Microprocessor 10EC62

SYLLABUS

PART - A
UNIT -1 (7Hours)
8086 PROCESSORS: Historical background, The microprocessor-based personal computer
system, 8086 CPU Architecture, Machine language instructions, Instruction execution timing,
The 8088
UNIT - 2 (7 Hours)
INSTRUCTION SET OF 8086: Assembler instruction format, data transfer and arithmetic,

branch type, loop, NOP & HALT, flag manipulation, logical and shift and rotate instructions.
[llustration of these instructions with example programs, Directives and operators

UNIT -3

BYTE AND STRING MANIPULATION: String instructions, REP Prefix, Table trandation,
Number format conversions, Procedures, Macros, Programming using keyboard and video

display

6 Hours
UNIT -4

8086 INTERRUPTS: 8086 Interrupts and interrupt responses, Hardware interrupt applications,
Software interrupt applications, Interrupt examples

6 Hours

PART - B
UNIT -5

8086 INTERFACING: Interfacing microprocessor to keyboard (keyboard types, keyboard
circuit connections and interfacing, software keyboard interfacing, keyboard interfacing with

hardware), Interfacing to aphanumeric displays (interfacing LED displays to microcomputer),
Interfacing a microcomputer to a stepper motor

6 Hours

SIBIT/ECE Department



Microprocessor 10EC62

UNIT -6

8086 BASED MULTIPROCESSING SYSTEMS: Coprocessor configurations, The 8087
numeric data processor: data types, processor architecture, instruction set and examples

6 Hours
UNIT -7

SYSTEM BUS STRUCTURE: Basic 8086 configurations: minimum mode, maximum mode,
Bus Interface: periphera component interconnect (PCI) bus, the paralld printer interface (LPT),
the universal seria bus (USB)

7 Hours
UNIT -8

80386, 80486 AND PENTIUM PROCESSORS: Introduction to the 80386 microprocessor,
Specia 80386 registers, Introduction to the 80486 microprocessor, Introduction to the Pentium
Mi Croprocessor.

7 Hours
TEXT BOOKS:

1. Microcomputer systems-The 8086 / 8088 Family — Y.C. Liu and G. A. Gibson, 2E PHI
-2003

2. The Intel Microprocessor, Architecture, Programming and Interfacing-Barry B.
Brey, 6e, Pearson Education / PHI, 2003

REFERENCE BOOKS:

1. Microprocessor and Interfacing- Programming & Hardware, Douglas hall, 2e TMH,
1991

2. Advanced Microprocessors and Peripherals - A.K. Ray and K.M. Bhurchandi, TMH,
2001

3. 8088 and 8086 Microprocessors - Programming, Interfacing, Software, Hardware
& Applications - Triebel and Avtar Singh, 4e, Pearson Education, 2003

SIBIT/ECE Department



Microprocessor 10EC62

INDEX SHEET

SL. PAGE
NO TOPIC NO.
PART - A
UNIT 1: 8086 PROCESSORS:

1 | Historica background 1-5

2 | The microprocessor-based personal computer system 5-8

3 | 8086 CPU Architecture 8- 25

4 | Machine language instructions 25-30

5 | Instruction execution timing 30-37
UNIT 2: INSTRUCTION SET OF 8086:

1 | Assembler instruction format 38

2 | datatransfer and arithmetic 38- 39

3 branch type, loop, NOP & HALT, flag manipulation, logical and shift 40-50

and rotate instructions

4 | lllustration of these instructions with example programs 50-56

5 | Directives and operators 56-62
UNIT 3: BYTE AND STRING MANIPULATION:

1 | String instructions 63-65

2 | REP Prefix 65-66

3 | Tabletrandation 67

4 | Macros 68-77

5 | Datatrandation 78-87

6 | Programming using keyboard and video display 87-95
UNIT 4: 8086 INTERRUPTS:

1 | 8086 Interrupts and interrupt responses 96-103

2 | Hardware & software interrupt applications 104-107

3 | Interrupt examples 107-108
PART -B:
UNIT 5: 8086 INTERFACING

1 | Interfacing microprocessor to keyboard 109-113

2 | Interfacing to alphanumeric displays 114

3 | Interfacing a microcomputer to a stepper motor 115
UNIT 6: 8086 BASED MULTIPROCESSING SYSTEMS:
1 Coprocessor configurations 116
2 The 8087 numeric data processor, data types, processor architecture | 117-129
3 Instruction set and example 129-143
UNIT 7: SYSTEM BUS STRUCTURE:

1 | Basic 8086 configurations. minimum mode, 143-147

2 | maximum mode 147-150

3 | BusInterface: peripheral component interconnect (PCI) bus, 150-157
UNIT 8: 80386, 80486 AND PENTIUM PROCESSORS:

1 | Introduction to the 80386 microprocessor, registers 158-174

2 | Introduction to the Pentium microprocessor. 175-180

3 | Introduction to 80486 microprocessor 180-184

SIBIT/ECE Department




Microprocessor 10EC62

PART-A

UNIT -1:

8086 PROCESSORS: Historical background, The microprocessor-based personal
computer system, 8086 CPU Architecture, Machine language instructions,
Instruction execution timing,

TEXT BOOKS:

3. Microcomputer systems-The 8086 / 8088 Family — Y.C. Liu and G. A. Gibson, 2E PHI -
2003

4. The Intel Microprocessor, Architecture, Programming and Interfacing-Barry B. Brey,
6e, Pearson Education / PHI, 2003

SIBIT/ECE Department 3



Microprocessor 10EC62

Historical Background:

The historical events leading to the development of microprocessors are outlined as follows:

The Mechanical age:
The computing system existed long before modern electrical and electronic devices were invented.

During 500 BC, the Babylonians invented the first mechanical calculator called Abacus. The

abacus which uses strings of beads to perform cal culations was used by Babylonian priests to keep
track of their vast storehouses of grains. Abacus was in use until, Blaise Pascal, a mathematician,
invented a mechanical calculator constructed of gears and wheels during 1642. Each gear
contained 10 teeth that, when moved one complete resolution, advanced a second gear one place.
This is the same principle employed in a car’s odometer mechanism and is the basis for all
mechanica calculators. The arrival of the first, practical geared, mechanica machines used to
compute information automatically dates to early 1800’s, which is much earlier to the invention of
electricity.

Only early pioneer of mechanical computing machinery was Charles Babbage. Babbage was
commissioned in 1823 by the astronomical society of Britain to produce a programmable
computing machine. This machine was to generate navigational tables for the royal navy. He
accepted the challenge and began to create what he called as Analytical Engine. Analytical Engine
was a mechanical computer that could store 1000 20-digit decimal numbers and a variable
program that could modify the function of machine so it could perform various calculating tasks.
Input to the analytical engine was punched cards, which is an idea developed by Joseph Jaquard.
The development of analytical engine stopped because the machinists at that time were unable to

create around 50, 000 mechanical parts with enough precision.

The Electrical age:
The invention of electric motor by Michael Faraday during 1800’s lead the way to the

development of motor-driven adding machines all based on the mechanical calculator developed
by Blaise Pascal. These electrically driven mechanical calculators were in use until the small hand-
held electronic calculator developed by Bomar was introduced in 1970’s. Monroe is another
person who introduced el ectronic cal culators, whose four-function models the size of cash register.
In 1889, Herman Hollerith developed the punched card for storing data, basically the idea was of
Jaguard. He also developed a mechanical machine, driven by one of the new electric motors that
counted, sorted and collated information stored on punched cards. The punched cards used in

SIBIT/ECE Department 4



Microprocessor 10EC62

computer systems are often called Hollerith cards, In honor of Herman Hollerith. The 12-bit code
used on a punched card is called the Hollerith code.

Electric motor driven mechanical machines dominated the computing world until the German
inventor konrad Zuse constructed the first electronic calculating machine, Z3 in the year 1941. Z3
was used in aircraft and missile design during world war 11 for the German war effort.

In the year 1943, Allan Turing invented the first electronic computing system made of vacuum
tubes, which is called as Colossus. Colossus was not programmable; it was a fixed-program
computer system, called as specia purpose computer.

The first genera -purpose, programmable electronic computer system was developed in 1946 at the
University of Pennsylvania. This first modern computer was called the ENIAC (Electronics
Numerical Integrator And Calculator). The ENIAC was a huge machine, containing over 17,000
vacuum tubes and over 500 miles of wires. This massive machine weighted over 30 tons, yet
performed only about 100,000 operations per second. The ENIAC thrust the world into the age of
electronic computers. The ENIAC was programmed by rewriting its circuits — a process that took
many workers several days to accomplish. The workers changed the electrical connections on plug
boards that looked like early telephone switch boards. Another problem with the ENIAC was the
life of the vacuum tube components, which required frequent maintenance.

More advancement followed in the computer world with the development of the transistor in 1948
at Bell labs followed by the invention of integrated circuit in 1958 by jack Kilby of Texas

instruments.

The Microprocessor age:
With the invention of integrated circuit technology, Intel introduced the world’s first

microprocessor, a 4-bit Intel 4004 microprocessor. It addresses a mere 4096 4-bit wide memory
locations. The 4004 instructions set contained only 45 instructions. It was fabricated with the P-
channel MOSFET technology that only allowed it to execute instructions at the slow rate of 50
KIPS. At first, the applications abounded for this device, like video game systems and small
microprocessor based control systems. The main problem with this early microprocessors were its
speed, word width and memory size.

Later Intel introduced 4040, an updated version of 4004, which operated at higher speed, athough

it lacked improvements in word width and memory size.

SIBIT/ECE Department 5



Microprocessor 10EC62

Intel Corporation released the 8008 an extended 8-bit version of 4004. The 8008 addressed an
expanded memory size (16 Kbytes) and contained additional instruction, totally 48 instructions,
that provided an opportunity for its application in more advanced systems.

Microprocessors were then used very extensively for many application developments. Many
companies like Intel, Motorola, Zilog and many more recognized the demanding requirement of
powerful microprocessors to the design world. In fulfilling this requirement many powerful

microprocessors were arrived to the market of which we study the Intel’s contribution.

The Intel 8080 & 8085:
8080 address more memory and execute additional instructions, but it executed them 10

times faster than 8008.

The 8080 was compatible with TTL, whereas the 8008 was not directly compatible.

The 8080 also addressed four times more memory (64 Kbytes) than the 8008 (16 Kbytes).
Intel corporation introduced 8085, an updated version of 8080. Although only dlightly more
advanced than an 8080 microprocessor, the 8085 executed software at an higher speed. The main
advantages of the 8085 were its internal clock generator, internal system controller, and higher
clock frequency. This higher level of component integration reduced the 8085’s cost and increased

its useful ness.

The 16-bit Microprocessor:
The Intel released 16-bit microprocessors 8086 & 8088, which executed instructions in as little as

400ns (2.5 MIPS). The 8086 & 8088 addressed 1 Mbytes of memory, which was 16 timers more
memory than the 8085. 8086/8088 have a small 6-byte instruction cache or queue that pre-fetched

afew instructions before they were executed, which leads to the faster processing. 8086/8088 has
multiply and divide instructions which were missing in 8085. These microprocessors are called as
CISC (Complex Instruction Set Computers) because of the number and complexity of the
instructions. The 16-bit microprocessor also provided more internal register storage space that the
8-bit microprocessor. Applications such as spread sheets, word processors, spelling checkers, and
computer-based thesauruses on personal computers are few developed using 8086/8088

MIi Croprocessors.

The 80286 microprocessor:
Even the 1 Mbyte memory on 8086/8088 found limited for the advanced applications. This led

Intel to introduce the 80286 microprocessor. 80286 follow 8086°s 16-bit architecture, except it can
address 16 Mbyte memory system. The instruction set was similar to 8086 except few instructions
for managing extra 15 Mbytes of memory. The clock speed of 80286 was increased, so it executed
someinstructionsin aslittle as 250 ns (4 MIPS).

SIBIT/ECE Department 6



Microprocessor 10EC62

The 32-bit Microprocessors:
The 80386 Microprocessor:
The 80386 is the Intel’s first 32-bit microprocessor. The 80386 has 32-bit data bus and a 32-bit

memory addresses. The 80386 was available in a few modified versions such as 80386SX,
80386SL & 80386SLC, which vary in the amount of memory they address. Applications that

require Graphical User Interface (GUI) were using the 80386 microprocessors. Even applications

which involve floating-point numbers were using the 80386 microprocessors.
The 80386 included a memory management unit that allowed memory resources to be alocated

and managed by the operating system.

The 80486 Microprocessor:
The 80486 has 80386 like microprocessor, an 80387 like numeric co-processor, and an 8 Kbyte

cache memory integrated in it. Most of the instructions in 80486 can be executed in a single clock
instead of two clocks compared to 80386. the average speed improvement of instructions was
about 50% over the 80386 that operated at the same clock speed.

The Pentium Microprocessor:
The Pentium microprocessor was introduced late in 1993 with higher speeds compared to 80486.

in Pentium cache size was increased to 16 Kbytes from the 8K cache found in the basic version of
80486. After Pentium, many versions were introduced, like Pentium Pro, Pentium [1, Pentium 111
and Pentium IV with higher capacities.

The Microprocessor-based personal computer system:

Memory Microprocessor I/O System
System
DRAM, SRAM, 8086, 8088, 80186, Printer, Serial
cache, ROM, Flash 80188, 80286, 80386, communication, Floppy
memory, EEPROM, 80486, Pentium, disk drive, Hard disk
SDRAM Pentium Pro to P IV drive, mouse, CD-ROM

drive, Plotter, Keyboard,
Monitor, Scanner etc.

fig (a): The block diagram of a microprocessor-based computer system

The above figure (a) shows the block diagram of a microprocessor based personal computer
system. The block diagram comprises of three blocks-memory system, microprocessor and 1/0
system, which are interconnected by the buses. A busisaset of common connections that carry the
same type of information. There are 3 types of buses — Address bus, Data bus and Control busin a

computer system.

SIBIT/ECE Department 7



Microprocessor

The Memory System:

10EC62

The memory structure remains same for al the Intel 80x86 through Pentium 1V personal computer

systems. Fig (b) illustrates the memory map of a personal computer system.

The memory system is divided into three main parts:
Transient Program Area (TPA) — 640 Kbytes.

System Area— 384 Kbytes.

Extended Memory system (XMS) — amount of memory depends on the microprocessor

used in the personal computer system.

Extended Memory

—
M

System Area
384 Kbytes

TPA
640 Kbytes

AN

J

15 Mbytes in the 80286 or 80386 SX

31 Mbytes in the 80386SL/SLC

63 Mbytes in the 80386EX

4095 Mbytes in 80486 & Pentium

64 Gbytes in the Pentium pro, P, Pl & P-IV

Fig (b): The memory map of the personal computer

The type of microprocessor in the personal computer system determines whether XMS exists or
not. 8086 or 8088 (PC or XT10) based computer system consists of 640 Kbytes of TPA and 384

Kbytes of system area which accounts to the 1 Mbyte of memory and there is no extended memory

area. The first 1M bytes of memory are called the rea or conventional memory because each Intel

SIBIT/ECE Department



Microprocessor 10EC62

microprocessor is designed to function in this area by using its real mode of operation. Computer
systems based on the 80286 through P-1V not only contain the TPA (640K bytes) and system area
(384K bytes), they aso contain the extended memory.

a. Transient Program Area (TPA):
The memory map shown in fig (c) illustrates how the many areas of the TPA are used for system

programs, data and drivers. It also shows a large area of memory available for application
programs.

The TPA holds the DOS operating system and other programs that control the computer system. If
the MSDOS version 7.x is used as an operating system, of the 640k bytes of TPA, 628k bytes of

the memory will be available for application programs.

9FFFFh

MSDOS program
9FFFOh

 — V
/
Free TPA

0O8E30h

COMMAND. COM
08490h

Device drivers

02530h

MSDOS program
01160h

|0.sys program
00700h
DOS communication
00500h area
BIOS communication
area

00400h

Interrupt vectors
00000h

SIBIT/ECE Department 9



Microprocessor 10EC62

The interrupt vectors accesses various features of DOS, BIOS & applications. The BIOS is a
collection of programs stored in either a ROM or flash memory that operate many of the 1/0
devices connected to the computer system.

The BIOS & DOS communication areas contain transient data used by programs to access 1/0
devices and the internal features of the computer system. These are stored in the TPA so they can
be changed as the system operates.

The 10.sys is a program that loads into the TPA from the disk whenever an MSDOS or PCDOS
system is started. The 10.sys contains programs that allow DOS to use the keyboard, video display,
printer, and other 1/0 devices.

The MSDOS program occupies two areas of memory. One area is 16 bytes in length and is located
at the top of TPA. The other ismuch larger and is located near the bottom of TPA.

The size of the driver area and number of drivers change from one computer to another. Drivers
are programs that control installable 1/0 devices such as CD-ROM, Mouse etc. drivers are
normally files that have an extension of .sys. The COMMAND.com (command processor) controls
the operation of the computer from the keyboard. The free TPA area holds application programs as
they are executed. These application programs include word processors, spread sheet programs,

CAD programs and many more.

b. The System Area:
The system area contains programs on either a ROM or flash memory and areas of read/write

(RAM) memory for the storage. The length of the system area is 384k bytes. Fig (d) shows the
system area of atypical computer system.

The first area of the system space contains video display RAM and video control programs on
ROM or flash memory. This area starts at location A0OO0Oh and extends to location C7FFFh. The
size and amount of memory used depends on the type of the video display adapter attached to the
system. Ex: CGA (Color Graphics Adapter), EGE (Extended Graphics Adapter) and VGA
(Variable Graphics Adapter). Generally the video RAM located at AOOOOh — AFFFFh stores text
data. The video BIOS, located on a ROM or flash memory, are at locations CO000h — C7FFFh and
contain programs that control the video display.

If ahard disk memory is attached to the computer, the low-level format software will be at location
C8005h.

The area at locations C8000h — DFFFFh is often open or free. This areais used for the expanded
memory system (EMS) in aPC or XT system, or for the upper memory system in an AT system.

SIBIT/ECE Department 10



Microprocessor

The expanded memory system allows a 64k byte page frame of memory to be used by application

programs.

Memory locations EO00Oh — EFFFFh contain the cassette BASIC language on ROM found in early

IBM persona computer systems. This areais often open or free in newer systems.

The system BIOS ROM is located in the top 64k bytes of the system area (FOOOOh — FFFFFh).
This ROM controls the operation of the basic 1/0O devices connected to the computer system. It

doesn’t control the operation of the video system, which has its own BIOS ROM at location
C0000h. The first part of the system BIOS (FOOO0Oh — F7FFFh) often contains the programs that

setup the computer and the second part contains procedures that control the basic I/0 system.

FFFFFh

FOOOOhN

EOOOOhN

Cc8000h
CO000hN

BOOOOhNh

AO0O0O0O0OhNh

BIOS system ROM

BASIC language ROM

Free area

Hard disk/LAN
Controller ROM

Video BIOS ROM

Video RAM

(text area)

Video RAM

(graphics area)

The 1/0 space:

The I/O devices alow the microprocessor to communicate b/w itself and the outside world. The

I/O space in a computer system extends from 1/0O port 0000h to port OFFFFh. This address range

can access up to 64k different 8-bit 1/0 devices.

SIBIT/ECE Department

11



Microprocessor 10EC62

FFFFh
I/0O expansion area
—————————
0400h COML
O3F8h Floppy disk Controller
O3FOh CGA Adapter
Oo3D0h LPT1
O378h Hard disk Controller
0320h
O2F8h com=
0060h PIA (8255)
0040h Timer (8253)
0020h Interrupt Controller
00O0O0h DMA Controller

The I/O area contains two maor sections. The area below 1/0 location 0400h is considered
reserved for system devices. The remaining area is available 1/0 space for expansion on newer
systems that extends from 1/0 port 0400h through OFFFFh. Generally, 1/0 addresses b/w 0000h
and OOFFh address components on the main board of the computer, while addresses between
0100h and 03FFh address devices located on plug-in cards.

The Microprocessor:
The microprocessor is the heart of the microprocessor-based computer system. Microprocessor is

the controlling element and is sometimes referred to as the Central Processing Unit (CPU). The
microprocessor controls memory and 1/0 through a series of connections called buses.
The microprocessor performs three main tasks for the computer system:
Datatransfer between itself and the memory or 1/0 systems.
Simple arithmetic and logic operations, and
Program flow via simple decisions.
Although, these are simple tasks, but through them the microprocessor performs virtualy any

series of operations.

Simple Microcomputer Bus Operation
1. A microcomputer fetches each program instruction in sequence, decodes the instruction,

and executes it.

SIBIT/ECE Department 12



Microprocessor 10EC62

2. The CPU in a microcomputer fetches instructions or reads data from memory by sending
out an address on the address bus and a Memory Read signal on the control bus. The
memory outputs the addressed instruction or data word to the CPU on the data bus.

3. The CPU writes a data word to memory by sending out an address on the address bus,
sending out the data word on the data bus, and sending a Memory write signal to memory
on the control bus.

4. To read data from a port, the CPU sends out the port address on the address bus and sends
an 1/0 Read signal to the port device on the control bus. Data from the port comes into the
CPU on the data bus.

5. Towrite datato a port, the CPU sends out the port address on the address bus, sends out the
data to be written to the port on the data bus, and sends an I/O Write signal to the port

device on the control bus.

SIBIT/ECE Department 13



Microprocessor

8086 Pin diagram

Maximum Mode

GND
AD14
AD13
AD12
AD11
AD10

AD9
AD8
AD7
AD6
AD5
ADA4
AD3
AD2
AD1
ADO
NMI
INTR
CLK
GND

© 00 N o 0o b~ W N P

=
o

11
12
13
14
15
16
17
18
19
20

8086

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

VCC
ADqg

AL IS
A IR
A IS~

puc/c

MN/MX

RO/ T.

Q.
Q.

Q.

QS
QS

READY
RESET

10EC62

Minimum Mode

(HOLD)

(HLDA)

(WR)
(M/IO)

(INTA)

8086 is a 40 pin DIP using MOS technology. It has 2 GND’s as circuit complexity demands a large

amount of current flowing through the circuits, and multiple grounds help in dissipating the

accumulated heat etc. 8086 works on two modes of operation namely, Maximum Mode and

Minimum Mode.

(i) Power Connections

G D

CLE

3036

19
2l

40

VGO

SIBIT/ECE Department

14



Microprocessor 10EC62

Pin Description:

GND -Pinno. 1, 20

Ground

CLK = Pinno. 19-Typel

Clock: provides the basic timing for the processor and bus controller. It is asymmetric with a 33%
duty cycle to provide optimized internal timing.

Ve — Pinno. 40

Ve +5V power supply pin

(ii) Address Data Lines

a4 —=
£013 —s
al1i o« =
a1 =—
abl) +—
09—

L e AT A

1_h I~ LI R

fDg ==

L e TR e R S R =

ADT —s
ADGE +— 10
LD — 11
Ald +— 1)
DT — 13
£D1 ~— 14
bl — 15
D0 — 16

B084

Pin Description

AD;5-ADg - Pin no. 2-16, 39 - Type /O

Address Data bus: These lines constitute the time multiplexed memory/ 1O address (T1) and data
(T2, Ta, Tw, T4) bus. A is analogous to BHE for the lower byte of of the data bus, pins D7-Do. It
iss low when a byte is to be transferred on the lower portion of the bus in memory or 1/O
operations. Eight —bit oriented devices tied to the lower half would normally use Ao to condition
chip select functions. These lines are active HIGH and float to 3-state OFF during interrupt

acknowledge and local bus “hold acknowledge”.

SIBIT/ECE Department 15



Microprocessor

(iii) Address Lines

aAld =
Al
Al2 =
All =
All
AQ
AR ]
AF ]
af ]
AL ]
ad
AT ]
al ]
Al ]

Al *—

R o o I . S TR N %, B 56|

O S S
L A L IS I

3086

39 .
38 -
7 -
36 s
35 .

A19/Ss, A18/Ss, A17/S4, A16/Ss — Pin no. 35-38 — Type O

Address/ Status: During T, these are the four most significant address lines for memory operations.
During 1/0 operations these lines are low. During memory and 1/0O operations, status information
is available on these lines during T», T3, Tw and T4. The status of the interrupt enable FLAG bit
(S5) isupdated at the beginning of each CLK cycle. A17/S, and A16/Ss are encoded as shown.

A17lSy A16/S; | Characteristics
0 (LOW) 0 Alternate Data
0 1 Stack

1(HIGH) 0 Code or None

1 1 Data

Ssis0 (LOW)

This information indicates which relocation register is presently being used for data accessing.

These lines float to 3-state OFF during local bus “hold acknowledge”.

(iv) StatusPins & - S

SIBIT/ECE Department

AlS

10EC62



Microprocessor

8086 34

Pin Description

5 |,
37 |— s,
| 8.

35 |— %

B |8,
B |y

26 _"S_

(WV/IO)
(DT/R)

(DEN)

S,,S1,8y - Pinno. 26, 27, 28 - Type O

10EC62

Status: active during T4, T1 and T, and is returned to the passive state (1,1,1) during T3 or during
Tw when READY is HIGH. This status is used by the 8288 Bus Controller to generate all memory

and 1/0 access control signals. Any change by S, ,S; or S, during T4 is used to indicate the

beginning of a bus cycle and the return to the passive state in Tz or Ty is used to indicate the end

of abuscycle.

These signals float to 3-state OFF in “hold acknowledge”. These status lines are encoded as shown.

g 5_1 % Characteristics
O(LOW) 0 0 Interrupt acknowledge
0 0 1 Read 1/0 Port
0 1 0 Write 1/0O Port
0 1 1 Halt
1(HIGH) 0 0 Code Access
1 0 1 Read Memory
1 1 0 Write Memory
1 1 1 Passive
Status Details
g S ] S, Indication
0 0 0 Interrupt Acknowledge

SIBIT/ECE Department

17



Microprocessor 10EC62

0 0 1 Read 1/O port
0 1 0 \Write 1/0 port
0 1 1 Halt

1 0 0 Code access

1 0 1 Read memory
1 1 0 \Write memory
1 1 1 Passive

A S3 Indications

0 0 Alternate data

0 1 Stack

1 0 Code or none

1 1 Data

S Value of Interrupt Enable flag

Se ----- Always low (logical) indicating 8086 is on the bus. If it is tristated another
bus master has taken control of the system bus.

= - Used by 8087 numeric coprocessor to determine whether the CPU is a 8086
or 8088

(V) Interrupts

8086

MWL ——*| 17

IMNTE. 15

Pin Description:
NMI —=Pin no. 17 - Typel

SIBIT/ECE Department 18



Microprocessor 10EC62

Non — Maskable Interrupt: an edge triggered input which causes atype 2 interrupt. A subroutineis
vectored to via an interrupt vector lookup table located in system memory. NMI is not maskable
internally by software. A transition from a LOW to HIGH initiates the interrupt at the end of the

current instruction. Thisinput isinternally synchronized.

INTR — Pin No. 18 - Typel

Interrupt Request: is a level triggered input which is sampled during the last clock cycle of each
instruction to determine if the processor should enter into an interrupt acknowledge operation. A
subroutine is vectored to via an interrupt vector lookup table located in system memory. It can be
internally masked by software resetting the interrupt enable bit. INTR is internally synchronized.
Thissignal is active HIGH.

(vi) Min mode signals

33— VOO MM/MX

il — HOLD

5056 30 —* HLDA

¥ — WR
2% wo
7 [ DTR
24 T DEM
25 — ALE

4 [ INTa

Pin Description:

HOLD, HLDA - Pin no. 31, 30- Typel/O

HOLD: indicates that another master is requesting a local bus “hold”. To be acknowledged,
HOLD must be active HIGH. The processor receiving the “hold” request will issue HLDA (HIGH)
as an acknowledgement in the middle of a T, clock cycle. Simultaneous with the issuance of
HLDA the processor will float the local bus and control lines. After HOLD is detected as being
LOW, the processor will LOWer the HLDA, and when the processor needs to run another cycle, it

will again drive the local bus and control lines.

The same rules as RQ/GT apply regarding when the local bus will be released.

SIBIT/ECE Department 19



Microprocessor 10EC62

HOLD is not an asynchronous input. External synchronization should be provided if the system
can not otherwise guarantee the setup time.

WR - Pin no. 29 - TypeO

Write: indicates that the processor is performing a write memory or write 1/0 cycle, depending on
the state of the M/10 signal. WRis active for T,, Ts and T of any write cycle. It is active LOW,
and floats to 3-state OFF in local bus “hold acknowledge”.

M/IO - Pin no. 28 — type O

Status line: logically equivalent to S, in the maximum mode. It is used to distinguish a memory
access from an 1/0 access. M/IO becomes valid in the T4 preceding a bus cycle and remains valid
until the final T, of the cycle (M=HIGH), |IO=LOW). M/I0 floats to 3-state OFF in local bus “hold
acknowledge”.

DT/R-Pin no. 27— Type O

Data Transmit / Receive: needed in minimum system that desires to use an 8286/8287 data bus
transceiver. It is used to control the direction of data flow through the transceiver. Logicaly DT/R
is equivalent to S_lin the maximum mode, and its timing is the same as for M/10 . (T=HIGH,
R=LOW). Thissignal floats to 3-state OFF in local bus “hold acknowledge”.

DEN - Pin no. 26 - Type O

Data Enable: provided as an output enable for the 8286/8287 in a minimum system which uses the
transceiver. DEN is active LOW during each memory and 1/O access and for INTA cycles. For a
read or INTA cycleit is active from the middle of T, until the middle of T4, while for awrite cycle

it is active from the beginning of T, until the middle of T,. DEN floats to 3-state OFF in local bus
“hold acknowledge”.

ALE -Pinno.25-TypeO

Address Latch Enable: provided by the processor to latch the address into the 8282/8283 address
latch. ItisaHIGH pulse active during T; of any bus cycle. Note that ALE is never floated.

INTA - Pinno.24-TypeO

INTA isused as aread strobe for interrupt acknowledge cycles. It is active LOW during T», T3 and

Tw of each interrupt acknowledge cycle.

SIBIT/ECE Department 20



Microprocessor 10EC62

(vil) Max mode signals

i3 M GMD
33 M RQ/GT
8086 25 [k ﬁfG—TI

B LocK
B >3,

n—5
% "
35— 05,

24— Q8

Pin Description:

RQIGT, ,RQ/GT, - Pin no. 30, 31 - Type|/O
Request /Grant: pins are used by other local bus masters to force the processor to release the local

bus at the end of the processor’s current bus cycle. Each pin is bidirectional with E)/GiT0 having

higher priority than RQ/GT, . RQ/GT has an internal pull up resistor so may be left unconnected.

The request/grant sequence is as follows:
1. A pulse of 1 CLK wide from another local bus master indicates a local bus request (“hold”)
to the 8086 (pulse 1)
2. DuringaT,or Ty clock cycle, apulse 1 CLK wide from the 8086 to the requesting master
(pulse 2), indicates that the 8086 has allowed the local busto float and that it will enter the
“hold acknowledge” state at the next CLK. The CPU’s bus interface unit is disconnected
logically from the local bus during “hold acknowledge”.
3. A pulse 1 CLK wide from the requesting master indicates to the 8086 (pulse 3) that the
“hold” request is about to end and that the 8086 can reclaim the local bus at the next CLK.
Each master-master exchange of the local bus is a sequence of 3 pulses. There must be one dead
CLK cycle after each bus exchange. Pulses are active LOW.
If the request is made while the CPU is performing a memory cycle, it will release the local bus
during T, of the cycle when all the following conditions are met:
1. Request occurs on or before To.
2. Current cycleisnot the low byte of aword (on an odd address)

3. Current cycleisnot the first acknowledge of an interrupt acknowledge sequence.

SIBIT/ECE Department 21



Microprocessor

4. A locked instruction is not currently executing.

LOCK - Pinno. 29-TypeO

LOCK : output indicates that other system bus masters are not to gain control of the system bus

while LOCK is active LOW. The LOCK signa is activated by the “LOCK” prefix instruction and
remains active until the completion of the next instruction. This signal is active LOW, and floats to
3-state OFF in “hold acknowledge”.

QS;, QS -Pinno. 24,25 - Type O
Queue Status: the queue status is valid during the CLK cycle after which the queue operation is

performed.

QS; and QS; provide status to allow external tracking of the internal 8086 instruction queue.

QS QS Characteristics

0(LOW) 0 No operation

0 1 First Byte of Op Code from Queue
1 (HIGH) 0 Empty the Queue

1 1 Subsequent byte from Queue

SIBIT/ECE Department

22



Microprocessor 10EC62

(viii) Common Signals

1 40 - YOG

39 [—  AD1S
AT12 +—n) 4 ] —* AlGE,

3 | — 1w,

36 — = nlars,
AT w— 7

ADE o« o & 35 A3 5y
able—m 4 o BHES

2086
AT ] 10

3 LN/

LTS &l 11

ADd +—a 12 2 D

LD a+—a 13 a5 ﬁ
AT —l 14

AT #4—p 16 a1 i EESET
MMI —a 17
INTE —» 11
CLE — 1%
GHD» — 20

Pin Description:

RD - Pin no. 34, TypeO

Read: Read strobe indicates that the processor is performing a memory of 1/0O read cycle,
depending on the state of the S, pin. This signal is used to read devices which reside on the 8086

local bus. RD is active LOW during T, T and Ty of any read cycle, and is guaranteed to remain
HIGH in T, until the 8086 local bus has floated.

Thissignal floats to 3-state OFF in “hold acknowledge”.

READY - Pin no. 22, Typel

READY : is the acknowledgement from the addressed memory or 1/O device that it will complete
the data transfer. The READY signal from memory / 10 is synchronized by the 8284A Clock
Generator to form READY. This signal is active HIGH. The 8086 READY input is not
synchronized. Correct operation is not guaranteed if the setup and hold times are not met.

TEST - Pin No 23 -Typel

TEST : input is examined by the “Wait” instruction. If the TEST input is LOW execution continues,
otherwise the processor waits in an “idle” state. This input is synchronized internally during each
clock cycle on the leading edge of CLK.

SIBIT/ECE Department 23



Microprocessor 10EC62

RESET - Pin no. 21 - Typel

Reset: causes the processor to immediately terminate its present activity. The signal must be active
HIGH for at least four clock cycles. It restarts execution, as described in the instruction set
description, when RESET returns LOW. RESET isinternally synchronized.

BH E/S7- Pin No. 34 -TypeO

Bus High Enable / Status. During T, the Bus High Enable signal (BHE )should be used to enable
data onto the most significant half of the data bus, pins D1s-Ds. Eight bit oriented devices tied to

the upper haf of the bus would normally use BHE to condition chip select functions. BHE is
LOW during T, for read, write, and interrupt acknowledge cycles when a byte is to be transferred
on the high portion of the bus. The S status information is available during T,, T3 and T4. The
signal is active LOW and floats to 3-state OFF in “hold”. It is LOW during T for the first interrupt
acknowledge cycle.

HE | Ao | Characteristics

Whole word

Lower byte from/ to even address

R P O O m

0
1 Upper byte from/ to odd address
0
1

None

MN/MX - Pin no.33-Type- |
Minimum / Maximum: indicates what mode the processor is to operatein.
If the local busisidle when the request is made the two possible events will follow:
1. Local buswill be released during the next clock.
2. A memory cycle will start within 3 clocks. Now the four rules for a currently active
memory cycle apply with condition number 1 already satisfied.

SIBIT/ECE Department 24



Microprocessor 10EC62

8086 CPU ARCHITECTURE

HMEMORY
INTERFACT

INSTRUPCTION
STREAN
BYTE

QUELFE

Ly | cL ARITHMETIC
D ] ot LsGEC LimIT
4 :

D w|E
-
—
=]
]
IE
=
A

g s Sy N T e ——_————— e e e

The block diagram of 8086 is as shown. This can be subdivided into two parts, namely the Bus
Interface Unit and Execution Unit. The Bus Interface Unit consists of segment registers, adder to
generate 20 bit address and instruction prefetch queue.

Once this address is sent out of BIU, the instruction and data bytes are fetched from memory and

they fill aFirst In First Out 6 byte queue.

Execution Unit:
The execution unit consists of scratch pad registers such as 16-bit AX, BX, CX and DX and

pointers like SP (Stack Pointer), BP (Base Pointer) and finally index registers such as source index
and destination index registers. The 16-bit scratch pad registers can be split into two 8-bit registers.
For example, AX can be split into AH and AL registers. The segment registers and their default

offsets are given below.

Segment Register | Default Offset

CS IP (Instruction Pointer)
DS S|, DI

SS SP, BP

ES Dl

SIBIT/ECE Department 25



Microprocessor

10EC62

The Arithmetic and Logic Unit adjacent to these registers perform all the operations. The results of

these operations can affect the condition flags.

Different registers and their operations are listed below:

Register | Operations
AX Word multiply, Word divide, word 1/0O
AL Byte Multiply, Byte Divide, Byte I/O, translate, Decimal Arithmetic
AH Byte Multiply, Byte Divide
BX Trandate
CX String Operations, Loops
CL Variable Shift and Rotate
DX Word Multiply, word Divide, Indirect 1/0
8086/8088 M PU MEMORY
: : 00000046
IP Instruction Pointer
CS| Code Segment Register -~
: Code Segment (64K b)
DS| Data Segment Register
SS | Stack Segment Register -
: Data Segment (64K Db)
ES| ExtraSegment Register [
AX AH AL -
Stack Segment (64Kb
BX BE BL = ( )
CX CE CL -
Extra Segment (64Kb
DX DH DL = ( )
SP Stack Pointer Register
FFFFF6
BP Break Pointer Register
Sl Source Index Register
DI | Destination Index Register
SR Status Register

Generation of 20-bit Physical Address:

SIBIT/ECE Department

26



Microprocessor

LOGICAL ADDRESS

SEGMENT REGISTER 0000

U v

ADDER

20 BIT PHYSICAL MEMORY ADDRESS

SIBIT/ECE Department

10EC62

27



Microprocessor

8086 flag register for mat

BIT 15

14 13 12 11

10

10EC62

U

ujlu U | OF

DF

TF

ZF

AF

PF | U

U=

(@)
(b)
(©)
(d)
(e)
0
(@
(h)
() :

There are three internal buses, namely A bus, B bus and C bus, which interconnect the various

~

UNDEFINED

blocks inside 8086.

The execution of instruction in 8086 is as follows;

The microprocessor unit (MPU) sends out a 20-bit physical address to the memory and fetches the
first instruction of a program from the memory. Subsequent addresses are sent out and the queueis
filled upto 6 bytes. The instructions are decoded and further data (if necessary) are fetched from

memory. After the execution of the instruction, the results may go back to memory or to the output

peripheral devices as the case may be.

Machine language:

Addressing M odes

Addressing modes of 8086

SIBIT/ECE Department

: CARRY FLAG - SET BY CARRY OUT OF MSB

: PARITY FLAG - SET IF RESULT HASEVEN PARITY
: AUXILIARY CARRY FLAG FOR BCD

: ZERO FLAG - SET IFRESULT =0
: SIGN FLAG = MSB OF RESULT

: SINGLE STEP TRAP FLAG

: INTERRUPT ENABLE FLAG
: STRING DIRECTION FLAG
OVERFLOW FLAG

@
(b)
()
(d)
(€)
(f)
(9
(h)
(i)



Microprocessor 10EC62

When 8086 executes an instruction, it performs the specified function on data. These data are
called its operands and may be part of the instruction, reside in one of the internal registers of the
microprocessor, stored at an address in memory or held at an I/O port, to access these different
types of operands, the 8086 is provided with various addressing modes (Data Addressing Modes).

Data Addressing M odes of 8086
The 8086 has 12 addressing modes. The various 8086 addressing modes can be classified into five

groups.
A. Addressing modes for accessing immediate and register data (register and immediate
modes).
Addressing modes for accessing data in memory (memory modes)
Addressing modes for accessing 1/0 ports (I/0 modes)

Relative addressing mode

mooOo®

Implied addressing mode

8086 ADDRESSING MODES
A. |mmediate addr essing mode:
In this mode, 8 or 16 bit data can be specified as part of the instruction.

OP Code Immediate Operand

Examplel : MOV CL,03H
Moves the 8 bit data 03 H into CL

Example2 : MOV DX, 0525 H
Moves the 16 bit data 0525 H into DX
In the above two examples, the source operand is in immediate mode and the destination operand

isin register mode.

A constant such as “VALUE” can be defined by the assembler EQUATE directive such as
VALUE EQU 35H
Example : MOV BH, VALUE

Used to load 35 H into BH

Reqgister addressing mode:

SIBIT/ECE Department 29



Microprocessor 10EC62

The operand to be accessed is specified as residing in an internal register of 8086. Fig. below
shows internal registers, any one can be used as a source or destination operand, however only the

data registers can be accessed as either a byte or word.

Register Operand sizes
Byte (Reg 8) Word (Reg 16)

Accumulator AL, AH AX
Base BL, BH Bx
Count CL, CH Cx
Data DL, DH Dx
Stack pointer - SP
Base pointer - BP
Source index - Sl
Destination index - DI
Code Segment - CS
Data Segment - DS
Stack Segment - SS
Extra Segment - ES

Examplel : MOV DX (Destination Register) , CX (Source Register)
Which moves 16 bit content of CSinto DX.

Example2 : MOV CL, DL
Moves 8 bit contents of DL into CL

MOV BX, CH isanillega instruction.
* The register sizes must be the same.

B. Direct addressing mode:

The instruction Opcode is followed by an affective address, this effective address is directly used
as the 16 hit offset of the storage location of the operand from the location specified by the current
value in the selected segment register.

Thedefault segment is always DS.

SIBIT/ECE Department 30



Microprocessor 10EC62

The 20 bit physical address of the operand in memory is normally obtained as

PA =DS: EA

But by using a segment override prefix (SOP) in the instruction, any of the four segment registers
can be referenced,

PA = CS

DS : { Direct Address }

SS

ES
The Execution Unit (EU) has direct access to al registers and data for register and immediate
operands. However the EU cannot directly access the memory operands. It must use the BIU, in

order to access memory operands.

In the direct addressing mode, the 16 bit effective address (EA) is taken directly from the
displacement field of the instruction.

Examplel: MOV CX, START
If the 16 bit value assigned to the offset START by the programmer using an assembler pseudo
instruction such as DW is 0040 and [DS] = 3050.

Then BIU generates the 20 bit physical address 30540 H.
The content of 30540 is moved to CL
The content of 30541 is moved to CH

Example2: MOV CH, START
If [DS] = 3050 and START = 0040
8 bit content of memory location 30540 is moved to CH.
Example 3: MOV START, BX
With [DS] = 3050, the value of START is 0040.

Physical address : 30540
MOV instruction moves (BL) and (BH) to locations 30540 and 30541 respectively.

Register indirect addressing mode :

The EA is specified in either pointer (BX) register or an index (Sl or DI) register. The 20 bit
physical addressis computed using DS and EA.

SIBIT/ECE Department 31



Microprocessor
Example: MOV [DI], BX
¥~ register indirect
If [DS] = 5004, [DI] = 0020, [Bx] = 2456 PA=50060.

The content of BX(2456) is moved to memory locations 50060 H and 50061 H.

CS
PA = DS BX
SS = Sl
ES DI
Based addressing mode:
CS
PA = DS BX
SS : or + displacement
ES BP

when memory is accessed PA is computed from BX and DS when the stack is accessed PA is

computed from BP and SS.
Example : MOV AL, START [BX]
or
MOV AL, [START + BX]
based mode
EA : [START] +[BX]
PA :[DS] +[EA]

The 8 bit content of this memory location is moved to AL.

I ndexed addr essing mode:

CS

PA = DS Sl
SS : or + 8 or 16bit displacement
ES DI

Example : MOV BH, START [Sl]

PA : [SART] +[SI] + [DS]

SIBIT/ECE Department

32



Microprocessor 10EC62

The content of this memory is moved into BH.

Based | ndexed addressing mode:

CS

PA = DS BX Sl
SS : or + or + 8 or 16bit displacement
ES BP DI

Example : MOV ALPHA [SI] [BX], CL

If [BX] = 0200, ALPHA — 08, [SI] = 1000 H and [DS] = 3000

Physical address (PA) = 31208
8 bit content of CL is moved to 31208 memory address.

String addr essing mode:

The string instructions automatically assume Sl to point to the first byte or word of the source
operand and DI to point to the first byte or word of the destination operand. The contents of Sl and
DI are automatically incremented (by clearing DF to 0 by CLD instruction) to point to the next
byte or word.
Example : MOV SBYTE
If [DF] =0, [DS] = 2000 H, [SI] = 0500,
[ES] = 4000, [DI] =0300
Source address : 20500, assume it contains 38
PA : [DS] +[9]
Destination address : [ES] + [DI] = 40300, assume it contains 45
After executing MOV SBYTE,
[40300] = 38
[SI] = 0501 } incremented
[DI] = 0301

C. 1/O mode (direct) :
Port number is an 8 bit immediate operand.
Example : OUTO5H, AL

Outputs[AL] to 8 bit port 05 H

SIBIT/ECE Department 33



Microprocessor 10EC62

/O _mode (indirect):
The port number is taken from DX.

Examplel : INAL, DX

If [DX] = 5040
8 bit content by port 5040 is moved into AL.
Example2 : INAX, DX

Inputs 8 bit content of ports 5040 and 5041 into AL and AH respectively.

D. Relativeaddressing mode:

Example: INC START

If CY=0, then PC isloaded with current PC contents plus 8 bit signed value of START, otherwise
the next instruction is executed.

E. |Implied addressing mode;

Instruction using this mode have no operands.

Example : CLC which clears carry flag to zero.

SINGLE INDEX DOUBLE INDEX
1 BX BX SHERN
OR OR OR
BP
Encoded BP DI
inthe OR < )
+
instruction EU
S|
OR
\ b
\ 4
Explicitin the { <+><— DISPLACEMENT —>G> J
Instruction
— | CS 0000 N\
-
OR
- DS 0000
Assumed
unless OR
over
] BIU
ridden ! SS 0000 l
by prefix OR
<+>+— ES 0000 +
- )
L »| PHYSICAL ADDRESS #———

SIBIT/ECE Department 34



Microprocessor 10EC62

Special functions of general-purposeregisters.

AX & DX registers:

In 8 bit multiplication, one of the operands must be in AL. The other operand can be a byte in

memory location or in another 8 bit register. The resulting 16 bit product is stored in AX, with AH
storing the M S byte.

In 16 bit multiplication, one of the operands must be in AX. The other operand can be aword in
memory location or in another 16 bit register. The resulting 32 bit product is stored in DX and
AX, with DX storing the MS word and AX storing the LS word.

BX reqgister : In instructions where we need to specify in a general purpose register the 16 bit
effective address of amemory location, the register BX is used (register indirect).

CX register : InLoop Instructions, CX register will be always used as the implied counter.

In 1/O instructions, the 8086 receives into or sends out data from AX or AL depending as a word
or byte operation. In these instructions the port address, if greater than FFH has to be given as the

contents of DX register.

Ex: IN AL, DX
DX register will have 16 bit address of the I/P device

Physical Address (PA) generation :
Generaly Physical Address (20 Bit)

Segment Base Address (SBA)
+ Effective Address (EA)

Code Segment :

Physical Address (PA)

CS Base Address
+ Instruction Pointer (1P)
Data Segment (DS)
PA = DS Base Address + EA can bein BX or Sl or DI
Stack Segment (SS)
PA + SS Base Address + EA can be SP or BP
Extra Segment (ES)
PA = ES Base Address + EA in DI

SIBIT/ECE Department 35



Microprocessor

Instruction Format :

10EC62

The 8086 instruction sizes vary from one to six bytes. The OP code occupies six bytes and it

defines the operation to be carried out by the instruction.

Register Direct bit (D) occupies one bhit. It defines whether the register operand in byte 2 is the

source or destination operand.

D=1 Specifiesthat the register operand is the destination operand.

D=0 indicates that the register is a source operand.

Data size bit (W) defines whether the operation to be performed is an 8 bit or 16 bit data
W=0 indicates 8 bit operation
W=1 indicates 16 bit operation

Byte 3
7 2 1 0 765 432 10/« T ¥,
Low Disp/ | High  Disp/
e | D W MOD |REG |RM
Opcode DATA DATA
<«—— Bytel >| < Byte2———»| OR
4 4 4 4 4 DIRECT DIRECT
ADDRESS LOW ADDRESS HIGH
BYTE BYTE

Register Operand/Register to use EA
Calculation

Register Operand/Extension of opcode

displacement length

Word/byte operation

Operation code

Register mode/Memory mode with

Direction is to register/from register

The second byte of the instruction usually identifies whether one of the operandsisin memory or

whether both are registers.

This byte contains 3 fields. These are the mode (MOD) field, the register (REG) field and the
Register/Memory (R/M) field.

MOD (2 bits) | Interpretation

00 Memory mode with no displacement follows except for 16 bit
displacement when R/M=110

01 Memory mode with 8 bit displacement

10 Memory mode with 16 bit displacement

SIBIT/ECE Department

36



Microprocessor

10EC62

11

Register mode (no displacement)

Register field occupies 3 bits. It defines the register for the first operand which is specified as

source or destination by the D bit.

REG W=0 w=1
000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH Sl
111 BH DI

The R/M field occupies 3 bits. The R/M field along with the MOD field defines the second
operand as shown below.

MOD 11
R/M W=0 w=1
000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH Sl
111 BH DI
Effective Address Calculation
R/M MOD=00 MOD 01 MOD 10
000 (BX) + (SI) (BX)+(SI)+D8 (BX)+(S)+D16
001 (BX)+(DI) (BX)+(D1)+D8 (BX)+(DI)+D16
010 (BP)+(SI) (BP)+(SI)+D8 (BP)+(S1)+D16
011 (BP)+(DI) (BP)+(DI)+D8 (BP)+(DI)+D10
100 €)) (S + D8 (S) + D16

SIBIT/ECE Department

37



Microprocessor 10EC62

101 (DI) (DI) + D8 (DI) + D16
110 Direct address (BP) + D8 (BP) + D16
111 (BX) (BX) + D8 (BX) + D16

In the above, encoding of the R/M field depends on how the mode field is set. If MOD=11
(register to register mode), this R/M identifies the second register operand.

MOD selects memory mode, then R/M indicates how the effective address of the memory operand
isto be calculated. Bytes 3 through 6 of an instruction are optional fields that normally contain the
displacement value of a memory operand and / or the actual value of an immediate constant

operand.

Example1: MOV CH, BL

Thisinstruction transfers 8 bit content of BL

Into CH

The 6 bit Opcode for this instruction is 100010, D bit indicates whether the register specified by
the REG field of byte 2 isa source or destination operand.

D=0 indicates BL is a source operand.

W=0 byte operation

In byte 2, since the second operand is aregister MOD field is 115.
The R/M field = 101 (CH)

Register (REG) field = 011 (BL)

Hence the machine code for MOV CH, BL is

10001000 11011101

Byte 1 Byte2

=88DD16

Example 2 : SUB Bx, (DI)

This instruction subtracts the 16 bit content of memory location addressed by DI and DS from Bx.
The 6 bit Opcode for SUB is 001010..

D=1 so that REG field of byte 2 is the destination operand. W=1 indicates 16 bit operation.

MOD =00

REG =011

R/M =101

The machinecodeis 0010 1011 0001 1101

SIBIT/ECE Department 38



Microprocessor 10EC62

2B1Djs
MOD / R/IM Memory Mode (EA Calculation) Register Mode

00 01 10 Ww=0 |W=1
000 (BX)+(SI) (BX)+(SI)+d8 | (BX)+(SI)+d16 | AL AX Sum
001 (BX) + (DI) (BX)+(DI)+d8 | (BX)+(DI)+d16 | CL CX mar
010 (BP)+(S) (BP)+(SI)+d8 | (BP)+(Sl)+d16 | DL DX y of
011 (BP)+(DI) (BP)+(DI)+d8 | (BP)+(DI)+d16 | BL BX all
100 €)) (S) +d8 (S1) +d16 AH SP Add
101 (DI) (DI) +d8 (DI) + d16 CH BP ress
110 d16 (BP) +d8 (BP) + d16 DH Sl ng
111 (BX) (BX) +d8 (BX) + d16 BH DI Mod
es

Example 3 : Codefor MOV 1234 (BP), DX

Here we have specify DX using REG field, the D bit must be 0, indicating the DX is the source
register. The REG field must be 010 to indicate DX register. The W bit must be 1 to indicateit is
aword operation. 1234 [BP] is specified using MOD value of 10 and R/M value of 110 and a
displacement of 1234H. The 4 byte code for this instruction would be 89 96 34 12H.

Opcode [ D | W MOD | REG | R/M | LB displacement | HB displacement

100010 |0 |1 10 010 110 | 34H 12H

Example 4 : Codefor MOV DS: 2345 [BP], DX

Here we have to specify DX using REG field. The D bit must be o, indicating that Dx is the
source register. The REG field must be 010 to indicate DX register. The w bit must be 1 to
indicate it is a word operation. 2345 [BP] is specified with MOD=10 and R/M = 110 and
displacement = 2345 H.

Whenever BP is used to generate the Effective Address (EA), the default segment would be SS. In
this example, we want the segment register to be DS, we have to provide the segment override
prefix byte (SOP byte) to start with. The SOP byteis 001 SR 110, where SR value is provided as
per table shown below.

SIBIT/ECE Department 39



Microprocessor 10EC62

SR Segment register
00 ES
01 CS
10 SS
11 DS

To specify DS register, the SOP byte would be 001 11 110 = 3E H. Thus the 5 byte code for this
instruction would be 3E 89 96 45 23 H.

SOP |Opcode [D |[W MOD | REG | R/M LB disp. | HD disp.

3EH 100010 | O 1 10 010 | 110 45 23

Suppose we want to code MOV SS: 2345 (BP), DX. This generates only a 4 byte code, without
SOP byte, as SSis aready the default segment register in this case.

UNIVERSITY QUESTIONS & SOLUTIONS
1. Explainthefivetypes of datatransfer instructions with example. [ jan 2008( 10 marks)]
Soln:

MOV SB, MOV SW.
An element of the string specified by the source index (SI) register with respect to the current data

segment (DS) register is moved to the location specified by the destination index (DI) register with
respect to the current extra segment (ES) register.

The move can be performed on a byte (MOV SB) or aword (MOV SW) of data. After the moveis
complete, the contents of both SI & DI are automatically incremented or decremented by 1 for a
byte move and by 2 for aword move. Address pointers Sl and DI increment or decrement depends

on how the direction flag DF is set.

Example : Block move program using the move string instruction

(LOD SB/LOD SW and STO SB/STO SW)

LOD SB: Loads abyte from astring in memory into AL. The addressin Sl is used relative to DS
to determine the address of the memory location of the string element.

(AL) ~ [(DS) + (SI)]

(Sh- (Sh)+1

LOD SW : Theword string element at the physical address derived from DS and Sl is to be loaded
into AX. Sl is automatically incremented by 2.

(AX) ~ [(DS) +(SN)]

SIBIT/ECE Department 40



Microprocessor 10EC62

(Sh- (S)+2
STO SB : Stores a byte from AL into a string location in memory. This time the contents of ES
and DI are used to form the address of the storage location in memory
[(ES) + (D] = (AL)

OnH- Dh+1
STOSW : [(ES)+(DI)] = (AX)
(D)~ (D) +2

2. Explain the based and implied addressing modes of 8086 july 2009( 10 marks)
Soln:

I mplied addr essing mode:

Instruction using this mode have no operands.

Example : CLC which clears carry flag to zero.

SINGLE INDEX DOUBLE INDEX
1 BX BX SHE RN
OR OR OR
BP
Encoded BP DI
inthe OR N ( ) ¢
+
instruction EU
S|
OR
\ b
A\ 4
Explicitin the { <+><— DISPLACEMENT —>G> J
Instruction
—1 cs 0000 N\
-
OR
- DS 0000
Assumed
unless OR
over
] BIU
ridden ! SS 0000 l
by prefix OR
<+>+— ES 0000 +
- Y
L »| PHYSICAL ADDRESS #——

Based addressing mode:

SIBIT/ECE Department 41



Microprocessor 10EC62

CS

PA = DS BX
SS : or + displacement
ES BP

when memory is accessed PA is computed from BX and DS when the stack is accessed PA is
computed from BP and SS.
Example : MOV AL, START [BX]

or

MOV AL, [START + BX]

based mode

EA : [START] +[BX]

PA :[DS] +[EA]

The 8 bit content of this memory location is moved to AL.
3. Draw the internal architecture of the 8086 and explain. Briefly explain the flag register.
July 2009( 10 marks)
Soln:

HMEMORY
INTERFACT

A% 0| :
T |
] |
g NS TRUCTIGN |
STRLAN |
1 BYTE |
- 3 OUELIE ]
? i
1 !
e e L T e )
—_—
|
I |
i |
— CONTFCL |
~| r SYSTEN i
e — — — — —_————— I
H LA |
Bl 3 A-BLE
| gk ] =5
.
~~ - I
AH AL E 'lI I
Ak HL | I
o | & ARITHNETIC !
h D | ot LWGAT LINIT |
& |
Be i | [ |
ET] ] = ,\' )
b : |
[ OFLRANDS 1 i
[ TLAGS | L i
e e i e = L e T T M Ly i et |

SIBIT/ECE Department 42



Microprocessor 10EC62

The block diagram of 8086 is as shown. This can be subdivided into two parts, namely the Bus
Interface Unit and Execution Unit. The Bus Interface Unit consists of segment registers, adder to
generate 20 bit address and instruction prefetch queue.

Once this address is sent out of BIU, the instruction and data bytes are fetched from memory and
they fill aFirst In First Out 6 byte queue.

Execution Unit:

The execution unit consists of scratch pad registers such as 16-bit AX, BX, CX and DX and
pointers like SP (Stack Pointer), BP (Base Pointer) and finally index registers such as source index
and destination index registers. The 16-bit scratch pad registers can be split into two 8-bit registers.
For example, AX can be split into AH and AL registers. The segment registers and their default

offsets are given below.

Segment Register | Default Offset

CS IP (Instruction Pointer)
DS Sl, DI

SS SP, BP

ES DI

The Arithmetic and Logic Unit adjacent to these registers perform all the operations. The results of
these operations can affect the condition flags.
Different registers and their operations are listed below:

Register | Operations

AX Word multiply, Word divide, word I/O

AL Byte Multiply, Byte Divide, Byte I/O, translate, Decimal Arithmetic
AH Byte Multiply, Byte Divide

BX Trandate

CX String Operations, Loops

CL Variable Shift and Rotate

DX Word Multiply, word Divide, Indirect 1/0

SIBIT/ECE Department 43



Microprocessor

8086/8088 M PU MEMORY
IP Instruction Pointer
CS| Code Segment Register >
DS| DataSegment Register Code Segment (64Kb)
SS | Stack Segment Register >
ES| ExtraSegment Register Data Segment (64Kb)
AX AH AL >
BX BE BL Stack Segment (64K b)
CX CE CL >
DX DH oL Extra Segment (64K b)
SP Stack Pointer Register
BP Break Pointer Register
Sl Source Index Register
DI | Destination Index Register
SR Status Register
Generation of 20-bit Physical Address:
4. Explain flag register of 8086.  July 2009 (2009)

Soln:
8086 flag register for mat

SIBIT/ECE Department

10EC62

00000046

FFFFF6



Microprocessor 10EC62

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
U u | U U|O |DF|IF|TF|SF|ZF| U |AF| U |PF|U |CF

A Ar A Ar A A} A A A

~

U= UNDEFINED @)

(b)

(c)

(d)

(€)
("

()
(h)
()

() : CARRY FLAG - SET BY CARRY OUT OF MSB

(k) : PARITY FLAG - SET IF RESULT HAS EVEN PARITY

(1) : AUXILIARY CARRY FLAG FOR BCD

(m): ZERO FLAG - SET IFRESULT =0

(n) : SIGN FLAG =MSB OF RESULT

(0) : SINGLE STEP TRAP FLAG

(p) : INTERRUPT ENABLE FLAG

(q) : STRING DIRECTION FLAG

(r) : OVERFLOW FLAG
There are three internal buses, namely A bus, B bus and C bus, which interconnect the various
blocks inside 8086.
The execution of instruction in 8086 is as follows:
The microprocessor unit (MPU) sends out a 20-bit physical address to the memory and fetches the
first instruction of a program from the memory. Subsequent addresses are sent out and the queueis
filled upto 6 bytes. The instructions are decoded and further data (if necessary) are fetched from
memory. After the execution of the instruction, the results may go back to memory or to the output
peripheral devices as the case may be.

Machine language:

SIBIT/ECE Department 45



Microprocessor 10EC62

Recommended questions

1. Describe the physical addresses generated in 8086.

2. Explain the five types of string instructions with example.

3. Explain the direct and register addressing modes of 8086.

4. Draw the internal architecture of the 8086 and explain. Briefly explain the flag register.

5. Explain flag register of 8086.
6. Explain the instruction format of 8086.

7. What are addressing modes? Mention and Explain the various types of addressing modes.

SIBIT/ECE Department

46



Microprocessor 10EC62

UNIT: 2

INSTRUCTION SET OF 8086: Assembler instruction format, data transfer and arithmetic,
branch type, loop, NOP & HALT, flag manipulation, logical and shift and rotate instructions.

[llustration of these instructions with example programs, Directives and operators

TEXT BOOKS:

1. Microcomputer systems-The 8086 / 8088 Family — Y.C. Liu and G. A. Gibson, 2E PHI -
2003

2. TheIntel Microprocessor, Architecture, Programming and Interfacing-Barry B. Brey,
6e, Pearson Education / PHI, 2003

| nstruction Set

We only cover the small subset of the 8088 instruction set that is essential. In particular, we will
not mention various registers, addressing modes and instructions that could often provide faster
ways of doing things.A summary of the 80x86 protected-mode instruction set is available on the
course Web page and should be printed out if you don’t have another reference.

Data Transfer
The MOV instruction is used to transfer 8 and 16-bit data to and from registers. Either the source

or destination has to be a register. The other operand can come from another register, from
memory, from immediate data (a value included in the instruction) or from a memory location
“pointed at” by register BX.

For example, if COUNT is the label of a memory location the following are possible assembly-
language instructions: ;

register: move contents of BX to AX

MOV AX,BX ; direct: move contents of AX to memory

MOV COUNT,AX ; immediate: load CX with the value 240

MOV CX,0FOH; memory: load CX with the value at

; address 240

MOV CX,[0F0H]; register indirect: move contents of AL

; to memory location in BX

MOV [BX],AL

Most 80x86 assemblers keep track of the type of each symbol and require a type “override” when
thesymbol is used in a different way. The OFFSET operator to convert a memory reference to a
16-bit value.

SIBIT/ECE Department 47



Microprocessor 10EC62

For example:

MOV BX,COUNT ; load the value at location COUNT

MOV BX,0FFSET COUNT ; load the offset of COUNT

16-hit registers can be pushed (the SP is first decremented by two and then the value stored at SP)
or popped (the value is restored from the memory at SP and then SP is incremented by 2). For
example:

PUSH AX ; push contents of AX

POP BX ; restoreinto BX

Arithmetic instruction:

Arithmetic/Logic

Arithmetic and logic instructions can be performed on byte and 16-bit values. The first operand
has to be aregister and the result is stored in that register.
; increment BX by 4

ADD BX 4

; subtract 1 from AL

SUB AL,1

; increment BX

INC BX

; compare (subtract and set flags

; but without storing result)

CMP AX,[MAX]

; mask in LS 4 bitsof AL

AND AL,0OFH

; divide AX by two

SHR AX

; set MS bit of CX

OR CX,8000H

; Clear AX

XOR AX,AX

The LOOP Instruction

This instruction decrements the cx register and then branches to the target location if the cx

register does not contain zero. Since this instruction decrements cx then checks for zero, if cx

SIBIT/ECE Department 48



Microprocessor 10EC62

originally contained zero, any loop you create using the loop instruction will repeat 65,536 times.
If you do not want to execute the loop when cx contains zero, use jcxz to skip over the loop. There
IS no “opposite” form of the loop instruction, and like the jcxz/jecxz instructions the range is
limited to £128 bytes on all processors. If you want to extend the range of this instruction, you will
need to break it down into discrete components:
; “loop Ibl” becomes:
dec cx

jnelbl
There is no eoop instruction that decrements ecx and branches if not zero (there is a loope
instruction, but it does something else entirely). The reason is quite simple. As of the 80386,
Intel’s designers stopped wholeheartedly supporting the loop instruction. Oh, it’s there to ensure
compatibility with older code, but it turns out that the dec/jne instructions are actually faster on the
32 bit processors. Problems in the decoding of the instruction and the operation of the pipeline are
responsible for this strange turn of events. Although the loop instruction’s name suggests that you
would normally create loops with it, keep in mind that all it isreally doing is decrementing cx and
branching to the target address if cx does not contain zero after the decrement. You can use this
instruction anywhere you want to decrement cx and then check for a zero result, not just when
creating loops. Nonetheless, it isavery convenient instruction to useif you simply want to repeat a
sequence of instructions some number of times. For example, the following loop initializes a 256
element array of bytesto thevalues 1, 2, 3, ...

mov ecx, 255

ArrayLp: mov Array[ecx], cl

loop ArrayLp

mov Array[0], O
The last instruction is necessary because the loop does not repeat when cx is zero. Therefore,
the last element of the array that this loop processesis Array[1], hence the last instruction.
The loop instruction does not affect any flags.
The LOOPE/LOOPZ Instruction
Loope/loopz (loop while equal/zero, they are synonyms for one another) will branch to
the target address if cx is not zero and the zero flag is set. Thisinstruction is quite useful
The 80x86 Instruction Set after cmp or cmps instruction, and is marginally faster than the
comparable 80386/486 instructions if you use all the features of this instruction. However, this

instruction plays havoc with the pipeline and superscalar operation of the Pentium so you’re

SIBIT/ECE Department 49



Microprocessor 10EC62

probably better off sticking with discrete instructions rather than using this instruction. This
instruction does the following:

cx:=cx-1

if ZeroFlag = 1 and cx * 0, goto target The loope instruction falls through on one of two conditions.
Either the zero flag is clear or the instruction decremented cx to zero. By testing the zero flag after
the loop instruction (with a je or jne instruction, for example), you can determine the cause of
termination. This instruction is useful if you need to repeat a loop while some value is equa to
another, but there is a maximum number of iterations you want to alow. For example, the
following loop scans through an array looking for the first non-zero byte, but it does not scan

beyond the end of the array:

mov cx, 16 ;Max 16 array elements.

mov bx, -1 ;Index into the array (note next inc).
SearchLp: inc bx ;Move on to next array element.
cmp Array[bx], 0 ;Seeif thiselement is zero.
loope SearchLp ;Repest if itis.

je AllZero ;Jump if all elements were zero.

Note that this instruction is not the opposite of loopnz/loopne. If you need to extend this jump
beyond +£128 bytes, you will need to synthesize this instruction using discrete instructions. For
example, if loope target is out of range, you would need to use an instruction sequence like the
following:

jne quit

dec cx

je Quit2

jmp Target

quit: dec cx ;loope decrements cx, even if ZF=0.

quit2:
The loope/loopz instruction does not affect any flags.

The LOOPNE/LOOPNZ Instruction

Thisinstruction is just like the loope/l oopz instruction in the previous section except |oopne/loopnz
(loop while not equal/not zero) repeats while cx is not zero and the zero flag is clear. The
algorithmis

SIBIT/ECE Department 50



Microprocessor 10EC62
cx:=cx-1
if ZeroFlag = 0 and cx 1 O, goto target
Y ou can determine if the loopne instruction terminated because cx was zero or if the zero flag was
set by testing the zero flag immediately after the loopne instruction. If the zero flag is clear at that
point, the loopne instruction fell through because it decremented cx to zero. Otherwise it fell
through because the zero flag was set.
Thisinstruction is not the opposite of loope/loopz. If the target addressis out of range,
you will need to use an instruction sequence like the following:
jequit
dec cx
je Quit2
jmp Target
quit: dec cx ;loopne decrements cx, even if ZF=1.
quit2:
You can use the loopne instruction to repeat some maximum number of times while waiting for
some other condition to be true. For example, you could scan through an array until you exhaust
the number of array elements or until you find a certain byte using a loop like the following:
mov cX, 16 ;Maximum # of array elements.
mov bx, -1 ;Index into array.
LoopWhINotO: inc bx ;Move on to next array element.
cmp Array[bx],0 ;Does this element contain zero?
loopne LoopWhINotO ;Quit if it does, or more than 16 bytes.
Although the loope/loopz and loopne/loopnz instructions are slower than the individual instruction
from which they could be synthesized, there is one main use for these instruction forms where
speed is rarely important; indeed, being faster would make them less useful — timeout |oops during
I/O operations. Suppose bit #7 of input port 379h contains a one if the device is busy and contains
azero if the deviceis not busy. If you want to output
datato the port, you could use code like the following:
mov dx, 379h
WaitNotBusy: in a, dx ;Get port
test a, 80h ;Seeif bit #7 isone
jne WaitNotBusy ;Wait for “not busy”
The only problem with this loop is that it is conceivable that it would loop forever. In a red

system, a cable could come unplugged, someone could shut off the peripheral device, and any

SIBIT/ECE Department 51



Microprocessor 10EC62

number of other things could go wrong that would hang up the system.Robust programs usually
apply atimeout to aloop like this. If the device fails to become busy within some specified amount
of time, then the loop exits and raises an error condition. The following code will accomplish this:

mov dx, 379h ;Input port address

mov cX, 0 ;Loop 65,536 times and then quit.

WaitNotBusy: in a, dx ;Get data at port.

test a, 80h ;Seeif busy

loopne WaitNotBusy ;Repeat if busy and no time out.

jne TimedOut ;Branch if CX=0 because we timed out.
Y ou could use the loope/loopz instruction if the bit were zero rather than one.

The loopne/l oopnz instruction does not affect any flags.

L ogical, Shift, Rotate and Bit I nstructions

The 80x86 family providesfive logical instructions, four rotate instructions, and three

shift instructions. The logical instructions are and, or, xor, test, and not; the rotates are ror,

rol, rcr, and rcl; the shift instructions are shi/sal, shr, and sar. The 80386 and later processors
provide an even richer set of operations. These are bt, bts, btr, btc, bsf, bsr, shid, shrd, and
theconditional set instructions (setcc). These instructions can manipulate bits, convert values, do
logical operations, pack and unpack data, and do arithmetic operations. The following sections

describe each of these instructions in detail .

TheLogical Instructions. AND, OR, XOR, and NOT

The 80x86 logical instructions operate on a bit-by-bit basis. Both eight, sixteen, and thirty-two bit
versions of each instruction exist. The and, not, or, and xor instructions do the following:
and dest, source ;dest := dest and source

or dest, source ;dest := dest or source

xor dest, source ;dest := dest xor source

not dest ;dest := not dest

The specific variations are

and reg, reg

and mem, reg

and reg, mem

and reg, immediate data

and mem, immediate data

SIBIT/ECE Department 52



Microprocessor 10EC62

and eax/ax/al, immediate data

or uses the same formats as AND

xor uses the same formats as AND

not register

not mem

Except not, these instructions affect the flags as follows:

* They clear the carry flag.

* They clear the overflow flag.

* They set the zero flag if the result is zero, they clear it otherwise.

* They copy the H.O. bit of the result into the sign flag.

* They set the parity flag according to the parity (number of one bits) in the

result.

» They scramble the auxiliary carry flag. The not instruction does not affect any flags. Testing the
zero flag after these instructions is particularly useful. The and instruction sets the zero flag if the
two operands do not have any ones in corresponding bit positions (since this would produce a zero
result); for example, if the source operand contained a single one bit, then the zero flag will be set
if the corresponding destination bit is zero, itwill be one otherwise. The or instruction will only set
the zero flag if both operands contain zero. The xor instruction will set the zero flag only if both
operands are equal. Noticethat the xor operation will produce a zero result if and only if the two
operands are equal. Many programmers commonly use this fact to clear a sixteen bit register to
zero since an instruction of the form

Xor regl6, regl6 is shorter than the comparable mov reg,0 instruction. Like the addition and
subtraction instructions, the and, or, and xor instructions provide specia forms involving the
accumulator register and immediate data. These forms are shorter and sometimes faster than the
general “register, immediate” forms. Although one does not normally think of operating on signed
data with these instructions, the 80x86 does provide a special form of the “reg/mem, immediate”
instructions that sign extend a value in the range -128..+127 to sixteen or thirty-two bits, as
necessary.The instruction’s operands must all be the same size. On pre-80386 processors theycan
be eight or sixteen bits. On 80386 and later processors, they may be 32 bits long as well. These
instructions compute the obvious bitwise logical operation on their operands, Y ou can use the and
instruction to set selected bits to zero in the destination operand. This is known as masking out
data; see for more details. Likewise, you can use the or instruction to force certain bits to onein the
destination operand; see “Masking Operations

with the OR Instruction” on page 491 for the details. You can use these instructions,

SIBIT/ECE Department 53



Microprocessor 10EC62

along with the shift and rotate instructions described next, to pack and unpack data.

The Shift Instructions: SHL/SAL, SHR, SAR, SHLD, and SHRD

The 80x86 supports three different shift instructions (shl and sal are the same instruction): shl
(shift left), sal (shift arithmetic left), shr (shift right), and sar (shift arithmetic right). The 80386
and later processors provide two additional shifts: shid and shrd. The shift instructions move bits
around in aregister or memory location. The general format for a shift instruction is

shl dest, count

sal dest, count

shr dest, count

sar dest, count

Dest is the value to shift and count specifies the number of bit positions to shift. For example, the
shl instruction shifts the bits in the destination operand to the left the number of bit positions
specified by the count operand. The shld and shrd instructions use the format:

shld dest, source, count

shrd dest, source, count

The specific forms for these instructions are

shlreg, 1

shl mem, 1

shl reg, imm (2)

shl mem, imm (2)

shl reg, cl

shl mem, cl

sal isasynonym for shl and uses the same formats.

shr uses the same formats as shl.

sar uses the same formats as shl.

shld reg, reg, imm (3)

shld mem, reg, imm (3)

shid reg, reg, cl (3)

shld mem, reg, cl (3)

shrd uses the same formats as shid.

2- Thisform is available on 80286 and later processors only.

3- Thisform is available on 80386 and later processors only.

SIBIT/ECE Department 54



Microprocessor 10EC62

For 8088 and 8086 CPUs, the number of bits to shift is either “1” or the value in cl. On 80286 and
later processors you can use an eight bit immediate constant. Of course, the value in cl or the
immediate constant should be less than or equal to the number of bits in the destination operand. It
would be a waste of time to shift left a by nine bits (eight would produce the same result, as you
will soon see). Algorithmically, you can think of the shift operations with a count other than one as
follows:

for temp := 1 to count do

shift dest, 1

There are minor differences in the way the shift instructions treat the overflow flag when the count
is not one, but you can ignore this most of the time. The shl, sal, shr, and sar instructions work on
eight, sixteen, and thirty-two bit operands. The shld and shrd instructions work on 16 and 32 bit
destination operands only.

SHL/SAL

The shl and sal mnemonics are synonyms. They represent the same instruction and
useidentical binary encodings. These instructions move each bit in the destination operand
one bit position to the left the number of times specified by the count operand. Zeros

fill vacated positions at the L.O. bit; the H.O. bit shiftsinto the carry flag (see Figure 6.2).
The shl/sal instruction sets the condition code bits as follows:

« If the shift count is zero, the shl instruction doesn’t affect any flags.

* The carry flag contains the last bit shifted out of the H.O. bit of the operand.

* The overflow flag will contain one if the two H.O. bits were different

prior to asingle bit shift. The overflow flag is undefined if the shift count

IS not one.

* The zero flag will be oneif the shift produces a zero resullt.

* The sign flag will contain the H.O. bit of the result.

* The parity flag will contain one if there are an even number of one bits in

the L.O. byte of the result.

* The A flag is always undefined after the shi/sal instruction.

The shift left instruction is especially useful for packing data. For example, suppose you have two
nibblesin a and ah that you want to combine. Y ou could use the following

codeto do this:

shl ah, 4 ;Thisform requires an 80286 or later

or a, ah ;Mergein H.O. four bits.

SIBIT/ECE Department 55



Microprocessor 10EC62

Of course, al must contain avalue in the range 0..F for this code to work properly (the shift

left operation automatically clears the L.O. four bits of ah before the or instruction). If the H.O.
four bits of al are not zero before this operation, you can easily clear them with an and instruction:
shl ah, 4 ;Move L.O. bitsto H.O. position.

and al, OFh ;Clear H.O. four bits.

or a, ah ;Merge the bits.

Since shifting an integer value to the left one position is equivalent to multiplying that value by
two, you can also use the shift left instruction for multiplication by powers of two:

shl ax, 1 ;Equivalent to AX*2

shl ax, 2 ;Equivalent to AX*4

shl ax, 3 ;Equivalent to AX*8

shl ax, 4 ;Equivalent to AX*16

shl ax, 5 ;Equivliaent to AX*32

shl ax, 6 ;Equivalent to AX*64

shl ax, 7 ;Equivalent to AX*128

shl ax, 8 ;Equivalent to AX* 256

efc.

Note that shl ax, 8 is equivalent to the following two instructions:

mov ah, a

mov al, 0

The shi/sal instruction multiplies both signed and unsigned values by two for each shift. This
instruction sets the carry flag if the result does not fit in the destination operand (i.e., unsigned
overflow occurs). Likewise, this instruction sets the overflow flag if the signed result does not fit
in the destination operation. This occurs when you shift a zero into the H.O. bit of a negative
number or you shift aoneinto the H.O. bit of a non-negative number.

SAR

The sar instruction shifts al the bits in the destination operand to the right one bit, replicating the
H.O. bit (see Figure 6.3). The sar instruction sets the flag bits as follows:

« If the shift count is zero, the sar instruction doesn’t affect any flags.

* The carry flag contains the last bit shifted out of the L.O. bit of the operand.

* The overflow flag will contain zero if the shift count is one. Overflow can

never occur with thisinstruction. However, if the count is not one, the

value of the overflow flag is undefined.

* The zero flag will be one if the shift produces a zero result.

SIBIT/ECE Department 56



Microprocessor 10EC62

* The sign flag will contain the H.O. bit of the result.

* The parity flag will contain one if there are an even number of one bits in

the L.O. byte of the result.

* The auxiliary carry flag is always undefined after the sar instruction.

The sar instruction’s main purpose is to perform a signed division by some power of two. Each
shift to the right divides the value by two. Multiple right shifts divide the previous shifted result by
two, so multiple shifts produce the following results:

sar ax, 1 ;Signed division by 2

sar ax, 2 ;Signed division by 4

sar ax, 3 ;Signed division by 8

sar ax, 4 ;Signed division by 16

sar ax, 5 ;Signed division by 32

sar ax, 6 ;Signed division by 64

sar ax, 7 ;Signed division by 128

sar ax, 8 ;Signed division by 256

There is a very important difference between the sar and idiv instructions. The idiv instruction
always truncates towards zero while sar truncates results toward the smaller result. For positive
results, an arithmetic shift right by one position produces the same result as an integer division by
two. However, if the quotient is negative, idiv truncates towards zero while sar truncates towards
negative infinity. The following examples demonstrate the difference:

mov ax, -15

cwd

mov bx, 2

idiv ;Produces -7

mov ax, -15

sar ax, 1 ;Produces -8

Keep thisin mind if you use sar for integer division operations.

The sar ax, 8 instruction effectively copies ah into a and then sign extends a into ax. Thisis
because sar ax, 8 will shift ah down into a but leave a copy of ah’s H.O. bit in all the bit positions
of ah. Indeed, you can use the sar instruction on 80286 and later processors to sign extend one
register into another. The following code sequences provide examples of this usage:

; Equivalent to CBW:

mov ah, a

sar ah, 7

SIBIT/ECE Department 57



Microprocessor 10EC62

; Equivalent to CWD:

mov dx, ax

sar dx, 15

; Equivalent to CDQ:

mov edx, eax

sar edx, 31

it may seem silly to use two instructions where a single instruction might suffice; however, the
cbw, cwd, and cdq instructions only sign extend a into ax, ax into dx:ax, and eax into edx:eax.
Likewise, the movsx instruction copies its sign extended operand into a destination operand twice
the size of the source operand. The sar instruction lets you sign extend one register into another
register of the same size, with the second register containing the sign extension bits:

; Sign extend bx into cx:bx

mov cX, bx

sar cx, 15

SHR

The shr instruction shifts al the bits in the destination operand to the right one bit shifting a zero
into the H.O. bit (see Figure 6.4).

The shr instruction sets the flag bits as follows:

* If the shift count is zero, the shr instruction doesn’t affect any flags.

* The carry flag contains the last bit shifted out of the L.O. bit of the operand.

* If the shift count is one, the overflow flag will contain the value of the

H.O. bit of the operand prior to the shift (i.e., thisinstruction sets the

overflow flag if the sign changes). However, if the count is not one, the

value of the overflow flag is undefined.

* The zero flag will be one if the shift produces a zero resullt.

* The sign flag will contain the H.O. bit of the result, which is always zero.

* The parity flag will contain one if there are an even number of one bits in

the L.O. byte of the result.

* The auxiliary carry flag is always undefined after the shr instruction.

The shift right instruction is especially useful for unpacking data. For example, suppose you want
to extract the two nibbles in the a register, leaving the H.O. nibble in ah and the L.O. nibblein al.
Y ou could use the following code to do this:

mov ah, a ;Get a copy of the H.O. nibble

shr ah, 4 ;MoveH.O. to L.O. and clear H.O. nibble

SIBIT/ECE Department 58



Microprocessor 10EC62

and al, OFh ;Remove H.O. nibble from &

Since shifting an unsigned integer value to the right one position is equivalent to

dividing that value by two, you can also use the shift right instruction for division by powers of
two:

shr ax, 1 ;Equivaent to AX/2

shr ax, 2 ;Equivalent to AX/4

shr ax, 3 ;Equivalent to AX/8

shr ax, 4 ;Equivalent to AX/16

shr ax, 5 ;Equivlaent to AX/32

shr ax, 6 ;Equivalent to AX/64

shr ax, 7 ;Equivalent to AX/128

shr ax, 8 ;Equivalent to AX/256

efc.

Note that shr ax, 8 is equivalent to the following two instructions:

mov a, ah

mov ah, 0

Remember that division by two using shr only works for unsigned operands. If ax contains -1 and
you execute shr ax, 1 the result in ax will be 32767 (7FFFh), not -1 or zero as you would expect.

Use the sar instruction if you need to divide a signed integer by some power of two.

The SHLD and SHRD Instructions

The shld and shrd instructions provide double precision shift left and right operations, respectively.
These instructions are available only on 80386 and later processors. Their generic forms are

shld operandl, operand2, immediate

shld operandl, operand2, cl

shrd operandl, operand2, immediate

shrd operandl, operand2, cl

Operand2 must be a sixteen or thirty-two bit register. Operandl can be a register or a memory
location. Both operands must be the same size. The immediate operand can be a value in the range
zero through n-1, where n is the number of bits in the two operands; it specifies the number of bits
to shift. The shld instruction shifts bits in operandl to the left. The H.O. bit shifts into the carry
flag and the H.O. bit of operand2 shiftsinto the L.O. bit of perandl. Note that this instruction does
not modify the value of operand2, it uses a temporary copy of operand2 during the shift. The
immediate operand specifies the number of bits to shift. If the count is n, then shid shifts bit n-1

SIBIT/ECE Department 59



Microprocessor 10EC62

into the carry flag. It also shifts the H.O. n bits of operand2 into the L.O. n bits of operandl.

Pictoriadly, the shld instruction appears in Figure 6.5.The shid instruction sets the flag bits as

follows:

« If the shift count is zero, the shld instruction doesn’t affect any flags.

* The carry flag contains the last bit shifted out of the H.O. bit of the

operandl.

* If the shift count is one, the overflow flag will contain one if the sign bit of
operandl changes during the shift. If the count is not one, the overflow

flag is undefined.

* The zero flag will be one if the shift produces a zero result.

* The sign flag will contain the H.O. bit of the result.

The shid instruction is useful for packing data from many different sources. For example,
suppose you want to create aword by merging the H.O. nibbles of four other words.
Y ou could do this with the following code:

mov ax, Vaued ;Get H.O. nibble

shld bx, ax, 4 ;Copy H.O. bits of AX to BX.

mov ax, Value3 ;Get nibble #2.

shld bx, ax, 4 ;Merge into bx.

mov ax, Value2 ;Get nibble #1.

shld bx, ax, 4 ;Merge into bx.

mov ax, Vauel ;Get L.O. nibble

shld bx, ax, 4 ;:BX now contains al four nibbles.

The shrd instruction is similar to shld except, of courseg, it shiftsits bits right rather than left.

Double Precision Shift Right Operation

The shrd instruction sets the flag bits as follows:

* If the shift count is zero, the shrd instruction doesn’t affect any flags.

* The carry flag contains the last bit shifted out of the L.O. bit of the
operandl.

* If the shift count is one, the overflow flag will contain oneif the H.O. bit

of operandl changes. If the count is not one, the overflow flag is undefined.

* The zero flag will be one if the shift produces a zero result.

* The sign flag will contain the H.O. bit of the result.

Quite frankly, these two instructions would probably be slightly more useful if

SIBIT/ECE Department

60



Microprocessor 10EC62

Operand2 could be a memory location. Intel designed these instructions to alow fast
multiprecision
(64 bits, or more) shifts. For more information on such usage, see “Extended
Precision Shift Operations” on page 482.
The shrd instruction is marginally more useful than shid for packing data. For example, suppose
that ax contains a value in the range 0..99 representing a year (1900..1999), bx contains avalue in
the range 1..31 representing a day, and cx contains a value in the range 1..12 representing a month
(see “Bit Fields and Packed Data” on page 28). You can easily use the shrd instruction to pack this
datainto dx asfollows:
shrd dx, ax, 7
shrd dx, bx, 5
shrd dx, cx, 4
The Rotate Instructions: RCL, RCR, ROL, and ROR
The rotate instructions shift the bits around, just like the shift instructions, except the bits shifted
out of the operand by the rotate instructions recirculate through the operand. They include rcl
(rotate through carry left), rcr (rotate through carry right), rol (rotate left), and ror (rotate right).
These instructions al take the forms:
Figure 6.7 Packing Data with an SHRD Instruction
1514131211109876543210
YYYYYYY
After SHRD DX, AX, 7 Instruction
1514131211109876543210

YYYYYYY
After SHRD DX, BX, 5 Instruction
1514131211109876543210

MMMM YYYYYYY
After SHRD DX, CX, 4 Instruction

rcl dest, count

rol dest, count

rcr dest, count

ror dest, count

The specific forms are
rcl reg, 1

rcl mem, 1

SIBIT/ECE Department 61



Microprocessor 10EC62

rcl reg, imm (2)

rcl mem, imm (2)

rcl reg, cl

rcl mem, cl

rol uses the same formats asrcl.

rcr uses the same formats asrcl.

ror uses the same formats asrcl.

2- Thisform is aviaable on 80286 and later processors only.

RCL

Thercl (rotate through carry left), asits name implies, rotates bits to the left, through

the carry flag, and back into bit zero on the right (see Figure 6.8).

Note that if you rotate through carry an object n+1 times, where n is the number of bits in the
object, you wind up with your original value. Keep in mind, however, that some flags may contain
different values after n+1 rcl operations.

Thercl instruction sets the flag bits as follows:

* The carry flag contains the last bit shifted out of the H.O. bit of the operand.

« If the shift count is one, rcl sets the overflow flag if the sign changes as a

result of the rotate. If the count is not one, the overflow flag is undefined.

* The rcl instruction does not modify the zero, sign, parity, or auxiliary

carry flags.

Important warning: unlike the shift instructions, the rotate instructions do not affect the sign,
zero, parity, or auxiliary carry flags. This lack of orthogonality can cause you lots of grief if you
forget it and attempt to test these flags after an rcl operation. If you need to test one of these flags
after an rcl operation, test the carry and overflow flags first (if necessary) then compare the result
to zero to set the other flags.

RCR

The rcr (rotate through carry right) instruction is the complement to the rcl instruction. It shiftsits
bits right through the carry flag and back into the H.O. bit (see Figure 6.9).This instruction sets the
flagsin a manner analogousto rcl:

* The carry flag contains the last bit shifted out of the L.O. bit of the operand.

* If the shift count is one, then rcr sets the overflow flag if the sign changes

(meaning the values of the H.O. bit and carry flag were not the same

before the execution of the instruction). However, if the count is not one,

the value of the overflow flag is undefined.

SIBIT/ECE Department 62



Microprocessor 10EC62

* The rcr instruction does not affect the zero, sign, parity, or auxiliary carry

flags.

ROL

The rol instruction is similar to the rcl instruction in that it rotates its operand to the left the
specified number of bits. The major difference is that rol shifts its operand’s H.O. bit,rather than
the carry, into bit zero. Rol also copies the output of the H.O. bit into the carry flag (see Figure
6.10).The rol instruction sets the flags identically to rcl. Other than the source of the value shifted
into bit zero, this instruction behaves exactly like the rcl instruction Like shl, the rol instruction is
often useful for packing and unpacking data. For example,

suppose you want to extract bits 10..14 in ax and leave these bits in bits 0..4. The following

code sequences will both accomplish this:

shr ax, 10

and ax, 1Fh

rol ax, 6

and ax, 1Fh

ROR

The ror instruction relates to the rcr instruction in much the same way that the rol instruction
relates to rcl. That is, it is amost the same operation other than the source of the input bit to the
operand. Rather than shifting the previous carry flag into the H.O. bit of the destination operation,
ror shifts bit zero into the H.O. bit (see Figure 6.11).

Segment Over Ride Prefix

SOP is used when a particular offset register is not used with its default base segment register, but with a
different base register. Thisis abyte put before the OPCODE byte.

0 0 1 S R 1 1 0

SR | Segment Register
00 |ES
01 |Cs
10 |Ss
11 DS

Here SR is the new base register. To use DS as the new register 3EH should be prefix.

SIBIT/ECE Department 63



Microprocessor

Operand Register Default | With over ride prefix
IP (Code address) Cs Never

SP(Stack address) SS Never

BP(Stack Address) SS BP+DSor ESor CS
Sl or DI(not including Strings) DS ES, SSor CS

Sl (Implicit source Address for | DS 7

strings)

DI (Implicit Destination Address | ES Never

for strings)

Examples: MOV AX, DS; [BP], LODSES: DATA1

S, S; Indications

0 0 Alternate data
0 1 Stack

1 0 Code or none
1 1 Data

BusHigh Enable/ Status

HE | Ao | Indications

Whole word

Lower byte from or to even address

l—‘l—‘OOm

none

0
1 Upper byte from or to odd address
0
1

Segmentation:

The 8086 microprocessor has 20 bit address pins. These are capable of addressing 2% = IMega

Byte memory.

To generate this 20 bit physical address from 2 sixteen bit registers, the following procedure is
adopted. The 20 bit address is generated from two 16-bit registers. The first 16-bit register is called
the segment base register. These are code segment registers to hold programs, data segment
register to keep data, stack segment register for stack operations and extra segment register to keep
strings of data. The contents of the segment registers are shifted left four times with zeroes (0°s)
filling on the right hand side. Thisis similar to multiplying four hex numbers by the base 16. This

multiplication process takes place in the adder and thus a 20 bit number is generated. Thisis called

10EC62

the base address. To this a 16-bit offset is added to generate the 20-bit physical address.

SIBIT/ECE Department



Microprocessor 10EC62

Segmentation helps in the following way. The program is stored in code segment area. The datais
stored in data segment area. In many cases the program is optimized and kept unatered for the
specific application. Normally the data is variable. So in order to test the program with a different
set of data, one need not change the program but only have to alter the data. Same is the case with

stack and extra segments also, which are only different type of data storage facilities.

Generaly, the program does not know the exact physical address of an instruction. The assembler,
a software which converts the Assembly Language Program (MOV, ADD etc.) into machine code
(3EH, 4CH etc) takes care of address generation and location.

DIRECTIVES AND OPERATOR
Assembler: is a program that accepts an assembly language program as input and converts it
into an object module and prepares for |oading the program into memory for execution.
Loader (linker) further converts the object module prepared by the assembler into executable
form, by linking it with other object modules and library modules.
The fina executable map of the assembly language program is prepared by the loader at the
time of loading into the primary memory for actual execution.
The assembler prepares the relocation and linkages information (subroutine, ISR) for loader.
The operating system that actually has the control of the memory, which is to be allotted to the
program for execution, passes the memory address at which the program is to be loaded for
execution and the map of the available memory to the loader.

Based on this information and the information generated by the assembler, the loader generates
an executable map of the program and further physically |0ads it into the memory and transfers

control to for execution.

Thus the basic task of an assembler is to generate the object module and prepare the loading

and linking information.

Procedurefor assembling a program

Assembling a program proceeds statement by statement sequentially.

SIBIT/ECE Department 65



Microprocessor 10EC62

The first phase of assembling is to analyze the program to be converted. This phase is called
Passl defines and records the symbols, pseudo operands and directives. It also analyses the
segments used by the program types and labels and their memory requirements.

The second phase |ooks for the addresses and data assigned to the labels. It aso finds out codes
of the instructions from the instruction machine, code database and the program data.

It processes the pseudo operands and directives.

It is the task of the assembler designer to select the suitable strings for using them as directives,

pseudo operands or reserved words and decides syntax.

Directives

Also called as pseudo operations that control the assembly process.
They indicate how an operand or section of a program to be processed by the assembler.

They generate and store information in the memory.

Assembler M emory models

Each model defines the way that a program is stored in the memory system.
Tiny: datafits into one segment written in .COM format
Small: has two segments data and memory.

There are several other model's too.

Directivefor string data in a memory segment

DB  define byte
DW  defineword
DD define double word
DQ  define 10 bytes
Example
Datal DB 10H,11H,12H
Data2 DW  1234H

SEGMENT: statement to indicate the start of the program and its symbolic name.
Example

SIBIT/ECE Department 66



Microprocessor 10EC62

Name SEGMENT

Variable name DB .......
Variable name DW ...
Name ENDS

Data SEGMENT

Datal DB ...
Data2 DW ...
Data ENDS

Code SEGMENT
START: MOV AX,BX

Code ENDS

Similarly the stack segment is also declared.

For small models
.DATA

ENDS

The ENDS directive indicates the end of the segment.
Memory is reserved for use in the future by using a ?_as an operand for DB DW or DD
directive. The assembler sets aside a location and does not initialize it to any specific value
(usually stores a zero). The DUP (duplicate) directive creates an array and stores a zero.

- Example
Datal DB  5DUP(?)
This reserves 5 bytes of memory for a array datal and initializes each
location with 05H

SIBIT/ECE Department 67



Microprocessor 10EC62

ALIGN: memory array is stored in word boundaries.
Example

ALIGN 2 means storing from an even address

AddressO XX
Address1 YY
Address2 XX

The data XX is aigned to the even address.
ASSUME, EQU, ORG
ASSUME tells the assembler what names have been chosen for Code, Data Extra and Stack
segments. Informs the assembler that the register CS is to be initialized with the address
alotted by the loader to the label CODE and DS is similarly initialized with the address of
label DATA.
Example

ASSUME CS: Name of code segment

ASSUME DS: Name of the data segment

ASSUME CS: Codel, DS: Datal

EQU: Equates a numeric, ASCII(American Standard Code for Information Interchange) or
label to another label.
Example
Data SEGMENT
Numl EQU 50H
Num2 EQU 66H
DataENDS

Numeric value 50H and 66H are assigned to Num1 and Num2

ORG: Changes the starting offset address of the datain the data segment
Example

ORG 100H
100 datal DB  10H

SIBIT/ECE Department 68



Microprocessor 10EC62

it can be used for code too.
PROC & ENDP: indicate the start and end of the procedure. They require a label to indicate
the name of the procedure.
NEAR: the procedure resides in the same code segment. (Local)
FAR: resides at any location in the memory.
Example
Add PROC NEAR
ADD AX,BX
MOV CX,AX
RET
Add ENDP

PROC directive stores the contents of the register in the stack.
EXTRN, PUBLIC informs the assembler that the names of procedures and labels declared after
this directive have been already defined in some other assembly language modules.
Example
If you want to call a Factoria procedure of Modulel from Module2 it must
be declared as PUBLIC in Modulel.

Example

A sample for full segment definition

Data SEGMENT
Numl DB 10H
Num2 DB 20H
Num3 EQU 30H

Data ENDS

ASSUME CS:Code,DS:Data
Code SEGMENT
START: MOV AX,Data
MOV DSAX
MOV AX,Numl
MOV CX,Numz2

SIBIT/ECE Department 69



Microprocessor

10EC62

ADD AX,CX

Code ENDS

Example

A sample for small model

.MODEL SMALL

.Data
Numl DB
Num2 DB
Num3 EQU

.Code
HERE: MOV
MOV
MOV
MOV
ADD

10H
20H
30H

AX,@Data
DS AX
AX,Numl
CX,Num2
AX,CX

UNIVERSITY QUESTIONS & SOLUTIONS

1. Explain the assembler directives used in 8086:

SOLN:

Directives

Also called as pseudo operations that control the assembly process.
They indicate how an operand or section of a program to be processed by the assembler.
They generate and store information in the memory.

Assembler Memory models

Each model defines the way that a program is stored in the memory system.
Tiny: datafitsinto one segment written in .COM format

Small: has two segments data and memory.

There are several other models too.

SIBIT/ECE Department



Microprocessor 10EC62

Directivefor string data in a memory segment

DB  define byte
DW  defineword
DD  define double word
- DQ  define 10 bytes
Example
Datal DB 10H,11H,12H
Data2 DW  1234H

SEGMENT: statement to indicate the start of the program and its symbolic name.

2. Write a program to add two double words and store the result in data segment
SOLN:

.model small
.Stack
.data
numl dd 01234567h /[ two 32-bit numbers
num2 dd 89abcdefh ; to be added\\
sum dd (0)
carry db (0)
.code
mov ax, @data Jintidize the
mov ds, ax ; data segment\\
mov ax, word ptr num1 ;ax = LSBsof 1st num
mov bx, word ptr num2 ;bx = LSBs of 2nd num
clc
add ax, bx ;ax = ax + bx
mov bx, word ptr num1+2 ;bx = MSBs of 1st num
mov cx, word ptr num2+2 ;cX = MSBs of 2nd num
adc bx, cx ;bx =bx + cx + CF
mov word ptr sum+2, bx /[ store the result
mov word ptr sum, ax ; in the memory\\
adc carry, 00h ;save carry if any
mov ah, 4ch Il Terminate
int 21h ; the program\\
end

RECOMMENDED QUESTIONS
1. with an example explain the difference between MUL and IMUL instructions.

2. Explain the instruction templates for the following instructions:
a) MOV 46H [BP], DX  b) TEST AX, 83H
3. What is meant by segment override prefix? Explain

SIBIT/ECE Department

71



Microprocessor

4. Explain the assembler directives used in 8086:
i) MODEL ii) PUBLIC iii)EQU iv)ALIGN V)PTR
5. Write a program to add two ASCII number and store the result in data segment

SIBIT/ECE Department

10EC62

72



Microprocessor 10EC62

UNIT-3: BYTE AND STRING MANIPUATON

BYTE AND STRING MANIPULATION: String instructions, REP Prefix, Table trandation,

Number format conversions, Procedures, Macros, Programming using keyboard and video display

TEXT BOOKS:

1. Microcomputer systems-The 8086 / 8088 Family — Y.C. Liu and G. A. Gibson, 2E PHI -
2003

2. TheIntel Microprocessor, Architecture, Programming and Interfacing-Barry B. Brey,
6e, Pearson Education / PHI, 2003

Strings and String Handling I nstructions::
The 8086 microprocessor is equipped with specia instructions to handle string operations. By

string we mean a series of data words or bytes that reside in consecutive memory locations. The
string instructions of the 8086 permit a programmer to implement operations such as to move data
from one block of memory to a block elsewhere in memory. A second type of operation that is
easily performed is to scan a string and data elements stored in memory looking for a specific
value. Other examples are to compare the elements and two strings together in order to determine

whether they are the same or different.

Move String : MOV SB, MOV SW:
An element of the string specified by the source index (SI) register with respect to the current data

segment (DS) register is moved to the location specified by the destination index (DI) register with
respect to the current extra segment (ES) register.

The move can be performed on a byte (MOV SB) or aword (MOV SW) of data. After the moveis
complete, the contents of both SI & DI are automatically incremented or decremented by 1 for a
byte move and by 2 for aword move. Address pointers Sl and DI increment or decrement depends

on how the direction flag DF is set.

Example : Block move program using the move string instruction

SIBIT/ECE Department 73



Microprocessor 10EC62

MOV AX, DATA SEG ADDR
MQV DS, AX

MOV ES, AX

MOV SI, BLK 1 ADDR

MOV DI, BLK 2 ADDR
MOV CK, N

CDF ;DF=0

NEXT : MOV SB
LOOP NEXT
HLT

Load and storestrings: (LOD SB/LOD SW and STO SB/STO SW)
LOD SB: Loads abyte from astring in memory into AL. The addressin Sl is used relative to DS
to determine the address of the memory location of the string element.
(AL) = [(DS) + (SN)]
(Sh- (S)+1
LOD SW : Theword string el ement at the physical address derived from DS and Sl isto be loaded
into AX. Sl is automatically incremented by 2.
(AX) ~ [(DS) +(SN)]
(Sh-~ (Sh+2
STO SB : Stores a byte from AL into a string location in memory. This time the contents of ES
and DI are used to form the address of the storage location in memory
[(ES) + (D] = (AL)

(OH- (Oh+1
STOSW: [(ES)+ (D)] ~ (AX)
(D) - (DN +2

Mnemonic | Meaning | Format | Operation ZfI?egc?ed
Move | o | (ESHDN)=~ (DSHSD)

MOV SB | String B (Sh- (Sl)+1 None
Byte (D- F1

MOV SW | Move MOV ((ES)+(DI))-~ ((D9)+(9)) None

SIBIT/ECE Department 74



Microprocessor 10EC62

String SW ((ES)+(DD+1)~ (DS+(S)+1)

Word (Sh- (Sl)F2
(D~ (DI)F2
LOD
LOD SB /| Load SB/ (AL) or (AX) = ((DS)+(S1)) None
LOD SW | String LOD (8- (Sl)F1lor2
SW
STOSB/ Store STOSB/ | ((ES)+(DI1))~ (AL) or (AX) None

STOSW String STOSW | (DI)- (DI) 71or 2

Example: Clearing ablock of memory with a STOSB operation.
MOV AX, 0
MOV DS, AX
MOV ES, AX
MOV DI, A00O
MOV CX, OF
CDF
AGAIN: STOSB
LOOP NE AGAIN
NEXT : Clear AOOO to AOOF to 0046

Repeat String : REP

The basic string operations must be repeated to process arrays of data. Thisis done by inserting a
repeat prefix before the instruction that isto be repeated.

Prefix REP causes the basic string operation to be repeated until the contents of register CX
become equal to zero. Each time the instruction is executed, it causes CX to be tested for zero, if

CX isfound to be nonzero it is decremented by 1 and the basic string operation is repeated.

Example : Clearing ablock of memory by repeating STOSB
MOV AX, 0
MOV ES, AX
MOV DI, A00O
MOV CX, OF
CDF

SIBIT/ECE Department 75



Microprocessor 10EC62

REP STOSB

NEXT:
The prefixes REPE and REPZ stand for same function. They are meant for use with the CMPS
and SCAS instructions. With REPE/REPZ the basic compare or scan operation can be repeated as
long as both the contents of CX are not equal to zero and zero flag is 1.
REPNE and REPNZ works similarly to REPE/REPZ except that now the operation is repeated as
long as CX10 and ZF=0. Comparison or scanning is to be performed as long as the string

elements are unequal (ZF=0) and the end of the string is not yet found (CX1 0).

Pr efix Used with M eaning
REP MOVS Repeat while not end of
STOS string CX* 0

REPE/ REPZ (S:?:AAI\DSS CX10& ZF=1
REPNE/REPNZ (S:?:AAI\DSS CX10& ZF=0
Example: CLD : DF=0

MOV AX, DATA SEGMENT ADDR

MOV DS, AX

MOV AX, EXTRA SEGMENT ADDR

MOV ES, AX

MOV CX, 20

MOQV SI, OFFSET MASTER
MOQV DI, OFFSET COPY
REP MOV SB

Moves a block of 32 consecutive bytes from the block of memory locations starting at offset
address MASTER with respect to the current data segment (DS) to a block of locations starting at
offset address copy with respect to the current extra segment (ES).

Auto Indexing for String Instructions:
Sl & DI addresses are either automatically incremented or decremented based on the setting of the

direction flag DF. When CLD (Clear Direction Flag) is executed DF=0 permits auto increment by
1.When STD (Set Direction Flag) is executed DF=1 permits auto decrement by 1.

SIBIT/ECE Department 76



Microprocessor 10EC62

_ _ _ Flags
Mnemonic | Meaning | Format Operation affected
CLD Clear DF | CLD (DF - 0 DF
STD SetDF | STD (DF) - 1 DF

1. LDSInstruction:
LDS register, memory (Loads register and DS with words from memory)

This instruction copies a word from two memory locations into the register specified in the
instruction. It then copies a word from the next two memory locations into the DS register. LDS
isuseful for pointing SI and DS at the start of the string before using one of the string instructions.
LDS affects no flags.

Example 1:LDS BX [1234]

Copy contents of memory at displacement 1234 in DS to BL. Contents of 1235H to BH. Copy
contents at displacement of 1236H and 1237H is DSto DS register.

Example2: LDS, Sl String — Pointer

(SI) = [String Pointer]

(DS) = [String Pointer +2]
DS, Sl now points at start and desired string

2. LEA Instruction:
Load Effective Address (LEA register, source)

This instruction determines the offset of the variable or memory location named as the source and
puts this offset in the indicated 16 bit register.
LEA will not affect the flags.
Examples:
LEA BX, PRICES
Load BX with offset and PRICESin DS
LEA BP, SS: STACK TOP
Load BP with offset of stack-top in SS
LEA CX, [BX] [DI]
Loads CX with EA : (BX) + (DI)

3. LESinstruction :
LES register, memory

Example1: LESBX, [789A H]
SIBIT/ECE Department 77




Microprocessor 10EC62

(BX) - [789A] in DS
(ES) - [789C] in DS

Example2: LES DI, [BX]

(DI) - [BX]inDS
(ES) -~ [BX+2] inDS

M acr os

Macros provide severa powerful mechanisms useful for the development of generic
programs.

A Macro isagroup of instructions with aname.

When a macro is invoked, the associated set of instructions is inserted in place in to the
source, replacing the macro name. This “macro expansion” is done by a Macro
Preprocessor and it happens before assembly. Thus the actua Assembler sees the
“expanded” source!

We could consider the macro as shorthand for a piece of text; somewhat like a new pseudo-

code instruction.

M acros and Procedur es:

Macros are similar to procedures in some respects, yet are quite different in many other

respects.

Procedure:

= Only one copy existsin memory. Thus memory consumed is less.

= “Called” when required;

= Execution time overhead is present because of the call and return instructions.

Macro:

= When a macro is “invoked”, the corresponding text is “inserted” in to the source. Thus
multiple copies exist in the memory leading to greater space requirements.

= However, thereis no execution overhead because there are no additional call and return

instructions. The code isin-place.

These concepts areillustrated in the following figure:

SIBIT/ECE Department 78



Microprocessor 10EC62

— CATL. — 2 MALEL
R — Macoinwdked »
J/ —_— By
T o _' Incexted 1n -
R - place -
nE — o

MACRO Definition:
A macro has a name. The body of the macro is defined between a pair of directives, MACRO
and ENDM. Two macros are defined in the example given below.
Examples of Macro Definitions:
; Definition of a Macro named PA2C
PA2C MACRO
PUSH AX
PUSH BX
PUSH CX
ENDM

; Another Macro named POPA2C isdefined here
POPA2C MACRO

POP CX

POP BX

POP AX

ENDM
Examples of Macro usage:
The following examples illustrate the use of macros. We first show the source with macro
invocation and then show how the expanded source |ooks.
Program with macro invocations:

PA2C

MOV CX, DAl

MOV BX, DA2

ADD AX, BX

ADD AX, CX

SIBIT/ECE Department 79



Microprocessor

MOV DA2, AX

POPA2C

10EC62

When the Macro Preprocessor expands the macros in the above source, the expanded source

looks as shown below:

PUSH AX

PUSH BX
PUSH CX
MOV CX, DAl
MOV BX, DA2

ADD AX,

BX

ADD AX,CX
MOV DA2, AX

POP CX
POP BX
POP AX

Note how the macro name is replaced by the associated set of instructions. Thus, macro name

does not appear in the expanded source code. In other words, the actua Assembler does not

“see” the macros. What gets assembled is the expanded source. This processisillustrated in the

following figure:

MACROS (continued)

ASM fike
with Macros

Merro
» Preproc

| .ASM file with
Macros Expanded

Assembile &
Link

—— _EXE file

MACROS with Parameters:
Macros have severa other interesting and powerful capabilities. One of these is the definition

and use of macros with parameters.

A macro can be defined with parameters. These are dummy parameters. When the macro is

invoked, we provide the actua parameters. During the macro expansion, the dummy

SIBIT/ECE Department

80



Microprocessor 10EC62

parameters are replaced by the corresponding actual parameters. The association between the
dummy and actual parameters is positional. Thus the first actual parameter is associated with
the first dummy parameter, the second actual parameter with the second dummy one and so on.
This isillustrated in the following example where a Macro named COPY is defined with two
parameters called A and B.

Example:

COPY MACRO A, ,B
PUSH AX
MOV AX,B
MOV A, AX
POP AX
ENDM
The macro is invoked in the following code with actual parameters as VARL and VAR2. Thus
during the macro expansion, the parameter A is replaced by VAR and the parameter B is
replaced by VAR2.
COPY VAR1, VAR2
The expanded codeis:
PUSH AX
MOV AX,VAR2
MOV VARI1, AX
POP AX

Local Variablesin aMacro:
* Assume that amacro definition includes alabel RD1 asin the following example:
READ MACRO A

PUSH DX
RD1: MOV AH, 06
MOV DL, OFFH
INT 21H
JE RD1 ;; Nokey,try again
MOV A AL
POP DX
ENDM

SIBIT/ECE Department 81



Microprocessor

10EC62

+ |f READ macro isinvoked more than once, asin
READVAR1
READ VAR2

assembly error results!

* The problem is that the label RD1 appears in the expansion of READ VARL aswell asin
the expansion of READ VAR2. Hence, the label RD1 appears in both the expansions. In
other words, the Assembler seesthe label RD1 at two different places and this results in the

“Multiple Definition” error!
* SOLUTION: Define RD1 asalocal variable in the macro.
READ MACRO A
LOCAL RD1

PUSH
RD1: MOV
MOV
INT
JE
MOV
POP

DX

AH, 06

DL, OFFH

21H

RD1 ;; Nokey,try again
A, AL

DX

ENDM

* Now, in each invocation of READ, the label RD1 will be replaced, automatically, with a

unique label of the form ?2xxxx ; where xxxx is a unique number generated by Assembler.

This eliminates the problem of multiple definitions in the expanded source.

* With the use of local variable asillustrated above,

READ
gets expanded as:
PUSH
??0000: MOV
MOV
INT
JE
MOV
POP

SIBIT/ECE Department

VAR1

DX

AH, 06

DL, OFFH

21H

2?0000 ;; No key, try again
VARI1, AL

DX

82



Microprocessor 10EC62

Subsequently, if we write
READ VAR2
it gets expanded as.
PUSH DX
??0001: MOV AH, 06
MOV DL, OFFH

INT 21H

JE ??0001 ;; Nokey, try again
MOV VAR2, AL

POP DX

Note how each invocation of the READ macro gets expanded with a new and unique label,
generated automatically by the Assembler, in place of the local variable RD1. Further, note that
LOCAL directive must immediately follow the MACRO directive. Another feature to note is
that Comments in Macros are preceded by ;; (two semicolons) , and not as usual by ; (asingle
semicolon).

File of Macros:

» We can place dl the required Macros in afile of its own and then include the file into the
source.

» Example: Suppose the Macros are placed in D:\MYAPPIMYMAC.MAC
In the source file, we write

Advanced Features:

» Conditional Assembly
* REPEAT , WHILE, and FOR statementsin MACROS
Conditional Assembly:
» A set of statements enclosed by IF and ENDIF are assembled if the condition stated with
IF istrue; otherwise, the statements are not assembled; no code is generated.
* Thisisan Assembly time feature; not run-time behavior!
» Allows development of generic programs. From such a generic program, we can produce
specific sour ce programs for specific application contexts.
» Example: Assume that our generic program has the following statements:
IF WIDT
WIDE DB 72
ELSE
WIDE DB 80

SIBIT/ECE Department 83



Microprocessor 10EC62

ENDIF
Now the assembly language program that is generated depends on the value of WIDT.
Assume the block is preceded by
WIDT EQU 1
Then the assembled codeis:
WIDE DB 72
It is important to note that the Assembler sees a source file that has only the above
Statement.
Another case:
WIDTEQU 0
IF WIDT
WIDE DB 72
ELSE
WIDE DB 80
ENDIF
What gets assembled is:. WIDE DB 80

There are severa other directives that can be used for Conditional Assembly as listed

below:
IF If theexpression istrue
|FB If the argument isblank
IFNB If the argument is not blank
|FDEF If the label has been defined
IFNDEF If the label has not been defined
|FIDN If argument 1 equals argument 2
IFDIF If argument 1 does not equal argument 2

With each of the above constructs, the code that follows gets assembled only if the stated
condition istrue.
REPEAT Statement:
This statement allows a block of code to be repeated the specified number of times. This avoids
repetitive typing and is much more elegant than Editor-level Copy-and-Paste operation.

Example:
REPEAT 3
INT 21H
INC DL

SIBIT/ECE Department 84



Microprocessor 10EC62

ENDM

The generated code would be 3 repetitions of the block of 2 statements enclosed within
REPEAT and ENDM as shown below:

INT 21H

INC DL

INT 21H

INC DL

INT 21H

INC DL

WHILE Statement:
This statement allows a block of code to be repeated while the condition specified with the
WHILE istrue.
Example: Consider the following code

SQ LABEL BYTE

SEED =1

RES=SEED * SEED

WHILE RESLE9

DB RES

SEED =SEED +1

RES=SEED * SEED

ENDM
Note that SEED and the arithmetic statements involving SEED and RES are al Assembly time
actions. Apart from the initial label SQ, the only statement to actually get repeated is DB RES.
The logic is follows: Initially the label SQ is generated. SEED is initialized to 1 and RES is
computedas1* 1=1. Now RES LE 9 istrue asthe value of RESis 1 whichislessthan 9. So
the code DB 1 is generated. The next statement within the scope of WHILE, “SEED = SEED +
1” is executed making SEED assume the value of 2. The next statement within the scope of
WHILE is RES = SEED * SEED. Thisis aso executed and RES assumes the value of 4. This
completes one pass of execution of the WHILE block. So, the condition associated with
WHILE is again evaluated. Thisisagain TRUE as 4 islessthan 9. So again DB 9 is generated.
Reasoning as before, we see that DB 9 is also generated. However, in the next pass SEED is 4
and RES is 16. So the condition RES LE 9 evaluates to FALSE and WHILE loop is exited!

SIBIT/ECE Department 85



Microprocessor

Thusthe generated codeis:

SQ DB
DB
DB
FOR Statement:

01
04
09

10EC62

This is very similar to the FOR of languages like PERL. With the FOR statement, a control

variable and alist of values are specified. The control variable is successively assigned values

from the specified list and for each such value, the following block of statementsis repeated.

Example:

DISP MACRO CHR:VARARG

MOV AH, 2

FOR ARG, <CHR>
MOV DL, ARG

INT 21H

ENDM
ENDM

The outer Macro has one parameter which is specified as sequence of characters of variable

length. The inner FOR statement has two enclosed statements which will be repeated for each

value in the list <CHR>. Thus in the following illustration, DISP is invoked with 3 characters

as parameters. The two statements within FOR scope are thus repeated 3 times with ARG

successively assuming the 3 characters.

Thus, the statement

DISP ‘V''T’’U’
gets expanded as

MOV AH, 2
MOV DL,’V’
INT 21H
MOV DL,’T’
INT 21H
MOV DL,’U’
INT 21H

SIBIT/ECE Department

86



Microprocessor 10EC62

NUMBER FORMAT CONVERSION:
» Often Data available in one format needs to be converted in to some other format.

Examples:

= ASCII to Binary

= Binary to ASCII

= BCD to 7-Segment Code ... ... ...

» DataConversion may be based on

= Algorithm

= Look-UpTable

Converting from Binary to ASCI I

In many contexts, for example, when displaying a number on the screen, we must produce a
sequence of ASCII characters representing the number to be displayed. Thus the given number
must be converted to a string of equivalent ASCII characters.

* Example Binary number: 0100 0011 =43H =67 D
To display this on the screen, we need to convert this binary number in to Two ASCII
characters, ‘6” and “7°.
ASCII code for character ‘6’ is 36H and
ASCII code for character ‘7’ is 37H.
S0, we need to produce 36H and 37H as output given 43H as input.

* Another Example: Binary number: 0000 0010 0100 0011 = 0243H =579 D
To display this on the screen, we need Three ASCI | characters, ‘5°, “7” and “9’.
ASCII code for character ‘5’ is 35H,
ASCII code for character ‘7’ is 37H, and
ASCII code for character *9” is 39H
S0, we need to produce 35H, 37H and 39H as output given 0243H as input
Binary to ASCII Algorithm:
Example: Binary number: 0000 0010 0100 0011 =579 D
* Divide579by 10; Quotient =57 ; Remainder =9, Save 9
 Divide 57by 10; Quotient=5; Remander=7, Save7
» Divide5 by 10; Quotient=0; Remainder =5, Save5

SIBIT/ECE Department 87



Microprocessor 10EC62

*  Quotient =0 - Conversion Complete.

Remainders saved in the order of 9, 7, and 5.

Retrieve remainders in the order of 5, 7, and 9.
(As the order of retrieval is the reverse of the order of producing these digits, the most

convenient technique isto Save & Retrieve the digits using Stack)
*  Whileretrieving, add 30H to convert the digit to ASCII code and then display it (or print it,
or save it...)
* Thusthealgorithmis:
While the number is not equal to 0
Divide the number by 10;
Push the remainder digit on the stack;
Set number <- quotient
While stack not empty
Pop adigit from the stack
Add 30H to covert it to ASCII and display it
Return.

This agorithm isimplemented in the following program:

Binary to ASCII Program:
; Input :  16-Bit Binary Number in AX

; Output: Equivalent ASCII displayed on screen
.MODEL TINY
.CODE
STARTUP
MOV AX,2A5H ; Test value
CALL B2A ; Binary to ASCI I and Display
EXIT
B2A PROC NEAR
PUSH DX
PUSH CX
PUSH BX
MOV CX,0 ; Count of ASCII digits, Initialized to 0
MOV BX, 10 ; Divisor is10
B2A1: MOV DX,0 ; Dividend in DX, AX. Soset DX =0

SIBIT/ECE Department 88



Microprocessor 10EC62

DIV BX ; Divide by 10

PUSH DX ; Save remainder digit on the stack

INC CX ; Increment digit count

OR  AX,AX ; Conversion completed ? (Quotient,i.e AX =07?)
JNZ B2A1 ; No, continue division

; Conversion iscomplete as quotient in AX =0

; Count of remainder digitsisin CX

B2A2: POP DX ; Retrieveremainder in DL
ADD DL, 30H ; Convert to ASCI
MOV AH, 06H ; Console Display Function
INT 21H ; DOS Service, display digit
LOOP B2A2 ; Repeat for all digits

; Clean up & Return. AX isdestroyed

POP BX
POP CX
POP DX
RET

B2A ENDP
END

Another Method for Binary to ASCII Conversion:

*  When the input number isless than 100, an aternative, simpler method exists.

* AAM (ASCII Adjust AX After Multiplication) instruction converts value in AX in to 2-
Digit Unpacked BCD and leavesitin AX.

* Example AX =0027H (39 Decimal)
Execute AAM ; Now, AX =0309H ; Thisis Unpacked BCD.

* Now, add 3030H to AX to get 3339H ; Thisis Packed ASCII representation.

» Separate the two bytes (unpack) to get the two ASCII characters representing the given
number (33H and 39H).

* Works only when the number is less than 100 as the maximum unpacked BCD that we can
havein the AX register is 0909H only.

» Thefollowing program is developed based on thisidea.
; Input : Binary Number in AL, Assumed <100
; Output: Equivalent ASCII displayed on screen

SIBIT/ECE Department 89



Microprocessor 10EC62

.MODEL TINY
.CODE
STARTUP
MOV AL,2AH ; Testvalue
CALL B2A ; Binary to ASCII and Display
EXIT
B2A PROC NEAR
PUSH DX
MOV AH,O0 ; AX = Number
AAM ; AX = Unpacked BCD
ADD AX,3030H ; ConverttoASCII
PUSH AX

; Now, unpack and display

MOV DL, AH ; First Digit
MOV AH, 06H ; Display Function
INT 21H ; Display first digit
POP AX ; Retrieve value
MOV DL, AL ; Second Digit
MOV AH, 06H ; Display Function
INT 21H ; Display second digit

; Clean up & Return. AX isdestroyed

POP DX
RET
B2A ENDP
END
Refinements:
* Supposetheinputis: AL = 7H. What is displayed is 07
» Can we replace leading 0 with a blank so that the display |ooks better? Thus, instead of 07,
the display should be 7.
* Yes. Weneedto check if thefirst digit is 0. If so, display 20H (blank); else, display
the digit.
We need to modify the previous program to incorporate this check for aleading O.

Old Code for displaying first digit:

SIBIT/ECE Department 90



Microprocessor 10EC62

MOV DL, AH ; First Digit
MOV AH, 06H ; Display Function

INT 21H ; Digplay first digit
Revised Code for displaying first digit:
ADD AH, 20H
CMP AH, 20H ; First Digit=07?
JZ B2Al ; Display blank (ASCII Code is 20H)

ADD AH, 10H ; Add 10H moreto get the correct ASCII Code for the digit
B2A1. MOV DL,AH ;First Digit
MOV AH, 06H ; Display Function
INT 21H ; Display first digit
Incorporating this change, the program will be as shown below:
; Input : Binary Number in AL, Assumed <100
; Output: Equivalent ASCII displayed on screen
.MODEL TINY
.CODE
STARTUP
MOV AL,2AH ; Testvalue
CALL B2A ; Binary to ASCII and Display
EXIT
B2A PROC NEAR
PUSH DX
MOV AH,0 ; AX = Number
AAM ; AX = Unpacked BCD
ADD AX,3030H ; ConverttoASCII
PUSH AX
; Now, unpack and display

ADD AH, 20H

CMP AH, 20H ; First Digit = 0?

JZ B2A1 : YES. So, display a blank (ASCII Codeis 20H)

ADD AH, 10H : No, we have already added 20H. Add 10H more
B2A1: MOV DL, AH ; First Digit itself if not 0, Or Blank (if 0)

MOV AH, O6H ; Display Function

INT 21H ; Display first digit

SIBIT/ECE Department

91



Microprocessor

POP AX ; Retrievevalue
MOV DL, AL ; Second Digit

MOV AH, O6H ; Digplay Function
INT 21H ; Display second digit

; Clean up & Return. AX isdestroyed

POP DX
RET

B2A ENDP
END

ASCII to Binary Algorithm:

10EC62

In many contexts, for example, when reading a number from the key board, we get a sequence

of ASCII characters representing the number. This string of ASCII characters must be

converted to the equivaent number for further processing.

Example: Assume that ASCII character sequence ‘156’ is the input.

3 characters, ‘17, ‘5’, and “‘6”; with codes as 31H, 35H, and 36H.
Converted Binary Vaue must be:
0000 0000 1001 1100 = 009CH = 156 (decimal)

Conversion Procedure:

Start with (Binary) Result =0

First ASCII digit 31H; Subtract 30H to get corresponding BCD digit O1H.

Result = Result * 10 + Next BCD Digit
Result =0* 10 + 01 = 0000 0000 0000 0001

Next ASCII digit 35H; Subtract 30H to get corresponding BCD digit O5H.

Result = Result * 10 + Next BCD Digit
Result = 01 * 10 + 05 = 0000 0000 0000 1111

Next ASCII digit 36H; Subtract 30H to get corresponding BCD digit 06H.

Result = Result * 10 + Next BCD Digit
Result = 15 * 10 + 06 = 0000 0000 1001 1100
ASCII digits exhausted. So, conversion is completed.
Final Result = 0000 0000 1001 1100 = 009CH = 156 (decimal)

Based on the above ideas, the following program implements the ASCII to Binary

Conversion.

; ASCII to Binary Program

SIBIT/ECE Department

92



Microprocessor 10EC62

; ASCII charactersrepresenting anumber areread from key board.
; Thefirst non-digit character (any character other than 0 through 9) typed
; signalsthe end of the number entry
; Result returned in AX, which isthen stored in memory location TEMP.
; Result assumed not to exceed 16 bits!
: Program can be modified to accept larger numbersby implementing
; 32- bit addition.
.MODEL SMALL
DATA
TEMP DW ?
.CODE
STARTUP
CALL RDNUM
MOV TEMP, AX
EXIT
RDNUM PROCNEAR
PUSH BX
PUSH CX
MOV CX, 10 ; Multiplier is10
MOV BX,0 ; Result initialized to O
RDN1:. MOV AH,1 ; Read Key with Echo
INT 21H
; Check the character. If less than ‘0’ or greater than ‘9 Number entry is over
CMP AL,’0Q’
JB RDN2
CMP ALY
JA RDN2
; Isdigit. Update Result
SUB AL, 30H ; BCD Digit
PUSH AX
MOV AX,BX
MUL CX
MOV BX, AX ; Result = Result * 10
POP AX

SIBIT/ECE Department



Microprocessor 10EC62

MOV AH,O0 ; AX = Current Digit
ADD BX, AX ; Update Result
JMP RDN1 ; Repeat

: Non- digit. Clean Up and Return

RDNZ2: MOV AX, BX ; Result in AX
POP CX
POP BX
RET
RDNUM ENDP

END

Notes:

The constant multiplier 10 is held in the register CX.

In the procedure, RDNUM, the result is accumulated in the register BX and at the end,
it ismoved in to register AX. The result in AX is moved, in the calling program, in to
the memory location TEMP.

The BCD digitisin AL. AH iscleared to O so that the 16-bit valuein AX represents the
correct value and thus can be added directly to the accumulating result in BX. This part
of the code must be changed to implement 32-bit addition if larger results are to be
supported.

Using L ook — Up Tablesfor Data Conversion:

» Often, alook-up table simplifies data conversion.

*  XLAT can beused if table has up to 256 byte-entries

* Vaueto be converted is used to index in to the table containing conversion values.

* Asan example, we will demonstrate BCD to 7-Segment code conversion.

BCD to 7-Segment Code Conversion:

In many applications, we need to display BCD values on a 7-Segment display. The 7-Segment

display device, as the name suggests, has 7 segments which can be independently controlled to
be ON or OFF. Further, the device has a decimal point also that can be switched ON or OFF.
The 7 segments and the decimal point are controlled by 8 bits, with one bit controlling one
segment or the decimal point. The bit value required to switch on a segment depends on
whether the device is of a Common — Anode type or Common — Cathode type. Here, we are
assuming a Common — Anode type. Thus the segment will be ON if the corresponding
controlling bit is 1 and will be off if the bit isO.

SIBIT/ECE Department 94



Microprocessor 10EC62

Based on the digit to be displayed, we must determine the segments that must be ON and the
ones that must be OFF. The bits controlling the segments that must be ON are set to 1 and the
bits controlling the segments that must be OFF are cleared to 0. The resulting bit pattern
determines the value of the 7-Segemnt code that must be output. This display structure is

shown in the following figure on the next page:

BCD to 7-Segment Code - 1
7 —Segment display with active high (Logic 1) mnput

to light a segment.
= n Conirol Byte:
b
:Ig:i: dp/g| f|e|d|c |b |a
e c Bit=1 =2 Segment is on
_Id:ldfm =0 - Segment is off

As an example of determining the display code corresponding to a given BCD digit, the
following figure shows the display of digit 3 and the determination of the corresponding 7-
Segment code:

S|

BCD to 7-Segment Code - 2
Example: Display code for 3; No decimal point

Control Byl a=1;b=1;c=1;d=1;
— [ —

a e=0;f=0;g=1;dp =0.
b
:T 0|10 0 11|11
Ly L Display Code for3 =4FH

o  Smmilarly, for other digits.

Based on the above logic, the following FAR Procedur e returns the 7-Segment code in the AL
register, corresponding to the BCD digit provided as input parameter in the AL register before
calling the procedure.

: BCD to 7-Segment Code Program

: Input: AL =BCD Digit

; Output: AL = 7-Segment code.

SIBIT/ECE Department 95



Microprocessor

BT7SEG PROC FAR
PUSH BX
MOV BX, OFFSET TABLE
XLAT CS: TABLE
POP BX
RET

TABLE DB 3FH
DB O6H
DB 5BH
DB 4FH
DB 66H
DB 6DH
DB /DH
DB O7H
DB 7FH
DB 6FH

BT7SEG ENDP

Notes:

© 0 g oo O » (90 N O

e XLAT instruction does not normally contain an operand. Here we are using the operand

(TABLE). It is a dummy operand! It is being used here only to specify segment override.

XLAT uses DS by default. Here the tableisin CS. So segment override is being specified.

* More examples are discussed in the Text Book.

SIBIT/ECE Department

96



Microprocessor

Extended ASCH code with. ...

Key Sean Code Nothing Shift Control Alternate
Esc o1 01
1 0z 78
2 03 03 79
3 04 Th
4 05 7B
5 06 7C
<] o7 7D
7 08 TE
8 §12] TF
9 DA 80
0 0B 81
- oc B2
+ oD B3
Bksp 0E 0E
Tab oF OF 04 AS
Q 10 10
W 11 11
E 12 12
A 13 13
T 14 14
Y 15 15
u 16 16
I 17 17
8] 18 18
P 19 19
[ 14 1A
] 1B 1B
Enter 1C 1C
Enter 1C AG
Lotr 1D
Retrl 1D
A 1E 1E
] 1F 1F
D 20 20
F 21 21
G a2z 22
H 23 23
J 24 24
K 25 25
L 26 26
: 27 27

28 28
29 29
Lshft 24
§ 2B

SIBIT/ECE Department

10EC62

97



Microprocessor

Extended ASCI code with.. ..

Key Scan Code Mothing Shift Control Alternate
Z 2C ac
b 2D 2D
C 2E 2E
W 2F 2F
B 30 30
N 3 31
M 32 32
33 33
. 34 34
! 35 35
Gray / a5 95 Ad
Rshft 38
PriSc EQ 2A EQ 37
L alt 38
R alt 38
Space 39
Caps a4
F1 3B 3B 54 5E 68
F2 3C 3C 55 5F ]
F3 3D 3D 56 60 BA
F4 3E 3E 57 61 BB
F5 aF aF 58 62 6C
F& 40 40 59 63 6D
T 4 41 SA 54 BE
F8 42 42 5B 65 6F
Fa 43 43 &5C 66 70
F10 44 44 a0 T 71
F11 57 85 B7 ag BB
Fi12 58 86 Ba BA aC
Mum 45
Scroll 46
Home EO 47 47 ay Fi a7
Up 48 48 48 aD 98
Pgup EO 49 49 49 &4 99
Gray - 4A
Left 4B 4B 4B 73 B
Center 4C
Right 4D 4D 4D 74 9D
Gray + 4E
End EOQ 4F 4F 4F 75 oF
Down EO 50 50 50 a1 AD
Pgdn EOQ 51 51 51 Fil= Al
Ins EDQ 52 52 52 a2 A2
Del EQ 53 53 53 a3 A3
Pause E0 10 45

10EC62

character to the screen even if it is an unwanied character. The DOS function number 01H also

responds to the control-C key combination and exits to DOS if it is typed.

SIBIT/ECE Department

98



Microprocessor

Qoo

oooo

o000

o017
0015
oolc

0D
68
es
20
74
6E

Bd
EA
ch

OA
639
3
T4
20
65

08

ooog R

21

0&
73
20
65
&C
2E

54 MES
20
&1
TR
59
24

10EC62

+MODEL SMALL ;select SMALL model
LDATE ;evart DATA segmsent

DE 13,10,10,'This is a test line.$’

.CODE ;start CODE segment
.STARTUP ygtart program

MOV AH,9 ;select function 0%H

MOV DX,0QFFSET MES :address character string
INT 21H jaccess DOS

LEXIT jexic ta DOS

END ;end of file

This example program can be entered into the assembler, linked, and executed to produce
“This is a test line” on the video display.

The .EXIT directive embodies the DOS function 4CH. As shown in Appendix A, DOS
function 4CH terminates a program. The .EXIT directive inserts a series of two instructions in
the program, MOV AH,4CH, followed by an INT 21H instruction.

SIBIT/ECE Department

99



Microprocessor 10EC62

UNIVERSITY QUESTIONS & SOLUTIONS
1. Write an ALP to search a character in astring of N characters using linear search. (July 2007)

Soln:

.model small

Stack

.data
string db 'ELECTRONICS $
str_cnt equ Obh
msgl db ‘character found $
msg2 db ‘character not found $

locdb ?
.code
mov ax, @data Jintidize
mov ds, ax ; dataand
mov €s, ax ;  extrasegment\\
mov cX, str_cnt ;intialize string counter
leadi, string ; di = offset of string
mov al, T' ;a = character to be searched
back: cmpd, byteptr[di] ;compare char with first element in the string
jefound ;if found jump to found
incdi ;//else proceed with
loop back ; comparing al charsin string\\
lea dx, msg2 /[ if not found display
mov ah, 09h ; msg2 using DOS services\\
int 21h
jmp last
found: mov ah, 09h /i found display
leadx, msgl ; msgl using DOS services\\
int 21h
mov dx, str_cnt ;I store the offset
sub dx, cx ; location of the desired
mov loc, dx : char inastring\\
last: mov ah, 4ch /[Terminate
int 21h ; the program\\
end
2. explain the procedure for converting from binary to ASCII. Jan 2009 (2008)
Soln

Converting from Binary to ASCI | :

In many contexts, for example, when displaying a number on the screen, we must produce a
sequence of ASCII characters representing the number to be displayed. Thus the given number
must be converted to a string of equivalent ASCII characters.

* Example: Binary number: 0100 0011 = 43H = 67 D

SIBIT/ECE Department 100



Microprocessor 10EC62

To display this on the screen, we need to convert this binary number in to Two ASCI|I
characters, ‘6” and “7°.

ASCII code for character ‘6’ is 36H and

ASCII code for character ‘7’ is 37H.

So, we need to produce 36H and 37H as output given 43H as input.

* Another Example: Binary number: 0000 0010 0100 0011 = 0243H =579 D
To display this on the screen, we need Three ASCI | characters, ‘5°, 7’ and ‘9’.
ASCII code for character ‘5’ is 35H,
ASCII code for character ‘7’ is 37H, and
ASCII code for character ‘9 is 39H
S0, we need to produce 35H, 37H and 39H as output given 0243H as input

RECOMMENDED QUESTIONS
1. Explain the five types of string instruction with example

2. Explain the following instructions:

i) MOVSB i) repeat prefix ii)STOSW iv)SCASB  v)CMPS

3. Write an ALP to convert lowercase to upper case using the modular programming approach.
4. Usetwo far procedures one for reading from keyboard and one for displaying.

SIBIT/ECE Department 101



Microprocessor 10EC62

UNIT: 4:

8086 INTERRUPTS: 8086 Interrupts and interrupt responses, Hardware interrupt applications,
Software interrupt applications, Interrupt examples

What is an interrupt ?

An interrupt is the method of accessing the MPU by a periphera device. An interrupt is
used to cause atemporary halt in the execution of a program. The MPU responds to the interrupt
with an interrupt service routine, which is a short program or subroutine that instructs the MPU on
how to handle the interrupt. When the 8086 is executing a program, it can get interrupted because
of one of the following.

1.Dueto an interrupt getting activated. Thisis called as hardware interrupt .

2.Due to an exceptiona happening during an instruction execution, such as division of a
number by zero. Thisis generally termed as exceptions or Traps.

3.Due to the execution of an Interrupt instruction like "INT 21H". Thisis called a Software
interrupt. The action taken by the 8086 is similar for all the three cases, except for minor
differences. There are two basic types of interrupts, Maskable and non-maskable.

Nonmaskable interrupt requires an immediate response by the MPU. It is usually used
for serious circumstances like power failure. A maskable interrupt is an interrupt that theMPU can
ignore depending upon some predetermined condition defined by the status register. Interrupts are
also prioritized to alow for the case when more than one interrupt needs to be serviced at the same
time.

Hardwar e interrupts of 8086

In a microcomputer system whenever an /O port wants to communicate with
themicroprocessor urgently, it interrupts the microprocessor. In such a case, themicroprocessor
completes the instruction it is presently executing. Then, it saves theaddress of the next instruction
on the stack top. Then it branches to an Interrupt Service Subroutine (ISS), to service the
interrupting 1/O port. An ISS is aso commonly called as an Interrupt Handler . After completing
the ISS, the processor returns to the origina program, making use of the return address that was
saved on the stack top.In 8086 there are two interrupt pins. They are NMI and INTR. NMI stands
for non maskable interrupt. Whenever an external device activates this pin, themicroprocessor will
be interrupted. This signal cannot be masked. NM1 is a vectored

Definition: The meaning of “interrupts’ is to break the sequence of operation.While the

cpu is executing a program,on ‘interrupt’ breaks the normal sequence of execution of

SIBIT/ECE Department 102



Microprocessor 10EC62

instructions, diverts its execution to some other program called Interrupt Service Routine
(ISR).After executing ISR, the control is transferred back again to the main
program.Interrupt processing is an aternative to polling.

Need for Interrupt: Interrupts are particularly useful when interfacing I/O devices, that
provide or require data at relatively low data transfer rate.

Types of Interrupts. There are two types of Interruptsin 8086. They are:

(i)Hardware Interrupts and

(i) Software Interrupts

(i) Hardware Interrupts (External Interrupts). The Intel microprocessors support
hardware interrupts through:

Two pinsthat allow interrupt requests, INTR and NMI

One pin that acknowledges, INTA, the interrupt requested on INTR.

INTR and NMI

INTR is a maskable hardware interrupt. The interrupt can be enabled/disabled
using STI/CLI instructions or using more complicated method of updating the
FLAGS register with the help of the POPF instruction.

When an interrupt occurs, the processor stores FLAGS register into stack,
disables further interrupts, fetches from the bus one byte representing interrupt
type, and jumps to interrupt processing routine address of which is stored in
location 4 * <interrupt type>. Interrupt processing routine should return with the
IRET instruction.

NMI is anon-maskable interrupt. Interrupt is processed in the same way as the
INTR interrupt. Interrupt type of the NMI is 2, i.e. the address of the NMI
processing routine is stored in location 0008h. This interrupt has higher priority
than the maskable interrupt.

— ExX: NMI, INTR.

(i) Software Interrupts (Internal Interrupts and Instructions) .Software interrupts can
be caused by:

INT instruction - breakpoint interrupt. Thisis atype 3 interrupt.

INT <interrupt number> instruction - any one interrupt from available 256
interrupts.

INTO instruction - interrupt on overflow

Single-step interrupt - generated if the TF flag is set. Thisisatype 1 interrupt.

SIBIT/ECE Department 103



Microprocessor

10EC62

When the CPU processes this interrupt it clears TF flag before calling the

interrupt processing routine.

Processor exceptions: Divide Error (Type 0), Unused Opcode (type 6) and Escape

opcode (type 7).

Software interrupt processing is the same as for the hardware interrupts.

- Ex: INT n (Software Instructions)

Control is provided through:

o IF and TF flag bits
0 IRET and IRETD

Performance of Software Interrupts

Mainline ISR procedure

PUSH Flags
Program 5

1 CLEARIF.TF |
PUSH 8 a
PUSH [P
FETCH ISR ADDRESS

/" PUSH registers

POP registers
IRET

e POP IP
POP (S
. POP  “TAGS

It decrements SP by 2 and pushes the flag register on the stack.
. Disables INTR. by clearmg the IF.
. It reset: the TF in the flag Register.
. It decrements SP by 2 and pushes C5 on the stack.
_ It decrements SP by 2 and pushes IP on the stack.
. Fetch the ISR address from the iterrupt vector table.

On Oy L lad B s

Interrupt Vector Table (Click the picture for full view)

| SN L
(CARTERT O
Ivpe SPCHSTER
(LSBT T
Tagee 2IMINTER

I A S ARLE)
Toger | ETINTTR

W

An 1

AR
i F ST

—_—
Tagpe DFMLANTER I‘ B b adiea

W evme smeosy | [ ot

SIBIT/ECE Department

104



Microprocessor 10EC62

N30TFII Type 255 (Available)
OATCTT
ol . o Movailable
Interrupis
&« 17 °F i =
Type 32 (Available) (224)
| :
JE0H Type 31 (Reserved)
r— Feserved
il I — InLEITLIPL"-
(27)
Twpe 5
001411 L

IHI Hambwr  Fhprioal Sddress

IHE () ST T
THE GiE AR
IHE i AnAE
IHE 0¥ MTH
Functions associared wich INTOD to INTO4
INT 0 {divide error)

« INTOD 13 mvoked by the microprocessor whenever there 1s an attempt to divade a
mumber by zero.
« ISE 15 responsible for displaymg the message “Thivide Emror™ on the screen

INT 01
For single stepping the trap flag nmst be 1
After execution of each mstruction. 8086 automatically jumps to 00004H to fetch

4 bytes for CS: IP of the ISR
» The job of ISE. 1s to dump the registers on to the screen

SIBIT/ECE Department 105



Microprocessor 10EC62

INT 02 (Non maskable Interrupt)

+ When ever NMI pin of the 8086 is activated by a high sigmal (5v). the CPU Junaps
to physical memory location 00008 to fetch C5 IP of the ISR assocaiated with
NMI

INT 03 (break point)

* A break pomt is used to examine the cpu and memory afler the execution of a

group of Instuctions.
» It is ope byte mstrichion wherenas other instructions of the form “IINT nn™ are 2

INT M ( Signed number overflow)

=« There 15 an instruction associated with this INT 0 (intermupt on overflow).
IfINT O is placed after a signed number arthmetic as IMUL or ADD the CPU

will activate INT 04 if OF = 1.
= Incase where OF =0 . the INT 0 1s not executed but is bypassed and acts as a

NOP.

Performance of Hardware Interrupts

« NMI : Non maskable intermupts - TYFPE 2 Interrupt
« INTE : Intermupt reqguest - Between 20H and FFH

Edge miggered

Input
NMI | —
. Level mggered
INTR | [nput
INTA Rl."""q]‘H"il"l."\L"' (8]
INTR mpwn
BOBG
Interrupt Priority
Divide Lrror. INT(n) INTO 1ighest
NMI
INTR
Single Step [owest
TEXT BOOKS:

1. Microcomputer systems-The 8086 / 8088 Family — Y.C. Liu and G. A. Gibson, 2E PHI -

2003
2. TheIntel Microprocessor, Architecture, Programming and Interfacing-Barry B. Brey,

6e, Pearson Education / PHI, 2003
SIBIT/ECE Department 106



Microprocessor 10EC62

REVIEW QUESTION
1. Explan the operation of the following DOS function using INT 21H interrupt. Jan 09
(20 marks)

2. Write a program that clears the screen (monitoring Jusing MACRO HOME. JAN
09.(10 marks)

3. Describe the working of 8086 in minimum mode configuration with 8284 clock
generator jan 09(10 marks)
4. Explain the function of type O to type 4 interrupts of 8086 with interrupt vector table.
Jan 09 (110 marks)

SIBIT/ECE Department 107



Microprocessor 10EC62

UNIT: 5-8086 INTERFACING

Interfacing

Minimum Mode Interface

« When the Minimum mode operation is selected, the 8088
provides all control signals neaded to implement the memaory
and 1/0 interface.

« The minimum mode signal can be divided into the following basic
groups :

Address/data bus
Status

Control

Interrupt and
DMA.

I

Each and every group is explained clearly.
Address/Data Bus :

« These fines serve two functions. As an address bus is 20 bits
long and consists of signal lines AD through A19, A19 represents
the MSB and AQ LSB. A 20bit address gives the 8086 a 1Mbyt=

memory address space. More over it has an independent IO
address space which is 64K bytas in length.

« The 16 data bus lines DO through D15 are actually multplexed
with address lines AD through AlS respectively. By multiplexed

SIBIT/ECE Department 108



Microprocessor 10EC62

we mean that the bus work as an address bus dunng first
machine cycle and as a data bus during next machine cydes,
« D15 is the MSB and DO LSB. When acting as a data bus, they
carry read/write data for memaory, input/output data for 1/O
devices, and interrupt type codes from an interrupt controller.

Block Diagram of the Mmimum Mode 8086 MPPU

Var Tn
[ | R

P TR TN WO N
[ R S—
ke Adtuliess ol e

lihrrlany

Ty | -
By By
] () »n
ey
BESIT —— ey [—F ALk
e WH
i
P MI(10 LYPe—
BALY s *» ot aanissi
imher s AT
[E1 1 T ™ S— L 1T

W

p—— nEs
Abails ket
——— [T

il'Lhﬂnrh
Status signal:

« The four most significant address lines A19 through AlG are also
multiplexed but in this case with status signals 56 through 53.
These status bits are output on the bus at the same time that
data are transferred over the other bus lines,

+ Bit 54 and S2 together from 2 2 bit binary code that identifies
which of the 8086 internal segment registers are used to
generate the physical address that was output on the address
bus during the current bus cycle.Code S453 = 00 identifies a
register known as extra segment register as the source of the
segment address,

« Status line S5 reflects the status of another intarmal
charactenstic of the 8086. Tt is the logic level of the intemnal
anable flag. The last status bit S6 is always at the logic 0 lewel.

f54 53 Segment Reguter |

SIBIT/ECE Department 109



Microprocessor 10EC62

[0 [0] Exm
011 Stack
110 Code/none
111 Data

Memory segment status codes

Control Signals :

The coritral signals are provided to support the B0B6 memary
I/0 interfaces. They control functons such as when the bus is to
carry a wvalid address in which direction data are to be
transferred over the bus, when valid wrnite data are on the bus
and when to put read data on the system bus.

ALE is a pulse to logic 1 that signals external circuitry when a
valid address ward is on the bus. This address must be latched
in extermal circuitry on the 1-to-0 edge of the pulse at ALE.

Ancther control signal that is produced during the bus cycle is
BHE bank high enable. Logic 0 on this used as a memory enable
signal for the most significant byte hailf of the data bus D8
through D1. These lines also serves a second function, which is
as the 57 status line.

Using the M/I0 and DT/R lines, the 8086 signals which type of
bus cycle is in progress and in which direction data are to be
transferred over the bus. The logic level of M/IO tells external
circuitry whether 3 memory or 1/O transfer is taking place over
the bus. Logic 1 at this output signals a memory operation and
logic © an I/O operation.

The direction of data transfar over the bus is signaled by the
logic level output 2t DT/R. When this line is logic 1 during the
data transfer part of a bus cyce, the bus is in the transmit
mode. Therefore, data are either written into memory or cutput
to an /O device. On the other hand, logic O at DT/R signals that
the bus is in the receive mode. This corresponds to reading data
from memary or input of data from an input port.

SIBIT/ECE Department

110



Microprocessor

The signal read RD and write WR indicates that a read bus cycle
or a write bus cycle is in progress. The 8086 switches WR to
logic O to signal external device that valid write or cutput data
are on the bus.

On the other hand, RD indicates that the 8086 is performing a
read of data of the bus. During read operations, ons other
control signal is also supplied. This is DEN ( data enable) and it
signals external devices when they should put data on the bus.
There is one other control signal that is involved with the
memory and IO interface. This is the READY signal.

READY signal is used to insert wait states into the bus cycle such
that it is extended by a number of clock periods. This signal is
provided by an external clock generator device and can be
supplied by the memaory or I/O sub-systemn to signal the B0SE
when they are ready to permit the data transfer to be
completed.

Interrupt signals :

The key interrupt interface signals are interrupt request (INTR)
and interrupt acknowledge [ INTA).

INTR is an input to the 8086 that can be used by an external
device to signal that it need to be serviced.

Logic 1 at INTR represents an active interrupt request. When an
interrupt request has been recognized by the 8086, it indicates
this fact to external circuit with pulse to logic O at the INTA
output.

The TEST input is also related to the external interrupt interface.
Execution of 2 WAIT instruction causes the 8086 to check the
logic level at the TEST input.

If the logic 1 is found, the MPU suspend operation and goes into
the idle state. The 8086 no longer executes instructions, instead
it repeatedly checks the |logic level of the TEST input waiting for
its transition back to logic 0.

As TEST switches to 0, execution resume with the next
instruction in the program. This feature can be used to
synchronize the operation of the 8086 to an event in external
hardware.

There are two more inputs in the interrupt interface: the
nonmaskable interrupt NMI and the reset interrupt RESET.

On the 0-to-1 transition of NMI control is passed to a
nonmaskabls interrupt service routine. The RESET input is used

SIBIT/ECE Department

10EC62

111



Microprocessor 10EC62

to provide a hardware reset for the 8086. Switching RESET to
logic 0 initializes the internal register of the B0B6 and initiates a
reset service routine.

DMA Interface signals :

« The direct memory access DMA interface of the B0B6 minimum
mode consist of the HOLD and HLDA signals.

« When an external device wants to take contraol of the system
bus, it signals to the 8086 by switching HOLD to the logic 1
level. At the completion of the current bus cycle, the BO86 enters
the hoid state. In the hold state, signal lines ADO through AD15,
Al6/S3 through A19/S6, BHE, M/IO, DT/R, RD, WR.,, DEN and
INTR are all in the high Z state.

« The 8086 signals external davice that it is in this state by
switching its HLDA output to logic 1 leval.

Maximum Mode Interface

« When the 8086 is set for the maximum-mode configuration, it
provides signals for implementing a multiprocessor / coprocessor
system environment.

« By multiprocessor environment we mean that one
microprocessor exists in the system and that each processor is
executing its own program.

» Usually in this type of system envircnment, there are some
gystem resources that are common to all processors.They are
called as global rescurces. There are also other resources that
are assigned to spedfic processors. These are known as local or
private resources,

« Coprocessor also means that there is a second processor in the
gystem. In this two processor does not access the bus at the
same tme. One passes the control of the system bus to the
other and then may suspend its operation,

« In the maximum-mode 8086 system, facilites are provided for
implementing allocation of global resources and passing bus
control to other microprocessor or coprocessor,

SIBIT/ECE Department 112



Microprocessor

| e
= o= Al Fus
= i
5 [
S ER Hiw il T3 TTH]
Lock  Rus —— TR
TR T = e ]
(LR — mf". — - BEY
Ve G SYSRHES Lo
i _* ANYRID - Gk
TR— Lok LR L om =
— = e ML
Thai — ™ - - . ——————————— W
fullL v - =) F——oamc
) s T T [ — F JOE
FLESE T i % comiveler W
IS " AW
BT R —= % T4
= WMT  TTOEN
Mo ML [CLALL TN
= LT i
L 1
. ST
= Ay Aysi
AN
= s
= - "
HEAD
O
L] W Lot i enntnd
Il i BOR6 Maximum mode Block Diagram

8288 Bus Controller - Bus Command and Control Signals:

» 8086 does not directly provide all the signals that are required to
control the memory, I/0 and interrupt interfaces.

« Specially the WR, M/IQ, DT/R, DEN, ALE and INTA, signals are
no longer produced by the 8086. Instead it outputs three status
signals S0, S1, S2 prior to the initiation of each bus cycle. This
3- bit bus status code identifies which type of bus cycleis to
follow.

+« S25150 are input to the external bus controller devies, the bus

controller generates the appropriataly timed command and
control signals.

8188

s2 81 I:ll Indication Coransand

SIBIT/ECE Department

10EC62

113



Microprocessor 10EC62

ofofs| o, |

IORC
® %1 Read1/0port 10wc,
o 10 Write 170 port AIOWC
011 Halt None
11910 | Instruction Feteh | MRPC
10 Read Memory MRDC
110 Write Memory ’::,L%
x . 141 Passive None

The 8288 produces one or two of these aight command signals
for each bus cycles. For instance, when the 8086 outputs the
code 525150 equals 001, it indicates that an I/O read cycle isto
ba parformed.

In the code 111 is cutput by the BO86, it is signaling that no bus
activity is to take place,

The control outputs produced by the 8288 are DEN, DT/R and
ALE. These 3 signals provide the same functions as those
deceribed for the minimum system moda. This set of bus
commands and control signals is compatible with the Multibus
and industry standard for interfacing microprocessor systems.
The output of 8289 are bus arbitration signals:

Bus busy (BUSY), commen bus request (CBRQ), bus priority out
(BPRO), bus priority in (BPRN), bus request (BREQ) and bus clock
(BCLK).

They correspond to the bus exchange signals of the Multibus and
are used to lock other processor off the system bus during the
execution of an instruction by the 3086.

In this way the processor can be assured of uninterrupted access
to common system resources such as global memory.

Queue Status Signals : Two new signals that are produced by
the 8086 in the maximum-mode system are gueue status
outputs QS0 and Q5S1. Together they form a 2-bit ueue status
code, Q51Q50.

SIBIT/ECE Department

114



Microprocessor

« Following table shows the four different queue status.

Q51 QS50 |Queue Status

Queue Empty. The gueue has been

0 (low) |0 reinitialized as a result of the execution of a
transfer instruction.

First Byte. The byte taken from the gueue
was the first byte of the instruction.

Queue Empty. The gueue has been

1 (0 reinitialized as a result of the execution of a
transfer instruction.

Subsaquent Byte. The byte taken from the
1 1 queus was a subsequant hyta of the
instruction.

Table - Queue status codes

s Local Bus Control Signal - Request / Grant Signals: In a
maximum mode configuration, the minimum mode HOLD, HLDA
interface is also changed. These two are replaced by
request/grant lines RQ/ GT0 and RQ/ GT1, respectively. They
provide a pricritized bus access mechanism for accessing the
local bus.

Example Programs of 8086

»  Write am 8086 proeyan that adds rwo packed BCD mambess imput from the
kevboard and congputes and displays the result on the system video monitor

+ Daia should be in the form 64+8%= The answer 133 should appear in the pext
liree

Program:

Mov dx, buffer address
Mo ah,(a

Mov sidx

Mov byte ptr [<], §

Int 21

SIBIT/ECE Department

10EC62

115



Microprocessor

MMov ah,leh

Alov al0ah

Ini 10 :

sub byte pir{si+1], 30k
sub byte ptefsi=3], 30k
sub byie prrfsi=3], 30h
sub byte prfsi+6], 30k
Mfov o4

Rol byte pir [5i+3].cl
Eol byte pir [5i+6].cl
Ror word ptr [=i+1],
Ror word pir [si+2], o
Mov al, [s+3]

Add al [zi+f]

Daa

Alov bh.al

Juc display

Alov all

Call display

Alov akbh

Call display

Int 30

Display Smbroutine:

SIBIT/ECE Department

BIOS sexvice e line feed position cursor

10EC62

116



Microprocessor

mav blal :
mov cld ;
ror ake ;
add al 30 ;

mov ah.le :

imt 10 ;
mov albl ;
and alBf ;
add al.30 ;
imt 10 ;

el

Save original mumber and al.f :Force bits 0-3 low

Four rotates

Rotate M5D into LSD
Convert to ASCTI
BIOS video service OF
Display character

Recover original number
Force bits 4-7 low

Convert ro ASCII

Display character

Rerurn to calling program

:Input buffer begins here

SIBIT/ECE Department

117



Microprocessor 10EC62

UNIT: 6: 8086 BASED MULTIPROCESSSING SYSTEMS

8087 Numeric Co-processor

Need for a numeric co-processor

The 8086 microprocessor is basically an integer processing unit and works directly on a variety of integer
data types. Many programs used in engineering, science, business, need to perform mathematical operations
like logarithms of a number, square root of a number, sine of an angle etc. It may aso be needed to perform

", or very small numbers like 10%". There are no instructions

computations with very large numbers like 10
in 8086 to directly find sine of an angle etc. Also 8086 can only perform computations on 16 bit fixed point
numbers, with arange of —32768 to +32767. In other words, 8086 does not provide any intrinsic support for

operations on floating point numbers.

It is possibleto perform any calculations using only 8086. But if speed becomes important, it is necessary to
use the dedicated Numeric co-processor Intel 8087, to speed up the matters. It typically provides a 100 fold
speed increase for floating point operations. A numeric co-processor is also variously termed as arithmetic
co-processor, math co-processor, numeric processor extension, numeric data processor, floating point

jprocessor €tc.

SIBIT/ECE Department 118



Microprocessor 10EC62

8087 Pin diagram

GND 1 40 VCC
(As) ADy, 2 39 AD15
A _ /<.
(Ags) ADss 3 38
A _IK.
(As) ADs, 4 37
(Ay) ADy 5 36 A18/5s
A.~ISA
(Ag) ADsp 6 35
(As) ADg 7 34 BHE/S,
(Ag) ADg 8 DPOCT
33 RQ/GT,
AD7 9 INIT
32
ADG 10 DNIAT
31
ADs 11 8087
30 NC
AD, 12
29 NC
AD; 13 o
28 Q.
AD, 14 e
27 Q.
AD; 15 =
26 Q.
AD, 16
25 0S,
NC 17
24 QS
NC 18
23 RLISY
CLK 19
22 READY
GND 20
21 RESET

Description of 8087 pins

INT: This is an active high output pin. The 8087 activates this pin whenever an exception occurs during
8087 instruction execution, provided the 8087 interrupt system is enabled and the relevant exceptionsis not
masked using the 8087 control register.

The INT output of 8087 is connected directly to NMI or INTR input of 8086. Alternatively, INT output of
8087 is connected to an interrupt request input of 8259 Interrupt controller, which in turn interrupts the
8086 on its INTR input.

BUSY': Let us say, the 8086 is used in maximum mode and is required to wait for some result from the co-
processor 8087 before proceeding with the next instruction. Then we can make the 8086 execute the WAIT

instruction. Then the 8086 enters an idle state, whereit is not performing any processing. The 8086 will stay

SIBIT/ECE Department 119



Microprocessor 10EC62

inthisidle statetill TEST* input of 8086 is made 0 by the co-processor, indicating that the co-processor has
finished its computation.

When the 8087 is busy executing an arithmetic instruction, its BUSY output line will bein the 1 state. This
pin is connected to TEST*pin of 8086. Thus when the BUSY pin is made O by the 8087 after the
completion of execution of an arithmetic instruction, the 8086 will carry on with the next instruction after
the WAIT instruction.

Internal Structure of the 80X87

] Numeric Execution Unit (NEU)
Control Unit (CU)

E Control register Exponent Shifter E

i ' Module i

: Statusregister :

E Instruction Arithmetic E

i Decoder Module i

| Data ' |

bata = Buffer : |
: Operand Temporary | |

i ! Queue registers |

| E T @) |

i i o ©

Status — Bustracking ©) !
| _ | f @ |

! Exceptions : e !

Address ——— ! g ©) !
i i i @ i

. | S :

s i t RO

| : e © |

i ! r |

80-bit wide stack

Fig: Theinternal structure of the 80X87 arithmetic copr ocessor

8087 Data Types
The 8087 dways works on 80 hit data internally. This 80 bit floating point format is termed as Temporary

Real format. However, it can read from memory a number, which is represented using any of the following
datatypes.
a. Signedintegers of size 16, 32 or 64 bits

SIBIT/ECE Department 120



Microprocessor 10EC62

b. 18 digit signed integer packed BCD number using 80 bits

c. Floating point numbers using 32, 64, or 80 bits
This number read from memory is internaly converted to the 80 bit temporary real format before
performing any computations. Similarly, the result is converted automatically by the 8087 to one of the

formats mentioned above before storing it in memory.

8087 Data Types.
1. Integer Data Types

(a) Word integer (16 Bit Signed Integer)

S Magnitude

15 0
Sign bitis O for positive and 1 for negative.

Range: —-32768<=X<=+32767. Negative number representation in 2’s complement form.

(b) Short integer (32 Bit Signed I nteger)

S Magnitude

31 0
Range: -2 x 10° <=X<=2x 10°

(c) Long Integer (64 Bit Signed Integer)

S Magnitude

63 0
Thisiscalled binary integer.  Range: -9 x 10" <=X<=9x 10"

2. Packed BCD type
Packed Decimal (18 BCD digits)

S Don’t care | Magnitude (BCD)

79 72 71

-99... ... 99<=X<=+99... ...99(18 digits)

3. 32Bit Short real

Short real (Single precision)

SIBIT/ECE Department 121



Microprocessor 10EC62

S Biased exponent | Significant

31 23 0
0, 1, 2x108 <=I X! <=3.4x10%®

Example 1:

Let us say, we want to represent 23.25 in this the short real notation. First of all we represent 23.25 in
binary as 10111.01. Then we represent this as +1.011101x2". This is caled the Normalized form of
representation. In the normalized form, the mantissa will always have an integer part with value 1. The
floating point notations supported by 8087 always represent a number in the normalized form. In the 32 bit
and 64 bit floating point notations the integer part of mantissa, of value 1, isjust implied to be present, but
not explicitly indicated in the bit pattern for the number. Thus the LS 23 bits are used to indicate only the
fractional part of the mantissa and so will be 011 1010 0000 0000 0000 0000. The MS bit will be O to
indicate that the number is positive. The next 8 bits provide the exponent in excess 7FH format. Thus the
next 8 bitswill be 4 + 7F=83H = 1000 0011. Thus the 32 hit floating point representation for 23.25 will be

sign Exp. In Ex 7FH 23 bit fractional part of mantissa
0 1000 0011 011 1010 0000 0000 0000 0000
Example 2:

Now let us see what is the value of the 32 bit floating point number 10111 1100 100 0000 0000 0000 0000
0000. It hasits MS bit asa 1. Thus the number is negative. The next 8 bitsare 0111 1100 = 7CH. Thus 7CH
is the exponent in excess 7FH format. In other words, the actual exponent is 7CH-7FH=-03. the actud
mantissa is obtained by appending 1. to the LS 23 bits. Thus the actual mantissa is 1.100 0000 0000 0000
0000 0000. Thus the value of the given 32 bit floating point number would be
-1.100 0000 0000 0000 0000 0000 x 2%

= -1.1x2%

= -0.0011 x 2°

= -0.0011

= -0.1875
Thus the given 32 bit number represents the value —0.1875

4. 64 bit Long Real

Long Real (Double precision)

S Biased exponent | Significand

63 52 0

SIBIT/ECE Department 122



Microprocessor 10EC62

0,2,3x 10°%® 1X1<=1.7x 10°*®

In both single and double precision cases the 1 after . is assumed to be present.

Sign 11 bits | 52 bits for fractional part
0=+ exponent in | with implied ‘1. * before
1=- Ex3FFH the fractional part.
Example 1:

Let us say, we want to represent 23.255 in this notation. First of all we represent 23.25 in binary as
10111.01. Then we represent this as +1.011101x2*. Thisis called the Normalized form of representation.
In the normalized form, the mantissa will aways have an integer part with value 1. The floating point
notations supported by 8087 always represent a number in the normalized form. In the 32 bit and 64 bit
floating point notations the integer part of the mantissa, of value 1, is just implied to be present, but not
explicitly indicated in the bit pattern for the number. Thus the LS 52 bits are used to indicate only he
fractional part of the mantissa and so will be 0111 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000. The MS bit will be O to indicate that the number is positive. The next 11 bits provide the
exponent in excess 3FFH format. Thus the next 11 bits will be 4+3FF=403H=100 0000 0011. Thus the 64
bit floating point representation for 23.25 will be

sign Exp. In Ex 7FH 52 bit fractional part of mantissa
0 100 0000 0011 0111 010000.......... 00
Example 2:

Now let us see what is the value of the 64 bit floating point number 1 100 0000 0011 0100 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000. It hasits MS bit as a 1. Thus the number is negative. The
next 11 bits are 100 0000 0011 = 403H. Thus 403H is the exponent in excess 3FFH format. In other words,
the actual exponent is 403H — 3FFH=+04. The actual mantissa is obtained by appending 1. to the LS 52 bits.
Thus the actual mantissais 1.0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000. Thus
the value of the given 64 bit floating point number would be
-1.0100 0000 ... 0000 x 2**

= -1.01x 2%

= -10100 x 2°

= -10100

= -20
Thus the given 64 bit number represents the value —20.

SIBIT/ECE Department 123



Microprocessor 10EC62

5. Temporary Real

S Biased exponent | 1 | Significand

79 64 63 0
0,3.4x10%%? <= I1X! <= 1.1x10"*

Example 1:

Let us say, we want to represent 23.25 in this notation. First of all we represent 23.25 in binary as 10111.01.
Then we represent this as +1.011101 x 2™, This is called the normalized form of representation. In the
normalized form, the mantissa will always have an integer part with value 1. The floating point notations
supported by 8087 aways represent a number in the normalized form.

Thus the LS 64 bits are used to indicate the mantissa and so will be 1011 1010 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000. The MS hit will be 0 to indicate that the number is
positive. The next 15 bits provide the exponent in excess 3FFFH format. Thus the next 15 bits will be
4+3FFF = 4003H = 100 0000 0000 0011. Thus the 80 bit floating point representation for 23.25 will be

sign Exp. In Ex. 3FFFH 64 bit mantissa
0 100 0000 0000 0011 1011101000 ................ 00
Example 2:

Now let us see what is the value of the 64 bit floating point number 1 100 0000 0000 0011 1010 0000 ....
0000. It has its MS hit as a 1. Thus the number is negative. The next 15 bits are 100 0000 0000 0011 =
4003H. Thus 4003H is the exponent in excess 3FFFH format. In other words, the actual exponent is 4003H-
3FFFH=+04. The actual mantissa is 1.010 0000 .... 0000, where the binary point is implied to be present
after the M S bit of the mantissa. Thus the value of the given 80 bit floating point number would be
-1.010 0000 ... 0000 x 2*%*

= -1.01 x 2%

= -10100 x 2°

= -10100

= -20
Thus the given 80bit number represents the value —20.

8087 Data typesin a nut shell

Data Range Precision 7 0!7 OI7 OI7 OI7 O!7 OI7 O!7 O!7 O!7 O!
format

Word 10* 16 bits 15 1, two’s complement
integer

SIBIT/ECE Department 124



Microprocessor

10EC62

Short 10* 32 bits 15 1, two’s complement
integer
Long 10" 64 bits 1es 1, two’s complement
integer
Packed 10" 18 digits SDi7Dy Do
BCD
Short real | 10+38 24 bits SE; EoFy Fx Foimplicit
Longrea | 10+308 53 hits SEyw EoF1 Fs; Foimplicit
Temporary | 10+4932 64 bits SEis EoFoFes
real
* Integer 01
 PackedBCD :(-1)S (D17 ... DO)
* Red : (-1)S (2E-Bias) (FO.F1..)

« Bias= 127 for short Real

= 1023 for long Real

= 16383 for Temp. Real

SIBIT/ECE Department

125



Microprocessor 10EC62

| nter connection of 8087 with 8086/88

LY —- 3233 r:::' Cunru]l B
R2&EQ MR R 8 5 | S
RN 7
E 3054/88 . ADg
n
TRy Multhmaster
——— - Rumly Fie Systery Bus
Irady R =
cany 8 — Rl TEST Rl REA A e b
I CH "
Eosot ki ¥ . I
T CLIEE §% 05 EHES, ° COMNEP O
TLE 1 = l‘_.') E}'Tﬁ
9 w L
CLE
EUSY
— Rezat
i
—*Frady RON¥7 & 1_
S AN
——*RQIT, D, 'S
N
INT \I ¥ultimaste1
l.neal Hns

8087 can be connected with any of the 8086/8088/80186/80188 CPU’s only in their maximum mode of
operation. |.e. only when the MN/MX* pin of the CPU is grounded. In maximum mode, all the control
signals are derived using a separate chip known as bus controller. The 8288 is 8086/88 compatible bus
controller while 82188 is 80186/80188 compatible bus controller.

The BUSY pin of 8087 is connected with the TEST* pin of the used CPU. The QS, and QS; lines may be
directly connected to the corresponding pins in case of 8086/8088 based systems. However, in case of
80186/80188 systems these QS, and QS; lines are passed to the CPU through the bus controller. In case of
8086/8088 based systems the RQ*/GTy* of 8087 may be connected to RQ*/GT* of the 8086/8088. The
clock pin of 8087 may be connected with the CPU 8086/8088 clock input. The interrupt output of 8087 is
routed to 8086/8088 via a programmabl e interrupt controller. The pins ADq - AD1s, BHE*/S;, RESET, A1/
Ss- A/ S; are connected to the corresponding pins of 8086/8088. In case of 80186/80188 systems the
RQ/GT lines of 8087 are connected with the corresponding RQ*/GT* lines of 82188. The interconnections
of 8087 with 8086/8088 and 80186/80188 are shown in fig.

SIBIT/ECE Department 126



Microprocessor 10EC62

Control Register of 8087

In addition to the 8 registers, which are 80 bits wide, the 8087 has a control register, a status register, and a
Tag register each 16 bits wide.

The contents of the control register, generally referred to as the Control word, direct the working
of the 8087. A common way of loading the control register from a memory location is by
executing the instruction *FLDCW src’, where ‘src’ is the address of a memory location. FLDCW
stands for ‘Load Control Word’. For example, FLDCW [BX] instruction loads the control register
of 8087 with the contents of the memory location whose 16 bit effective addressis provided in BX
register.

The bit description of the control register is shown below.

BitNo |15 |14 (13 |12 |11 |10 |9 |8 |7 6 |5 (4 |32 110
reserved | Round Prec. Intr x |P|JU|O|Z |D|I
C | ctrl ctrl mask MMM M|M|M

The LS 6 bits are used for individually masking 6 possible numerical error exceptions. If an
exception is masked, by setting the corresponding bit to 1, the 8087 will handle the exception
internally. It does not set the corresponding exception bit in the status register and it does not
generate an interrupt request. Thisistermed the Masked response.

They LS 6 bits, which correspond to the exception mask bits, are briefly described below.

IM bit (Invalid operation Mask) at bit position 0 is used for masking invalid operation. An invalid operation
exception generally indicates a stack overflow or underflow error, or an arithmetic error like, divisor is 0 or
dividend isinfinity.

DM bit (Denormalized operand mask) at bit position 1 is used for masking denormalized operand exception.
A denormalized result occurs when there is a floating point underflow. Thus, this exception occurs, for
example, when an attempt is made to load a denormalized operand from memory.

ZM bit (Zero divide mask) at bit position 2 is used for masking zero divide exception. This exception
occurs when an attempt is made to divide a valid non zero operand by zero. This can happen in the case of
explicit division instructions as well as for operations that perform division internally likein FXTRACT.
OM bit (Overflow exception Mask) at bit position 3 is used for masking overflow exception. A overflow
exception occurs when the exponent of the actual result istoo large for the destination.

UM bit (Underflow exception Mask) at bit position 4 is used for masking underflow exception. An
underflow exception occurs when the exponent of the actual result istoo small for the destination.

PM bit (Precision exception Mask) at bit position 5 is used for masking precision exception. A precision

exception occurs when the result of an operation loses significant digits when stored in the destination.

SIBIT/ECE Department 127



Microprocessor 10EC62

Precision control bits (bits 9 and 8)
These bits control the internal operating precision of the 8087. Normally, the 8087 uses 64 bit mantissa for
al internal calculations. However, this can be reduced to 53 or 24 hits, for compatibility with earlier

generation math processors, as shown below.

Bit 9 Bit 8 Length of mantissa
0 0 24 bits

0 1 Reserved

1 0 53 bits

1 1 64 bits

Rounding control bits (bits 11 and 10)
These bits control the type of rounding that is used in calculations, as shown below.

Bit 11 Bit 10 Rounding scheme

0 0 Round to nearest

0 1 Round down, towards -¥

1 0 Roundup, towards +¥

1 1 Chop or truncate towards 0

I nfinity control bit (bit 12)
This bit controls the way infinity is treated. In the affine model of infinity, + ¥ and - ¥ are treated as a

single unsigned quantity.

Bit 12 I nfinity model
0 Projective
1 Affine

Contents of Control register after reset of 8087

When the 8087 is reset, the control register isloaded with 037FH = 000000 1101 11 1111, which means
the following. The same condition results when FINIT (stands for Initialize) instruction is executed.

This condition is generally acceptable to a programmer. So, there is normally no need to explicitly load the
control register using FLDCW instruction.

Statusregister of 8087

The status register is 16 bits wide. The contents of the status register, generally referred to as the Status
word, indicates the status of the 8087. A common way of storing the contents of the status register into a

memory location is by executing the instruction ‘FSTSW dst’, where ‘dst’ is the address of a memory

SIBIT/ECE Department 128



Microprocessor 10EC62

location. FSTSW stands for Store Status Word’. For example, FSTSW [BX] instruction stores the status
register of 8087 into the memory location whose 16 hit effective address is provided in BX register. This
status can then be read by the 8086, by executing say MOV AX, [BX], to take action depending on the
status of 8087.

The bit description of the status register is shown below.
Bitno. | 15 14 |13 |12 |11 |10 |9 |8 |7 6 |5/4(3|2]|1]|0

Busy | C | Stack pointer | C C|CliIntr |x |P|U|O|Z|D|I
3 2 |1]0]|Reg EIE|E|E|E|E

If the 8087 encounters an error exception during execution of an instruction, the corresponding exception
bit is set to the 1 state, if the exception is not masked using the control word. The possible exceptions, as
aready discussed, are as follows.
Invalid operation Exception (IE, bit O of the status register)
Denormalized operand Exception (DE, bit 1 of status register)
Zero divide Exception (ZE, bit 2 of status register)
Overflow Exception (OE, bit 3 of status register)
Underflow Exception (UE, bit 4 of status register)
Precision Exception (PE, bit 5 of status register)
The only way these exception bits are cleared is by the execution of FINIT, FCLEX (stands for clear
exceptions), FLDENV (stands for load environment), FSAVE (stands for save environment and stack of
registers), and FRSTOR (stands for restore environment and stack of registers). The term Environment
stands for the following group of information of size 14 bytes.
1. control word (2 bytes)
2. Statusword (2 bytes)
3. Tagword (2 bytes)
4. Exception pointer (8 bytes)
The interrupt request bit (bit 7) in the status word is set to 1 by the 8086, if one or more exception bits are
set to 1. Thenthe INT output pin of 8087 is activated if interrupt is not masked using the control word.
C2, C2, C1, and CO (bits 14, 10, 9, and 8) are the condition code flags of the 8087. The 8087 updates these
flags depending on the status of arithmetic operations. The FTST (stands for Test) and FCOM (stands for
Compare) instructions also use these flags to report the result of their operations. Some of these bits are
discusses later when the Compare instruction is described.
Bits 13, 12, and 11 provide the address of the register which is currently the stack top. For example, if these
bits are 110, it means that R6 is the current stack top. In other words, ST is R6, ST(1) is R7, ST(2) is R0,
and so on.

SIBIT/ECE Department 129



Microprocessor 10EC62

The Busy bit (bit 15) is set to 1 when the 8087 is busy executing an instruction, or busy executing an
exception routine. When this bit isa 1, the BUSY output pin of 8087 is activated.

A programmer needs to read the status register contents after the execution of FTST or FCOM instruction,
to know the result of these ingtructions. In most of other cases, the programmer is not required to read the

status register contents.

Exception Pointer of 8087

When the 8086 comes across an 8087 instruction, it saves the following information in a 4 word area
termed as the exception pointer.

1. 20 hit physical address of the instruction

2. 11 bit opcode of the instruction

3. 20 bit physical address of the data, if 8087 needsiit.

4

Remaining 13 bits are zeros.

However, some instructions like FLDCW which need a memory operand, do not affect the 20 bit area of the
exception pointer meant for address of data.

The exception pointer islocated in the 8086, and not in 8087, but appears to be part of 8087.

Tag register of 8087
The Tag register is 16 bits wide. The contents of the Tag register indicates the status of each of the 80 bit

registers of the 8087. A common way of storing the contents of the Tag register is by executing the
instruction ‘FSTENV dst’, where “dst” is the address of a memory location. It stores the environment of
8087, of which Tag word is a part. FSTENV stands for ‘Store environment’. For example, FSTENV [BX]
instruction stores the environment of 8087 into 14 byte memory locations whose 16 bit effective address is
provided in BX register.

The Tag register is loaded with a new value, when one of FINIT, FLDENV, or FRSTOR instructions are
executed.

The bit description of the Tag register is as shown below.

Bitno. |15 |14 |13 |12 |11 |10 |9 |8 |7 |6 |5 |4 |3 |2 |1 |O
TAG7 TAG6 TAG5 TAG4 | TAG3 | TAG2 | TAG1 | TAGO

The status of each 80 bit stack register is provided using a 2 hit field in the Tag register. The field labeled
TAG 3 indicates the status of R3. It should be noted that TAG 3 is not indicating the status of ST(3). The
Tag bitsindicate the status of a stack register as shown below.

Tag bits | Status

00 Valid datain the register

SIBIT/ECE Department 130



Microprocessor

10EC62

01 Zerovaueintheregister

10 Special number, like _ or decimal, in the
register

11 Theregister is empty

The Tag word is not normally used in programs. However it can be used to quickly interpret the contents of

afloating point register, without the need for extensive decoding.

FINIT instruction
Infinity condition is projective (treats + ¥ and - ¥ as same)

Rounds to nearest

Length of mantissais 64 bits

Interrupt is enabled

All exceptions are masked

No need for FLDCW

8087 Instruction Set
The instruction set of 8087 starts with F, stands for floating point. The instruction of 8087 numeric data

processor can be classified into following six groups:

1

© 0 & W N

Datatransfer instructions

Arithmetic instructions

Compare Instructions

Transcendental instructions

Load constant instructions

Processor control instructions

1. Data Transfer Instructions

(a) Real Transfers

S. No.

I nstruction

Description with example

1

FLD source

Decrements stack pointer by one and copies a real number from a
stack element or memory to the new ST. A short — real or long-
rea number from memory is automaticaly converted to
temporary real format by the 8087 beforeitisputin ST.
Examples:

FLD ST(2) ; Copies ST(2) to ST

SIBIT/ECE Department

131



Microprocessor

10EC62

FLD [BX] ; Number from memory pointed by BX copied to
ST

FST Destination

Copies ST to a specified stack position or to a specified memory
location.

Examples:

FST ST(3) ; Copy ST to ST(3)

FST [BX] ; Copy ST to memory pointed by [BX]

FSTP destination

Copies ST to a specified stack element or memory location and
increments stack pointer by one to point to the next element on
the stack. Thisis a stack POP operation.

FXCH destination

Exchanges contents of ST with the contents of a specified stack
element. If no destination is specified, then ST(1) is used.
Example:

FXCH ST(4) ; Swap ST and ST(4)

(b) Integer transfers

S.No. | Instruction Description with example

5 FILD source Integer load. Converts integer number from memory to temporary
rea format and pushes converted number on 8087 stack.
Example:
FILD DWORD PTR [BX] ; Short integer from memory
location pointed by [BX]

6 FIST destination Integer store. Converts number from ST to integer form, and
copies to memory.
Example:
FIST INT_NUM ; ST to memory locations named
INT_NUM

7 FISTP destination | Integer store and pop. Similar to FIST except that stack pointer is

incremented after copy.

(c) Packed Decimal Transfers

S. No.

I nstruction

Description with example

8

FBLD source

Packed decima (BCD) load. Convert number from memory to
temporary-real format and push on top of 8087 stack.

Example:

FBLD AMOUNT ; Ten byte BCD number from memory

SIBIT/ECE Department

132



Microprocessor

10EC62

location AMOUNT to ST

FBSTP destination

BCD store in memory and pop 8087 stack. Pops temporary — red
from stack, converts to 10-byte BCD, and stores result to
memory.
Example:
FBSTP MONEY ; Contents from top of stack are

converted to BCD, and stored in memory.

2. Arithmetic I nstructions

S.No. | Instruction Description with example
1 FADD destination, | Will add real number from specified source to real number at
source specified destination. Source can be stack element or memory
location. Destination must be a stack element. If no source or
destination is specified, then ST is added to ST(1) and the stack
pointer isincremented so that the result of the additionisat ST.
Examples:
FADD ST(2), ST ; Add ST to ST(2), result in ST(2)
FADD ST, ST(5) ; Add ST(5) to ST, result in ST
FADD SUM ; Real number from memory + ST
FADD ; ST + ST(1), pop stack-result at ST
2 FADDP Adds ST to specified stack element and increments stack pointer
destination, source | by one.
Example:
FADDP ST(2) ; Add ST(2) to ST
; Increment stack pointer so ST(2)
; becomes ST
3 FIADD source Adds integer from memory to ST, Stores the result in ST.
Example:
FIADD CARS SOLD ;Integer number from memory + ST
4 FSUB destination, | Subtracts the real number at the specified source from the red

source

number at the specified destination and puts the result in the
specified destination.

Examples:

FSUB ST(3), ST ; ST(J)€ ST(2) - ST
FSUB DIFFERENCE ; ST < ST-real from memory
FSUB ; ST&(ST(2)-ST)

SIBIT/ECE Department

133



Microprocessor

10EC62

5 FSUBP destination, | Subtracts ST from specified stack element and puts result in
source specified stack element. Then increments stack pointer by one.
Examples:
FSUBP ST(2) ; ST(2) - ST . ST(1) becomes new ST.
6 FISUB source Subtracts integer number stored in memory from ST and stores
resultin ST.
Example:
FISUB DIFFERENCE ; ST < ST-integer from memory
7 FSUBR These instructions operate same as FSUB instructions discussed
destination, source | earlier except that these instructions subtract the contents of the
8 FSUBRP specified destination from the contents of the specified source and
destination, source | put the difference in the specified destination.
9 FISUBR source [Normal FSUB instruction subtracts source from destination.]
10 FMUL destination, | Multiply real number from source by real number from specified
source destination, and put result in specified stack element.
Examples:
FMUL ST(2), ST ; Multiply ST(2) and ST, result in ST(2)
FMUL ST, ST(5) ; Multiply ST(5) to ST, result in ST
FMULP Multiplies the real number from specified source by real number
destination, source | from specified destination, puts result in specified stack element,
and increment stack pointer by one. With no specified operands
FMULP multiplies ST(1) by ST and Pops stack to leave result at
ST.
Example:
FMULP ST(2) ; Multiply ST(2) to ST. increment stack
pointer so ST1(1) becomes ST
11 FIMUL source Multiply integer from memory at ST and put result in ST.
Example:
FIMUL DWORD PTR [BX]
;Integer number from memory pointed by BX x ST and result in
ST
12 FDIV  destination, | Divides destination real by source real, stores result in
source destination.
Example:
FDIV ST(2), ST ; Divides ST by ST(2)
: storesresult in ST
13 FDIVP destination, | Same as FDIV, but also increments stack pointer by one after

SIBIT/ECE Department

134



Microprocessor

10EC62

source

DIV
Example:
FDIV ST(2), ST ; Divides ST by ST(2), storesresult in ST

and increments stack pointer

14

FIDIV source

Divides ST by integer from memory, stores result in ST.
Example:
FIDIV PERCENTAGE; ST < ST/integer number

15

FDIVR destination,

source

16

FDIVP destination,

source

17

FIDIVR source

These three instructions are identical in format to the FDIV,
FDIVP and FIDIV instructions above except that they divide the
source operand by the destination operand and put the result in
the destination.

18

FSQRT

Contents of ST are replaced with its square root.
Example:
FSQRT

19

FSCALE

Scales the number in ST by adding an integer value in ST(1) to
the exponent of the number in ST. Fast way of multiplying by

integral powers of two.

20

FPREM

Partial reminder. The contents of ST(1) are subtracted from the
contents of ST over and over again until the contents of ST are
smaller than the contents of ST(1)

Example:

FPREM

21

FRNDINT

Round number in ST to an integer. The round — control (RC) bits

in the control word determine how the number will be rounded.

22

FXTRACT

Separates the exponent and the significant parts of a temporary
real number in ST. After the instruction executes, ST contains a
temporary — real representation of the significant of the number
and ST(1) contains a temporary rea representation of the

exponent of the number.

23

FABS

Replaces ST by its absolute value. Instruction simply makes sign

positive.

24

FCHS

Complements the sign of the number in ST.

SIBIT/ECE Department

135



Microprocessor

10EC62

3. Compare I nstructions

These instructions compare the contents of ST with contents of specified or default source. The source may

be another stack element or real number in memory. Such compare instructions set the condition code bits
C3, C2 and CO of the status words use as shown in the table bel ow.

C3 C2 Co Description

0 0 0 ST contents is greater than the other operand
0 0 1 ST contents is smaller than the other operand
1 0 0 ST contents is equal to the other operand

1 1 1 The operands are not comparable

Different compare instructions:

S.No. | Instruction Description with example
1 FCOM source Compares ST with real number in another stack element or
memory.
Examples:
FCOM ; Compares ST with ST(1)
FCOM ST(4) ; Compares ST with ST(4)
FCOM VALUE ; Compares ST with rea number from
memory
2 FCOMP source Identical to FCOM except that the stack pointer isincremented by
one after the compare operation.
3 FCOMPP Compares ST with ST(1) and increments stack pointer by 2 after
compare.
FICOM source Compares ST to ashort or long integer from memory.
FICOMP source Identical to FICOM except stack pointer is incremented by one
after compare.
6 FTST Compares ST with zero.
7 FXAM Tests ST to seeif it is zero, infinity, unnormalized, or empty. Sets

bits C;, C,, C; and C, to indicate result.

4. Transcendental Instructions (Trigonometric and Exponential I nstructions)

S. No.

I nstruction

Description with example

1

FPTAN

Computes the values for a ratio of Y/X for an angle in ST. the

angle must be expressed in radians, and the angle must be in the

SIBIT/ECE Department

136



Microprocessor

10EC62

range of 0 < angle < p/4.

(FPTAN does not work correctly for angles of exactly 0 and p/4.)

2 FPATAN

Computes the angle whose tangent is Y/X. The X value must be
in ST, and the Y value must be in ST(1). Also X and Y must
satisfy the inequality 0 < Y < X < ¥. The resulting angle
expressed in radians replaces Y in the stack. After the operation

the stack pointer isincremented so the result is then ST.

3 F2XM1

Computes the function Y = 2*— 1 for an X vauein ST. the result,
Y replaces X in ST. X must beintherange0< X < 0.5

4 FYL2X

Calculates Y times the log to the base 2 of X or Y (log.X). X
must be in the range of 0 < X < ¥ and Y must be in the range
¥ <Y <+¥. X mustinitially bein ST and Y must be in ST(1).
The result replaces Y and then the stack is popped so that the
result isthen at ST.

5 FYL2XP1

Computes the function Y times the log to the base 2 of (X+1) or
Y (log, (X+1)). This instruction is amost identical to FYL2X
except that it gives more accurate results when computing the

logoff a number very closeto one.

5. Load constant I nstructions

S.No. | Instruction Description

1 FLDZ - Push 0.0 onto stack

2 FLDI - Push + 1.0 onto stack

3 FLDPI - Push the value p onto stack

4 FLD2T - Push log of 10 to the base 2 onto stack (l0g,10)
5 FLDL2E - Push log of eto the base 2 onto stack (Iog.€)

6 FLDLG2 - Push log of 2 to the base 10 onto stack (10g102)

Note: The load constant instruction will just push indicated constant into the stack.

6. Processor Control I nstructions

S.No. | Instruction Description

1 FINIT/FNINT Initializes 8087. Disables interrupt output, sets stack pointer
to register 7, sets default status.

2 FDISI/FNDISI Disables the 8087 interrupt output pin so that it can not

SIBIT/ECE Department 137



Microprocessor

10EC62

cause an interrupt when an exception (error) occurs.

3 FENI/FNENI Enables 8087 interrupt output so it can cause an interrupt
when an exception occurs.
4 FLDCW source Loads a status word from a memory location into the 8087
status register. This instruction should be preceded by the
FCLEX instruction to prevent a possible exception response
if an exception bit in the status word is set.
5 FSTCW/FNSTCW Copies the 8087 control word to a memory location. You
destination can determine its current value with 8086 instructions.
6 FSTSW/FNSTW Copies the 8087 status word to a memory location. You can
destination check various status bits with 8086 instructions and take
further action on the state of these bits.
7 FCLEX/FNCLEX Clears al of the 8087 exception flag bits in the status
register. Unasserts BUSY and INT outputs.
8 FSAVE/FNSAVE Copies the 8087 control word, status word, pointers and
destination entire register stack to 94-byte area of memory. After
copying al of this the FSAVE/FNSAVE instruction
initializes the 8087.
9 FRSTOR source Copies a 94 byte area of memory into the 8087 control
register, status register, pointer registers, and stack registers.
10 FSTENV / FNSTENV | Copies the 8087 control register, status register, tag words,
destination and exception pointers to a series of memory locations. This
instruction does not copy the 8087 register stack to memory
asthe FSAVE / FNSAVE instruction does.
11 FLDENV source L oads the 8087 control register, status register, tag word and
exception pointers from a named areain memory.
12 FINCSTP Increment the 8087 stack pointer by one.
13 FDECSTP Decrement the stack pointer by one.
14 FFREE destination Changes the tag for the specified destination register to
empty.
15 FNOP Performs no operation. Actually copies ST to ST.
16 FWAIT Thisinstruction is actually an 8086 instruction which makes

the 8086 wait until it receives a not busy signal from the
8087 toits TEST* pin.

Note: the processor control instructions actually do not perform computations but they are made used to

perform tasks like initializing 8087, enabling intempty, etc.

SIBIT/ECE Department



Microprocessor 10EC62

SIBIT/ECE Department 139



Microprocessor

8087 Programs

10EC62

1. Calculate area of acircle (A = pR?) given R, radius of thecircle.

; Procedure that calculates the area of acircle.
; The radius must be stored at memory location RADIUS before calling this procedure.

; Theresult isfound in memory location AREA after the procedure.

AREAS

AREAS

OR

PROC FAR

FINIT ; Initialize 8087
FLD RADIUS ;radiusto ST
FMUL ST, ST(0) ; sguareradius

FLDPI ;ptoST

FMUL ; multiply ST=ST X ST(1)
FSTP AREA : save area

FWAIT ; wait for coprocessor
RET

ENDP

Program to calculate the area of circle. This program takes test data from array RAD that contains five

sample radii. The five areas are stored in a second array called AREA. No attempt is made in this program
to use the data from the AREA array.

; A short program that finds the area of five circles whose radii are stored in array RAD

.MODEL SMALL

.386 ; Select 80386
.387 ; Select 80387
.DATA

.CODE
STARTUP

SIBIT/ECE Department 140



Microprocessor

MAIN1:

ST (0)
ST (1)
ST (2
ST (3)

ST (0)
ST (1)
ST (2
ST (3)

ST (0)
ST (1)
ST (2
ST (3)

MOV SI,0
MOV DI, 0
MOV CX,5

FLD RADISI]
FMUL ST, ST (0)
FLDPI

FMUL

FSTP AREA [DI]
INC Sl

INC DI
LOOP MAIN1
EXIT

END

FLD RAD [SI]

RADILIS ST

FLDPI
n ST
RADIIS?
FSTP AREA [DI]
ST

SIBIT/ECE Department

: source element O
: destination element O

: count of 5

radiusto ST

; square radius

;ptoST

; multiply ST=ST X ST(1)

, Save area

FMUL ST, ST (0)

ST (0)

RADIIS?

ST (1)

ST (2)

ST (3)

FMUL

ST (0)

p RADIUS?

ST (1)

ST (2)

ST (3)

10EC62

141



Microprocessor 10EC62

Fig: Operation of the stack for the above program. Note that the stack is shown after the execution
of the indicated instruction.

2. Program for determining the resonant frequency of an LC circuit. The equation solved by the
programisFr=1/2p QLC. This example uses L 1 for inductance L, C1 for capacitor C, and RESO
for the resultant resonant frequency.

; A sample program that finds the resonant frequency of an LC tank circuit.

. MODEL SMALL
.386 ; Select 80386
387 ; Select 80387
.DATA
RESO DD ? ; resonant frequency
L1 DD  0.000001 ; inductance
C1l DD 0.000001 ; capacitance
TWO DD 2.0 : constant
.CODE
STARTUP
FLD L1 ;get L
FMUL C1 ; findLC
FSQRT ;find QLC
FMUL TWO ;find 24L.C
FLDPI ; getp
FMUL ; get 2pALC
FLD1 ;get 1
FDIVR ; form 1/2pQLC
FSTP RESO ; save frequency
EXIT
END

3. Program to find the roots of a polynomial expression (ax2+bx+cc=0) by using the quadratic
equation. The quadratic equation is b+(Ch?- 4ac)/2a

Note: In this program R1 and R2 are the roots for the quadratic equation. The constants are stored in
memory locations A1, B1, and C1. Note that no attempt is made to determine the roots if they are imaginary.
This example tests for imaginary roots and exits to DOS with a zero in the roots (R1 and R2), if it finds

them. In practice, imaginary roots could be solved for and stored in a separate set of memory locations.

SIBIT/ECE Department 142



Microprocessor

; A program that finds the roots of a polynomia equation using the quadratic equation. Note

; imaginary roots are indicated if both rootl (R1) and root 2 (R2) are zero.

TWO
FOUR
Al

Bl

C1

R1

R2

ROOTS1:

. MODEL SMALL
386

387

DATA

DD 20
DD 40
DD 1.0
DD 00
DD -90
DD 2
DD 2
.CODE
STARTUP
FLDZ

FST Rl
FSTP R2
FLD TWO
FMUL Al
FLD FOUR
FMUL Al
FMUL C1
FLD B1
FMUL B1
FSUBR

FTST

FSTSW AX
SAHF

JZ  ROOTSL
FSQRT
FSTSW AX
TEST AX,1
JZ  ROOTSL
FCOMPP
JMP ROOTS2

SIBIT/ECE Department

: Select 80386
: Select 80387

:clear roots

: form 2a

: form 4ac

: form b?

: form b? - 4ac

- test b? — 4ac for zero

; COpy status register to AX
; moveto flags

- if b?- 4acis zero

: find square root of b?- 4ac

; test for invalid error (negative)

: clear stack

;end

10EC62

143



Microprocessor 10EC62

FLD B1
FSUB ST, ST (1)
FDIV ST, ST (2
FSTP R1 ; save rootl
FLD B1
FADD
FDIVR
FSTP R2 ; save root2
ROOTS2:
EXIT
REVIEW QUESTION
1.Draw theinternal struccture of 8087 arithmatic coprocessor july 2009 (10 marks)
2.explain the following coprocessor instruction: FSQRT,FSTP,F SCALE, F RNDINT, F COM

July 2009 (10 marks)
3. Datatransfer instruction of 8087. Jan 09 (10 marks)
4. Expain the interconnection of 8087 with 8086 july 2008 (10 marks)
5. Explain the control register of 8086 july 2008 (5 marks)

SIBIT/ECE Department

END

144



Microprocessor 10EC62

UNIT:7: SYSTEM BUS STRUCTURE

BASIC 8086 CONFIGURATION
MINIMUM MODE VERSUS MAXIMUM MODE

There are two available modes of operation for the 80B6/8088 microprocessors: minimum mode
and maximum mode. Minimum mode operation is obtained by connecting the mode selectiop
pin MN/MX to +5.0 V, and maximum mode is selected by grounding this pin. Both modes en
able different control structures for the 8086/8088 microprocessors. The mode of operation pro-
vided by minimum mode 18 similar to that of the 80B5A, the most recent Intel 8-bit
microprocessor, whereas maximum mode is new and unique and deigned to be used whenever a
coprocessor exists in a system. Note that the maximum mode was dropped from the Intel family
beginning with the 80286 microprocessor.

Minimum Mode Operation

Minimum mode operation is the least-expensive way to operate the 8086/8088 microprocessors
(see Figure 8-19 for the minimum mode 8088 system). It costs less because all the control sig-
nals for the memory and I/O are generated by the microprocessor. These control signals are iden-
tical to those of the Intel 8OBSA, an earlier 8-bit microprocessor. The minimum mode allows the
8085A, 8-bit peripherals to be used with the 8U86/8088 without any special considerations.

Maximum Mode Operation

Maximum mode operation differs from minimum mode in that some of the control signals must
be externally generated. This requires the addition of an external bus controller—the 8288 bus
controller (see Figure 8-20 for the maximum mode 8088 system), There are not enough pins on

SIBIT/ECE Department 145



Microprocessor 10EC62

!
i
1
i

AELLT

Eodbpw—af
L
]

it

r3 E!|§ i ssi
:
I
——=]

2
Lo
i3

CLC#
CELULE L]

,____.__
ST et i

4'
P

(:::.”

the 8086/8088 for bus control during maximum mode because new pins and new features have
replaced some of them. Maximum mode 1s used only when the system contains external co-
processors such as the 8087 arithmetic coprocessor.

SIBIT/ECE Department 146



Microprocessor

connects to the PCI bus through an integrated circuit called a PCI bridge. This means that virtu-
ally any microprocessor can be interfaced to the PCI bus as long as a PCI controller or bridge is
designed for the system. In the future, all computer systems may use the same bus. Even the
Apple Macintosh system is switching to the PCI bus. Certainly, IBM will produce a Power-PC

system that contains the PCI bus.

Mmrnprnl:m:snr

Dyramiz HAM

System BIOS
1 _°C
Rasident Local Bus
FC Bus Withea Chak Cantrofsr
Cantrolier
B PO Bus
ISA Bus Priifitei Intelacs FASAODER
Cantroller
154 Bus

SIBIT/ECE Department

147



Microprocessor 10EC62

Back of computer

Pin # _

1 =12 TRST

2| Tek 12V

3| 6N ™S

4 ToG o

5 5V 5w

[ +5v Tﬁ.

7| B T

g| WO +EV

] PR&MNT 1

10 Y0

11| PRENT 2

12| key KEY

13| KEY KEY
[ == &
s 15| GND RET m E
| 6] CLK Vi P |
d 17| GMD Wit | : d
? 18| REG | GMD e e

13| VD n J
s 20| ADTY ADa0 t s
ci| 21| ADze +RAY s é
e 22| GND AD2B :l e

za| aDzy AD2E 8

24| ADzs GND

25 =33 AD24

26| Cibes IBSEL

gr| aApza +3.3v

28 GND ADzz

za| aAb: AD2D

ao| ams GND

i =3 3V ADiB

az| amz ADE

3| cmEz +3 3V

1| GMD FRAME

as| TROV GMND

25| «3av Tov |

37| DEWSEL GND

38| GND &TOR

39| Lotk 233V

«0| TFEAR SOONE

SIBIT/ECE Department 148



Microprocessor

10EC62

T4 T3 TG

FRAME

——<C5mman d

BE's

! BE's

. _(Mm X X s Xﬁ \
XEXE(EX

I/O Read Cycle

1/0 Write Cycle
Memory Read Cycle
Memory Write Cycle

Configuration Read

SIBIT/ECE Department

0000H indicating a processor shutdown, a 0001H for a processor
halt, or a 0002H for 80X86 specific code or data.

Data are read from an I/O device using the 1/O address that appears
on ADO-ADIS. Burst reads are not supported for /O devices.

As with T/O read, this cycle accesses an [/O device, but writes data.
Data are read from a memory device located on the PCI bus.

As with memory read, data are accessed in a device located on the
PCI bus. The location is written.

Configuration information is read from the PCI device using the
configuration read cycle.

149



Microprocessor

10EC62

C/BE3-C/BEQ

Command

0000
0001
0010
0011
0100-0101
0110
0111
1000-1001
1010
1011
1100
1101
1110
1111

INTA sequence

Special cycle

IfO read cycle

I/O write cycle
Reserved

Memory read cycle
Memory write cycle
Reserved

Configuration read
Configuration write
Memory multiple access
Dual addressing cycle
Line memory access
Memory write with invalidation

Configuration Write

The configuration write allows data to be written to the

configuration area in a PCI device. Note that the address is
specified by the configuration read.

Memory Multiple
Access

Dual Addressing
Cycle

Line Memory Access

Memory Write with
Invalidation

Review questions:
Explain 8288 bus controller

Explain LPT

agkrwpNPE

SIBIT/ECE Department

Explain programmabl e interrupt controller

Write a short noteson PCI, LPT,
Explain USB, USB data,USB commands.

This is similar to the memory read access, except that it is usually
used to access many data instead of one.

Used for transferring address information to a 64-bit PCI device,
which only contains a 32-bit data path, '

Used to read more than two 32-bit numbers from the PCI bus.

This is the same as line memory access, but it is used with a write.
This write bypasses the wnite-back function of the cache.

jan 09
jan 08
jan 09
july09
July 09

150



Microprocessor 10EC62

UNIT:8:

80386, 80486 AND PENTIUM PROCESSORS: Introduction to the 80386 microprocessor,
Specia 80386 registers, Introduction to the 80486 microprocessor, Introduction to the Pentium
Mi Croprocessor.

7 Hours
TEXT BOOKS:

1. Microcomputer systems-The 8086 / 8088 Family — Y.C. Liu and G. A. Gibson, 2E PHI -
2003

2. Thelntel Microprocessor, Architecture, Programming and I nterfacing-Barry B. Brey,
6e, Pearson Education / PHI, 2003

INTRODUCTION TO 80386 MI CROPROCESSOR:

Introduced in 1986, the Intel 80386 provided a maor upgrade to the earlier 8086 and 80286
processors in system architecture and features. The 80386 provided a base reference for the design
of all Intel processors in the X86 family since that time, including the 80486, Pentium, Pentium
Pro, and the Pentium 11 and I11. All of these processors are extensions of the original design of the
80386. All are upwardly compatible with it. Programs written to run on the 80386 can be run with
little or no modification on the later devices. The addressing scheme and internal architecture of
the 80386 have been maintained and improved in the later microprocessors — thus a family of
devices has evolved over the years that is the standard of a wide industry and upon which is based
avast array of software and operating system environments.

Major features of the 80386 include the following:

A 32-hit wide address bus providing areal memory space of 4 gigabytes.
A 32-bit wide data bus.

Preemptive multitasking.

Memory management, with four levels of protection.

Virtual memory support, allowing 64 terabytes of virtual storage.
Support for 8, 16, and 32-hit data types.

Three primary modes of operation (Real, Protected, Virtual 8086).
CMOS IV technology, 132-pin grid array.

Object code compatibility with earlier X86 designs.

PIN DESCRIPTIONS
Symbol Type | Function

CLK2 In Provides the fundamental timing for the device.

DO- D31 /0 Data Bus inputs data during memory, 1/O, or interrupt read cycles, and

SIBIT/ECE Department 151



Microprocessor

A2-A31 Out

BEO# -
BE3# Out
W/R# Out
DIC# Out
M/IO# Out
LOCK# Out
ADSH Out
NA# In
READY# | In
BS16# In
HOLD In
HLDA Out
BUSY# In
ERROR# | In
PEREQ In
INTR In
NMI In
RESET In
N/C
VCC In
VSS In
DATA FLOW

10EC62

outputs data during memory and /O cycles.
Address Bus provides physical memory or I/O port addresses.

Byte Enable signals decode A0 and A1 to indicate specific banks for memory
datatransfers.

Write/Read defines nature of data transaction in progress.

Data/Control distinguishes data transfer cycles (memory or 1/0) from control
cycles (interrupt, halt, instruction fetch).

Memory/I O identifies source/destination of current cycles.

Bus Lock responds to a prefix byte on an instruction that indicates that other
bus masters may not intercede the current cycle until it is complete.

Address Status indicates that a valid set of addressing signals are being
driven onto the device pins.These include W/R#, D/C#, M/I0#, BEO#-BE3#,
and A2-A31.

Next Addressisused to request address pipelining.

Bus Ready requests await state from attached devices.

Bus Size 16 requests a 16-bit rather than a 32-bit data transfer.

BusHold Request initiatesa DMA cycle.

Bus Hold Acknowledge indicates that the processor is honoring a DMA
request./TD>

Busy is a synchronization signal from an attached coprocessor, e.g., 80387.
Error signasan error condition in an attached coprocessor.

Processor Extension Request synchronizes a coprocessor data transfer via
the 80386.

I nterrupt accepts a request from ainterrupting device (maskable).
Non-Maskable I nterrupt forces an interrupt that cannot be ignored.

Reset causes the processor to enter a known state and destroys any execution
in progress.

No Connect indicates pins that are not to have any electrical connections.
Power Supply typicaly +5 volts.

Ground.

SIBIT/ECE Department 152



Microprocessor 10EC62

Refer to the following diagram for illustration.

The Intel 80386 data flow consists of three primary areas. These are the bus interface unit (BIU),
the central processing unit (CPU), and a memory management unit (MMU). These are
interconnected within the device by several 32-bit-wide data busses and an internal control bus.
The Bus Interface Unit (BIU) provides the attachments of the device to the external bus system.
The circuits include a set of address bus drivers which generate or receive the A2 — A31 address
lines; the BEO — BE3 byte selection lines; the control lines M/IO, D/C, W/R, Lock, ADS, NA,
BS16, and Ready; and interface with the DO — D31 data bus lines. The unit includes a pipeline
control element which provides the memory access pipelining that permits fast data transfer from
contiguous memory locations. The unit also includes a set of multiplex transceivers to handle the
direction of incoming or outgoing data and address information. Also included is a control element
that handles requests for interrupts, DMA cycles, and coprocessor synchronization.

The Central Processing Unit (CPU) is connected to the BIU viatwo paths. Oneisthedirect ALU
bus (across the bottom of the drawing) that allows exchange of addressing information and data
between the CPU and the BIU if needed. The second is the normal path for instruction parts which
go by way of an instruction prefetching element that is responsible for requesting instruction bytes
from the memory as needed; an instruction predecoder that accepts bytes from the queue and
ensures at least 3 instructions are available for execution; the instruction decoder and execution
unit that causes the instruction to be performed. This is accomplished by the use of microprograms
stored in the system control ROM which is stepped through to control the data flow within and
around the Arithmetic Logic Unit (ALU).

The ALU consists of a register stack which contains both programmer-accessible and non-
accessible 32-bit registers; a hardware multiply/divide element; and a 64-bit barrel shifter for
shifts, rotates, multiplies, and divides. The ALU provides not only the data processing for the
device but also is used to compute effective addresses (EAS) for protected mode addressing.

The Memory Management Unit (MM U) provides the support for both the segmentation of main
memory for both protected mode and real mode, and the paging elements for virtual memory. In
real mode, the segmentation of the main memory is limited to a maximum segment size of 64K
bytes, and a maximum memory space of 1.024 megabytes. This is in concert with the Intel 8086
upon which this processor is based. In protected mode, severa additional registers are added to
support variable length segments to a maximum theoretical size of 4 gigabytes, which in turn
supports multitasking and execution priority levels. Virtual mode using the device’s paging unit
allows a program or task to consume more memory than is physically attached to the device
through the trand ation of supposed memory locations into either real memory or disk-based data.
MODES OF OPERATION

The Intel 80386 has three modes of operation available. These are Rea Mode, Protected Mode,
and Virtua 8086 mode.

Real Mode operation causes the device to function as would an Intel 8086 processor. It is faster by
far that the 8086. While the 8086 was a 16-bit device, the 80386 can provide 32-bit extensions to
the 8086°s instructions. There are additional instructions to support the shift to protected mode as
well as to service 32-bit data. In Real Mode, the address space is limited to 1.024 megabytes. The
bottom 1,024 bytes contain the 256 4-byte interrupt vectors of the 8086. The Reset vector is
FFFFOh. While the system can function as a simple DOS computer in this mode forever, the main
purpose of the mode isto allow the initialization of several memory tables and flags so that ajump
to Protected Mode may be made.

Protected Mode provides the 80386 with extensive capabilities. These include the memory
management, virtual memory paging, multitasking, and the use of four privilege levels which
allows the creation of sophisticated operating systems such as Windows NT and OS/2. (These will
be further explained.)

Virtual 8086 Mode allows the system, once properly initialized in Protected Mode, to create one
or more virtual 8086 tasks. These are implemented essentially as would be a Rea Mode task,

SIBIT/ECE Department 153



Microprocessor 10EC62

except that they can be located anywhere in memory, there can be many of them, and they are
limited by Real Mode constructs. This feature allows a 386-based computer, for example, to
provide multiple DOS sessions or to run multiple operating systems, each one located in its own
8086 environment. OS/2 made use of this feature in providing multiple DOS sessions and to
support its Windows 3.1 emulator. Windows NT uses the feature for its DOS windows.
REGISTER ORGANIZATION

Programmer-visible Registers

The *386 provides a variety of Genera Purpose Registers (GPRs) that are visible to the
programmer. These support the origina 16-bit registers of the 8086, and extend them to 32-bit
versions for protected mode programming.

Chart goes here.

The AX, BX, CX, and DX registers exist in the same form as in the 8086. The may be used as 16-
bit registers when called with the "X" in their name. They may aso be used as 8-bit registers when
defined with the "H" and "L" in their names. Hence, the AX register is used as a 16-bit device
while the AH and AL are used as 8-bit devices. Similarly, Source Index (SI), Destination Index
(DI), Base Pointer (BP) and Stack Pointer (SP) registers exist in their traditional 16-bit form.

To use any of these registers as 32-hit entities, the letter "E", for extended, is added to their names.
Hence, the 16-bit AX register can become the 32-bit EAX register, the 16-bit DI register becomes
the 32-bit EDI register, etc.

The registers of the ‘386 includes the 8086’s Code Segment (CS) register, Stack Segment (SS)
register, Data Segment (DS) register, and Extra Segment (ES) register which are used as containers
for values pointing to the base of these segments. Additionally, two more data-oriented segment
registers, the FS and GS registers, are provided. In real mode, these registers contain values that
point to the base of a segment in the real mode’s 1.048 megabyte address space. An offset is added
to this displaced to the right which generates a real address. In protected mode, the segment
registers contain a "selector" value which points to a location in a table where more information
about the location of the segment is stored.

The “386 also provides an Instruction Pointer (IP) register and a Flags (FLAGS) register which
operate as they did in the 8086 in real mode. In protected mode, these become 32-bit devices
which provide extended features and addressing.

The 32-bit FLAGS register contains the original 16 bits of the 8086-80286 flags in bit positions 0
through 15 asfollows. These are available to real mode.

Bit Flag | Description

0 CF Carry Flag

1 1 Alwaysal

2 PF Parity Flag

3 0 Always a0

4 AF Auxiliary Carry Flag
5 0 Alwaysa0

6 ZF Zero Flag

7 SF Sign Flag

8 TF Trap Flag

SIBIT/ECE Department 154



Microprocessor 10EC62

9 IF Interrupt Enable

10 DF Direction Flag

11 OF Overflow Flag

12-13 PL1,2 | /O Privilege Level Flags

14 NT Nested Task Flag

15 0 Always a0

Two more flags are provided to support protected mode.
Bit Flag Description
16 RF Resume Flag
17 VM Virtua Mode

Here are some brief descriptions of the functions of these flags.

CARRY FLAG - This flag is set when a mathematical function generated a carry out of the
highest bit position of the result, such aswhen 9 + 1 = 10.

PARITY FLAG - This flag is set when the low order 8 bits of an operation results in an even
number of one’s set on, that is, even parity.

AUXILIARY CARRY FLAG - Thisflag is set when there is a carry out of the lower four bits of a
8-bit byte due to a mathematical operation. It supports the use of packed BCD encoding for
accounting.

ZERO FLAG - Thisflagisset if all bits of aresult are 0.

SIGN FLAG - This bit is set if the high-order bit of aresult is a 1. In signed mathematics, this
indicates a negative number.

TRAP ENABLE FLAG - This flag supports the use of Exception 1 when single stepping through
code with a debugger package. When the flag is set, the “386 will execute an Exception 1 interrupt
after the execution of the next instruction. If reset, the *386 will execute an Exception 1 interrupt
only at breakpoints.

INTERRUPT ENABLE FLAG - This flag, when set, allows interrupts via the INTR device pin to
be honored.

DIRECTION FLAG - This flag supports string OP codes that make use of the Sl or DI registers. It
indicates which direction the succeeding count should take, decrement if the flag is set, and
increment if theflagisclear.

OVERFLOW FLAG - Thisflag is set if an operation results in a carry into the uppermost bit of
the result value, that is, if acarry in the lower bits causes the sign bit to change.

I/0O PRIVILEGE LEVEL - These two flags together indicate one of four privilege levels under
which the processor operates in protected mode. These are sometimes called "rings”, with ring O
being the most privileged and ring 3 the |east.

RESUME FLAG - This flag supports a debug register used to manage breakpoints in protected
mode.

VIRTUAL MODE - This flag supports the third mode of operation of the processor, Virtual 8086
mode. Once in protected mode, if set, this flag causes the processor to switch to virtual 8086 mode.
Programmer-invisible Registers

To support protected mode, a variety of other registers are provided that are not accessible by the
programmer. In real mode, the programmer can see and reference the segment registers CS, SS,

SIBIT/ECE Department 155



Microprocessor 10EC62

DS, ES, FS, and GS as 16-bit entities. The contents of these registers are shifted four bit positions
to the left, then added to a 16-bit offset provided by the program. The resulting 20-bit value is the
real address of the data to be accessed at that moment. This allows a real address space of 2%°or
1.048 megabytes. In this space, al segments are limited to 64K maximum size.

In protected mode, segments may from 1 byte to 4.3 gigabytes in size. Further, there is more
information that is needed than in real mode. Therefore, the segment registers of real mode become
holders for "selectors”, values which point to a reference in a table in memory that contains more
detail about the area in the desired segment. Also, a set of "Descriptor Registers’ is provided, one
for each segment register. These contain the physical base address of the segment, the segment
limit (or the size of the segment relative to the base), and a group of other data items that are
loaded from the descriptor table. In protected mode, when a segment register is loaded with a new
selector, that selector references the table that has previously been set up, and the descriptor
register for that segment register is given the new information from the table about that segment.
During the course of program execution, addressing references to that segment are made using the
descriptor register for that segment.

Four Control Registers CRO — CR3 are provided to support specific hardware needs. CRO is called
the Machine Control Register and contains severa bits that were derived in the 80286. These are:
PAGING ENABLED, bit 31 — This bits when set enables the on-chip paging unit for virtual
memory.

TASK SWITCHED, bit 3 - Thisbit is set when atask switch is performed.

EMULATE COPROCESSOR, bit 2 — This bit causes all coprocessor OP codes to cause a
Coprocessor-Not-Found exception. Thisis turn will cause 80387 math coprocessor instructions to
have to be interpreted by software.

MONITOR COPROCESSOR, hit 1 — Works with the TS bit above to synchronize the coprocessor.
PROTECTION ENABLED, bit 0 — This bit enables the shift to protected mode from real mode.

1. A systemreset.

PROTECTED MODE ARCHTECTURE

The 80386 is most impressive when running in protected mode. The linear address space can be as
great as 2% (4294967295) bytes. With the paging unit enabled, the limit is 2* or about 64
terabytes. The device can run all 8086 and 80286 code. It provides a memory management and a
hardware-assisted protection mechanism that keeps one program’s execution from interfering with
another. Additional instructions are provided to support multitasking. The programmer sees an
expanded address space available to her/him, and different addressing scheme.

Memory Segmentation

Memory segmentation in protected mode uses a segment base value and an offset in the manner of
real mode. However, because of the increased size of the address space now available, a more
complex arrangement is used. The segment register now contains a value called a selector. Thisis
a 16-bit value which contains an offset into a table. This table, caled a descriptor table, contains
descriptors which are 8-byte values that describe more about the segment in question. Two tables
provided are the Global Descriptor Table (GDT) and the Local Descriptor Table (LDT). The GDT
contains information about segments that are global in nature, that is, available to al programs and
normally used most heavily by the operating system. The LDT contains descriptors that are
application specific. Both of these tables have alimit of 64K, that is, 8,192 8-byte entries. Thereis
also an Interrupt Descriptor Table (IDT) that contains information about segments containing code
used in servicing interrupts. This table has a maximum of 256 entries.

The upper 13 hits of the selector are used as an offset into the descriptor table to be used. The
lower 3 bits are:

TI, atable sdlection bit — 0 = usethe GDT, 1 = usethe LDT.

SIBIT/ECE Department 156



Microprocessor 10EC62

RPL, Requested Privilege Level bits = 00 is the highest privilege level, 11 isthe lowest.

The selector identifies the table to be used and the offset into that table where a set of descriptor
bytes identifies the segment specifically. Each table can be 64K bytes in size, so if there are 8
bytes per table entry, atotal of 8,192 entries can be held in one table at a given time. The contents
of adescriptor are:

Bytes 0 and 1 — A 16-hit value that is connected to bits 0 — 3 of byte 6 to form the uppermost
offset, or limit, allowed for the segment. This 20 bit limit means that a segment can be between 1
byte and 1 megabyte in size. See the discussion of the granularity bit below.

Bytes 2 and 3 — A 16-bit value connected to byte 4 and byte 7 to form a 32-bit base value for the
segment. Thisis the value added to the offset provided by the program execution to form the linear
address.

AV bit — Segment available bit, where AV =0 indicates not available and AV=1 indicates avail able.
D bit — If D=0, this indicates that instructions use 16-bit offsets and 16-bit registers by default. If
D=1, theinstructions are 32-bit by default.

Granularity (G) bit — If G=0, the segments are in the range of 1 byte to 1 megabyte. If G=1, the
segment limit value is multiplied by 4K, meaning that the segments can have a minimum of 4K
bytes and a maximum limit of 4 gigabytesin steps of 4K.

Byte 5, Access Rights byte — This byte contains several flags to further define the segment:

Bit 0, Access bit — A=0 indicates that the segment has not been accessed; A=1 indicates
that the segment has been accessed (and is now "dirty").

Bits 1, R/W hit; bit 2, ED/C bit; and bit 3, E bit. If bit 3 =0, then the descriptor references a
data segment and the other bits are interpreted as follows: bit 2, interpreted as the ED bit, if
0, indicates that the segment expands upward, as in a data segment; if 1, indicates that the
segment expands in the downward direction, as in a stack segment; bit 1, the R/W bit, if O,
indicates that the segment may not be written, while if 1 indicates that the segment is
writeable.

If bit 3 = 1, then the descriptor references a code segment and the other bits are interpreted
asfollows: bit 2, interpreted as the C bit, if O, indicates that we should ignore the descriptor
privilege for the segment, while if 1 indicates that privilege must be observed; bit 1, the
R/W hit, if O, indicates that the code segment may not be read, while if 1 indicates that the
segment is readable.

Bit 4, System bit — If O, this is a system descriptor; if 1, this is a regular code or data
segment.

Bits 5 and 6, Descriptor Privilege Level (DPL) bits — These two bits identify the privilege
level of the descriptor.

Bit 7, Segment Valid (P) bit — If O, the descriptor is undefined. If 1, the segment contains a
valid base and limit.

Use the illustration below to follow the flow of address translation. Numbers in circles on the
drawing match those below.
File goes here

1. The execution of an instruction causes a request to access memory. The segment portion of
the address to be used is represented by a selector value. This is loaded into the segment
register. Generally, this value is not changed too often, and is controlled by the operating
system.

SIBIT/ECE Department 157



Microprocessor 10EC62

2. The selector value in the segment register specifies a descriptor table and points to one of
8,192 descriptor areas. These contain 8 bytes that identify the base of the real segment, its
limit, and various access and privilege information.

3. The base value in the descriptor identifies the base address of the segment to be used in
linear address space.

4. Thelimit value in the descriptor identifies the offset of the top of the segment area from the
base.

5. The offset provided by the instruction is used to identify the specific location of the desired
byte(s) in linear address space, relative to the base value.

The byte(s) thus specified are read or written as dictated by the instruction.

Program Invisible Registers

Several additional registers are provided that are normally invisible to the programmer but are
required by the hardware of the processor to expediteits functions.

Each of the segment registers (CS, DS, SS, ES, FS, and GS) have an invisible portion that is called
a cache. The name is used because they store information for short intervals — they are not to be
confused with the L1 or L2 cache of the external memory system. The program invisible portions
of the segment registers are loaded with the base value, the limit value, and the access information
of the segment each time the segment register is loaded with a new selector. This allows just one
reference to the descriptor table to be used for multiple accesses to the same segment. It is not
necessary to reference the descriptor table again until the contents of the segment register is
changed indicating a new segment of that type is being accessed. This system allows for faster
access to the main memory as the processor can look in the cache for the information rather than
having to access the descriptor table for every memory reference to a segment.

The Global Descriptor Table Register (GDTR) and the Interrupt Descriptor Table Register (IDTR)
contain the base address of the descriptor tables themselves and their limits, respectively. The limit
isa 16-bit value because the maximum size of the tablesis 64K.

System Descriptors

The Local Descriptor Table Register contains a 16-bit wide selector only. This value references a
system descriptor, which is similar to that as described above, but which contains a type field that
identifies one of 16 types of descriptor (specifically type 0010) that can exist in the system. This
system descriptor in turn contains base and limit values that point to the LDT in use at the moment.
In this way, there is one global descriptor table for the operating system, but there can be many
local tablesfor individual applications or tasks if needed.

System descriptors contain information about operating system tables, tasks, and gates. The system
descriptor can identify one of 16 types as follows. Y ou will notice that some of these are to support
backward compatibility with the 80286 processor.

Type | Purpose

0000 | Invalid

0001 | Available 80286 Task State Segment
0010 | Local Descriptor Table

0011 | Busy 80286 Task State Segment
0100 | 80286 Cdl Gate

0101 | Task Gate

SIBIT/ECE Department 158



Microprocessor 10EC62

0110 | 80286 Interrupt Gate

0111 80286 Trap Gate

1000 | Invaid

1001 | Available 80386 Task State Segment
1010 | Reserved

1011 | Busy 80386 Task State Segment
1100 | 80386 Call Gate

1101 | Reserved

1110 @ 80386 Interrupt Gate

1111 80386 Trap Gate

Protection and Privilege Levels

The 80386 has four levels of protection which support a multitasking operating system. These
serve to isolate and protect user programs from each other and from the operating system. The
privilege levels manage the use of 1/O instructions, privileged instructions, and segment and
segment descriptors. Level 0 isthe most trusted level, while level 3 isthe least trusted level.

Intel lists the following rules for the access of data and instruction levels of atask:

Data stored in a segment with privilege level P can be accessed only by code executing at a
privilege level that is at least as privileged as P.

A code segment or procedure with privilege level P can only by called by atask executing
at the same or aless privileged level than P.

At any point in time, a task can be operating at any of the four privilege levels. Thisis caled the
task’s Current Privilege Level (CPL). A task’s privilege level may only be changed by a control
transfer through a gate descriptor to a code segment with a different privilege level.

The lower two bits of selectors contain the Requested Privilege Level (RPL). When a change of
selector is made, the CPL of the task and the RPL of the new selector are compared. If the RPL is
more privileged than the CPL, the CPL determines the level at which the task will continue. If the
CPL is more privileged than the RPL, the RPL value will determine the level for the task.
Therefore, the lowest privilege level is selected at the time of the change. The purpose of this
function is to ensure that pointers passed to an operating system procedure are not of a higher
privilege than the procedure that originated the pointer.

Gates

Gates are used to control access to entry points within the target code segment. There are four

types:

Call Gates — those associated with Call, Jump, Return and similar operations codes. They
provide a secure method of privilege transfer within atask.

Task Gates — those involved with task switching.

Interrupt Gates — those involved with normal interrupt service needs.

Trap Gates — those involved with error conditions that cause major faults in the execution.

SIBIT/ECE Department 159



Microprocessor 10EC62

A gate is ssimply a small block of code in a segment that alows the system to check for privilege
level violations and to control entry to the operating system services. The gate code lives in a
segment pointed to by special descriptors. These descriptors contain base and offset values to
locate the code for the gate, a type field, a two-bit Default Privilege Level (DPL) and a five-bit
word count field. This last is used to indicate the number of words to be copied from the stack of
the calling routine to that of the called routine. This is used only in Cal Gates when there is a
change in privilege level required. Interrupt and Trap gates work similarly except that there is no
pushing of parameters onto the stack. For interrupt gates, further interrupts are disabled. Gates are
part of the operating system and are mainly of interest to system programmers.

Task Switching

An important part of any multitasking system is the ability to switch between tasks quickly. Tasks
may be anything from I/O routines in the operating system to parts of programs written by you.
With only a single processor available in the typical PC, it is essential that when the needs of the
system or operator are such that a switch in tasks is needed, this be done quickly.

The 80386 has a hardware task switch instruction. This causes the machine to save the entire
current state of the processor, including all the register contents, address space information, and
links to previous tasks. It then loads a new execution state, performs protection checks, and begins
the new task, al in about 17 microseconds. The task switch is invoked by executing an
intersegment jump or call which refersto a Task Switch Segment (TSS) or atask gate descriptor in
the LDT or GDT. An INT n instruction, exception, trap, or external interrupt may aso invoke a
task switch viaatask gate descriptor in the associated IDT.

Each task must have an associated Task Switch Segment. This segment contains an image of the
system’s conditions as they exist for that task. The TSS for the current task, the one being executed
by the system at the moment, is identified by a special register called the Task Switch Segment
Register (TR). This register contains a selector referring to the task state segment descriptor that
defines the current TSS. A hidden base and limit register connected to the TR are loaded whenever
TR is updated. Returning from a task is accomplished with the IRET instruction which returns
control to the task that was interrupted with the switch. The current task’s segment is stored and
the previous task’s segment is used to bring it into the current task.

Control Registers

The 80386 has four "Control Registers" called CRO through CR3. CRO contains severa bit flags as
follows:

PG — When set to 1, causes the trandation of linear addresses to physical addresses. Indicates that
paging is enabled and virtual memory is being used.

ET — When set to 1, indicates that the 80387 math coprocessor isin use.

TS - When set to 1, indicates that the processor has switched tasks.

EM - When set to 1, causes a type 7 interrupt for the ESC (escape) instruction for the math
COProcessor.

MP — When set to 1, indicates that the math coprocessor is present in the system.

PE — Selects protected mode of operation.

CR 1 is not used by the “386. CR2 contains page fault linear addresses for the virtual memory
manager. CR3 contains a pointer to the base of the page directory for virtual memory management.
Switching to Protected Mode

At reset, the 80386 begins operation in Real Mode. This is to allow setup of various conditions
before the switch to Protected Mode is made. The actual switch is accomplished by setting the PE
bit in CRO. The following steps are needed.

1. Initialize the interrupt descriptor table to contain valid interrupt gates for at least the first 32
interrupt types. The IDT can contain 256 8-byte gates.

2. Setupthe GDT so that it contains anull descriptor at position 0, and valid descriptors for at
least one code, one data, and one stack segment.

SIBIT/ECE Department 160



Microprocessor 10EC62

3. Switch to protected mode by setting PE to 1.

4. Execute anear IMP to flush the internal instruction queue and to load the TR with the base
TSS descriptor.

5. Load al the data selectors with initial values.

6. The processor is now running in Protected Mode using the given GDT and IDT.

In the case of a multitasking system, an alternate approach is to load the GDT with at least two
TSS descriptors in addition to the code and data descriptors needed for the first task. The first IMP
following the setting of the PE bit will cause a task switch that loads all the data needed from the
TSS of thefirst task to be entered. Multitasking is then initialized.

VIRTUAL 8086 MODE

The third mode of operation provided by the 80386 is that of Virtual 8086 Mode. Once in
protected mode, one or more virtual 8086 tasks can be initiated. Virtual 8086 tasks appear to be
like real mode. The task is limited to 1 megabyte of memory whose address space is located at 0
through FFFFFh; the segment registers are used as they are in real mode (no selectors or lookup
tables are involved). Each of the virtual 8086 tasks are given a certain amount of time using atime-
dlice algorithm typical of mainframes (timesharing). The software for such tasks is written as if
they were to run in a real mode address space. However, using paging, multiple such sessions can
be located anywhere in the virtual memory space of the 80386.

Windows NT and OS/2 use this technique to support one or more DOS sessions, or low-priority
utilities such as a print spooler.

VIRTUAL MEMORY AND PAGING

Using selectors and tables, the 80386 generates what Intel defines as alinear address as a means of
locating data or instructions for real mode or for the current task in protected mode. If the system is
not using virtual memory or paging, then the linear address is the physical address of the desired
data or bytes, and is forwarded to the pins of the device to become the physical address.

Paging allows a level of interpretation to be inserted between the linear address and the physical
address. The linear address is passed to the paging unit, and it in turn converts it to a physical
address that will be different than the linear one. This alows several options, including 1) mapping
alinear address to some other physical address according to the needs of a multitasking operating
system to place tasks at convenient locations, or 2) mapping linear addresses to memory that does
not exist in the system, but might be replaced by disk space.

Paging logically divides the available virtual space into "pages’ that are 4Kbytes in size. Three
elements are needed to implement paging. These are the page directory, the page table, and the
actual physical memory page. Vaues in these tables are obtained by combining parts of the linear
address with values from the tables which point to other values.

The page directory is atable of as many as 1,024 4-byte entries. (This is a maximum number; most
systems use far fewer entries.) The base of the page directory is determined by the value contained
in CR3. An offset into the directory is created from the uppermost 10 bits (positions 22-31) of the
linear address. At this offset in the directory, we find a pointer to the base of a page table. This
means that there can be as many as 1,024 page tables in a system.

There are 1,024 entries possible in each page table. The middlie 10 bits of the linear address (bit
positions 12 through 21) are used as a offset into the selected page table. The value thus
determined is a pointer to the base of a 4K memory page. The offset into the page to located the
specific data needed is contained in the lower 12 bits of the linear address.

The entries in the page directory and page tables are identical. They contain 10 bits of addressing,
and the following flags:

D or DIRTY bhit: Thisbit isnot used in the page directory. In the page table entries, it indicates that
the 4K area defined by this entry has been written to, and so must be saved (as to disk) if the area
isto be reused for something else.

A or ACCESSED hit: This bit is set to a 1 when the processor accesses the 4K page.

SIBIT/ECE Department 161



Microprocessor 10EC62

R/W or Read/Write and U/S or User/Supervisor bits: These are used in conjunction with privilege
management.

P or PRESENT bit: This bit when set to 1 indicates that the referenced page is present in memory.
If O, it can be used to indicate that the page is not in RAM, e.g., ison disk.

Performance of the paging system would be affected if the system needed to reference memory
tables each time a reference to RWM was made. To offset this, a Trandation Lookaside Buffer
(TLB) is provided. Thisis a4-way set-associative cache that contains entries for the last 32 pages
needed by the processor. This provides immediate information about 98% of the time, causing
only 2% of memory accesses to make the page directory-page table trangl ation.

HARDWARE HIGHLIGHTS

The instructor will provide you with illustrations of the timing sequences for the various read and
write cycles available on the 80386. There are two items of interest that we note here.

Address Pipelining

Under non-pipelined conditions, the bus signals of the ‘386 function very much like any other
processor. A machine cycle consists of two T-states, T1 and T2. These are defined by the
following edge of the system clock signal. At the beginning of T1, an address appears on the BEO#
through BE3# and A2 through A3l lines, along with various control lines. The address is held
valid until very near the end of T2. The ADS# lineis pulled low (active) during T1 to indicate that
the address bus contains a valid address; the ADS# line is pulled high (negated) during T2. The
datais passed in or out at the transition between the end of T2 of the current cycle and the start of
T1 of the following machine cycle. During this time, the NA# line is maintained high (negated).

In pipelining, the address bits are available Y2 machine cycle earlier than with no pipelining. The
ADSH# lineis pulled low during T2 of a cycle rather than T1, indicating that during T2, the address
of the data to be exchanged during the next machine cycle is available. Pipelining is initiated by
the incoming line NA#, that is controlled by the memory subsystem. If pulled low during a T1, the
memory expects that the address of the next bytes needed will be available %2 cycle early.

The purpose of pipelining is to minimize the need for wait states. The time needed to read or write
data remains the same. However, the time an address is available before the data is expected is
lengthened so that a wait state may not be needed. The memory subsystem has to be designed to
work within these parameters.

Dynamic Bus Sizing

Normally, the 80386 expects data to be transferred on a 32-bit wide data bus. However, it is
possible to force the system to transfer 32-bit data as two 16-bit quantities in two successive bus
cycles. This is initiated by the BS16# signal coming from the memory or I/O device subsystem.
Thislineis pulled low during the middle of T2. It indicates to the processor that 32-bit data will be
sent as two 16-hit words, with DO-D15 on the first transfer and D16-D31 on the second. The data
istransferred on the DO-D15 bus lines; the D16-D31 lines are ignored.

INSTRUCTION SET

The instruction set of the 80386 is compatible with that of the 8086 and the programming for that
processor can run on the ‘386 without modification. However, the ‘386 includes extension of the
base instruction set to support 32-bit data processing and operation in protected mode. The reader
is referred to the Intel documentation for full particulars on each instruction and its possible
versions. Here we discuss the essential aspects of instruction organization.

Instructions vary in length, depending upon how much information must be given for the
instruction, the addressing modes used, and the location of data to be processed. The generic
instruction contains the following:

BYTE 1. This is the operation (OP) code for the instruction. Bit position O may be interpreted as
the "w" bit, where w=0 indicates byte mode and w=1 indicates word mode. Also, bit position 1
may be interpreted as the operation direction bit in double operand instructions as follows:

d | Direction of Operation

SIBIT/ECE Department 162



Microprocessor

0

Register/Memory <- Register quot;reg”
field indicates source operand "mod r/m"
or "mod ss index base" indicates
destination operand

Register <- Register/Memory "reg" field
indicates destination operand "mod r/m" or
"mod ss index base" indicates source
operand

10EC62

BYTE 2 (optional): This second byte of OP code may or may not be used depending on the

operation.

BYTE 3: Thisisthe "mod r/m" byte. Bits 3, 4, and 5 contain more OP code information. Bits 0, 1,
and 2 contain the "r/m", or "register/memory" of the instruction. These identify which registers are
in use or how the memory is addressed (the addressing mode). The r/m bits are interpreted
depending upon the two "mod" or mode bits according to this chart:

Mod r/m
00 000
00 001
00010
00011
00 100
00 101
00 110
00111
01 000
01001
01010
01011
01 100
01101
01110
01111

10 000

16-bit Effective Address

DS: [BX+SI]
DS: [BX+DI]
DS: [BP+SI]
DS: [BP+DI]
DS: [Sl]

DS: [DI]

DS: d16

DS: [BX]

DS: [BX+SI+d8g]
DS: [BX+DI+d§]
SS: [BP+SI+d8]
SS: [BP+DI+d8]
DS: [SI+d§]

DS: [DI+d8]

SS: [BP+d8]
DS: [BX+d8]

DS: [BX+SI+d16]

SIBIT/ECE Department

DS: [EAX]
DS: [ECX]
DS: [EDX]

DS: [EBX]

sib byte is present

DS: d32

DS: [ESI]

DS: [EDI]

DS: [EAX+d8]
DS: [ECX+d8]
DS: [EDX+d8]
DS: [EBX+d8]
sibis present
SS: [EBP+d8]
DS: [ESI+d8]
DS: [EDI+d8]

DS: [EAX+d32]

32-bit Effective Address

163



Microprocessor 10EC62

10 001 DS: [BX+DI+d16] DS: [ECX+d32]
10 010 SS: [BP+SI+d16] DS: [EDX+d32]
10011 SS: [BP+DI+d16] DS: [EBX+d32]
10100 DS: [SI+d16] sibis present
10101 DS: [DI+d16] SS: [EBP+d32]
10110 | SS: [BP+d16] DS: [ESI+d32]
10 111 DS: [BX+d16] DS: [EDI+d32]

16-Bit Reg, w=0 | 16-Bit Reg, w=1 32-Bit Reg, w=0 32-Bit Reg, w=1
11 000 AL AX AL EAX
11 001 CL CX CL ECX
11 010 DL DX DL EDX
11 011 BL BX BL EBX
11100 AH SP AH ESP
11101 CH BP CH EBP
11110 DH Sl DH ESI
11111 BH DI BH EDI

BYTE 4 (optiona): This is the "sib" byte and is not found in the 8086. It appears only in some
80386 instructions as needed. This byte supports the "scaled index" addressing mode. Bit positions
0-2 identify a general register to be used as a base vaue. Bit positions 3-5 identify a general
register which contains an index register. Bit positions 6 and 7 identify a scaling factor to be used
to multiply the value in the index register as follows:

ss Scale Factor
00 1
01 2
10 4
11 8
Theindex field of the sib byte isinterpreted as follows:
Index Index Register
000 EAX

SIBIT/ECE Department 164



Microprocessor

001

010

011

100

101

110

111

ECX

EDX

EBX

No index register used
EBP

ESI

EDI

10EC62

The mod field of the mod r/m byte taken with the base value of the sib byte generates the
following scaled indexing modes:

SIBIT/ECE Department

Mod b
00 000
00 001
00010
00 011
00 100
00 101
00110
00111
01 000
01001
01010
01011
01100
01101
01110
01111

10 000

ase

Effective Address

DS. [EAX + (scaled index)]

DS: [ECX + (scaled index)]

DS: [EDX + (scaed index)]

DS. [EBX + (scaled index)]

SS: [ESP + (scaled index)]

DS: [d32 + (scaed index)]

DS: [ESI + (scaled index)]

DS: [EDI + (scaled index)]

DS: [EAX + (scaled index) + dg]
DS: [ECX + (scaled index) + d8]
DS: [EDX + (scaled index) + dg]
DS: [EBX + (scaled index) + d8]
SS: [ESP + (scaled index) + dg]
SS: [EBP + (scaled index) + d8]
DS: [ESI + (scaled index) + d8]
DS: [EDI + (scaled index) + dg]

DS: [EAX + (scaled index) + d32]

165



Microprocessor

10 001

10010

10011

10 100

10101

10110

10111

DS: [ECX + (scaled index) + d32]
DS: [EDX + (scaed index) + d32]
DS: [EBX + (scaled index) + d32]
SS: [ESP + (scaled index) + d32]
SS: [EBP + (scaled index) + d32]
DS: [ESI + (scaled index) + d32]

DS: [EDI + (scaled index) + d32]

10EC62

Following a possible byte 4, there may be 1, 2, or 4 bytes of address displacement which provide
an absolute offset into the current segment for data location. Also following may be 1, 2, or 4 bytes
to implement immediate data.
The byte and bit pattern of instructions vary. For instance, in conditional instructions a four-bit
field called "tttn" implements the conditions to be tested:

Mnemonic @ Condition

@)

NO
B/NAE
NB/AE
E/Z
NE/NZ
BE/NA
NBE/A
S

NS
PIPE
NP/PO
L/NGE
NL/GE
LE/NG

NLE/G

SIBIT/ECE Department

Overflow

No Overflow

Below/Not Above or Equal

Not Below/Above or Equal

Equal/Zero

Not Equal/Not Zero

Below or Equal/Not Above

Not Below or Equal/Above

Sign

Not Sign

Parity/Parity Even

No Parity/Parity Odd

Less Than/Not Greater or Equal

Not Less Than/Greater or Equal

Less Than or Equal/Not Greater Than

Not Less Than or Equal/Greater Than

tttn

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

166



Microprocessor

Pentium

About the Pentium Architecture

-- [t isnot aload/store architecture.

-- Theinstruction set is huge! We go over only afraction of
the instruction set. The text only presents a fraction.

-- There are lots of restrictions on how instructions/operands are
put together, but there is a'so an amazing amount of flexibility.

The Intel architectures as a set just do not have enough registers

to satisfy most assembly language programmers. Still, the processors
have been around for aLONG time, and they have a sufficient number
of registers to do whatever is necessary.

For our (mostly) general purpose use, we get

32-bit  16-bit 8-bit 8-bit
(high part of 16) (low part of 16)

EAX AX AH AL
EBX BX BH BL
ECX CX CH CL
EDX DX DH DL
and

EBP BP

ESI S

EDI DI

ESP SP

There are afew more, but we won't use or discuss them. They
are only used for memory accessability in the segmented memory
model.

SIBIT/ECE Department

10EC62

167



Microprocessor 10EC62

Using the registers:
As an operand, just use the name (upper case and lower case both
work interchangeably).

EBP is aframe pointer (see Chapter 11).
ESP isastack pointer (see Chapter 11).

Oddities:
Thisisthe only architecture that | know of where the programmer
can designate part of aregister as an operand. On ALL other
machines, the whole register is designated and used.

ONE MORE REGISTER:
Many bits used for controlling the action of the processor and
setting state arein the register called EFLAGS. Thisregister
contains the condition codes:

OF Overflow flag
SF Signflag

ZF Zeroflag

PF Parity flag
CF Carry flag

The settings of these flags are checked in conditional control
instructions. Many instructions set one or more of the flags.

There are many other bitsin the EFLAGS register: TO BE DISCUSSED
LATER.

The use of the EFLAGS register isimplied (rather than explicit)
in instructions.

Accessing Memory

There are 2 memory models supported in the Pentium architecture.
(Actually it isthe 486 and more recent models that support 2 models.)

In both models, memory is accessed using an address. It isthe
way that addresses are formed (within the processor) that differs
in the 2 models.

FLAT MEMORY MODEL

-- The memory model that we use. AND, the memory model that every

SIBIT/ECE Department 168



Microprocessor

other manufactures' processors aso use.

SEGMENTED MEMORY MODEL

-- Different parts of a program are assumed to be in their own,
set-aside portions of memory. These portions are called
segments.

-- An addressisformed from 2 pieces. a segment location and
an offset within a segment.

Note that each of these pieces can be shorter (contain fewer
bits) than awhole address. Thisis much of the reason that
Intel chose this form of memory model for its earliest
single-chip processors.

-- There are segments for:

code
data

stack
other

-- Which segment something isin can be implied by the memory
accessinvolved. Aninstruction fetch will always be looking
in the code segment. A push instruction (we'll talk about this
with chapter 11) always accesses the stack segment. Etc.

Addressing Modes

Some would say that the Intel architectures only support 1 addressing
mode. It looks (something like) this:

effective address = base reg + (index reg x scaling factor) + displacement

where
baseregis EAX, EBX, ECX, EDX or ESP or EBP
index reg is EDI or ESI
scaling factor is 1, 2, 4, or 8

The syntax of using this (very general) addressing mode will
vary from system to system. It depends on the preprocessor
and the syntax accepted by the assembler.

SIBIT/ECE Department

10EC62

169



Microprocessor 10EC62

For our implementation, an operand within an instruction that
uses this addressing mode could ook like
[EAX][EDI*2 + 80]
The effective address cal culated with be the contents of
register EDI multiplied times 2 added to the constant 80,
added to the contents of register EAX.
There are extremely few times where a high-level language
compiler can utilize such a complex addressing mode. Itis

much more likely that ssmplified versions of this mode
will be used.

SOME ADDRESSING MODES
-- register mode --
Theoperand isin aregister. The effective addressisthe
register
Example instruction:
MoV eaxX, ecx
Both operands use register mode. The contents of register ecx

IS copied to register eax.

-- immediate mode --
The operand isin theinstruction. The effective address is within
the instruction.
Example instruction:

mov eax, 26

The second operand uses immediate mode. Within the instruction
isthe operand. It is copied to register eax.

-- register direct mode --
The effective addressisin aregister.

Example instruction:
mov eax, [esp]
The second operand uses register direct mode. The contents of

register esp is the effective address. The contents of memory
at the effective address are copied into register eax.

SIBIT/ECE Department

170



Microprocessor 10EC62

-- direct mode --
The effective address is in the instruction.

Example instruction:
mov eax, var_name
The second operand uses direct mode. The instruction contains

the effective address. The contents of memory
at the effective address are copied into register eax.

-- base displacement mode --

The effective address is the sum of a constant and the contents

of aregister.

Example instruction:
mov eax, [esp + 4]
The second operand uses base displacement mode. The instruction
contains a constant. That constant is added to the contents
of register esp to form an effective address. The contents
of memory at the effective address are copied into register eax.

-- base-indexed mode -- (Intel's name)
The effective address is the sum of the contents of two registers.

Example instruction:
mov eax, [esp][esi]
The contents of registers esp and esi are added to form an
effective address. The contents of memory at the effective

address are copied into register eax.

Note that there are restrictions on the combinations of registers
that can be used in this addressing mode.

-- PC rdative mode --
The effective address is the sum of the contents of the PC and
a constant contained within the instruction.
Example instruction:
jmp a label
The contents of the program counter is added to an offset that

SIBIT/ECE Department 171



Microprocessor 10EC62

is within the machine code for the instruction. The resulting
sum is placed back into the program counter. Note that from the
assembly language it is not clear that a PC relative addressing
modeisused. Itisthe assembler that generates the offset

to place in the instruction.

Instruction Set

Generalities:

-- Many (most?) of the instructions have exactly 2 operands.
If there are 2 operands, then one of them will be required
to use register mode, and the other will have no restrictions
on its addressing mode.

-- There are most often ways of specifying the same instruction
for 8-, 16-, or 32-bit oeprands. | left out the 16-bit ones
to reduce presentation of the instruction set. Note that
on a 32-bit machine, with newly written code, the 16-bit form
will never be used.

Meanings of the operand specifications:
reg - register mode operand, 32-hit register
reg8 - register mode operand, 8-bit register
r/m - general addressing mode, 32-bit
r/m8 - general addressing mode, 8-bit
immed - 32-bit immediateisin the instruction
immed8 - 8-bit immediateisin the instruction
m - symbol (label) in theinstruction is the effective address

Data Movement
mov reg, r/m ; copy data
r/m, reg
reg, immed
r/m, immed
Movsx reg, r/m8 ; Sign extend and copy data
movzx reg, r/m8 ; zero extend and copy data
lea reg, m ; get effective address

(A newer instruction, so its format is much restricted
over the other ones.)

SIBIT/ECE Department 172



Microprocessor 10EC62

EXAMPLES:

mov EAX, 23 ; places 32-bit 2's complement immediate 23
; into register EAX

movsx ECX, AL ; sign extends the 8-bit quantity in register

; AL to 32 hits, and placesit in ECX
mov [esp], -1 ; places value -1 into memory, address given

; by contents of esp
lea EBX, loop_top ; put the address assigned (by the assembl er)

; to label loop_top into register EBX

Integer Arithmetic

add reg, r/m ; two's complement addition
r/m, reg
reg, immed
r/m, immed
inc reg ; add 1 to operand
r/m
sub reg, r/m ; two's complement subtraction
r/m, reg
reg, immed
r/m, immed
dec reg ; subtract 1 from operand
r/m
neg r/m ; get additive inverse of operand
mul eax, r/m ; unsigned multiplication

; edx|leax <- eax * r/m

imul  r/m ; 2'scomp. multiplication
; edx|leax <- eax * r/m
reg, r/'m ;reg<-reg* r/m
reg, immed ; reg <-reg* immed
div r/m ; unsigned division

; does edx||eax / r/m
; eaxX <- quotient
; edx <- remainder

idiv r/m ; 2'scomplement division
; does edx||eax / r/m
; eax <- quotient
; edx <- remainder

SIBIT/ECE Department

173



Microprocessor 10EC62

cmp reg, r/m ; sets EFLAGS based on
r/m, immed ; second operand - first operand
r/m8, immed8
r/m, immed8 ; Sign extends immed8 before subtract
EXAMPLES:

neg[eax + 4] ;takesdoubleword at address eax+4
; and findsits additive inverse, then places
; the additive inverse back at that address
; theinstruction should probably be
neg dword ptr [eax + 4]

inc ecx ; adds one to contents of register ecx, and
; result goes back to ecx

not r/m ; logical not

and reg, r/m ; logical and
reg8, r/m8
r/m, reg
r/m8, reg8
r/m, immed
r/m8, immed8

or reg,r/m ; logical or
reg8, r/m8
r/m, reg
r/m8, reg8
r/m, immed
r/m8, immed8

Xor reg, r/m ; logical exclusive or
reg8, r/m8
r/m, reg
r/m8, reg8
r/m, immed
r/m8, immed8

test r/m, reg ; logical and to set EFLAGS
r/m8, reg8
r/m, immed
r/m8, immed8

SIBIT/ECE Department 174



Microprocessor 10EC62

EXAMPLES:

and edx, 00330000h ; logical and of contents of register
; edx (bitwise) with 0x00330000,
;  result goes back to edx

Floating Point Arithmetic

Since the newer architectures have room for floating point
hardware on chip, Intel defined a simple-to-implement
extension to the architecture to do floating point arithmetic.
In their usual zeal, they have included MANY instructions to
do floating point operations.

The mechanismissimple. A set of 8 registers are organized
and maintained (by hardware) as a stack of floating point
values. ST refersto the stack top. ST(1) refersto the
register within the stack that isnext to ST. ST and ST(0)
are synonyms.

There are separate instructions to test and compare the values
of floating point variables.

finit ; initialize the FPU
fld m32 ; load floating point value
mo64
ST(i)
fldz ; load floating point value 0.0
fst m32 ; store floating point value
mo64
ST(i)
fstp m32 ; store floating point value
m64 ; and pop ST
ST(i)
fadd m32 ; floating point addition
mo64
ST, ST(i)
ST(i), ST

SIBIT/ECE Department 175



Microprocessor 10EC62

faddp ST(i), ST ; floating point addition
; and pop ST

1/O

The only instructions which actually allow the reading and
writing of 1/O devices are priviledged. The OS must handle
these things. But, in writing programs that do something
useful, we need input and output. Therefore, there are some
simple macros defined to help us do I/0.

These are used just like instructions.

put_ch r/m ; print character in the least significant
; byte of 32-bit operand
get_ch r/m ; Character will bein AL
put_str m ; print null terminated string given
; by label m

Control Instructions

These are the same control instructions that all started with
the character 'b' in SASM.

jmp m ; unconditional jump

jg m ; jJump if greater than O

joe m ; jump if greater than or equal to 0
jIm ; jJump if lessthan O

jle m ; jJump if less than or equal to 0

SIBIT/ECE Department 176



Microprocessor 10EC62

Pin-out of the 804860X and 804865X Microprocessors

Figure 16-28 illustrates the pin-out of the 80486DX microprocessor, a 168-pin PGA. The
804865X, also packaged in a 168-pin PGA, is not illustrated because only a few differences
exist. Note that pin B15 is NMl on the 80486DX and pin A15 is NMI on the 804865X. The only
other differences are that pin A15 is IGNNE on the 80486DX (not present on the 804865X), pin
C14 is FERR on the 80486DX, and pins B15 and C14 on the 804865X are not connected.

When connecting the 80486 microprocessor, all V. and Vg pins must be connected to
the power supply for proper operation. The power supply must be capable of supplying 5.0V
+10 %, with up to 1.2 A of surge current for the 33 MHz version. The average supply current is
650 mA for the 33 MHz version. Intel has also produced a 3.3V version that requires an average
of 500 mA at a triple-clock speed of 100 MHz. Logic 0 outputs allow up to 4.0 mA of current,
and logic 1 outputs allow up to 1.0 mA. If larger currents are required, as they often are, then the
#0486 must be buffered. Figure 16-29 shows a buffered 80486DX system. In the circuit shown,
only the address, data, and parity signals are buffered.

g AZ7T  AZA  AZI NG AN WSS A1 WSS WSS VS5 WSS VSS  A10 V5SS AB A¢  ADSH
O o0 o 0 0 © 0 0 o o o 0 0o o o o0
A A8 AZS  WCC WSE AR WOL Ans WOC WCC WCC VGG AN &8 VOG A3 ERASTE NC
o o o o 0o 0o o o o 0o o o 0o 0 O o0
a A3 WSS AT A8 AZ1 AD A2 A0 AIS A13 AS AS AT A2 BREQ PLOCHS PCHME
o O O o 0 o O o O 0 0 O O 0 0 0O
P DO AZE  A3D MDA VOO WES
o O O o o o
N b2 [} oFa LDOKE MA0E  WRe
c O © c O O
M VS VEC D4 Do VGD vES
Qo O O c o O
L ¥Ss DB O7 PWT  WOG WSS
o 0 O o o o
K VS5 VGG D14 486™ Microprocessor EEON  VCC  VES
o O O PIN SIDE VIEW o o O
J voo ] e BE® BEWw PCD
o o © o o 0
H ¥ES pa  Dp2 BRCYE WOC  VSS
o O 0O o Q 0O
G ¥SS VGG D2 NG Voo veS
c o O c o O
F oM Da D5 KENF ROYN BEW
o o O o
E VESE WCC Do HOLD  WOC WSS
o o o o o
D b bia  bi7 AN BSSH BOFFR
o O 0O o o O
c 011 DIF CLK WOC VD DE7 D26 D2 DB0 NG MG NG NG FERPEFLUSHY RESET BStEH
o © 00 00 o O O O O O O O O OO0
B D18 D21 VES Vs VEE D2 WOC D@1 WCC NG WCC NG L] NG b NG  EADGE
0 0o O 0 © 0 O o 0 o o 0O O 0 0 0 0
A DN D22 WG D2 0PI D34 WSS Des VWSS NG VWSS NG NG NG IGNMEN BTR AMOLD
\U c o C O o o O 0 o 0 0O O 0O 0 O 0
1

P
5]
kS
i
o
-
o
=
e
&
-
-
-
Fa
_—
.
-
o
—
w
—
=
—_
-

FIGURE 16-28 The pin-out of the 80486 (Courtesy of Intel Corporation)

SIBIT/ECE Department 177



Microprocessor

AZ0M

>
=
oA

AHOLD

10EC62

The address bit 20 mask causes the 80486 to wrap its address around from
location OOOFFFFFH to 00000000H, as does the 8086 microprocessor. This
provides a memory system that functions like the 1M-byte real memory system
in the 8086 microprocessor.

The address data strobe becomes a logic zero to indicate that the address bus
contains a valid memory address.

The address hold input causes the microprocessor to place its address bus
connections at their high-impedance state, with the remainder of the buses
staying active. It is often used by another bus master to gain access for a cache
invalidation cycle.

Byte enable outputs select a bank of the memory system when information is
transferred between the microprocessor and its memory and 1/O space. The
BEJ signal enables D31-D24, BE2 enables D23-D16, BEI enables D15-D§,
and BED enables D7-DQ.

'+ fie burst last output shows that the burst bus cycle is complete on the next
activation of the BRDY signal.

The back-off input causes the microprocessor to place its buses at their high-
impedance state during the next clock cycle. The microprocessor remains in
the bus hold state until the BOFF pin is placed at a logic 1 level.

The burst ready input is used 1o signal the microprocessor that a burst cycle i
complete.

The bus request outpul indicates that the 80486 has generated an internal bus
request.

The bus size 8 input causes the 80486 to structure itself with an §-bit data bus
to access byte-wide memory ard IO components.

The bus size 16 input causes the BME6 ro structure ftself with a 16-bil data
bus to access word-wide memory and [/Q components.

The clock input provides the 8486 with its hasic timing signal. The clock input
15 a TTL-compatible input that is 23 MHz to operate the 80486 at 25 MHz.

The data bus transfers data between the microprocessor and its memory and
I/0) system, Data bus connections D7-D0 are also used to accept the interrupt
vector type number during an interrupt acknowledge cycle.

SIBIT/ECE Department

178



Microprocessor
FLLSH
HLDA

HOLD

IGNNE

D/C

DP3-DP0

INTR
KEN
LOCK

M/TO

10EC62

The vache flush input forces the microprocessor 10 erase the contents of its
BK-byte internal cache.

The hold acknowledge outpur indicates that the HOLD inpul is active and that
the microprocessor has placed its buses at their high-impadance state.

The hold input requests a DMA action, Tt causes the address, dila, and control
buses to be placed at their high-impedance stute and also, once recognized,
causes HLDA to became a logic 0.

The ignore nuimeric errar input causes the coprocessor to i enore floating-

point errars and 10 continue processing data, This signal does not affect the
siate of the FERR pin.

The data/control output indicates whether the current operation is a data transfer

or control cycle. Refer to Table 16-3 for the function of D/C, M/TO, and W/R.

Data parity 1/O provides even parity for a write operation and check parity for

4 read operation. If a parity error is detected during a read, the PCHK output
becomes a logic 0 to indicate a parity error. If parity is not used in a system,
these lines must be pulled-high to +5.0V or 10 3.3V in a system that uses a
1.3V supply.

The external address strobe input is used with AHOLD to signal that an
external address is used to perform a cache invalidation cycle.

The floating-point error output indicates that the floating-point coprocessor
has detected an error condition. It is used to maintain compatibility with DOS
software,

The interrupt request input requests a maskable inteciupt as it does in all
ulher Family members,

The cache enable input causss the curreal bus w be stored in the inlemal
cache.

The lock output becomes a logic O Tor sy instruction that is prefixed with the
Inck prefix,

Memory/TO defines whether the address bus contains a memory addrass or an
FO port number. 11 is also combined with the W/R signal to generate memory
and [#0 read and write control signals.

The nun-maskable interrupt input requests a type 2 interrupt.

The puge cache disable output retlects the state of the PCD atrribure bit in the
page table entry oI the page dircctory entry.

SIBIT/ECE Department

179



Microprocessor 10EC62

e npem i mes s e s o e e

PLOCK The pseado-lock output indicates that the current operalion requirss 1nore tha
anz bus cycle o pertorm. This skznal becomes a logic O for arithmetic
COprocessor operations that avceds 64- or 80-bit niemory dasa.

PWT The page write through output indicates the state of the PWT atinbute bit 1o
the page table enmry or the paga directory entry.

KDY The ready input indicates that a non-hurst bus cyele 15 complate. The RDY

signal must be returned or the microprocessor places wait states into its tming
] BRIVY 15 asseried,

RESET The reset input initializes the 80486 s it dozs in other tamily members.
Table 16 shows the effect of the RESET input on the 80486 microprocessor,
W/R Write/read signals that the current bus cycle is either a read or a write,

M W R

INTRODUCTION TO THE PENTIUM MICROPROCESSOR

Before the Pentium or any other microprocessor can be used in a system, the function of each pin
must be understood. This section of the chapter details the operation of each pin, along with the
external memory system and /O structures of the Pentium microprocessor.

Figure 17-1 illustrates the pin-out of the Pentium microprocessor, which is packaged in a
huge 237-pin PGA (pin grid array). Currently, the Pentium is available in two versions: the full-
blown Pentium and the P24T version called the Pentium OverDrive. The P24T version contains
a 32-bit data bus compatible for insertion into 80486 machines that contain the P24 T socket. The
P24T version also comes with a fan built into the unit. The most notable difference in the pin-out

SIBIT/ECE Department

180



Microprocessor

Pentium

SHEEEL
ST
0z

3

=

THIT

o

1

H

SIBIT/ECE Department

10EC62

181



Microprocessor

10EC62

The function of each Pentium group of pins follows:

-
I
=]

A31-AJ

ADS

AHOLD

BOFF

BI'[3:2] and
EMU/BP[L:0]

BRE(
BT3-BT0
BUSCHE

CACHE
CLK

The address A20 mask is an input that is asserted in the real mode to signal
the Pentium to perform address wraparound, as in the 8086 microprocessor,
for use of the HIMEN.SYS driver.

Address bus connections address any of the 312K % 64 memory locations
found in the Pentium memory system. Note that AD, Al, and A2 are encoded
in the bus enable (BE7-BED) to select any or all of the eight bytes in a 64-
bit wide memaory location.

The address data strobe becomes active whenever the Pentium has issued
a valid memory or 1O address. This signal is combined with the W/R and
M/TO signal to generate the separate read and write signals present in the
earlier B086-80286 microprocessor-based systems.

Address hold is an input that causes the Pentium to hold the address and AP
signals for the next clock.

Address parity provides even parity for the memory address on all
Pentium-initiated memory and I/O transfers. The AP pin must also be driven
with even parity information on all inquire cycles in the same clocking
period as the EADS signal.

Address parity check becomes a logic U whanaver the Pentium detects an
adidress parity errar,

Bank enable signals select the access ol 4 byle, word, doubleword, or uad-
word of data. Thesc signals arc generated internally by the microprocessor
from address bits AQ, A, and A2,

The back-off input aborts all cutstanding bus cycles and floats the Pentium
huses untill BOFE is negated. After BOFF is negated, the Pentium restants all
ahorted bus cycles in their entirety.

The hreakpaint pins BP3-BPO indicare a beeakpoint match when the
debug registers are orogrammed to monitor for matches. The performance
mmonitoring pins PM1 and PMO indicaie the settings of the performance
monitoring bits in the debug mode controt register.

The burst ready wnpul signals the Pentium that the extemi! system has
applicd or extracted data from the data bus connecrions. This signal is used
1o inscrt wiit states into the Pentium timing.

The bus request output indicates that the Pemtium has penerated a bus request.

The branch trace cutputs provide hits 2 -t of the branch targei linear
address and the default operand size on BT3. These owputs become valid
during a branch trace special message cycle.

The bus check input allows the system Lo signal the Pentium that the bus
transler has been unsuccessful.

The eache output indicates that the current Pentium cycle can cache data.

The clock is driven by a clock signal that is at the operating frequency of the
Pentium, For example, (o operate Lhe Pentium ai 66 MHz, we apply a 66
MHz clock 1o this pin,

SIBIT/ECE Department

182



Microprocessor

D63-D0

DC

DP7-DPO

FLUSCH

FRCMC

FRCMC

pu

IT
I

=
=

HOLD
HLDA
IBT

10EC62

Iata bus connections transfer bytz, word, doubleword. and quadword data
between the microprocessor and its memory and 1O system.

Data/control indicates that the data bus contains data for or from memory
or IO when a logic 1. W DJC is a logic (), the microprocessor is either halted
ur 1s executing an interrupt acknowledge.

Data parity 15 generated by the Pentium and detects its eight memory banks
throuzh these connechions,

The external address strobe input signals that the address bus contains an
address Tur an myuire cyvele.

The external write buffer empty input indicares that a write cyele is pending
in the external systetn.

A floating-point errar is comparzhle to the ERROR ling in the 80386 and
shows that the internal coprocessor has crred.

The flush cache input causes the cache to flush all write-back lines and
invalidate its internal caches. If the FLUSH input is a logic 0 during a reset
operation, the Pentium enters its test mode.

The functional redundancy check is sampled during a reset to configure
the Pentium in the master (1) or checker mode (0).

Hit shows that the internal cache contains valid data in the inquire mode.

Hit modified shows that the inguire cycle has found a modified cache line.
This output is used to inhibit other master units from accessing data until the
cache line is written to memory.

Hold requests a DMA action.
Hold acknowledge indicates that the Pentium is currently in a hold condition.

Instruction branch taken indicates that the Pentium has taken an instruc-
tion branch.

The internal error output shows that the Pentium has detected an internal
parity error or functional redundancy error,
#

The flush cache input causes the cache to flush all write-back lines and
invalidate its internal caches. If the FLUSH input is a logic 0 during a reset
operation, the Pentium enters its test mode.

The functional redundancy check is sampled during a reset to configure
the Pentium in the master (1) or checker made (0).

Hit shows that the internal cache contains valid data in the inquire mode.
Hit modified shows that the inguire cycle has found a modified cache line.
This output is used to inhibit other master units from accessing data until the
cache line 1s written to memory.,

Hold requests a DMA action.

Hold acknowledge indicates that the Pentium is currently in a hold condition.

Instruction branch taken indicates that the Pentium has taken an instruc-
tion branch.

The internal error output shows that the Pentium has detected an internal
parity error or functional redundancy error,

SIBIT/ECE Department



Microprocessor

INV
1

NMI

PCD

PEN
PRDY

PWT
RS

RESET

10EC62

The invalidation inpul determines the cache line state after an inquiry.
The U-pipe instruction complete outout shows that the insiruction i the
U-pipe is complele.

The V-pipe instruction complete output shows that the tnstruction in the
V-pipe Is complete.

The cache enable inpu: enables intemal caching.

LMK hecomes a logic {0 whenever an instruction is prefised with the
LOCK: prefix. This is most often used during DMA accesses.
Memory/I( selects o memary deviee when a logic ! oor an 1O device when
a logic 0. During the I/O operation, the address bus contains a 16-bit /O
address on address connections A15-A%

Next address indicates that the external memory svstem is ready to accep:
a new bus cycle.

Non-maskable interrupt requests @ non-maskable interrupt, just as on the
garlier varsions of the microprocessor.

The page cache disable utput shiows Ui the internal page caching is
disabled by retlecting the state of the CR3 PCD bit.

‘The parity check outpur signals a parity check error for data read from
memaory or [0

The parity enable input enables the machine check interrupt or exception.
The probe ready vutput indicates that Lhe probe mode hus been entered for
debugging,

The page write-through outpi: shows the state of the PWT bit in CR3,
This pin is provided for use with the [ntel Debugging Por and caoses an
interrupt.

Resel imtializes the Pentium, cavsing it to begin executing software at
memory location FFFFEFTOIL. The Pentium iz reset to the real mode and the
leftmost 12 address cennecrions remain logie 1°s (FFFH) until a far jurnp or
far call is exccuted. This allows compatibility with sarlisr microprocessors.

SIBIT/ECE Department

184



