and the other is neutron. Then:
  - (a)  $F_1 = F_2 > F_3$
  - (b)  $F_1 = F_2 = F_3$
  - (c)  $F_1 < F_2 < F_3$
  - (d)  $F_1 > F_2 > F_3$
- 77. The potential to which a conductor is raised, depends on :
  - (a) the amount of charge
  - (b) geometry and size of the conductor
  - (c) both (a) and (b)
  - (d) only on (a)
- **78.** The work done in carrying a charge *q* once round a circle of radius *r* with a charge *Q* at the centre is :
  - (a)  $\frac{qQ}{4\pi\epsilon_0 r}$
  - (b)  $\frac{qQ}{4\pi\epsilon_0^2 r^2}$
  - (c)  $\frac{qQ}{4\pi\epsilon_0 r^2}$
  - (d) none of the above
- 79. An air filled parallel plate condenser has a capacity of 2pF. The separation of the plates is

doubled and the interspace between the plates is filled with wax. If the capacity is increased to 6 pF, the dielectric constant of wax is:

- (a) 2
- (b) 3
- (c) 4
- (d) 6
- **80.** The energy that should be added to an electron to reduce its de-Broglie wavelength from 1 nm to 0.5 nm is :
  - (a) four times the initial energy
  - (b) equal to the initial energy
  - (c) twice the initial energy
  - (d) thrice the initial energy
- **81.** Mean life of a radioactive sample is 100 s. Then its half-life (in minutes) is:
  - (a) 0.693
- (b) 1
- (c)  $10^{-4}$
- (d) 1.155
- **82.** Consider two nuclei of the same radioactive nuclide. One of the nuclei was created in a supernova explosion 5 billion years ago. The probability of decay during the next time is:
  - (a) different for each nuclei
  - (b) nuclei created in explosion decays first
  - (c) nuclei created in the reactor decays first
  - (d) independent of the time of creation
- 83. Bohr's atom model assumes:
  - (a) the nucleus is of infinite mas and is at rest
  - (b) electrons in a quantized orbit will not radiate energy
  - (c) mass of electron remains constant
  - (d) all the above conditions
- **84.** Identify the wrong statement in the following. Coulomb's law correctly described the electric force that:
  - (a) binds the electrons of an atom to its nucleus
  - (b) binds the protons and neutrons in the nucleus of an atom
  - (c) binds atoms together to form molecules
  - (d) binds atoms and molecules to form solids
- **85.** When unpolarised light beam is incident from air onto glass (n = 1.5) at the polarising angle:
  - (a) reflected beam is polarised 100 percent
  - (b) reflected and refracted beams are partially polarised
  - (c) the reason for (a) is that almost all the light is reflected
  - (d) all of the above

- **86.** Which of the following silver salts is insoluble in water?
  - (a) AgClO<sub>4</sub>
- (b) Ag<sub>2</sub>SO<sub>4</sub>
- (c) AgF
- (d)  $AgNO_3$
- **87.** Suitable reagents *A* and *B* for the following reactions are:



- (a) Br, Br<sub>2</sub>
- (b) Br<sub>2</sub>, NBS
- (c) NBS, NBS
- (d) NBS, Br<sub>2</sub>
- **88.** KF combines with HF to form KHF<sub>2</sub>. The compound contains the species:
  - (a)  $K^+$ ,  $F^-$ and  $H^+$
- (b) K<sup>+</sup>, F<sup>-</sup> and HF
- (c) K<sup>+</sup> and [HF<sub>2</sub>]<sup>-</sup>
- (d) [KHF]+ and F2
- **89.**  $\longrightarrow$  + Br<sub>2</sub>  $\rightarrow$  *A*, *A* will have configuration :



- (b) Br
- (c) both (a) and (b) (d) none of these
- **90.** Among the following sets of quantum numbers. Which one is incorrect for 4*d* electron?
  - (a) 4, 3, 2,  $+\frac{1}{2}$
- (b) 4, 2, 1, 0
- (c) 4, 2, -2,  $+\frac{1}{2}$
- (d) 4, 2, 1,  $-\frac{1}{2}$
- 91. Raffinose is:
  - (a) trisaccharide
  - (b) monosaccharide
  - (c) disaccharide
  - (d) none of the above
- 92. The molecular electronic configuration of Be<sub>2</sub> is:
  - (a)  $\sigma 1s^2 \sigma * 1s^2 \sigma 2s^2 \sigma * 2p^2$
  - (b) KK\u03c32s2
  - (c)  $\sigma 1s^2 \sigma * 1s^2 \sigma 2s^2 \sigma * 2s^2$
  - (d) none of the above

- 93. Which of the following is deliquescent?
  - (a) ZnCl<sub>2</sub>
- (b) Hg<sub>2</sub>Cl<sub>2</sub>
- (c) HgCl<sub>2</sub>
- (d) CdCl<sub>2</sub>
- 94. The velocity of electron in first orbit of H-atom as compared to the velocity of light is:
  - (a)  $\frac{1}{10}$ th
- (b)  $\frac{1}{100}$ th
- (d)  $\frac{1}{1000}$ th
- (d) same
- 95.  $OsO_4 \rightarrow A$ , A is
  - (a) meso diol
  - (b) racemic diol
  - (c) both (a) and (b)
  - (d) none of the above
- **96.** In which of the following reactions is  $K_p < K_c$ ?
  - (a)  $1_2(g) \rightleftharpoons 2I(g)$
  - (b)  $2BrCl(g) \rightleftharpoons Cl_2(g) + Br_2(g)$
  - (c)  $CO(g) + 3H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)$
  - (d) All of the above
- 97. For the reaction (at 1240 K and 1 atm.)

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

- $\Delta H = 176 \text{ kJ/mol}; \Delta E \text{ will be}:$
- (a) 160 kJ
- (b) 165.6 kJ
- (c) 186.4 kJ
- (d) 180 kJ
- 98. Following compound is treated with NBS

Compound formed A is:

(d) 
$$\sim$$
 CH<sub>2</sub>CH=CH<sub>2</sub>

- 99. The standard reduction potential of the reation,  $H_2O + e^- \longrightarrow \frac{1}{2}H_2 + OH$  at 298 K is:
  - (a)  $E^{\circ} = \frac{RT}{F} \ln K_w$
  - (b)  $E^{\circ} = -\frac{RT}{F} \ln [P_{\text{H}_2}]^{1/2} [\text{OH}^-]$
  - (c)  $E^{\circ} = -\frac{RT}{F} \ln \frac{[P_{\text{H}_2}]^{1/2}}{[H^+]}$
  - (d)  $E^{\circ} = -\frac{RT}{E} \ln K_w$
- 100. Glycerol is oxidised by bismuth nitrate to produce:
  - (a) oxalic acid
- (b) mesooxalic acid
- (c) glyceric acid
- (d) glyoxalic acid
- 101. Unit of frequency factor (A) is:
  - (a) mol/L
  - (b) mol/L×s
  - (c) depends upon order
  - (d) it does not have any unit
- 102. The change in pressure will not affect the equilibrium constant for:
  - (a)  $N_2 + 3H_2 \rightleftharpoons 2NH_3$
  - (b)  $PCl_5 \rightleftharpoons PCl_3 + Cl_2$
  - (c)  $H_2 + I_2 \rightleftharpoons 2HI$
  - (d) all of the above
- **103.** The volume strength of 1.5 N H<sub>2</sub>O<sub>2</sub> solution is:
  - (a) 4.8
- (c) 4.2
- (d) 2.4
- 104. Bicyclo (1, 1, 0) butane is:

- 105. How many hydrogen bonds are present between pair of thymine and adenine in DNA?
  - (a) 1-hydrogen bond
  - (b) 2-hydrogen bonds
  - (c) 3-hydrogen bonds
  - (d) No bonds occur
- 106. Graham's law deals with the relation between:
  - (a) pressure and volume
  - (b) density and rate of diffusion
  - (c) rate of diffusion and volume
  - (d) rate of diffusion and viscosity
- **107.** The rms speed of hydrogen is  $\sqrt{7}$  times the rms speed of nitrogen. If T is the temperature of the gas, then:

- (a)  $T_{\rm H_2} = T_{\rm N_2}$  (b)  $T_{\rm H_2} > T_{\rm N_2}$  (c)  $T_{\rm H_2} < T_{\rm N_2}$  (d)  $T_{\rm H_2} = \sqrt{7}T_{\rm N_2}$
- 108. In P<sub>4</sub>O<sub>10</sub>, the:
  - (a) second bond in P=O is formed by  $p\pi$ - $d\pi$ back bonding
  - (b) P=O bond is formed by  $p\pi$ - $p\pi$  bonding
  - (c) P=O bond is formed by  $d\pi$ - $d\pi$  bonding
  - (d) P=O bond is formed by  $d\pi$ - $d\pi$ - $3\sigma$  back bonding
- 109. Grignard reagent reacts with HCHO to produce:
  - (a) secondary alcohol
  - (b) anhydride
  - (c) and acid
  - (d) primary alcohol
- 110. Dacron is polymer of:
  - (a) glycol and formaldehyde
  - (b) glycol and phenol
  - (c) glycol and phthalic acid
  - (d) glycol and terephthalic acid
- 111. The product obtained by heating diethyl ether with HI is:
  - (a) C<sub>2</sub>H<sub>5</sub>I
  - (b) C2H5OH
  - (c)  $C_2H_5OH + C_2H_5I$
  - (d)  $C_2H_5 C_2H_5$
- 112. For the gaseous reaction involving the complete combustion of isobutane:
  - (a)  $\Delta H = \Delta E$
- (b)  $\Delta H > \Delta E$
- (c)  $\Delta H < \Delta E$
- (d) none of these
- 113. Natural rubber is a polymer of:
  - (a) styrene
- (b) isoprene
- (c) ethylene
- (d) butadiene
- 114. Charles' law is represented mathematically as:
  - (a)  $V_t = KV_0 t$
- (b)  $V_t = \frac{KV_0}{t}$
- (c)  $V_t = V_0 \left( 1 + \frac{273}{t} \right)$  (d)  $V_t = V_0 \left( 1 + \frac{t}{273} \right)$
- 115. Cyanohydrin of which of the following forms lactic acid:
  - (a) HCHO
- (b) CH<sub>3</sub>CHO
- (c) CH<sub>3</sub>CH<sub>2</sub>CHO
- (d) CH<sub>3</sub>COCH<sub>3</sub>
- 116. Dinitrogen pentoxide (N2O5), a colourless solid, is prepared by:
  - (a) heating NH4NO2 with an excess of oxygen
  - (b) dehydrating HNO3 with CaO
  - (c) dehydrating HNO3 with P4O10
  - (d) heating a mixture of HNO2 and Ca(NO3)2

|  | Which       | gas | has | the | highest | partial | pressure | in |
|--|-------------|-----|-----|-----|---------|---------|----------|----|
|  | atmosphere? |     |     |     |         |         |          |    |

- (a) CO<sub>2</sub>
- (b) H<sub>2</sub>O
- (b) O<sub>2</sub>
- (d) N<sub>2</sub>
- 118. Acetone and acetaldehyde can be distinguished
  - (a) Molisch test
- (b) Tollen's test
- (c) Schiff's test
- (d) Iodoform test
- 119. Incorrect statement for pyrophosphorus acid  $H_4P_2O_5$  is:
  - (a) contains P in +5 oxidation state
  - (b) it is dibasic acid
  - (c) it is strongly reducing in nature
  - (d) it contains one P-O-P bond
- 120. Which of the following compounds is not an "interpseudohalogen"?
  - (a) Cl<sub>2</sub>N<sub>3</sub>
- (b) BrCN
- (c) ClCN
- (d) ICN

- **121.** The oxidation number of oxygen in hydrogen peroxide is:
  - (a) +1
- (b) -1
- (c) +2
- (d) -2
- 122. Isopropyl bromide on Wurtz reaction gives:
  - (a) hexane
  - (b) propane
  - (c) 2, 3-dimethyl butane
  - (d) neo-hexane
- 123. Tetraethyl lead is a:
  - (a) solvent
- (b) petroleum additive
- (c) oxidising agent (d) fire extinguisher
- 124. Solvay process is used for the manufacture of:
  - (a) NaOH
- (b) Na<sub>2</sub>CO<sub>3</sub>
- (c) NH<sub>3</sub>
- (d) NaCl
- 125. Milk of magnesia is used as:
  - (a) antichlor
- (b) antacid
- (c) antiseptic
- (d) food preservative

#### English

Directions: Choose the correct meanings of Phrases/Idioms, out of the four responses given under each.

- 126. To meet one's Waterloo:
  - (a) To meet a strong adversary
  - (b) To met with humiliation
  - (c) To die fighting
  - (d) To meet one's final defeat
- 127. Through thick and thin:
  - (a) Big and small
  - (b) Large object
  - (c) Under all conditions
  - (d) Thin and fat
- 128. An axe to grind:
  - (a) Difficult job
  - (b) Hard labour
  - (c) Private ends to serve
  - (d) Punishment
- **129.** His wit's end :
  - (a) Finished
  - (b) Confused
  - (c) Comedy
  - (d) Very intelligent

**Directions**: Find out the part which contains an error in the following sentences. If there is no error, the answer is (d).

- 130. It is not advisable to take heavy luggages (a) (b) while on journey these days. No error. (c) (d)
- 131. Mr. Bose

accompanied by his wife and children

(b)

were present there. No error.

- 132. You must pay respect to those who has (a) (b)
  - respect for you. (c)

No error. (d)

Directions: Choose the word that is most nearly opposite in meaning to the word given in capital letters at the question place.

- **133.** DREARY:
  - (a) Drab
- (b) Dangerous
- (c) Beautiful
- (d) Bright
- 134. GREGARIOUS:
  - (a) Antisocial
  - (b) Horrendous
  - (c) Similar
  - (d) Glorious

135. MISERLY:

(a) Charitable

(b) Spendthrift

(c) Liberal

(d) Generous

**Directions**: Choose the word that is most nearly the same in meaning to the word given in capital letters at the question place.

136. DILIGENT:

(a) Industrious

(b) Energetic

(c) Modest

(d) Inteligent

137. RENOUNCE:

(a) Reform

(b) Revoke

(c) Retain

(d) Resign

136. PROLIFIC:

(a) Plenty

(b) Competent

(c) Predominant

(d) Fertile

**Directions:** In each of the following questions four parts of a sentence are given as P, Q, R and S. Put them in proper order to produce the correct sentence.

139. P: I decided to call on him

Q: at the earliest opportunity

R: having heard of the palmist

S: before I came into town

(a) RSPQ

(b) PQRS

(c) SQPR

(d) QPRS

140. P: when a chemical substance

Q: the food poisoning occurred

R: in the food preparations

S: was mistaken for salt and used

(a) RQPS

(b) SRQP

(c) QPSR

(d) PSRO

#### Reasoning

**141.** Victory is related to *Happiness* in the same way as *Failure* is related to:

(a) Defeat

(b) Anger

(c) Frustration

(d) Sadness

**142.** In the following question, four groups of letters are given. Three of them are alike in a certain way while one is different. Select the one which is different.

(a) RSXY

(b) NOUV

(c) MNST

(d) DEJK

**143.** Complete the pattern in fig (x) by selecting one of the figures from the four alternatives:

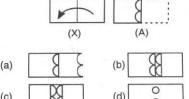






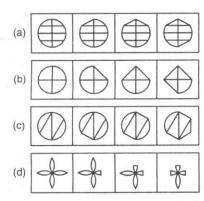





144. In the following question, a statement/ group of statements is given followed by some conclusions. Choose the conclusion which logically follows from the given statement.

#### Statements:

- 1. Only students can participate in the race.
- 2. Some participants in the race are females.
- All female participants in the race are invited for coaching.


#### Conclusions:

- (a) All participants in the race are invited for coaching.
- (b) All participants in the race are males.
- (c) All students are invited for coaching.
- (d) All participants in the race are students.
- **145.** Consider the figures *X* and *Y* showing a rectangular sheet of paper folded in fig. *X* and punched in fig. *Y*. From amongst the answer figures *a*, *b*, *c* and *d*, select the figure, which will most closely resemble the unfolded position of fig. Y.



**146.** Which one of the given sets of figures follows the following rule.

**Rule:** "Sectors get converted to triangles one by one".



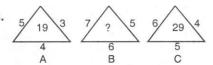
**Direction:** In the following question find out which of the figures (a), (b), (c) and (d) can be formed from the pieces given in (X).

147.



.




(b)



(d)

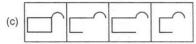
**Direction :** Find the missing character from among the given alternatives.

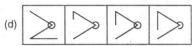
148.



- (a) 25
- (b) 37
- (c) 41
- (d) 47
- 149. What terms will fill the blank spaces?

Z, X, V, T, R, (....), (....)


- (a) O, K
- (b) N, M
- (c) K, S
- (d) P, N


**Direction :** *In the following question, choose the set of figures which follows the given rule.* 

**150.** Rule: Closed figures become more and more open and open figures become more and more closed.







