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Historical Background:

The historical events leading to the development of microprocessors are outlined as follows:

The Mechanical age:
The computing system existed long before modern electrical and electronic devices were invented.

During 500 BC, the Babylonians invented the first mechanical calculator called Abacus. The

abacus which uses strings of beads to perform calculations was used by Babylonian priests to keep

track of their vast storehouses of grains. Abacus was in use until, Blaise Pascal, a mathematician,

invented a mechanical calculator constructed of gears and wheels during 1642. Each gear

contained 10 teeth that, when moved one complete resolution, advanced a second gear one place.

This is the same principle employed in a car’s odometer mechanism and is the basis for all

mechanical calculators. The arrival of the first, practical geared, mechanical machines used to

compute information automatically dates to early 1800’s, which is much earlier to the invention of

electricity.

Only early pioneer of mechanical computing machinery was Charles Babbage. Babbage was

commissioned in 1823 by the astronomical society of Britain to produce a programmable

computing machine. This machine was to generate navigational tables for the royal navy. He

accepted the challenge and began to create what he called as Analytical Engine. Analytical Engine

was a mechanical computer that could store 1000 20-digit decimal numbers and a variable

program that could modify the function of machine so it could perform various calculating tasks.

Input to the analytical engine was punched cards, which is an idea developed by Joseph Jaquard.

The development of analytical engine stopped because the machinists at that time were unable to

create around 50, 000 mechanical parts with enough precision.

The Electrical age:
The invention of electric motor by Michael Faraday during 1800’s lead the way to the

development of motor-driven adding machines all based on the mechanical calculator developed

by Blaise Pascal. These electrically driven mechanical calculators were in use until the small hand-

held electronic calculator developed by Bomar was introduced in 1970’s. Monroe is another

person who introduced electronic calculators, whose four-function models the size of cash register.

In 1889, Herman Hollerith developed the punched card for storing data, basically the idea was of

Jaquard. He also developed a mechanical machine, driven by one of the new electric motors that

counted, sorted and collated information stored on punched cards. The punched cards used in
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computer systems are often called Hollerith cards, In honor of Herman Hollerith. The 12-bit code

used on a punched card is called the Hollerith code.

Electric motor driven mechanical machines dominated the computing world until the German

inventor konrad Zuse constructed the first electronic calculating machine, Z3 in the year 1941. Z3

was used in aircraft and missile design during world war II for the German war effort.

In the year 1943, Allan Turing invented the first electronic computing system made of vacuum

tubes, which is called as Colossus. Colossus was not programmable; it was a fixed-program

computer system, called as special purpose computer.

The first general-purpose, programmable electronic computer system was developed in 1946 at the

University of Pennsylvania. This first modern computer was called the ENIAC (Electronics

Numerical Integrator And Calculator). The ENIAC was a huge machine, containing over 17,000

vacuum tubes and over 500 miles of wires. This massive machine weighted over 30 tons, yet

performed only about 100,000 operations per second. The ENIAC thrust the world into the age of

electronic computers. The ENIAC was programmed by rewriting its circuits – a process that took

many workers several days to accomplish. The workers changed the electrical connections on plug

boards that looked like early telephone switch boards. Another problem with the ENIAC was the

life of the vacuum tube components, which required frequent maintenance.

More advancement followed in the computer world with the development of the transistor in 1948

at Bell labs followed by the invention of integrated circuit in 1958 by jack Kilby of Texas

instruments.

The Microprocessor age:
With the invention of integrated circuit technology, Intel introduced the world’s first

microprocessor, a 4-bit Intel 4004 microprocessor. It addresses a mere 4096 4-bit wide memory

locations. The 4004 instructions set contained only 45 instructions. It was fabricated with the P-

channel MOSFET technology that only allowed it to execute instructions at the slow rate of 50

KIPS. At first, the applications abounded for this device, like video game systems and small

microprocessor based control systems. The main problem with this early microprocessors were its

speed, word width and memory size.

Later Intel introduced 4040, an updated version of 4004, which operated at higher speed, although

it lacked improvements in word width and memory size.



Microprocessor 10EC62

SJBIT/ECE Department 6

Intel Corporation released the 8008 an extended 8-bit version of 4004. The 8008 addressed an

expanded memory size (16 Kbytes) and contained additional instruction, totally 48 instructions,

that provided an opportunity for its application in more advanced systems.

Microprocessors were then used very extensively for many application developments. Many

companies like Intel, Motorola, Zilog and many more recognized the demanding requirement of

powerful microprocessors to the design world. In fulfilling this requirement many powerful

microprocessors were arrived to the market of which we study the Intel’s contribution.

The Intel 8080 & 8085:
 8080 address more memory and execute additional instructions, but it executed them 10

times faster than 8008.

 The 8080 was compatible with TTL, whereas the 8008 was not directly compatible.

 The 8080 also addressed four times more memory (64 Kbytes) than the 8008 (16 Kbytes).

Intel corporation introduced 8085, an updated version of 8080. Although only slightly more

advanced than an 8080 microprocessor, the 8085 executed software at an higher speed. The main

advantages of the 8085 were its internal clock generator, internal system controller, and higher

clock frequency. This higher level of component integration reduced the 8085’s cost and increased

its usefulness.

The 16-bit Microprocessor:
The Intel released 16-bit microprocessors 8086 & 8088, which executed instructions in as little as

400ns (2.5 MIPS). The 8086 & 8088 addressed 1 Mbytes of memory, which was 16 timers more

memory than the 8085. 8086/8088 have a small 6-byte instruction cache or queue that pre-fetched

a few instructions before they were executed, which leads to the faster processing. 8086/8088 has

multiply and divide instructions which were missing in 8085. These microprocessors are called as

CISC (Complex Instruction Set Computers) because of the number and complexity of the

instructions. The 16-bit microprocessor also provided more internal register storage space that the

8-bit microprocessor. Applications such as spread sheets, word processors, spelling checkers, and

computer-based thesauruses on personal computers are few developed using 8086/8088

microprocessors.

The 80286 microprocessor:
Even the 1 Mbyte memory on 8086/8088 found limited for the advanced applications. This led

Intel to introduce the 80286 microprocessor. 80286 follow 8086’s 16-bit architecture, except it can

address 16 Mbyte memory system. The instruction set was similar to 8086 except few instructions

for managing extra 15 Mbytes of memory. The clock speed of 80286 was increased, so it executed

some instructions in as little as 250 ns (4 MIPS).
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The 32-bit Microprocessors:
The 80386 Microprocessor:
The 80386 is the Intel’s first 32-bit microprocessor. The 80386 has 32-bit data bus and a 32-bit

memory addresses. The 80386 was available in a few modified versions such as 80386SX,

80386SL & 80386SLC, which vary in the amount of memory they address. Applications that

require Graphical User Interface (GUI) were using the 80386 microprocessors. Even applications

which involve floating-point numbers were using the 80386 microprocessors.

The 80386 included a memory management unit that allowed memory resources to be allocated

and managed by the operating system.

The 80486 Microprocessor:
The 80486 has 80386 like microprocessor, an 80387 like numeric co-processor, and an 8 Kbyte

cache memory integrated in it. Most of the instructions in 80486 can be executed in a single clock

instead of two clocks compared to 80386. the average speed improvement of instructions was

about 50% over the 80386 that operated at the same clock speed.

The Pentium Microprocessor:
The Pentium microprocessor was introduced late in 1993 with higher speeds compared to 80486.

in Pentium cache size was increased to 16 Kbytes from the 8K cache found in the basic version of

80486. After Pentium, many versions were introduced, like Pentium Pro, Pentium II, Pentium III

and Pentium IV with higher capacities.

The Microprocessor-based personal computer system:

fig (a): The block diagram of a microprocessor-based computer system

The above figure (a) shows the block diagram of a microprocessor based personal computer

system. The block diagram comprises of three blocks-memory system, microprocessor and I/O

system, which are interconnected by the buses. A bus is a set of common connections that carry the

same type of information. There are 3 types of buses – Address bus, Data bus and Control bus in a

computer system.

Memory
System Microprocessor I/O System

DRAM, SRAM,
cache, ROM, Flash
memory, EEPROM,
SDRAM

8086, 8088, 80186,
80188, 80286, 80386,
80486, Pentium,
Pentium Pro to P IV

Printer, Serial
communication, Floppy
disk drive, Hard disk
drive, mouse, CD-ROM
drive, Plotter, Keyboard,
Monitor, Scanner etc.
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The Memory System:
The memory structure remains same for all the Intel 80x86 through Pentium IV personal computer

systems. Fig (b) illustrates the memory map of a personal computer system.

The memory system is divided into three main parts:

 Transient Program Area (TPA) – 640 Kbytes.

 System Area – 384 Kbytes.

 Extended Memory system (XMS) – amount of memory depends on the microprocessor

used in the personal computer system.

Fig (b): The memory map of the personal computer

The type of microprocessor in the personal computer system determines whether XMS exists or

not. 8086 or 8088 (PC or XT10) based computer system consists of 640 Kbytes of TPA and 384

Kbytes of system area which accounts to the 1 Mbyte of memory and there is no extended memory

area. The first 1M bytes of memory are called the real or conventional memory because each Intel

Extended Memory

System Area

384 Kbytes

TPA

640 Kbytes

15 Mbytes in the 80286 or 80386 SX

31 Mbytes in the 80386SL/SLC

63 Mbytes in the 80386EX

4095 Mbytes in 80486 & Pentium

64 Gbytes in the Pentium pro, P-II, P-III & P-IV
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microprocessor is designed to function in this area by using its real mode of operation. Computer

systems based on the 80286 through P-IV not only contain the TPA (640K bytes) and system area

(384K bytes), they also contain the extended memory.

a. Transient Program Area (TPA):
The memory map shown in fig (c) illustrates how the many areas of the TPA are used for system

programs, data and drivers. It also shows a large area of memory available for application

programs.

The TPA holds the DOS operating system and other programs that control the computer system. If

the MSDOS version 7.x is used as an operating system, of the 640k bytes of TPA, 628k bytes of

the memory will be available for application programs.

Free TPA

Interrupt vectors

BIOS communication
area

DOS communication
area

IO.sys program

MSDOS program

Device drivers

COMMAND. COM

Interrupt vectors

BIOS communication
area

DOS communication
area

IO.sys program

MSDOS program

Device drivers

COMMAND. COM

MSDOS program
9FFFFh

9FFF0h

08E30h

08490h

02530h

01160h

00700h

00500h

00400h

00000h
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The interrupt vectors accesses various features of DOS, BIOS & applications. The BIOS is a

collection of programs stored in either a ROM or flash memory that operate many of the I/O

devices connected to the computer system.

The BIOS & DOS communication areas contain transient data used by programs to access I/O

devices and the internal features of the computer system. These are stored in the TPA so they can

be changed as the system operates.

The IO.sys is a program that loads into the TPA from the disk whenever an MSDOS or PCDOS

system is started. The IO.sys contains programs that allow DOS to use the keyboard, video display,

printer, and other I/O devices.

The MSDOS program occupies two areas of memory. One area is 16 bytes in length and is located

at the top of TPA. The other is much larger and is located near the bottom of TPA.

The size of the driver area and number of drivers change from one computer to another. Drivers

are programs that control installable I/O devices such as CD-ROM, Mouse etc. drivers are

normally files that have an extension of .sys. The COMMAND.com (command processor) controls

the operation of the computer from the keyboard. The free TPA area holds application programs as

they are executed. These application programs include word processors, spread sheet programs,

CAD programs and many more.

b. The System Area:
The system area contains programs on either a ROM or flash memory and areas of read/write

(RAM) memory for the storage. The length of the system area is 384k bytes. Fig (d) shows the

system area of a typical computer system.

The first area of the system space contains video display RAM and video control programs on

ROM or flash memory. This area starts at location A0000h and extends to location C7FFFh. The

size and amount of memory used depends on the type of the video display adapter attached to the

system. Ex: CGA (Color Graphics Adapter), EGE (Extended Graphics Adapter) and VGA

(Variable Graphics Adapter). Generally the video RAM located at A0000h – AFFFFh stores text

data. The video BIOS, located on a ROM or flash memory, are at locations C0000h – C7FFFh and

contain programs that control the video display.

If a hard disk memory is attached to the computer, the low-level format software will be at location

C8005h.

The area at locations C8000h – DFFFFh is often open or free. This area is used for the expanded

memory system (EMS) in a PC or XT system, or for the upper memory system in an AT system.
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The expanded memory system allows a 64k byte page frame of memory to be used by application

programs.

Memory locations E0000h – EFFFFh contain the cassette BASIC language on ROM found in early

IBM personal computer systems. This area is often open or free in newer systems.

The system BIOS ROM is located in the top 64k bytes of the system area (F0000h – FFFFFh).

This ROM controls the operation of the basic I/O devices connected to the computer system. It

doesn’t control the operation of the video system, which has its own BIOS ROM at location

C0000h. The first part of the system BIOS (F0000h – F7FFFh) often contains the programs that

setup the computer and the second part contains procedures that control the basic I/O system.

The I/O space:
The I/O devices allow the microprocessor to communicate b/w itself and the outside world. The

I/O space in a computer system extends from I/O port 0000h to port 0FFFFh. This address range

can access up to 64k different 8-bit I/O devices.

BIOS system ROM

Free area

Video RAM

(graphics area)

Video RAM

(text area)

Video BIOS ROM

Hard disk/LAN
Controller ROM

BASIC language ROM

A0000h

B0000h

C0000h

C8000h

E0000h

F0000h

FFFFFh
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The I/O area contains two major sections. The area below I/O location 0400h is considered

reserved for system devices. The remaining area is available I/O space for expansion on newer

systems that extends from I/O port 0400h through 0FFFFh. Generally, I/O addresses b/w 0000h

and 00FFh address components on the main board of the computer, while addresses between

0100h and 03FFh address devices located on plug-in cards.

The Microprocessor:
The microprocessor is the heart of the microprocessor-based computer system. Microprocessor is

the controlling element and is sometimes referred to as the Central Processing Unit (CPU). The

microprocessor controls memory and I/O through a series of connections called buses.

The microprocessor performs three main tasks for the computer system:

 Data transfer between itself and the memory or I/O systems.

 Simple arithmetic and logic operations, and

 Program flow via simple decisions.

Although, these are simple tasks, but through them the microprocessor performs virtually any

series of operations.

Simple Microcomputer Bus Operation

1. A microcomputer fetches each program instruction in sequence, decodes the instruction,

and executes it.

I/O expansion area

DMA Controller

Interrupt Controller

Timer (8253)

PIA (8255)

COM2

Hard disk Controller

LPT1

CGA Adapter

Floppy disk Controller

COM1

DMA Controller

Interrupt Controller

Timer (8253)

PIA (8255)

COM2

Hard disk Controller

LPT1

CGA Adapter

Floppy disk Controller

COM1

0020h

0000h

0040h

0060h

02F8h

0320h

0378h

03D0h

03F0h

03F8h

0400h

FFFFh
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2. The CPU in a microcomputer fetches instructions or reads data from memory by sending

out an address on the address bus and a Memory Read signal on the control bus. The

memory outputs the addressed instruction or data word to the CPU on the data bus.

3. The CPU writes a data word to memory by sending out an address on the address bus,

sending out the data word on the data bus, and sending a Memory write signal to memory

on the control bus.

4. To read data from a port, the CPU sends out the port address on the address bus and sends

an I/O Read signal to the port device on the control bus. Data from the port comes into the

CPU on the data bus.

5. To write data to a port, the CPU sends out the port address on the address bus, sends out the

data to be written to the port on the data bus, and sends an I/O Write signal to the port

device on the control bus.
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8086 Pin diagram

8086 is a 40 pin DIP using MOS technology. It has 2 GND’s as circuit complexity demands a large

amount of current flowing through the circuits, and multiple grounds help in dissipating the

accumulated heat etc. 8086 works on two modes of operation namely, Maximum Mode and

Minimum Mode.

(i) Power Connections
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GND

AD14
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AD10
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AD8
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AD6
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AD4
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AD1

AD0

NMI

INTR

CLK

GND RESET

READY
TEST

QS1

QS0

0S
1S
2S

LOCK

0GT/RQ

1GT/RQ

RD

MXMN/
7

/SBHE

6/S19A
5/S18A

4/S17A
3/S16A

15AD
VCC

8086

(HOLD)

(HLDA)

( WR )

( OM/I )

(ALE)

( RDT/ )

( DEN )

( INTA )

Minimum ModeMaximum Mode
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Pin Description:

GND – Pin no. 1, 20

Ground

CLK – Pin no. 19 – Type I

Clock: provides the basic timing for the processor and bus controller. It is asymmetric with a 33%

duty cycle to provide optimized internal timing.

VCC – Pin no. 40

VCC: +5V power supply pin

(ii) Address/ Data Lines

Pin Description

AD15-AD0 – Pin no. 2-16, 39 – Type I/O

Address Data bus: These lines constitute the time multiplexed memory/ IO address (T1) and data

(T2, T3, TW, T4) bus. A0 is analogous to BHE for the lower byte of of the data bus, pins D7-D0. It

iss low when a byte is to be transferred on the lower portion of the bus in memory or I/O

operations. Eight –bit oriented devices tied to the lower half would normally use A0 to condition

chip select functions. These lines are active HIGH and float to 3-state OFF during interrupt

acknowledge and local bus “hold acknowledge”.
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(iii) Address Lines

A19/S6, A18/S5, A17/S4, A16/S3 – Pin no. 35-38 – Type O

Address / Status: During T1 these are the four most significant address lines for memory operations.

During I/O operations these lines are low. During memory and I/O operations, status information

is available on these lines during T2, T3, TW and T4. The status of the interrupt enable FLAG bit

(S5) is updated at the beginning of each CLK cycle. A17/S4 and A16/S3 are encoded as shown.

A17/S4 A16/S3 Characteristics

0 (LOW) 0 Alternate Data

0 1 Stack

1(HIGH) 0 Code or None

1 1 Data

S6 is 0 (LOW)

This information indicates which relocation register is presently being used for data accessing.

These lines float to 3-state OFF during local bus “hold acknowledge”.

(iv) Status Pins S0 - S7
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Pin Description

2S , 1S , 0S - Pin no. 26, 27, 28 – Type O

Status: active during T4, T1 and T2 and is returned to the passive state (1,1,1) during T3 or during

TW when READY is HIGH. This status is used by the 8288 Bus Controller to generate all memory

and I/O access control signals. Any change by 2S , 1S or 0S during T4 is used to indicate the

beginning of a bus cycle and the return to the passive state in T3 or TW is used to indicate the end

of a bus cycle.

These signals float to 3-state OFF in “hold acknowledge”. These status lines are encoded as shown.

2S 1S 0S Characteristics

0(LOW) 0 0 Interrupt acknowledge

0 0 1 Read I/O Port

0 1 0 Write I/O Port

0 1 1 Halt

1(HIGH) 0 0 Code Access

1 0 1 Read Memory

1 1 0 Write Memory

1 1 1 Passive

Status Details

Indication

0 0 0 Interrupt Acknowledge

2S 1S 0S
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0 0 1 Read I/O port

0 1 0 Write I/O port

0 1 1 Halt

1 0 0 Code access

1 0 1 Read memory

1 1 0 Write memory

1 1 1 Passive

S4 S3 Indications

0 0 Alternate data

0 1 Stack

1 0 Code or none

1 1 Data

----- Value of Interrupt Enable flag

----- Always low (logical) indicating 8086 is on the bus. If it is tristated another

bus master has taken control of the system bus.

----- Used by 8087 numeric coprocessor to determine whether the CPU is a 8086

or 8088

(v) Interrupts

Pin Description:

NMI – Pin no. 17 – Type I

5S

6S

7S
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Non – Maskable Interrupt: an edge triggered input which causes a type 2 interrupt. A subroutine is

vectored to via an interrupt vector lookup table located in system memory. NMI is not maskable

internally by software. A transition from a LOW to HIGH initiates the interrupt at the end of the

current instruction. This input is internally synchronized.

INTR – Pin No. 18 – Type I

Interrupt Request: is a level triggered input which is sampled during the last clock cycle of each

instruction to determine if the processor should enter into an interrupt acknowledge operation. A

subroutine is vectored to via an interrupt vector lookup table located in system memory. It can be

internally masked by software resetting the interrupt enable bit. INTR is internally synchronized.

This signal is active HIGH.

(vi) Min mode signals

Pin Description:

HOLD, HLDA – Pin no. 31, 30 – Type I/O

HOLD: indicates that another master is requesting a local bus “hold”. To be acknowledged,

HOLD must be active HIGH. The processor receiving the “hold” request will issue HLDA (HIGH)

as an acknowledgement in the middle of a T1 clock cycle. Simultaneous with the issuance of

HLDA the processor will float the local bus and control lines. After HOLD is detected as being

LOW, the processor will LOWer the HLDA, and when the processor needs to run another cycle, it

will again drive the local bus and control lines.

The same rules as GT/RQ apply regarding when the local bus will be released.
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HOLD is not an asynchronous input. External synchronization should be provided if the system

can not otherwise guarantee the setup time.

WR - Pin no. 29 – Type O

Write: indicates that the processor is performing a write memory or write I/O cycle, depending on

the state of the OM/I signal. WR is active for T2, T3 and TW of any write cycle. It is active LOW,

and floats to 3-state OFF in local bus “hold acknowledge”.

OM/I - Pin no. 28 – type O

Status line: logically equivalent to S2 in the maximum mode. It is used to distinguish a memory

access from an I/O access. OM/I becomes valid in the T4 preceding a bus cycle and remains valid

until the final T4 of the cycle (M=HIGH), IO=LOW). OM/I floats to 3-state OFF in local bus “hold

acknowledge”.

RDT/ -Pin no. 27 – Type O

Data Transmit / Receive: needed in minimum system that desires to use an 8286/8287 data bus

transceiver. It is used to control the direction of data flow through the transceiver. Logically RDT/

is equivalent to 1S in the maximum mode, and its timing is the same as for OM/I . (T=HIGH,

R=LOW). This signal floats to 3-state OFF in local bus “hold acknowledge”.

DEN - Pin no. 26 – Type O

Data Enable: provided as an output enable for the 8286/8287 in a minimum system which uses the

transceiver. DEN is active LOW during each memory and I/O access and for INTA cycles. For a

read or INTA cycle it is active from the middle of T2 until the middle of T4, while for a write cycle

it is active from the beginning of T2 until the middle of T4. DEN floats to 3-state OFF in local bus

“hold acknowledge”.

ALE – Pin no. 25 – Type O

Address Latch Enable: provided by the processor to latch the address into the 8282/8283 address

latch. It is a HIGH pulse active during T1 of any bus cycle. Note that ALE is never floated.

INTA - Pin no. 24 – Type O

INTA is used as a read strobe for interrupt acknowledge cycles. It is active LOW during T2, T3 and

TW of each interrupt acknowledge cycle.



Microprocessor 10EC62

SJBIT/ECE Department 21

(vii) Max mode signals

Pin Description:

0GT/RQ , 1GT/RQ - Pin no. 30, 31 – Type I/O

Request /Grant: pins are used by other local bus masters to force the processor to release the local

bus at the end of the processor’s current bus cycle. Each pin is bidirectional with 0GT/RQ having

higher priority than 1GT/RQ . GT/RQ has an internal pull up resistor so may be left unconnected.

The request/grant sequence is as follows:

1. A pulse of 1 CLK wide from another local bus master indicates a local bus request (“hold”)

to the 8086 (pulse 1)

2. During a T4 or T1 clock cycle, a pulse 1 CLK wide from the 8086 to the requesting master

(pulse 2), indicates that the 8086 has allowed the local bus to float and that it will enter the

“hold acknowledge” state at the next CLK. The CPU’s bus interface unit is disconnected

logically from the local bus during “hold acknowledge”.

3. A pulse 1 CLK wide from the requesting master indicates to the 8086 (pulse 3) that the

“hold” request is about to end and that the 8086 can reclaim the local bus at the next CLK.

Each master-master exchange of the local bus is a sequence of 3 pulses. There must be one dead

CLK cycle after each bus exchange. Pulses are active LOW.

If the request is made while the CPU is performing a memory cycle, it will release the local bus

during T4 of the cycle when all the following conditions are met:

1. Request occurs on or before T2.

2. Current cycle is not the low byte of a word (on an odd address)

3. Current cycle is not the first acknowledge of an interrupt acknowledge sequence.
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4. A locked instruction is not currently executing.

LOCK - Pin no. 29 – Type O

LOCK : output indicates that other system bus masters are not to gain control of the system bus

while LOCK is active LOW. The LOCK signal is activated by the “LOCK” prefix instruction and

remains active until the completion of the next instruction. This signal is active LOW, and floats to

3-state OFF in “hold acknowledge”.

QS1, QS0 – Pin no. 24, 25 – Type O

Queue Status: the queue status is valid during the CLK cycle after which the queue operation is

performed.

QS1 and QS0 provide status to allow external tracking of the internal 8086 instruction queue.

QS1 QS0 Characteristics

0(LOW) 0 No operation

0 1 First Byte of Op Code from Queue

1 (HIGH) 0 Empty the Queue

1 1 Subsequent byte from Queue
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(viii) Common Signals

Pin Description:

RD - Pin no. 34, Type O

Read: Read strobe indicates that the processor is performing a memory of I/O read cycle,

depending on the state of the S2 pin. This signal is used to read devices which reside on the 8086

local bus. RD is active LOW during T2, T3 and TW of any read cycle, and is guaranteed to remain

HIGH in T2 until the 8086 local bus has floated.

This signal floats to 3-state OFF in “hold acknowledge”.

READY – Pin no. 22, Type I

READY: is the acknowledgement from the addressed memory or I/O device that it will complete

the data transfer. The READY signal from memory / IO is synchronized by the 8284A Clock

Generator to form READY. This signal is active HIGH. The 8086  READY input is not

synchronized. Correct operation is not guaranteed if the setup and hold times are not met.

TEST - Pin No 23 – Type I

TEST : input is examined by the “Wait” instruction. If the TEST input is LOW execution continues,

otherwise the processor waits in an “idle” state. This input is synchronized internally during each

clock cycle on the leading edge of CLK.
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RESET – Pin no. 21 – Type I

Reset: causes the processor to immediately terminate its present activity. The signal must be active

HIGH for at least four clock cycles. It restarts execution, as described in the instruction set

description, when RESET returns LOW. RESET is internally synchronized.

7/SBHE - Pin No. 34 – Type O

Bus High Enable / Status: During T1 the Bus High Enable signal ( BHE )should be used to enable

data onto the most significant half of the data bus, pins D15-D8. Eight bit oriented devices tied to

the upper half of the bus would normally use BHE to condition chip select functions. BHE is

LOW during T1 for read, write, and interrupt acknowledge cycles when a byte is to be transferred

on the high portion of the bus. The S,7 status information is available during T2, T3 and T4. The

signal is active LOW and floats to 3-state OFF in “hold”. It is LOW during T1 for the first interrupt

acknowledge cycle.

BHE A0 Characteristics

0 0 Whole word

0 1 Upper byte from / to odd address

1 0 Lower byte from / to even address

1 1 None

MXMN/ - Pin no. 33 – Type - I

Minimum / Maximum: indicates what mode the processor is to operate in.

If the local bus is idle when the request is made the two possible events will follow:

1. Local bus will be released during the next clock.

2. A memory cycle will start within 3 clocks. Now the four rules for a currently active

memory cycle apply with condition number 1 already satisfied.
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8086 CPU ARCHITECTURE

The block diagram of 8086 is as shown. This can be subdivided into two parts, namely the Bus

Interface Unit and Execution Unit. The Bus Interface Unit consists of segment registers, adder to

generate 20 bit address and instruction prefetch queue.

Once this address is sent out of BIU, the instruction and data bytes are fetched from memory and

they fill a First In First Out 6 byte queue.

Execution Unit:

The execution unit consists of scratch pad registers such as 16-bit AX, BX, CX and DX and

pointers like SP (Stack Pointer), BP (Base Pointer) and finally index registers such as source index

and destination index registers. The 16-bit scratch pad registers can be split into two 8-bit registers.

For example, AX can be split into AH and AL registers. The segment registers and their default

offsets are given below.

Segment Register Default Offset

CS IP (Instruction Pointer)

DS SI, DI

SS SP, BP

ES DI
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The Arithmetic and Logic Unit adjacent to these registers perform all the operations. The results of

these operations can affect the condition flags.

Different registers and their operations are listed below:

Register Operations

AX Word multiply, Word divide, word I/O

AL Byte Multiply, Byte Divide, Byte I/O, translate, Decimal Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CX String Operations, Loops

CL Variable Shift and Rotate

DX Word Multiply, word Divide, Indirect I/O

Generation of 20-bit Physical Address:

IP

SR

DI

SI

BP

SP

DX

CX

AX

BX

ES

SS

DS

CS

Instruction Pointer

Code Segment Register

Data Segment Register

Stack Segment Register

Extra Segment Register

AH

Stack Pointer Register

AL

BE BL

CE CL

DH DL

Break Pointer Register

Source Index Register

Destination Index Register

Status Register

Code Segment (64Kb)

Data Segment (64Kb)

Stack Segment (64Kb)

Extra Segment (64Kb)

FFFFF16

00000016

8086/8088 MPU MEMORY
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LOGICAL ADDRESS

SEGMENT REGISTER 0000

ADDER

20 BIT PHYSICAL MEMORY ADDRESS
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8086 flag register format

There are three internal buses, namely A bus, B bus and C bus, which interconnect the various

blocks inside 8086.

The execution of instruction in 8086 is as follows:

The microprocessor unit (MPU) sends out a 20-bit physical address to the memory and fetches the

first instruction of a program from the memory. Subsequent addresses are sent out and the queue is

filled upto 6 bytes. The instructions are decoded and further data (if necessary) are fetched from

memory. After the execution of the instruction, the results may go back to memory or to the output

peripheral devices as the case may be.

Machine language:

Addressing Modes

Addressing modes of 8086

(a) : CARRY FLAG – SET BY CARRY OUT OF MSB
(b) : PARITY FLAG – SET IF RESULT HAS EVEN PARITY
(c) : AUXILIARY CARRY FLAG FOR BCD
(d) : ZERO FLAG – SET IF RESULT = 0
(e) : SIGN FLAG = MSB OF RESULT
(f) : SINGLE STEP TRAP FLAG
(g) : INTERRUPT ENABLE FLAG
(h) : STRING DIRECTION FLAG
(i) : OVERFLOW FLAG

(i)

(h)

(g)

(f)

(e)

(d)

(b)

(c)

(a)

0123456789101112131415

U U U U 0F DF IF TF SF ZF U AF U PF U CF

U= UNDEFINED

BIT
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When 8086 executes an instruction, it performs the specified function on data.  These data are

called its operands and may be part of the instruction, reside in one of the internal registers of the

microprocessor, stored at an address in memory or held at an I/O port, to access these different

types of operands, the 8086 is provided with various addressing modes (Data Addressing Modes).

Data Addressing Modes of 8086
The 8086 has 12 addressing modes.  The various 8086 addressing modes can be classified into five

groups.

A. Addressing modes for accessing immediate and register data (register and immediate

modes).

B. Addressing modes for accessing data in memory (memory modes)

C. Addressing modes for accessing I/O ports (I/O modes)

D. Relative addressing mode

E. Implied addressing mode

8086 ADDRESSING MODES
A. Immediate addressing mode:
In this mode, 8 or 16 bit data can be specified as part of the instruction.

OP Code Immediate Operand

Example 1 : MOV CL, 03 H

Moves the 8 bit data 03 H into CL

Example 2 : MOV DX, 0525 H

Moves the 16 bit data 0525 H into DX

In the above two examples, the source operand is in immediate mode and the destination operand

is in register mode.

A constant such as “VALUE” can be defined by the assembler EQUATE  directive such as

VALUE EQU 35H

Example : MOV BH, VALUE

Used to load 35 H into BH

Register addressing mode :
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The operand to be accessed is specified as residing in an internal register of 8086.  Fig.   below

shows internal registers, any one can be used as a source or destination operand, however only the

data registers can be accessed as either a byte or word.

Register
Operand sizes

Byte (Reg 8) Word (Reg 16)

Accumulator AL, AH Ax

Base BL, BH Bx

Count CL, CH Cx

Data DL, DH Dx

Stack pointer - SP

Base pointer - BP

Source index - SI

Destination index - DI

Code Segment - CS

Data Segment - DS

Stack Segment - SS

Extra Segment - ES

Example 1 : MOV DX (Destination Register) , CX (Source Register)

Which moves 16 bit content of CS into DX.

Example 2 : MOV CL, DL

Moves 8 bit contents of DL into CL

MOV BX, CH is an illegal instruction.

* The register sizes must be the same.

B. Direct addressing mode :

The instruction Opcode is followed by an affective address, this effective address is directly used

as the 16 bit offset of the storage location of the operand from the location specified by the current

value in the selected segment register.

The default segment is always DS.
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The 20 bit physical address of the operand in memory is normally obtained as

PA = DS : EA

But by using a segment override prefix (SOP) in the instruction, any of the four segment registers

can be referenced,

PA = CS

DS : Direct Address

SS

ES

The Execution Unit (EU) has direct access to all registers and data for register and immediate

operands.  However the EU cannot directly access the memory operands.  It must use the BIU, in

order to access memory operands.

In the direct addressing mode, the 16 bit effective address (EA) is taken directly from the

displacement field of the instruction.

Example 1 : MOV CX, START

If the 16 bit value assigned to the offset START by the programmer using an assembler pseudo

instruction such as DW is 0040 and [DS] = 3050.

Then BIU generates the 20 bit physical address 30540 H.

The content of 30540 is moved to CL

The content of 30541 is moved to CH

Example 2 : MOV CH, START

If [DS] = 3050 and START = 0040

8 bit content of memory location 30540 is moved to CH.

Example 3 : MOV START, BX

With [DS] = 3050, the value of START is 0040.

Physical address : 30540

MOV instruction moves (BL) and (BH) to locations 30540 and 30541 respectively.

Register indirect addressing mode :

The EA is specified in either pointer (BX) register or an index (SI or DI) register.  The 20 bit

physical address is computed using DS and EA.
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Example : MOV [DI], BX

register indirect

If [DS] = 5004, [DI] = 0020, [Bx] = 2456   PA=50060.

The content of BX(2456) is moved to memory locations 50060 H and 50061 H.

CS

PA = DS BX

SS = SI

ES DI

Based addressing mode:

CS

PA = DS BX

SS : or + displacement

ES BP

when memory is accessed PA is computed from BX and DS when the stack is accessed PA is

computed from BP and SS.

Example : MOV AL, START [BX]

or

MOV AL,  [START + BX]

based mode

EA  :  [START] + [BX]

PA  : [DS] + [EA]

The 8 bit content of this memory location is moved to AL.

Indexed addressing mode:

CS

PA = DS SI

SS : or + 8 or 16bit displacement

ES DI

Example : MOV BH, START [SI]

PA : [SART] + [SI] + [DS]
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The  content of this memory is moved into BH.

Based Indexed addressing mode:

CS

PA = DS BX SI

SS : or + or + 8 or 16bit displacement

ES BP DI

Example : MOV ALPHA [SI] [BX], CL

If [BX] = 0200, ALPHA – 08, [SI] = 1000 H and [DS] = 3000

Physical address (PA) = 31208

8 bit content of CL is moved to 31208 memory address.

String addressing mode:

The string instructions automatically assume SI to point to the first byte or word of the source

operand and DI to point to the first byte or word of the destination operand.  The contents of SI and

DI are automatically incremented (by clearing DF to 0 by CLD instruction) to point to the next

byte or word.

Example : MOV S BYTE

If [DF] = 0, [DS] = 2000 H, [SI] = 0500,

[ES] = 4000,  [DI] = 0300

Source address : 20500, assume it contains 38

PA : [DS] + [SI]

Destination address : [ES] + [DI] = 40300, assume it contains 45

After executing MOV S BYTE,

[40300] = 38

[SI] = 0501 incremented

[DI] = 0301

C. I/O mode (direct) :

Port number is an 8 bit immediate operand.

Example : OUT 05 H, AL

Outputs [AL] to 8 bit port 05 H
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OR

OR

OR

I/O mode (indirect):

The port number is taken from DX.

Example 1 : INAL, DX

If [DX] = 5040

8 bit content by port 5040 is moved into AL.

Example 2 : IN AX, DX

Inputs 8 bit content of ports 5040 and 5041 into AL and AH respectively.

D. Relative addressing mode:

Example : JNC START

If CY=O, then PC is loaded with current PC contents plus 8 bit signed value of START, otherwise

the next instruction is executed.

E. Implied addressing mode:

Instruction using this mode have no operands.

Example : CLC which clears carry flag to zero.

SINGLE INDEX DOUBLE INDEX

Encoded
in the

instruction

BX

OR

BP

SI

OR

DI

+

+ +

+ +

CS                 0000

PHYSICAL ADDRESS

DS                 0000

SS                 0000

ES                 0000

DISPLACEMENTExplicit in the
instruction

Assumed
unless
over

ridden
by prefix

EU

BIU

BX

OR

BP

OR

SI

OR

DI
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Special functions of general-purpose registers:

AX & DX registers:

In 8 bit multiplication, one of the operands must be in AL. The other operand can be a byte in

memory location or in another 8 bit register.  The resulting 16 bit product is stored in AX, with AH

storing the MS byte.

In 16 bit multiplication, one of the operands must be in AX.  The other operand can be a word in

memory location or in another 16 bit register.  The resulting 32 bit product is stored in DX and

AX, with DX storing the MS word and AX storing the LS word.

BX register : In instructions where we need to specify in a general purpose register the 16 bit

effective address of a memory location, the register BX is used (register indirect).

CX register :  In Loop Instructions, CX register will be always used as the implied counter.

In I/O instructions, the 8086 receives into or sends out data from AX or AL depending as  a word

or byte operation.  In these instructions the port address, if greater than FFH has to be given as the

contents of DX register.

Ex : IN AL, DX

DX register will have 16 bit address of the I/P device

Physical Address (PA) generation :

Generally Physical Address (20 Bit) = Segment Base Address (SBA)

+ Effective Address (EA)

Code Segment :

Physical Address (PA) = CS Base Address

+ Instruction Pointer (IP)

Data Segment (DS)

PA = DS Base Address + EA can be in BX or SI or DI

Stack Segment (SS)

PA + SS Base Address + EA can be SP or BP

Extra Segment (ES)

PA = ES Base Address + EA in DI
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Byte 3 Byte 4

Instruction Format :

The 8086 instruction sizes vary from one to six bytes.  The OP code occupies six bytes and it

defines the operation to be carried out by the instruction.

Register Direct bit (D) occupies one bit. It defines whether the register operand in byte 2 is the

source or destination operand.

D=1 Specifies that the register operand is the destination operand.

D=0 indicates that the register is a source operand.

Data size bit (W) defines whether the operation to be performed is an 8 bit or 16 bit data

W=0 indicates 8 bit operation

W=1 indicates 16 bit operation

7            2     1         0            7    6    5    4    3    2    1   0

Opcode D W MOD REG R/M
Low Disp/

DATA

High Disp/

DATA

The second byte of the instruction usually identifies whether one of the operands is in memory or

whether both are registers.

This byte contains 3 fields.  These are the mode (MOD) field, the register (REG) field and the

Register/Memory (R/M) field.

MOD (2 bits) Interpretation

00 Memory mode with no displacement follows except for 16 bit

displacement when R/M=110

01 Memory mode with 8 bit displacement

10 Memory mode with 16 bit displacement

Byte 1 Byte 2 OR

Register Operand/Register to use EA
Calculation

Register Operand/Extension of opcode

Register mode/Memory mode with
displacement length

Word/byte operation

Direction is to register/from register

Operation code

DIRECT
ADDRESS LOW

BYTE

DIRECT
ADDRESS HIGH

BYTE
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11 Register mode (no displacement)

Register field occupies 3 bits.  It defines the register for the first operand which is specified as

source or destination by the D bit.

REG W=0 W=1

000 AL AX

001 CL CX

010 DL DX

011 BL BX

100 AH SP

101 CH BP

110 DH SI

111 BH DI

The R/M field occupies 3 bits.  The R/M field along with the MOD field defines the second

operand as shown below.

MOD 11

R/M W=0 W=1

000 AL AX

001 CL CX

010 DL DX

011 BL BX

100 AH SP

101 CH BP

110 DH SI

111 BH DI

Effective Address Calculation

R/M MOD=00 MOD 01 MOD 10

000 (BX) + (SI) (BX)+(SI)+D8 (BX)+(SI)+D16

001 (BX)+(DI) (BX)+(DI)+D8 (BX)+(DI)+D16

010 (BP)+(SI) (BP)+(SI)+D8 (BP)+(SI)+D16

011 (BP)+(DI) (BP)+(DI)+D8 (BP)+(DI)+D10

100 (SI) (SI) + D8 (SI) + D16
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101 (DI) (DI) + D8 (DI) + D16

110 Direct address (BP) + D8 (BP) + D16

111 (BX) (BX) + D8 (BX) + D16

In the above, encoding of the R/M field depends on how the mode  field is set.  If MOD=11

(register to register mode), this R/M identifies the second register operand.

MOD selects memory mode, then R/M indicates how the effective address of the memory operand

is to be calculated.  Bytes 3 through 6 of an instruction are optional fields that normally contain the

displacement value of a memory operand and / or the actual value of an immediate constant

operand.

Example 1 : MOV CH, BL

This instruction transfers 8 bit content of BL

Into CH

The 6 bit Opcode for this instruction is 1000102 D bit indicates whether the register specified by

the REG field  of byte 2 is a source or destination operand.

D=0 indicates BL is a source operand.

W=0 byte operation

In byte 2, since the second operand is a register MOD field is 112.

The R/M field = 101 (CH)

Register (REG) field = 011 (BL)

Hence the machine code for MOV CH, BL is

10001000 11 011 101

Byte 1 Byte2

= 88DD16

Example 2 : SUB Bx, (DI)

This instruction subtracts the 16 bit content of memory location addressed by DI and DS from Bx.

The 6 bit Opcode for SUB is 0010102.

D=1 so that REG field of byte 2 is the destination operand.  W=1 indicates 16 bit operation.

MOD = 00

REG = 011

R/M = 101

The machine code is 0010 1011 0001 1101
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2 B 1 D

2B1D16
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Example 3 : Code for MOV 1234 (BP), DX

Here we have specify DX using REG field, the D bit must be 0, indicating the DX is the source

register.  The REG field must be 010 to indicate DX register.  The W bit must be 1 to indicate it is

a word operation.   1234 [BP] is specified using MOD value of 10 and R/M value of 110 and a

displacement of 1234H.  The 4 byte code for this instruction would be 89 96 34 12H.

Opcode D W MOD REG R/M LB displacement HB displacement

100010 0 1 10 010 110 34H 12H

Example 4 : Code for MOV DS : 2345 [BP], DX

Here we have to specify DX  using REG field.  The D bit must be o,  indicating that Dx is the

source register.  The REG field must be 010 to indicate DX register.  The w bit must be 1 to

indicate it is a word operation.  2345 [BP] is specified with MOD=10 and R/M = 110 and

displacement = 2345 H.

Whenever BP is used to generate the Effective Address (EA), the default segment would be SS.  In

this example, we want the segment register to be DS, we have to provide the segment override

prefix byte (SOP byte) to start with.  The SOP byte is 001 SR 110,  where SR value is provided as

per table shown below.

MOD / R/M Memory Mode (EA Calculation) Register Mode

00 01 10 W=0 W=1

000 (BX)+(SI) (BX)+(SI)+d8 (BX)+(SI)+d16 AL AX

001 (BX) + (DI) (BX)+(DI)+d8 (BX)+(DI)+d16 CL CX

010 (BP)+(SI) (BP)+(SI)+d8 (BP)+(SI)+d16 DL DX

011 (BP)+(DI) (BP)+(DI)+d8 (BP)+(DI)+d16 BL BX

100 (SI) (SI) + d8 (SI) + d16 AH SP

101 (DI) (DI) + d8 (DI) + d16 CH BP

110 d16 (BP) + d8 (BP) + d16 DH SI

111 (BX) (BX) + d8 (BX) + d16 BH DI
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SR Segment register

00 ES

01 CS

10 SS

11 DS

To specify DS register, the SOP byte would be 001 11 110 = 3E H.  Thus the 5 byte code for this

instruction would be 3E 89 96 45 23 H.

SOP Opcode D W MOD REG R/M LB disp. HD disp.

3EH 1000 10 0 1 10 010 110 45 23

Suppose we want to code MOV SS : 2345 (BP), DX.  This generates only a 4 byte code, without

SOP byte, as SS is already the default segment register in this case.

UNIVERSITY QUESTIONS & SOLUTIONS

1. Explain the five types of data transfer instructions with example. [ jan 2008( 10 marks)]

Soln:

MOV SB, MOV SW:
An element of the string specified by the source index (SI) register with respect to the current data

segment (DS) register is moved to the location specified by the destination index (DI) register with

respect to the current extra segment (ES) register.

The move can be performed on a byte (MOV SB) or a word (MOV SW) of data.  After the move is

complete, the contents of both SI & DI are automatically incremented or decremented by 1 for a

byte move and by 2 for a word move.  Address pointers SI and DI increment or decrement depends

on how the direction flag DF is set.

Example : Block move program using the move string instruction

(LOD SB/LOD SW and STO SB/STO SW)

LOD SB:  Loads a byte from a string in memory into AL.  The address in SI is used relative to DS

to determine the address of the memory location of the string element.

(AL)  [(DS) + (SI)]

(SI)  (SI) + 1

LOD SW : The word string element at the physical address derived from DS and SI is to be loaded

into AX. SI is automatically incremented by 2.

(AX)  [(DS) + (SI)]
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OR

OR

OR

(SI)  (SI) + 2

STO SB : Stores a byte from AL into a string location in memory.  This time the contents of ES

and DI are used to form the address of the storage location in memory

[(ES) + (DI)]  (AL)

(DI)  (DI) + 1

STO SW : [(ES) + (DI)]  (AX)

(DI)  (DI) + 2

2. Explain the based and implied addressing modes of 8086 july 2009( 10 marks)

Soln:

Implied addressing mode:

Instruction using this mode have no operands.

Example : CLC which clears carry flag to zero.

SINGLE INDEX DOUBLE INDEX

Based addressing mode:

Encoded
in the

instruction

BX

OR

BP

SI

OR

DI

+

+ +

+ +

CS                 0000

PHYSICAL ADDRESS

DS                 0000

SS                 0000

ES                 0000

DISPLACEMENTExplicit in the
instruction

Assumed
unless
over

ridden
by prefix

EU

BIU

BX

OR

BP

OR

SI

OR

DI
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CS

PA = DS BX

SS : or + displacement

ES BP

when memory is accessed PA is computed from BX and DS when the stack is accessed PA is

computed from BP and SS.

Example : MOV AL, START [BX]

or

MOV AL,  [START + BX]

based mode

EA  :  [START] + [BX]

PA  : [DS] + [EA]

The 8 bit content of this memory location is moved to AL.

3. Draw the internal architecture of the 8086 and explain. Briefly explain the flag register.

July 2009( 10 marks)

Soln:
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CS

PA = DS BX

SS : or + displacement

ES BP

when memory is accessed PA is computed from BX and DS when the stack is accessed PA is

computed from BP and SS.

Example : MOV AL, START [BX]

or

MOV AL,  [START + BX]

based mode

EA  :  [START] + [BX]

PA  : [DS] + [EA]

The 8 bit content of this memory location is moved to AL.

3. Draw the internal architecture of the 8086 and explain. Briefly explain the flag register.

July 2009( 10 marks)

Soln:
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CS

PA = DS BX

SS : or + displacement

ES BP

when memory is accessed PA is computed from BX and DS when the stack is accessed PA is

computed from BP and SS.

Example : MOV AL, START [BX]

or

MOV AL,  [START + BX]

based mode

EA  :  [START] + [BX]

PA  : [DS] + [EA]

The 8 bit content of this memory location is moved to AL.

3. Draw the internal architecture of the 8086 and explain. Briefly explain the flag register.

July 2009( 10 marks)

Soln:
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The block diagram of 8086 is as shown. This can be subdivided into two parts, namely the Bus

Interface Unit and Execution Unit. The Bus Interface Unit consists of segment registers, adder to

generate 20 bit address and instruction prefetch queue.

Once this address is sent out of BIU, the instruction and data bytes are fetched from memory and

they fill a First In First Out 6 byte queue.

Execution Unit:

The execution unit consists of scratch pad registers such as 16-bit AX, BX, CX and DX and

pointers like SP (Stack Pointer), BP (Base Pointer) and finally index registers such as source index

and destination index registers. The 16-bit scratch pad registers can be split into two 8-bit registers.

For example, AX can be split into AH and AL registers. The segment registers and their default

offsets are given below.

Segment Register Default Offset

CS IP (Instruction Pointer)

DS SI, DI

SS SP, BP

ES DI

The Arithmetic and Logic Unit adjacent to these registers perform all the operations. The results of

these operations can affect the condition flags.

Different registers and their operations are listed below:

Register Operations

AX Word multiply, Word divide, word I/O

AL Byte Multiply, Byte Divide, Byte I/O, translate, Decimal Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CX String Operations, Loops

CL Variable Shift and Rotate

DX Word Multiply, word Divide, Indirect I/O
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Generation of 20-bit Physical Address:

4. Explain flag register of 8086. July 2009 (2009)

Soln:

8086 flag register format

IP

SR

DI

SI

BP

SP

DX

CX

AX

BX

ES

SS

DS

CS

Instruction Pointer

Code Segment Register

Data Segment Register

Stack Segment Register

Extra Segment Register

AH

Stack Pointer Register

AL

BE BL

CE CL

DH DL

Break Pointer Register

Source Index Register

Destination Index Register

Status Register

Code Segment (64Kb)

Data Segment (64Kb)

Stack Segment (64Kb)

Extra Segment (64Kb)

FFFFF16

00000016

8086/8088 MPU MEMORY
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There are three internal buses, namely A bus, B bus and C bus, which interconnect the various

blocks inside 8086.

The execution of instruction in 8086 is as follows:

The microprocessor unit (MPU) sends out a 20-bit physical address to the memory and fetches the

first instruction of a program from the memory. Subsequent addresses are sent out and the queue is

filled upto 6 bytes. The instructions are decoded and further data (if necessary) are fetched from

memory. After the execution of the instruction, the results may go back to memory or to the output

peripheral devices as the case may be.

Machine language:

(j) : CARRY FLAG – SET BY CARRY OUT OF MSB
(k) : PARITY FLAG – SET IF RESULT HAS EVEN PARITY
(l) : AUXILIARY CARRY FLAG FOR BCD
(m): ZERO FLAG – SET IF RESULT = 0
(n) : SIGN FLAG = MSB OF RESULT
(o) : SINGLE STEP TRAP FLAG
(p) : INTERRUPT ENABLE FLAG
(q) : STRING DIRECTION FLAG
(r) : OVERFLOW FLAG

(i)

(h)

(g)

(f)

(e)

(d)

(b)

(c)

(a)

0123456789101112131415

U U U U 0F DF IF TF SF ZF U AF U PF U CF

U= UNDEFINED

BIT
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Recommended questions

1. Describe the physical addresses generated in 8086.

2. Explain the five types of string instructions with example.

3. Explain the direct and register addressing modes of 8086.

4. Draw the internal architecture of the 8086 and explain. Briefly explain the flag register.

5. Explain flag register of 8086.

6. Explain the instruction format of 8086.

7. What are addressing modes? Mention and Explain the various types of addressing modes.
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UNIT: 2

INSTRUCTION SET OF 8086: Assembler instruction format, data transfer and arithmetic,

branch type, loop, NOP & HALT, flag manipulation, logical and shift and rotate instructions.

Illustration of these instructions with example programs, Directives and operators

TEXT BOOKS:

1. Microcomputer systems-The 8086 / 8088 Family – Y.C. Liu and G. A. Gibson, 2E PHI -
2003

2. The Intel Microprocessor, Architecture, Programming and Interfacing-Barry B. Brey,
6e, Pearson Education / PHI, 2003

Instruction Set

We only cover the small subset of the 8088 instruction set that is essential. In particular, we will

not mention various registers, addressing modes and instructions that could often provide faster

ways of doing things.A summary of the 80x86 protected-mode instruction set is available on the

course Web page and should be printed out if you don’t have another reference.

Data Transfer
The MOV instruction is used to transfer 8 and 16-bit data to and from registers. Either the source

or destination has to be a register. The other operand can come from another register, from

memory, from immediate data (a value included in the instruction) or from a memory location

“pointed at” by register BX.

For example, if COUNT is the label of a memory location the following are possible assembly-

language instructions : ;

register: move contents of BX to AX

MOV AX,BX ; direct: move contents of AX to memory

MOV COUNT,AX ; immediate: load CX with the value 240

MOV CX,0F0H; memory: load CX with the value at

; address 240

MOV CX,[0F0H]; register indirect: move contents of AL

; to memory location in BX

MOV [BX],AL

Most 80x86 assemblers keep track of the type of each symbol and require a type “override” when

thesymbol is used in a different way. The OFFSET operator to convert a memory reference to a

16-bit value.
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For example:

MOV BX,COUNT ; load the value at location COUNT

MOV BX,OFFSET COUNT ; load the offset of COUNT

16-bit registers can be pushed (the SP is first decremented by two and then the value stored at SP)

or popped (the value is restored from the memory at SP and then SP is incremented by 2). For

example:

PUSH AX ; push contents of AX

POP BX ; restore into BX

Arithmetic instruction:

Arithmetic/Logic

Arithmetic and logic instructions can be performed on byte and 16-bit values. The first operand

has to be a register and the result is stored in that register.

; increment BX by 4

ADD BX,4

; subtract 1 from AL

SUB AL,1

; increment BX

INC BX

; compare (subtract and set flags

; but without storing result)

CMP AX,[MAX]

; mask in LS 4 bits of AL

AND AL,0FH

; divide AX by two

SHR AX

; set MS bit of CX

OR CX,8000H

; clear AX

XOR AX,AX

The LOOP Instruction

This instruction decrements the cx register and then branches to the target location if the cx

register does not contain zero. Since this instruction decrements cx then checks for zero, if cx
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originally contained zero, any loop you create using the loop instruction will repeat 65,536 times.

If you do not want to execute the loop when cx contains zero, use jcxz to skip over the loop. There

is no “opposite” form of the loop instruction, and like the jcxz/jecxz instructions the range is

limited to ±128 bytes on all processors. If you want to extend the range of this instruction, you will

need to break it down into discrete components:

; “loop lbl” becomes:

dec cx

jne lbl

There is no eloop instruction that decrements ecx and branches if not zero (there is a loope

instruction, but it does something else entirely). The reason is quite simple. As of the 80386,

Intel’s designers stopped wholeheartedly supporting the loop instruction. Oh, it’s there to ensure

compatibility with older code, but it turns out that the dec/jne instructions are actually faster on the

32 bit processors. Problems in the decoding of the instruction and the operation of the pipeline are

responsible for this strange turn of events. Although the loop instruction’s name suggests that you

would normally create loops with it, keep in mind that all it is really doing is decrementing cx and

branching to the target address if cx does not contain zero after the decrement. You can use this

instruction anywhere you want to decrement cx and then check for a zero result, not just when

creating loops. Nonetheless, it is a very convenient instruction to use if you simply want to repeat a

sequence of instructions some number of times. For example, the following loop initializes a 256

element array of bytes to the values 1, 2, 3, ...

mov ecx, 255

ArrayLp: mov Array[ecx], cl

loop ArrayLp

mov Array[0], 0

The last instruction is necessary because the loop does not repeat when cx is zero. Therefore,

the last element of the array that this loop processes is Array[1], hence the last instruction.

The loop instruction does not affect any flags.

The LOOPE/LOOPZ Instruction

Loope/loopz (loop while equal/zero, they are synonyms for one another) will branch to

the target address if cx is not zero and the zero flag is set. This instruction is quite useful

The 80x86 Instruction Set after cmp or cmps instruction, and is marginally faster than the

comparable 80386/486 instructions if you use all the features of this instruction. However, this

instruction plays havoc with the pipeline and superscalar operation of the Pentium so you’re
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probably better off sticking with discrete instructions rather than using this instruction. This

instruction does the following:

cx := cx - 1

if ZeroFlag = 1 and cx ¹ 0, goto target The loope instruction falls through on one of two conditions.

Either the zero flag is clear or the instruction decremented cx to zero. By testing the zero flag after

the loop instruction (with a je or jne instruction, for example), you can determine the cause of

termination. This instruction is useful if you need to repeat a loop while some value is equal to

another, but there is a maximum number of iterations you want to allow. For example, the

following loop scans through an array looking for the first non-zero byte, but it does not scan

beyond the end of the array:

mov cx, 16 ;Max 16 array elements.

mov bx, -1 ;Index into the array (note next inc).

SearchLp: inc bx ;Move on to next array element.

cmp Array[bx], 0 ;See if this element is zero.

loope SearchLp ;Repeat if it is.

je AllZero ;Jump if all elements were zero.

Note that this instruction is not the opposite of loopnz/loopne. If you need to extend this jump

beyond ±128 bytes, you will need to synthesize this instruction using discrete instructions. For

example, if loope target is out of range, you would need to use an instruction sequence like the

following:

jne quit

dec cx

je Quit2

jmp Target

quit: dec cx ;loope decrements cx, even if ZF=0.

quit2:

The loope/loopz instruction does not affect any flags.

The LOOPNE/LOOPNZ Instruction

This instruction is just like the loope/loopz instruction in the previous section except loopne/loopnz

(loop while not equal/not zero) repeats while cx is not zero and the zero flag is clear. The

algorithm is
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cx := cx - 1

if ZeroFlag = 0 and cx ¹ 0, goto target

You can determine if the loopne instruction terminated because cx was zero or if the zero flag was

set by testing the zero flag immediately after the loopne instruction. If the zero flag is clear at that

point, the loopne instruction fell through because it decremented cx to zero. Otherwise it fell

through because the zero flag was set.

This instruction is not the opposite of loope/loopz. If the target address is out of range,

you will need to use an instruction sequence like the following:

je quit

dec cx

je Quit2

jmp Target

quit: dec cx ;loopne decrements cx, even if ZF=1.

quit2:

You can use the loopne instruction to repeat some maximum number of times while waiting for

some other condition to be true. For example, you could scan through an array until you exhaust

the number of array elements or until you find a certain byte using a loop like the following:

mov cx, 16 ;Maximum # of array elements.

mov bx, -1 ;Index into array.

LoopWhlNot0: inc bx ;Move on to next array element.

cmp Array[bx],0 ;Does this element contain zero?

loopne LoopWhlNot0 ;Quit if it does, or more than 16 bytes.

Although the loope/loopz and loopne/loopnz instructions are slower than the individual instruction

from which they could be synthesized, there is one main use for these instruction forms where

speed is rarely important; indeed, being faster would make them less useful – timeout loops during

I/O operations. Suppose bit #7 of input port 379h contains a one if the device is busy and contains

a zero if the device is not busy. If you want to output

data to the port, you could use code like the following:

mov dx, 379h

WaitNotBusy: in al, dx ;Get port

test al, 80h ;See if bit #7 is one

jne WaitNotBusy ;Wait for “not busy”

The only problem with this loop is that it is conceivable that it would loop forever. In a real

system, a cable could come unplugged, someone could shut off the peripheral device, and any
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number of other things could go wrong that would hang up the system.Robust programs usually

apply a timeout to a loop like this. If the device fails to become busy within some specified amount

of time, then the loop exits and raises an error condition. The following code will accomplish this:

mov dx, 379h ;Input port address

mov cx, 0 ;Loop 65,536 times and then quit.

WaitNotBusy: in al, dx ;Get data at port.

test al, 80h ;See if busy

loopne WaitNotBusy ;Repeat if busy and no time out.

jne TimedOut ;Branch if CX=0 because we timed out.

You could use the loope/loopz instruction if the bit were zero rather than one.

The loopne/loopnz instruction does not affect any flags.

Logical, Shift, Rotate and Bit Instructions

The 80x86 family provides five logical instructions, four rotate instructions, and three

shift instructions. The logical instructions are and, or, xor, test, and not; the rotates are ror,

rol, rcr, and rcl; the shift instructions are shl/sal, shr, and sar. The 80386 and later processors

provide an even richer set of operations. These are bt, bts, btr, btc, bsf, bsr, shld, shrd, and

theconditional set instructions (setcc). These instructions can manipulate bits, convert values, do

logical operations, pack and unpack data, and do arithmetic operations. The following sections

describe each of these instructions in detail.

The Logical Instructions: AND, OR, XOR, and NOT

The 80x86 logical instructions operate on a bit-by-bit basis. Both eight, sixteen, and thirty-two bit

versions of each instruction exist. The and, not, or, and xor instructions do the following:

and dest, source ;dest := dest and source

or dest, source ;dest := dest or source

xor dest, source ;dest := dest xor source

not dest ;dest := not dest

The specific variations are

and reg, reg

and mem, reg

and reg, mem

and reg, immediate data

and mem, immediate data
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and eax/ax/al, immediate data

or uses the same formats as AND

xor uses the same formats as AND

not register

not mem

Except not, these instructions affect the flags as follows:

• They clear the carry flag.

• They clear the overflow flag.

• They set the zero flag if the result is zero, they clear it otherwise.

• They copy the H.O. bit of the result into the sign flag.

• They set the parity flag according to the parity (number of one bits) in the

result.

• They scramble the auxiliary carry flag. The not instruction does not affect any flags. Testing the

zero flag after these instructions is particularly useful. The and instruction sets the zero flag if the

two operands do not have any ones in corresponding bit positions (since this would produce a zero

result); for example, if the source operand contained a single one bit, then the zero flag will be set

if the corresponding destination bit is zero, itwill be one otherwise. The or instruction will only set

the zero flag if both operands contain zero. The xor instruction will set the zero flag only if both

operands are equal. Noticethat the xor operation will produce a zero result if and only if the two

operands are equal. Many programmers commonly use this fact to clear a sixteen bit register to

zero since an instruction of the form

Xor reg16, reg16 is shorter than the comparable mov reg,0 instruction. Like the addition and

subtraction instructions, the and, or, and xor instructions provide special forms involving the

accumulator register and immediate data. These forms are shorter and sometimes faster than the

general “register, immediate” forms. Although one does not normally think of operating on signed

data with these instructions, the 80x86 does provide a special form of the “reg/mem, immediate”

instructions that sign extend a value in the range -128..+127 to sixteen or thirty-two bits, as

necessary.The instruction’s operands must all be the same size. On pre-80386 processors theycan

be eight or sixteen bits. On 80386 and later processors, they may be 32 bits long as well. These

instructions compute the obvious bitwise logical operation on their operands, You can use the and

instruction to set selected bits to zero in the destination operand. This is known as masking out

data; see for more details. Likewise, you can use the or instruction to force certain bits to one in the

destination operand; see “Masking Operations

with the OR Instruction” on page 491 for the details. You can use these instructions,
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along with the shift and rotate instructions described next, to pack and unpack data.

The Shift Instructions: SHL/SAL, SHR, SAR, SHLD, and SHRD

The 80x86 supports three different shift instructions (shl and sal are the same instruction): shl

(shift left), sal (shift arithmetic left), shr (shift right), and sar (shift arithmetic right). The 80386

and later processors provide two additional shifts: shld and shrd. The shift instructions move bits

around in a register or memory location. The general format for a shift instruction is

shl dest, count

sal dest, count

shr dest, count

sar dest, count

Dest is the value to shift and count specifies the number of bit positions to shift. For example, the

shl instruction shifts the bits in the destination operand to the left the number of bit positions

specified by the count operand. The shld and shrd instructions use the format:

shld dest, source, count

shrd dest, source, count

The specific forms for these instructions are

shl reg, 1

shl mem, 1

shl reg, imm (2)

shl mem, imm (2)

shl reg, cl

shl mem, cl

sal is a synonym for shl and uses the same formats.

shr uses the same formats as shl.

sar uses the same formats as shl.

shld reg, reg, imm (3)

shld mem, reg, imm (3)

shld reg, reg, cl (3)

shld mem, reg, cl (3)

shrd uses the same formats as shld.

2- This form is available on 80286 and later processors only.

3- This form is available on 80386 and later processors only.
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For 8088 and 8086 CPUs, the number of bits to shift is either “1” or the value in cl. On 80286 and

later processors you can use an eight bit immediate constant. Of course, the value in cl or the

immediate constant should be less than or equal to the number of bits in the destination operand. It

would be a waste of time to shift left al by nine bits (eight would produce the same result, as you

will soon see). Algorithmically, you can think of the shift operations with a count other than one as

follows:

for temp := 1 to count do

shift dest, 1

There are minor differences in the way the shift instructions treat the overflow flag when the count

is not one, but you can ignore this most of the time. The shl, sal, shr, and sar instructions work on

eight, sixteen, and thirty-two bit operands. The shld and shrd instructions work on 16 and 32 bit

destination operands only.

SHL/SAL

The shl and sal mnemonics are synonyms. They represent the same instruction and

use identical binary encodings. These instructions move each bit in the destination operand

one bit position to the left the number of times specified by the count operand. Zeros

fill vacated positions at the L.O. bit; the H.O. bit shifts into the carry flag (see Figure 6.2).

The shl/sal instruction sets the condition code bits as follows:

• If the shift count is zero, the shl instruction doesn’t affect any flags.

• The carry flag contains the last bit shifted out of the H.O. bit of the operand.

• The overflow flag will contain one if the two H.O. bits were different

prior to a single bit shift. The overflow flag is undefined if the shift count

is not one.

• The zero flag will be one if the shift produces a zero result.

• The sign flag will contain the H.O. bit of the result.

• The parity flag will contain one if there are an even number of one bits in

the L.O. byte of the result.

• The A flag is always undefined after the shl/sal instruction.

The shift left instruction is especially useful for packing data. For example, suppose you have two

nibbles in al and ah that you want to combine. You could use the following

code to do this:

shl ah, 4 ;This form requires an 80286 or later

or al, ah ;Merge in H.O. four bits.



Microprocessor 10EC62

SJBIT/ECE Department 56

Of course, al must contain a value in the range 0..F for this code to work properly (the shift

left operation automatically clears the L.O. four bits of ah before the or instruction). If the H.O.

four bits of al are not zero before this operation, you can easily clear them with an and instruction:

shl ah, 4 ;Move L.O. bits to H.O. position.

and al, 0Fh ;Clear H.O. four bits.

or al, ah ;Merge the bits.

Since shifting an integer value to the left one position is equivalent to multiplying that value by

two, you can also use the shift left instruction for multiplication by powers of two:

shl ax, 1 ;Equivalent to AX*2

shl ax, 2 ;Equivalent to AX*4

shl ax, 3 ;Equivalent to AX*8

shl ax, 4 ;Equivalent to AX*16

shl ax, 5 ;Equivlaent to AX*32

shl ax, 6 ;Equivalent to AX*64

shl ax, 7 ;Equivalent to AX*128

shl ax, 8 ;Equivalent to AX*256

etc.

Note that shl ax, 8 is equivalent to the following two instructions:

mov ah, al

mov al, 0

The shl/sal instruction multiplies both signed and unsigned values by two for each shift. This

instruction sets the carry flag if the result does not fit in the destination operand (i.e., unsigned

overflow occurs). Likewise, this instruction sets the overflow flag if the signed result does not fit

in the destination operation. This occurs when you shift a zero into the H.O. bit of a negative

number or you shift a one into the H.O. bit of a non-negative number.

SAR

The sar instruction shifts all the bits in the destination operand to the right one bit, replicating the

H.O. bit (see Figure 6.3). The sar instruction sets the flag bits as follows:

• If the shift count is zero, the sar instruction doesn’t affect any flags.

• The carry flag contains the last bit shifted out of the L.O. bit of the operand.

• The overflow flag will contain zero if the shift count is one. Overflow can

never occur with this instruction. However, if the count is not one, the

value of the overflow flag is undefined.

• The zero flag will be one if the shift produces a zero result.
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• The sign flag will contain the H.O. bit of the result.

• The parity flag will contain one if there are an even number of one bits in

the L.O. byte of the result.

• The auxiliary carry flag is always undefined after the sar instruction.

The sar instruction’s main purpose is to perform a signed division by some power of two. Each

shift to the right divides the value by two. Multiple right shifts divide the previous shifted result by

two, so multiple shifts produce the following results:

sar ax, 1 ;Signed division by 2

sar ax, 2 ;Signed division by 4

sar ax, 3 ;Signed division by 8

sar ax, 4 ;Signed division by 16

sar ax, 5 ;Signed division by 32

sar ax, 6 ;Signed division by 64

sar ax, 7 ;Signed division by 128

sar ax, 8 ;Signed division by 256

There is a very important difference between the sar and idiv instructions. The idiv instruction

always truncates towards zero while sar truncates results toward the smaller result. For positive

results, an arithmetic shift right by one position produces the same result as an integer division by

two. However, if the quotient is negative, idiv truncates towards zero while sar truncates towards

negative infinity. The following examples demonstrate the difference:

mov ax, -15

cwd

mov bx, 2

idiv ;Produces -7

mov ax, -15

sar ax, 1 ;Produces -8

Keep this in mind if you use sar for integer division operations.

The sar ax, 8 instruction effectively copies ah into al and then sign extends al into ax. This is

because sar ax, 8 will shift ah down into al but leave a copy of ah’s H.O. bit in all the bit positions

of ah. Indeed, you can use the sar instruction on 80286 and later processors to sign extend one

register into another. The following code sequences provide examples of this usage:

; Equivalent to CBW:

mov ah, al

sar ah, 7



Microprocessor 10EC62

SJBIT/ECE Department 58

; Equivalent to CWD:

mov dx, ax

sar dx, 15

; Equivalent to CDQ:

mov edx, eax

sar edx, 31

it may seem silly to use two instructions where a single instruction might suffice; however, the

cbw, cwd, and cdq instructions only sign extend al into ax, ax into dx:ax, and eax into edx:eax.

Likewise, the movsx instruction copies its sign extended operand into a destination operand twice

the size of the source operand. The sar instruction lets you sign extend one register into another

register of the same size, with the second register containing the sign extension bits:

; Sign extend bx into cx:bx

mov cx, bx

sar cx, 15

SHR

The shr instruction shifts all the bits in the destination operand to the right one bit shifting a zero

into the H.O. bit (see Figure 6.4).

The shr instruction sets the flag bits as follows:

• If the shift count is zero, the shr instruction doesn’t affect any flags.

• The carry flag contains the last bit shifted out of the L.O. bit of the operand.

• If the shift count is one, the overflow flag will contain the value of the

H.O. bit of the operand prior to the shift (i.e., this instruction sets the

overflow flag if the sign changes). However, if the count is not one, the

value of the overflow flag is undefined.

• The zero flag will be one if the shift produces a zero result.

• The sign flag will contain the H.O. bit of the result, which is always zero.

• The parity flag will contain one if there are an even number of one bits in

the L.O. byte of the result.

• The auxiliary carry flag is always undefined after the shr instruction.

The shift right instruction is especially useful for unpacking data. For example, suppose you want

to extract the two nibbles in the al register, leaving the H.O. nibble in ah and the L.O. nibble in al.

You could use the following code to do this:

mov ah, al ;Get a copy of the H.O. nibble

shr ah, 4 ;Move H.O. to L.O. and clear H.O. nibble
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and al, 0Fh ;Remove H.O. nibble from al

Since shifting an unsigned integer value to the right one position is equivalent to

dividing that value by two, you can also use the shift right instruction for division by powers of

two:

shr ax, 1 ;Equivalent to AX/2

shr ax, 2 ;Equivalent to AX/4

shr ax, 3 ;Equivalent to AX/8

shr ax, 4 ;Equivalent to AX/16

shr ax, 5 ;Equivlaent to AX/32

shr ax, 6 ;Equivalent to AX/64

shr ax, 7 ;Equivalent to AX/128

shr ax, 8 ;Equivalent to AX/256

etc.

Note that shr ax, 8 is equivalent to the following two instructions:

mov al, ah

mov ah, 0

Remember that division by two using shr only works for unsigned operands. If ax contains -1 and

you execute shr ax, 1 the result in ax will be 32767 (7FFFh), not -1 or zero as you would expect.

Use the sar instruction if you need to divide a signed integer by some power of two.

The SHLD and SHRD Instructions

The shld and shrd instructions provide double precision shift left and right operations, respectively.

These instructions are available only on 80386 and later processors. Their generic forms are

shld operand1, operand2, immediate

shld operand1, operand2, cl

shrd operand1, operand2, immediate

shrd operand1, operand2, cl

Operand2 must be a sixteen or thirty-two bit register. Operand1 can be a register or a memory

location. Both operands must be the same size. The immediate operand can be a value in the range

zero through n-1, where n is the number of bits in the two operands; it specifies the number of bits

to shift. The shld instruction shifts bits in operand1 to the left. The H.O. bit shifts into the carry

flag and the H.O. bit of operand2 shifts into the L.O. bit of perand1. Note that this instruction does

not modify the value of operand2, it uses a temporary copy of operand2 during the shift. The

immediate operand specifies the number of bits to shift. If the count is n, then shld shifts bit n-1
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into the carry flag. It also shifts the H.O. n bits of operand2 into the L.O. n bits of operand1.

Pictorially, the shld instruction appears in Figure 6.5.The shld instruction sets the flag bits as

follows:

• If the shift count is zero, the shld instruction doesn’t affect any flags.

• The carry flag contains the last bit shifted out of the H.O. bit of the

operand1.

• If the shift count is one, the overflow flag will contain one if the sign bit of

operand1 changes during the shift. If the count is not one, the overflow

flag is undefined.

• The zero flag will be one if the shift produces a zero result.

• The sign flag will contain the H.O. bit of the result.

The shld instruction is useful for packing data from many different sources. For example,

suppose you want to create a word by merging the H.O. nibbles of four other words.

You could do this with the following code:

mov ax, Value4 ;Get H.O. nibble

shld bx, ax, 4 ;Copy H.O. bits of AX to BX.

mov ax, Value3 ;Get nibble #2.

shld bx, ax, 4 ;Merge into bx.

mov ax, Value2 ;Get nibble #1.

shld bx, ax, 4 ;Merge into bx.

mov ax, Value1 ;Get L.O. nibble

shld bx, ax, 4 ;BX now contains all four nibbles.

The shrd instruction is similar to shld except, of course, it shifts its bits right rather than left.

Double Precision Shift Right Operation

The shrd instruction sets the flag bits as follows:

• If the shift count is zero, the shrd instruction doesn’t affect any flags.

• The carry flag contains the last bit shifted out of the L.O. bit of the

operand1.

• If the shift count is one, the overflow flag will contain one if the H.O. bit

of operand1 changes. If the count is not one, the overflow flag is undefined.

• The zero flag will be one if the shift produces a zero result.

• The sign flag will contain the H.O. bit of the result.

Quite frankly, these two instructions would probably be slightly more useful if
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Operand2 could be a memory location. Intel designed these instructions to allow fast

multiprecision

(64 bits, or more) shifts. For more information on such usage, see “Extended

Precision Shift Operations” on page 482.

The shrd instruction is marginally more useful than shld for packing data. For example, suppose

that ax contains a value in the range 0..99 representing a year (1900..1999), bx contains a value in

the range 1..31 representing a day, and cx contains a value in the range 1..12 representing a month

(see “Bit Fields and Packed Data” on page 28). You can easily use the shrd instruction to pack this

data into dx as follows:

shrd dx, ax, 7

shrd dx, bx, 5

shrd dx, cx, 4

The Rotate Instructions: RCL, RCR, ROL, and ROR

The rotate instructions shift the bits around, just like the shift instructions, except the bits shifted

out of the operand by the rotate instructions recirculate through the operand. They include rcl

(rotate through carry left), rcr (rotate through carry right), rol (rotate left), and ror (rotate right).

These instructions all take the forms:

Figure 6.7 Packing Data with an SHRD Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Y Y Y Y Y Y Y

After SHRD DX, AX, 7 Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D D D D D Y Y Y Y Y Y Y

After SHRD DX, BX, 5 Instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M M M M D D D D D Y Y Y Y Y Y Y

After SHRD DX, CX, 4 Instruction

rcl dest, count

rol dest, count

rcr dest, count

ror dest, count

The specific forms are

rcl reg, 1

rcl mem, 1
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rcl reg, imm (2)

rcl mem, imm (2)

rcl reg, cl

rcl mem, cl

rol uses the same formats as rcl.

rcr uses the same formats as rcl.

ror uses the same formats as rcl.

2- This form is avialable on 80286 and later processors only.

RCL

The rcl (rotate through carry left), as its name implies, rotates bits to the left, through

the carry flag, and back into bit zero on the right (see Figure 6.8).

Note that if you rotate through carry an object n+1 times, where n is the number of bits in the

object, you wind up with your original value. Keep in mind, however, that some flags may contain

different values after n+1 rcl operations.

The rcl instruction sets the flag bits as follows:

• The carry flag contains the last bit shifted out of the H.O. bit of the operand.

• If the shift count is one, rcl sets the overflow flag if the sign changes as a

result of the rotate. If the count is not one, the overflow flag is undefined.

• The rcl instruction does not modify the zero, sign, parity, or auxiliary

carry flags.

Important warning: unlike the shift instructions, the rotate instructions do not affect the sign,

zero, parity, or auxiliary carry flags. This lack of orthogonality can cause you lots of grief if you

forget it and attempt to test these flags after an rcl operation. If you need to test one of these flags

after an rcl operation, test the carry and overflow flags first (if necessary) then compare the result

to zero to set the other flags.

RCR

The rcr (rotate through carry right) instruction is the complement to the rcl instruction. It shifts its

bits right through the carry flag and back into the H.O. bit (see Figure 6.9).This instruction sets the

flags in a manner analogous to rcl:

• The carry flag contains the last bit shifted out of the L.O. bit of the operand.

• If the shift count is one, then rcr sets the overflow flag if the sign changes

(meaning the values of the H.O. bit and carry flag were not the same

before the execution of the instruction). However, if the count is not one,

the value of the overflow flag is undefined.
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• The rcr instruction does not affect the zero, sign, parity, or auxiliary carry

flags.

ROL

The rol instruction is similar to the rcl instruction in that it rotates its operand to the left the

specified number of bits. The major difference is that rol shifts its operand’s H.O. bit,rather than

the carry, into bit zero. Rol also copies the output of the H.O. bit into the carry flag (see Figure

6.10).The rol instruction sets the flags identically to rcl. Other than the source of the value shifted

into bit zero, this instruction behaves exactly like the rcl instruction Like shl, the rol instruction is

often useful for packing and unpacking data. For example,

suppose you want to extract bits 10..14 in ax and leave these bits in bits 0..4. The following

code sequences will both accomplish this:

shr ax, 10

and ax, 1Fh

rol ax, 6

and ax, 1Fh

ROR

The ror instruction relates to the rcr instruction in much the same way that the rol instruction

relates to rcl. That is, it is almost the same operation other than the source of the input bit to the

operand. Rather than shifting the previous carry flag into the H.O. bit of the destination operation,

ror shifts bit zero into the H.O. bit (see Figure 6.11).

Segment Over Ride Prefix

SOP is used when a particular offset register is not used with its default base segment register, but with a

different base register. This is a byte put before the OPCODE byte.

0 0 1 S R 1 1 0

SR Segment Register

00 ES

01 CS

10 SS

11 DS

Here SR is the new base register. To use DS as the new register 3EH should be prefix.
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Operand Register Default With over ride prefix

IP (Code address) CS Never

SP(Stack address) SS Never

BP(Stack Address) SS BP+DS or ES or CS

SI or DI(not including Strings) DS ES, SS or CS

SI (Implicit source Address for

strings)

DS ”

DI (Implicit Destination Address

for strings)

ES Never

Examples: MOV AX, DS: [BP], LODS ES: DATA1

S4 S3 Indications

0 0 Alternate data

0 1 Stack

1 0 Code or none

1 1 Data

Bus High Enable / Status

BHE A0 Indications

0 0 Whole word

0 1 Upper byte from or to odd address

1 0 Lower byte from or to even address

1 1 none

Segmentation:

The 8086 microprocessor has 20 bit address pins. These are capable of addressing 220 = 1Mega

Byte memory.

To generate this 20 bit physical address from 2 sixteen bit registers, the following procedure is

adopted. The 20 bit address is generated from two 16-bit registers. The first 16-bit register is called

the segment base register. These are code segment registers to hold programs, data segment

register to keep data, stack segment register for stack operations and extra segment register to keep

strings of data. The contents of the segment registers are shifted left four times with zeroes (0’s)

filling on the right hand side. This is similar to multiplying four hex numbers by the base 16. This

multiplication process takes place in the adder and thus a 20 bit number is generated. This is called

the base address. To this a 16-bit offset is added to generate the 20-bit physical address.
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Segmentation helps in the following way. The program is stored in code segment area. The data is

stored in data segment area. In many cases the program is optimized and kept unaltered for the

specific application. Normally the data is variable. So in order to test the program with a different

set of data, one need not change the program but only have to alter the data. Same is the case with

stack and extra segments also, which are only different type of data storage facilities.

Generally, the program does not know the exact physical address of an instruction. The assembler,

a software which converts the Assembly Language Program (MOV, ADD etc.) into machine code

(3EH, 4CH etc) takes care of address generation and location.

DIRECTIVES AND OPERATOR

 Assembler: is a program that accepts an assembly language program as input and converts it

into an object module and prepares for loading the program into memory for execution.

 Loader (linker) further converts the object module prepared by the assembler into executable

form, by linking it with other object modules and library modules.

 The final executable map of the assembly language program is prepared by the loader at the

time of loading into the primary memory for actual execution.

 The assembler prepares the relocation and linkages information (subroutine, ISR) for loader.

 The operating system that actually has the control of the memory, which is to be allotted to the

program for execution, passes the memory address at which the program is to be loaded for

execution and the map of the available memory to the loader.

 Based on this information and the information generated by the assembler, the loader generates

an executable map of the program and further physically loads it into the memory and transfers

control to for execution.

 Thus the basic task of an assembler is to generate the object module and prepare the loading

and linking information.

Procedure for assembling a program

 Assembling a program proceeds statement by statement sequentially.
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 The first phase of assembling is to analyze the program to be converted. This phase is called

Pass1 defines and records the symbols, pseudo operands and directives. It also analyses the

segments used by the program types and labels and their memory requirements.

 The second phase looks for the addresses and data assigned to the labels. It also finds out codes

of the instructions from the instruction machine, code database and the program data.

 It processes the pseudo operands and directives.

 It is the task of the assembler designer to select the suitable strings for using them as directives,

pseudo operands or reserved words and decides syntax.

Directives

 Also called as pseudo operations that control the assembly process.

 They indicate how an operand or section of a program to be processed by the assembler.

 They generate and store information in the memory.

Assembler Memory models

 Each model defines the way that a program is stored in the memory system.

 Tiny: data fits into one segment written in .COM format

 Small: has two segments data and memory.

 There are several other models too.

Directive for string data in a memory segment

 DB define byte

 DW define word

 DD define double word

 DQ define 10 bytes

Example

Data1 DB 10H,11H,12H

Data2 DW 1234H

 SEGMENT: statement to indicate the start of the program and its symbolic name.

 Example
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Name SEGMENT

Variable_name DB …….

Variable_name DW …….

Name ENDS

Data SEGMENT

Data1 DB …….

Data2 DW …….

Data ENDS

Code SEGMENT

START: MOV AX,BX

…

…

…

Code ENDS

Similarly the stack segment is also declared.

 For small models

.DATA

…

…

ENDS

The ENDS directive indicates the end of the segment.

 Memory is reserved for use in the future by using a ? as  an operand for DB DW or DD

directive. The assembler sets aside a location and does not initialize it to any specific value

(usually stores a zero). The DUP (duplicate) directive creates an array and stores a zero.

 Example

Data1 DB 5 DUP(?)

This reserves 5 bytes of memory for a array data1 and initializes each

location with 05H
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 ALIGN: memory array is stored in word boundaries.

 Example

ALIGN 2 means storing from an even address

Address 0 XX

Address 1 YY

Address 2 XX

The data XX is aligned to the even address.

 ASSUME, EQU, ORG

 ASSUME tells the assembler what names have been chosen for Code, Data Extra and Stack

segments. Informs the assembler that the register CS is to be initialized with the address

allotted by the loader to the label CODE and DS is similarly initialized with the address of

label DATA.

 Example

ASSUME CS: Name of code segment

ASSUME DS: Name of the data segment

ASSUME CS: Code1, DS: Data1

 EQU: Equates a numeric, ASCII(American Standard Code for Information Interchange) or

label to another label.

 Example

Data SEGMENT

Num1 EQU 50H

Num2 EQU 66H

Data ENDS

Numeric value 50H and 66H are assigned to Num1 and Num2

 ORG: Changes the starting offset address of the data in the data segment

 Example

ORG 100H

100 data1 DB 10H
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it can be used for code too.

 PROC & ENDP: indicate the start and end of the procedure. They require a label to indicate

the name of the procedure.

 NEAR: the procedure resides in the same code segment. (Local)

 FAR: resides at any location in the memory.

 Example

Add PROC NEAR

ADD AX,BX

MOV CX,AX

RET

Add ENDP

PROC directive stores the contents of the register in the stack.

 EXTRN, PUBLIC informs the assembler that the names of procedures and labels declared after

this directive have been already defined in some other assembly language modules.

 Example

If you want to call a Factorial procedure of Module1 from Module2 it must

be declared as PUBLIC in Module1.

 Example

A sample for full segment definition

Data SEGMENT

Num1 DB 10H

Num2 DB 20H

Num3 EQU 30H

Data ENDS

ASSUME CS:Code,DS:Data

Code SEGMENT

START: MOV AX,Data

MOV DS,AX

MOV AX,Num1

MOV CX,Num2
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ADD AX,CX

Code ENDS

 Example

A sample for small model

. MODEL SMALL

.Data

Num1 DB 10H

Num2 DB 20H

Num3 EQU 30H

.Code

HERE:MOV AX,@Data

MOV DS,AX

MOV AX,Num1

MOV CX,Num2

ADD AX,CX

UNIVERSITY QUESTIONS & SOLUTIONS

1. Explain the assembler directives used in 8086:

SOLN:

Directives

 Also called as pseudo operations that control the assembly process.
 They indicate how an operand or section of a program to be processed by the assembler.
 They generate and store information in the memory.

Assembler Memory models

 Each model defines the way that a program is stored in the memory system.
 Tiny: data fits into one segment written in .COM format
 Small: has two segments data and memory.
 There are several other models too.
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Directive for string data in a memory segment

 DB define byte
 DW define word
 DD define double word
 DQ define 10 bytes

Example
Data1 DB 10H,11H,12H
Data2 DW 1234H

 SEGMENT: statement to indicate the start of the program and its symbolic name.

2. Write a program to add two double words and store the result in data segment

SOLN:

.model small

.stack

.data
num1 dd 01234567h ;// two 32-bit numbers
num2 dd 89abcdefh ;   to be added\\
sum dd (0)
carry db (0)

.code
mov ax, @data ;//Intialize the
mov ds, ax ;  data segment\\
mov ax, word ptr num1 ;ax = LSBs of 1st num
mov bx, word ptr num2 ;bx = LSBs of 2nd num
clc
add ax, bx ;ax = ax + bx
mov bx, word ptr num1+2 ;bx = MSBs of 1st num
mov cx, word ptr num2+2 ;cx = MSBs of 2nd num
adc bx, cx ;bx = bx + cx + CF
mov word ptr sum+2, bx ;// store the result
mov word ptr sum, ax ;   in the memory\\
adc carry, 00h ;save carry if any
mov ah, 4ch ;// Terminate
int 21h ;   the program\\

end

RECOMMENDED QUESTIONS
1. With an example explain the difference between MUL and IMUL instructions.

2. Explain the instruction templates for the following instructions:

a) MOV 46H [BP], DX       b) TEST AX, 83H

3. What is meant by segment override prefix? Explain
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4. Explain the assembler directives used in 8086:

i) MODEL   ii) PUBLIC   iii)EQU    iv)ALIGN   v)PTR

5. Write a program to add two ASCII number and store the result in data segment
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UNIT-3: BYTE AND STRING MANIPUATON

BYTE AND STRING MANIPULATION: String instructions, REP Prefix, Table translation,

Number format conversions, Procedures, Macros, Programming using keyboard and video display

TEXT BOOKS:

1. Microcomputer systems-The 8086 / 8088 Family – Y.C. Liu and G. A. Gibson, 2E PHI -

2003

2. The Intel Microprocessor, Architecture, Programming and Interfacing-Barry B. Brey,

6e, Pearson Education / PHI, 2003

Strings and String Handling Instructions :
The 8086 microprocessor is equipped with special instructions to handle string operations.  By

string we mean a series of data words or bytes that reside in consecutive memory locations.  The

string instructions of the 8086 permit a programmer to implement operations such as to move data

from one block of memory to a block elsewhere in memory.  A second type of operation that is

easily performed is to scan a string and data elements stored in memory looking for a specific

value.  Other examples are to compare the elements and two strings together in order to determine

whether they are the same or different.

Move String : MOV SB, MOV SW:
An element of the string specified by the source index (SI) register with respect to the current data

segment (DS) register is moved to the location specified by the destination index (DI) register with

respect to the current extra segment (ES) register.

The move can be performed on a byte (MOV SB) or a word (MOV SW) of data.  After the move is

complete, the contents of both SI & DI are automatically incremented or decremented by 1 for a

byte move and by 2 for a word move.  Address pointers SI and DI increment or decrement depends

on how the direction flag DF is set.

Example : Block move program using the move string instruction
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MOV AX, DATA SEG ADDR

MOV DS, AX

MOV ES, AX

MOV SI, BLK 1 ADDR

MOV DI, BLK 2 ADDR

MOV CK, N

CDF     ; DF=0

NEXT : MOV SB

LOOP NEXT

HLT

Load and store strings : (LOD SB/LOD SW and STO SB/STO SW)

LOD SB:  Loads a byte from a string in memory into AL.  The address in SI is used relative to DS

to determine the address of the memory location of the string element.

(AL)  [(DS) + (SI)]

(SI)  (SI) + 1

LOD SW : The word string element at the physical address derived from DS and SI is to be loaded

into AX. SI is automatically incremented by 2.

(AX)  [(DS) + (SI)]

(SI)  (SI) + 2

STO SB : Stores a byte from AL into a string location in memory.  This time the contents of ES

and DI are used to form the address of the storage location in memory

[(ES) + (DI)]  (AL)

(DI)  (DI) + 1

STO SW : [(ES) + (DI)]  (AX)

(DI)  (DI) + 2

Mnemonic Meaning Format Operation Flags
affected

MOV SB
Move
String
Byte

MOV
SB

((ES)+(DI))((DS)+(SI))
(SI)(SI)  1
(DI)   1

None

MOV SW Move MOV ((ES)+(DI))((DS)+(SI)) None
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String
Word

SW ((ES)+(DI)+1)(DS)+(SI)+1)
(SI)  (SI)  2
(DI)  (DI)  2

LOD SB /
LOD SW

Load
String

LOD
SB/
LOD
SW

(AL) or (AX) ((DS)+(SI))
(SI)(SI)  1 or 2

None

STOSB/
STOSW

Store
String

STOSB/
STOSW

((ES)+(DI))(AL) or (AX)
(DI)  (DI) 71 or 2

None

Example : Clearing a block of memory with a STOSB operation.

MOV AX, 0

MOV DS, AX

MOV ES, AX

MOV DI, A000

MOV CX, OF

CDF

AGAIN : STO SB

LOOP NE AGAIN

NEXT : Clear A000 to A00F to 0016

Repeat String : REP
The basic string operations must be repeated to process arrays of data.  This is done by inserting a

repeat prefix before the instruction that is to be repeated.

Prefix REP causes the basic string operation to be repeated until the contents of register CX

become equal to zero.  Each time the instruction is executed, it causes CX to be tested for zero, if

CX is found to be nonzero it is decremented by 1 and the basic string operation is repeated.

Example : Clearing a block of memory by repeating STOSB

MOV AX, 0

MOV ES, AX

MOV DI, A000

MOV CX, OF

CDF
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REP STOSB

NEXT:

The prefixes REPE and REPZ stand for same function.  They are meant for use with the CMPS

and SCAS instructions.  With REPE/REPZ the basic compare or scan operation can be repeated as

long as both the contents of CX are not equal to zero and zero flag is 1.

REPNE and REPNZ works similarly to REPE/REPZ except that now the operation is repeated as

long as CX0 and ZF=0.  Comparison or scanning is to be performed as long as the string

elements are unequal (ZF=0) and the end of the string is not yet found (CX0).

Prefix Used with Meaning

REP
MOVS
STOS

Repeat while not end of
string CX0

REPE/ REPZ
CMPS
SCAS CX0 & ZF=1

REPNE/REPNZ
CMPS
SCAS CX0 & ZF=0

Example : CLD ; DF =0

MOV AX, DATA SEGMENT ADDR

MOV DS, AX

MOV AX, EXTRA SEGMENT ADDR

MOV ES, AX

MOV CX, 20

MOV SI, OFFSET MASTER

MOV DI, OFFSET COPY

REP MOVSB

Moves a block of 32 consecutive bytes from the block of memory locations starting at offset

address MASTER with respect to the current data segment (DS) to a block of locations starting at

offset address copy with respect to the current extra segment (ES).

Auto Indexing for String Instructions :
SI & DI addresses are either automatically incremented or decremented based on the setting of the

direction flag DF. When CLD (Clear Direction Flag) is executed DF=0 permits auto increment by

1.When STD (Set Direction Flag) is executed DF=1 permits auto decrement by 1.
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Mnemonic Meaning Format Operation Flags
affected

CLD Clear DF CLD (DF)  0 DF
STD Set DF STD (DF)  1 DF

1. LDS Instruction:
LDS register, memory (Loads register and DS with words from memory)

This instruction copies a word from two memory locations into the register specified in the

instruction.  It then copies a word from the next two memory locations into the DS register.  LDS

is useful for pointing SI and DS at the start of the string before using one of the string instructions.

LDS affects no flags.

Example 1 :LDS BX [1234]

Copy contents of memory at displacement 1234 in DS to BL.  Contents of 1235H to BH.  Copy

contents at displacement of 1236H and 1237H is DS to DS register.

Example 2 : LDS, SI String – Pointer

(SI)  [String Pointer]

(DS)  [String Pointer +2]

DS, SI now points at start and desired string

2. LEA Instruction :
Load Effective Address (LEA register, source)

This instruction determines the offset of the variable or memory location named as the source and

puts this offset in the indicated 16 bit register.

LEA will not affect the flags.

Examples :

LEA BX, PRICES

Load BX with offset and PRICES in DS

LEA BP, SS : STACK TOP

Load BP with offset of stack-top in SS

LEA CX, [BX] [DI]

Loads CX with EA : (BX) + (DI)

3. LES instruction :
LES register, memory

Example 1: LES BX, [789A H]
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(BX)  [789A] in DS

(ES)  [789C] in DS

Example 2 : LES DI, [BX]

(DI)  [BX] in DS

(ES)  [BX+2] in DS

Macros

 Macros provide several powerful mechanisms useful for the development of generic

programs.

• A Macro is a group of instructions with a name.

• When a macro is invoked, the associated set of instructions is inserted in place in to the

source, replacing the macro name. This “macro expansion” is done by a Macro

Preprocessor and it happens before assembly. Thus the actual Assembler sees the

“expanded” source!

• We could consider the macro as shorthand for a piece of text; somewhat like a new pseudo-

code instruction.

Macros and Procedures:

 Macros are similar to procedures in some respects, yet are quite different in many other

respects.

 Procedure:

 Only one copy exists in memory. Thus memory consumed is less.

 “Called” when required;

 Execution time overhead is present because of the call and return instructions.

 Macro:

 When a macro is “invoked”, the corresponding text is “inserted” in to the source. Thus

multiple copies exist in the memory leading to greater space requirements.

 However, there is no execution overhead because there are no additional call and return

instructions. The code is in-place.

These concepts are illustrated in the following figure:
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MACRO Definition:

A macro has a name. The body of the macro is defined between a pair of directives, MACRO

and ENDM. Two macros are defined in the example given below.

Examples of Macro Definitions:

; Definition of a Macro named PA2C

PA2C MACRO

PUSH  AX

PUSH  BX

PUSH  CX

ENDM

; Another Macro named POPA2C is defined here

POPA2C MACRO

POP  CX

POP  BX

POP  AX

ENDM

Examples of Macro usage:

The following examples illustrate the use of macros. We first show the source with macro

invocation and then show how the expanded source looks.

Program with macro invocations:

PA2C

MOV CX, DA1

MOV  BX, DA2

ADD AX, BX

ADD AX, CX
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MOV  DA2, AX

POPA2C

When the Macro Preprocessor expands the macros in the above source, the expanded source

looks as shown below:

PUSH AX

PUSH  BX

PUSH  CX

MOV  CX, DA1

MOV  BX, DA2

ADD  AX, BX

ADD   AX, CX

MOV  DA2, AX

POP   CX

POP   BX

POP   AX

Note how the macro name is replaced by the associated set of instructions. Thus, macro name

does not appear in the expanded source code. In other words, the actual Assembler does not

“see” the macros. What gets assembled is the expanded source. This process is illustrated in the

following figure:

MACROS with Parameters:

Macros have several other interesting and powerful capabilities. One of these is the definition

and use of macros with parameters.

A macro can be defined with parameters. These are dummy parameters. When the macro is

invoked, we provide the actual parameters. During the macro expansion, the dummy
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parameters are replaced by the corresponding actual parameters. The association between the

dummy and actual parameters is positional. Thus the first actual parameter is associated with

the first dummy parameter, the second actual parameter with the second dummy one and so on.

This is illustrated in the following example where a Macro named COPY is defined with two

parameters called A and B.

Example:

COPY MACRO A , B

PUSH AX

MOV AX, B

MOV A, AX

POP AX

ENDM

The macro is invoked in the following code with actual parameters as VAR1 and VAR2. Thus

during the macro expansion, the parameter A is replaced by VAR1 and the parameter B is

replaced by VAR2.

COPY VAR1, VAR2

The expanded code is:

PUSH AX

MOV AX, VAR2

MOV VAR1, AX

POP AX

Local Variables in a Macro:

• Assume that a macro definition includes a label RD1 as in the following example:

READ MACRO A

PUSH DX

RD1: MOV AH, 06

MOV DL, 0FFH

INT 21H

JE RD1 ;; No key, try again

MOV A, AL

POP DX

ENDM
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• If READ macro is invoked more than once, as in

READ VAR1

READ  VAR2

assembly error results!

• The problem is that the label RD1 appears in the expansion of READ VAR1 as well as in

the expansion of READ VAR2. Hence, the label RD1 appears in both the expansions. In

other words, the Assembler sees the label RD1 at two different places and this results in the

“Multiple Definition” error!

• SOLUTION: Define RD1 as a local variable in the macro.

READ MACRO A

LOCAL RD1

PUSH DX

RD1: MOV AH, 06

MOV DL, 0FFH

INT 21H

JE RD1 ;; No key, try again

MOV A, AL

POP DX

ENDM

• Now, in each invocation of READ, the label RD1 will be replaced, automatically, with a

unique label of the form ??xxxx ; where xxxx is a unique number generated by Assembler.

This eliminates the problem of multiple definitions in the expanded source.

• With the use of local variable as illustrated above,

READ VAR1

gets expanded as:

PUSH DX

??0000:   MOV AH, 06

MOV DL, 0FFH

INT 21H

JE ??0000  ;; No key, try again

MOV VAR1, AL

POP DX
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Subsequently, if we write

READ VAR2

it gets expanded as:

PUSH DX

??0001:   MOV AH, 06

MOV DL, 0FFH

INT 21H

JE ??0001  ;; No key, try again

MOV VAR2, AL

POP DX

Note how each invocation of the READ macro gets expanded with a new and unique label,

generated automatically by the Assembler, in place of the local variable RD1. Further, note that

LOCAL directive must immediately follow the MACRO directive. Another feature to note is

that Comments in Macros are preceded by ;; (two semicolons) , and not as usual by ; (a single

semicolon).

File of Macros:

• We can place all the required Macros in a file of its own and then include the file into the

source.

• Example: Suppose the Macros are placed in D:\MYAPP\MYMAC.MAC

In the source file, we write

Advanced Features:

• Conditional Assembly

• REPEAT , WHILE, and FOR statements in MACROS

Conditional Assembly:

• A set of statements enclosed by IF and ENDIF are assembled if the condition stated with

IF is true; otherwise, the statements are not assembled; no code is generated.

• This is an Assembly time feature; not run-time behavior!

• Allows development of generic programs. From such a generic program, we can produce

specific source programs for specific application contexts.

• Example: Assume that our generic program has the following statements:

IF  WIDT

WIDE DB 72

ELSE

WIDE DB 80
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ENDIF

Now the assembly language program that is generated depends on the value of WIDT.

Assume the block is preceded by

WIDT EQU 1

Then the assembled code is:

WIDE DB 72

It is important to note that the Assembler sees a source file that has only the above

statement.

 Another case:

WIDT EQU 0

IF  WIDT

WIDE  DB  72

ELSE

WIDE  DB  80

ENDIF

What gets assembled is: WIDE   DB    80

 There are several other directives that can be used for Conditional Assembly as listed

below:

IF If the expression is true

IFB If the argument is blank

IFNB If the argument is not blank

IFDEF If the label has been defined

IFNDEF If the label has not been defined

IFIDN If argument 1 equals argument 2

IFDIF If argument 1 does not equal argument 2

With each of the above constructs, the code that follows gets assembled only if the stated

condition is true.

REPEAT Statement:

This statement allows a block of code to be repeated the specified number of times. This avoids

repetitive typing and is much more elegant than Editor-level Copy-and-Paste operation.

Example:

REPEAT 3

INT 21H

INC DL
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ENDM

The generated code would be 3 repetitions of the block of 2 statements enclosed within

REPEAT and ENDM as shown below:

INT   21H

INC   DL

INT   21H

INC   DL

INT   21H

INC   DL

WHILE Statement:

This statement allows a block of code to be repeated while the condition specified with the

WHILE is true.

Example: Consider the following code

SQ LABEL BYTE

SEED = 1

RES = SEED * SEED

WHILE  RES LE 9

DB RES

SEED = SEED + 1

RES = SEED * SEED

ENDM

Note that SEED and the arithmetic statements involving SEED and RES are all Assembly time

actions. Apart from the initial label SQ, the only statement to actually get repeated is DB RES.

The logic is follows: Initially the label SQ is generated. SEED is initialized to 1 and RES is

computed as 1 * 1 = 1. Now RES LE 9 is true as the value of RES is 1 which is less than 9. So

the code DB 1 is generated. The next statement within the scope of WHILE, “SEED = SEED +

1” is executed making SEED assume the value of 2. The next statement within the scope of

WHILE is RES = SEED * SEED. This is also executed and RES assumes the value of 4. This

completes one pass of execution of the WHILE block. So, the condition associated with

WHILE is again evaluated. This is again TRUE as 4 is less than 9. So again DB 9 is generated.

Reasoning as before, we see that DB 9 is also generated. However, in the next pass SEED is 4

and RES is 16. So the condition RES LE 9 evaluates to FALSE and WHILE loop is exited!
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Thus the generated code is:

SQ DB 01

DB 04

DB 09

FOR Statement:

This is very similar to the FOR of languages like PERL.  With the FOR statement, a control

variable and a list of values are specified. The control variable is successively assigned values

from the specified list and for each such value, the following block of statements is repeated.

Example:

DISP MACRO CHR:VARARG

MOV AH, 2

FOR  ARG, <CHR>

MOV  DL, ARG

INT     21H

ENDM

ENDM

The outer Macro has one parameter which is specified as sequence of characters of variable

length. The inner FOR statement has two enclosed statements which will be repeated for each

value in the list <CHR>. Thus in the following illustration, DISP is invoked with 3 characters

as parameters. The two statements within FOR scope are thus repeated 3 times with ARG

successively assuming the 3 characters.

Thus, the statement

DISP  ‘V’,’T’,’U’

gets expanded as

MOV AH, 2

MOV DL,’V’

INT 21H

MOV DL, ’T’

INT 21H

MOV DL, ’U’

INT 21H
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NUMBER FORMAT CONVERSION:
• Often Data available in one format needs to be converted in to some other format.

Examples:

 ASCII to Binary

 Binary to ASCII

 BCD to 7-Segment Code … … …

• Data Conversion may be based on

 Algorithm

 Look –Up Table

Converting from Binary to ASCII:

In many contexts, for example, when displaying a number on the screen, we must produce a

sequence of ASCII characters representing the number to be displayed. Thus the given number

must be converted to a string of equivalent ASCII characters.

• Example: Binary number: 0100 0011 = 43H = 67 D

To display this on the screen, we need to convert this binary number in to Two ASCII

characters, ‘6’ and ‘7’.

ASCII code for character ‘6’ is 36H and

ASCII code for character ‘7’ is 37H.

So, we need to produce 36H and 37H as output given 43H as input.

• Another Example: Binary number: 0000 0010 0100 0011 = 0243H = 579 D

To display this on the screen, we need Three ASCII characters, ‘5’, ‘7’ and ‘9’.

ASCII code for character ‘5’ is 35H,

ASCII code for character ‘7’ is 37H, and

ASCII code for character ‘9’ is 39H

So, we need to produce 35H, 37H and 39H as output given 0243H as input

Binary to ASCII Algorithm:

Example: Binary number: 0000 0010 0100 0011 = 579 D
• Divide 579 by 10 ;   Quotient = 57 ; Remainder = 9 , Save 9

• Divide  57 by 10;     Quotient = 5 ;   Remainder = 7 , Save 7

• Divide 5 by 10; Quotient = 0 ;   Remainder = 5 , Save 5
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• Quotient = 0 Conversion Complete.

• Remainders saved in the order of 9, 7, and 5.

• Retrieve remainders in the order of 5, 7, and 9.

(As the order of retrieval is the reverse of the order of producing these digits, the most

convenient technique is to Save & Retrieve the digits using Stack)

• While retrieving, add 30H to convert the digit to ASCII code and then display it (or print it,

or save it…)

• Thus the algorithm is:

While the number is not equal to 0

Divide the number by 10;

Push the remainder digit on the stack;

Set number <- quotient

While stack not empty

Pop a digit from the stack

Add 30H to covert it to ASCII and display it

Return.

 This algorithm is implemented in the following program:

Binary to ASCII Program:
; Input :   16-Bit Binary Number in AX

; Output: Equivalent ASCII displayed on screen

.MODEL TINY

.CODE

.STARTUP

MOV AX, 2A5H ; Test value

CALL B2A ; Binary to ASCII and Display

.EXIT

B2A PROC    NEAR

PUSH DX

PUSH CX

PUSH BX

MOV     CX, 0          ; Count of ASCII digits, Initialized to 0

MOV BX, 10        ; Divisor is 10

B2A1: MOV    DX, 0           ; Dividend in DX, AX. So set DX = 0
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DIV      BX ; Divide by 10

PUSH   DX                ; Save remainder digit on the stack

INC CX                 ; Increment digit count

OR       AX, AX         ; Conversion completed ? (Quotient, i.e AX = 0 ?)

JNZ B2A1               ; No, continue division

; Conversion is complete as quotient in AX = 0

; Count of remainder digits is in CX

B2A2: POP     DX                    ; Retrieve remainder in DL

ADD    DL, 30H           ; Convert to ASCII

MOV   AH, 06H           ; Console Display Function

INT 21H                   ; DOS Service, display digit

LOOP   B2A2 ; Repeat for all digits

; Clean up & Return. AX is destroyed

POP      BX

POP      CX

POP DX

RET

B2A ENDP

END

Another Method for Binary to ASCII Conversion:

• When the input number is less than 100, an alternative, simpler method exists.

• AAM (ASCII Adjust AX After Multiplication) instruction converts value in AX in to 2-

Digit Unpacked BCD and leaves it in AX.

• Example: AX = 0027H (39 Decimal)

Execute AAM ; Now,  AX = 0309H ; This is Unpacked BCD.

• Now, add 3030H to AX to get 3339H ; This is Packed ASCII representation.

• Separate the two bytes (unpack) to get the two ASCII characters representing the given

number (33H and 39H).

• Works only when the number is less than 100 as the maximum unpacked BCD that we can

have in the AX register is 0909H only.

• The following program is developed based on this idea.

; Input :   Binary Number in AL, Assumed <100

; Output: Equivalent ASCII displayed on screen
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.MODEL TINY

.CODE

.STARTUP

MOV AL, 2AH ; Test value

CALL B2A ; Binary to ASCII and Display

.EXIT

B2A PROC    NEAR

PUSH DX

MOV AH, 0 ; AX = Number

AAM ; AX = Unpacked BCD

ADD    AX, 3030H ; Convert to ASCII

PUSH   AX

; Now, unpack and display

MOV    DL, AH ; First Digit

MOV    AH, 06H ; Display Function

INT      21H ; Display first digit

POP AX ; Retrieve value

MOV    DL, AL ; Second Digit

MOV    AH, 06H ; Display Function

INT      21H                ; Display second digit

; Clean up & Return. AX is destroyed

POP DX

RET

B2A ENDP

END

Refinements:

• Suppose the input is: AL = 7H. What is displayed is 07

• Can we replace leading 0 with a blank so that the display looks better? Thus, instead of 07,

the display should be 7.

• Yes. We need to check if the first digit is 0. If so, display 20H  (blank); else, display

the digit.

 We need to modify the previous program to incorporate this check for a leading 0.

 Old Code for displaying first digit:
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MOV    DL, AH ; First Digit

MOV    AH, 06H ; Display Function

INT      21H ; Display first digit

 Revised Code for displaying first digit:

ADD  AH, 20H

CMP  AH, 20H ; First Digit = 0?

JZ B2A1 ; Display blank (ASCII Code is 20H)

ADD  AH, 10H ; Add 10H more to get the correct ASCII Code for the digit

B2A1: MOV  DL , AH ; First Digit

MOV   AH , 06H ; Display Function

INT     21H ; Display first digit

 Incorporating this change, the program will be as shown below:

; Input :   Binary Number in AL, Assumed <100

; Output: Equivalent ASCII displayed on screen

.MODEL TINY

.CODE

.STARTUP

MOV AL, 2AH ; Test value

CALL B2A ; Binary to ASCII and Display

.EXIT

B2A PROC    NEAR

PUSH DX

MOV AH, 0 ; AX = Number

AAM ; AX = Unpacked BCD

ADD    AX, 3030H ; Convert to ASCII

PUSH   AX

; Now, unpack and display

ADD  AH, 20H

CMP  AH, 20H ; First Digit = 0?

JZ       B2A1 ; YES. So, display a blank (ASCII Code is 20H)

ADD  AH, 10H ; No, we have already added 20H. Add 10H more

B2A1:    MOV  DL, AH ; First Digit itself  if not 0 , Or Blank (if 0)

MOV    AH, 06H ; Display Function

INT      21H ; Display first digit



Microprocessor 10EC62

SJBIT/ECE Department 92

POP AX ; Retrieve value

MOV    DL, AL ; Second Digit

MOV    AH, 06H ; Display Function

INT      21H                ; Display second digit

; Clean up & Return. AX is destroyed

POP DX

RET

B2A ENDP

END

ASCII to Binary Algorithm:

In many contexts, for example, when reading a number from the key board, we get a sequence

of ASCII characters representing the number. This string of ASCII characters must be

converted to the equivalent number for further processing.

Example: Assume that ASCII character sequence ‘156’ is the input.

• 3 characters, ‘1’, ‘5’, and ‘6’; with codes as 31H, 35H, and 36H.

• Converted Binary Value must be:

0000 0000 1001 1100 = 009CH = 156 (decimal)

Conversion Procedure:

• Start with (Binary) Result = 0

• First ASCII digit 31H; Subtract 30H to get corresponding BCD digit 01H.

• Result = Result * 10 + Next BCD Digit

Result = 0 * 10 + 01 = 0000 0000 0000 0001

• Next ASCII digit 35H; Subtract 30H to get corresponding BCD digit 05H.

• Result = Result * 10 + Next BCD Digit

Result = 01 * 10 + 05 = 0000 0000 0000 1111

• Next ASCII digit 36H; Subtract 30H to get corresponding BCD digit 06H.

• Result = Result * 10 + Next BCD Digit

Result = 15 * 10 + 06 = 0000 0000 1001 1100

• ASCII digits exhausted. So, conversion is completed.

• Final Result = 0000 0000 1001 1100 = 009CH = 156 (decimal)

• Based on the above ideas, the following program implements the ASCII to Binary

Conversion.

; ASCII to Binary Program
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; ASCII characters representing a number are read from key board.

; The first non-digit character (any character other than 0 through 9) typed

; signals the end of the number entry

; Result returned in AX, which is then stored in memory location TEMP.

; Result assumed not to exceed 16 bits!

; Program can be modified to accept larger numbers by implementing

; 32- bit addition.

.MODEL SMALL

.DATA

TEMP DW ?

.CODE

.STARTUP

CALL RDNUM

MOV TEMP, AX

.EXIT

RDNUM PROC NEAR

PUSH BX

PUSH CX

MOV CX, 10 ; Multiplier is 10

MOV BX, 0               ; Result initialized to 0

RDN1: MOV AH, 1               ; Read Key with Echo

INT 21H

; Check the character. If less than ‘0’ or greater than ‘9’ Number entry is over

CMP AL, ’0’

JB RDN2

CMP AL,’9’

JA RDN2

; Is digit. Update Result

SUB AL, 30H ; BCD Digit

PUSH AX

MOV AX, BX

MUL CX

MOV BX, AX ; Result = Result * 10

POP AX
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MOV AH, 0 ; AX = Current Digit

ADD BX, AX ; Update Result

JMP RDN1 ; Repeat

; Non- digit. Clean Up and Return

RDN2: MOV AX, BX ; Result in AX

POP CX

POP BX

RET

RDNUM ENDP

END

Notes:

 The constant multiplier 10 is held in the register CX.

 In the procedure, RDNUM, the result is accumulated in the register BX and at the end,

it is moved in to register AX. The result in AX is moved, in the calling program, in to

the memory location TEMP.

 The BCD digit is in AL. AH is cleared to 0 so that the 16-bit value in AX represents the

correct value and thus can be added directly to the accumulating result in BX. This part

of the code must be changed to implement 32-bit addition if larger results are to be

supported.

Using Look – Up Tables for Data Conversion:

• Often, a look-up table simplifies data conversion.

• XLAT can be used  if table has up to 256 byte-entries

• Value to be converted is used to index in to the table containing conversion values.

• As an example, we will demonstrate BCD to 7-Segment code conversion.

BCD to 7-Segment Code Conversion:

In many applications, we need to display BCD values on a 7-Segment display. The 7-Segment

display device, as the name suggests, has 7 segments which can be independently controlled to

be ON or OFF. Further, the device has a decimal point also that can be switched ON or OFF.

The 7 segments and the decimal point are controlled by 8 bits, with one bit controlling one

segment or the decimal point. The bit value required to switch on a segment depends on

whether the device is of a Common – Anode type or Common – Cathode type. Here, we are

assuming a Common – Anode type. Thus the segment will be ON if the corresponding

controlling bit is 1 and will be off if the bit is 0.
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Based on the digit to be displayed, we must determine the segments that must be ON and the

ones that must be OFF. The bits controlling the segments that must be ON are set to 1 and the

bits controlling the segments that must be OFF are cleared to 0. The resulting bit pattern

determines the value of the 7-Segemnt code that must be output. This display structure is

shown in the following figure on the next page:

As an example of determining the display code corresponding to a given BCD digit, the

following figure shows the display of digit 3 and the determination of the corresponding 7-

Segment code:

Based on the above logic, the following FAR Procedure returns the 7-Segment code in the AL

register, corresponding to the BCD digit provided as input parameter in the AL register before

calling the procedure.

; BCD to 7-Segment Code Program

; Input:    AL = BCD Digit

; Output: AL = 7-Segment code.
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BT7SEG PROC FAR

PUSH BX

MOV BX, OFFSET TABLE

XLAT CS: TABLE

POP BX

RET

TABLE DB 3FH ; 0

DB 06H ; 1

DB 5BH ; 2

DB 4FH ; 3

DB 66H ; 4

DB 6DH ; 5

DB 7DH ; 6

DB 07H ; 7

DB 7FH  ; 8

DB 6FH  ; 9

BT7SEG ENDP

Notes:

• XLAT instruction does not normally contain an operand. Here we are using the operand

(TABLE). It is a dummy operand! It is being used here only to specify segment override.

XLAT uses DS by default. Here the table is in CS. So segment override is being specified.

• More examples are discussed in the Text Book.
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UNIVERSITY QUESTIONS & SOLUTIONS
1. Write an ALP to search a character in a string of N characters using linear search. (July 2007)

Soln:

.model small

.stack

.data
string db 'ELECTRONICS $'
str_cnt equ 0bh
msg1 db 'character found $'
msg2 db 'character not found $'
loc db ?

.code
mov ax, @data ;//Intialize
mov ds, ax ;   data and
mov es, ax ;    extra segment\\
mov cx, str_cnt ;intialize string counter
lea di, string ; di = offset of string
mov al, 'T' ;al = character to be searched

back: cmp al, byte ptr[di] ;compare char with first element in the string
je found ;if found jump to found
inc di ;//else proceed with
loop back ;    comparing all chars in string\\
lea dx, msg2 ;//  if not found display
mov ah, 09h ;      msg2 using DOS services\\
int 21h
jmp last

found: mov ah, 09h ;//if found display
lea dx, msg1 ;    msg1 using DOS services\\
int 21h
mov dx, str_cnt ;// store the offset
sub dx, cx ;    location of the desired
mov loc, dx ;      char in a string\\

last: mov ah, 4ch ;//Terminate
int 21h ;    the program\\

end

2. explain the procedure for converting from binary to ASCII. Jan 2009   (2008)

Soln
Converting from Binary to ASCII:

In many contexts, for example, when displaying a number on the screen, we must produce a

sequence of ASCII characters representing the number to be displayed. Thus the given number

must be converted to a string of equivalent ASCII characters.

• Example: Binary number: 0100 0011 = 43H = 67 D



Microprocessor 10EC62

SJBIT/ECE Department 101

To display this on the screen, we need to convert this binary number in to Two ASCII

characters, ‘6’ and ‘7’.

ASCII code for character ‘6’ is 36H and

ASCII code for character ‘7’ is 37H.

So, we need to produce 36H and 37H as output given 43H as input.

• Another Example: Binary number: 0000 0010 0100 0011 = 0243H = 579 D

To display this on the screen, we need Three ASCII characters, ‘5’, ‘7’ and ‘9’.

ASCII code for character ‘5’ is 35H,

ASCII code for character ‘7’ is 37H, and

ASCII code for character ‘9’ is 39H

So, we need to produce 35H, 37H and 39H as output given 0243H as input

RECOMMENDED QUESTIONS
1. Explain the five types of string instruction with example

2. Explain the following instructions:

i) MOVSB ii) repeat prefix iii)STOSW iv)SCASB v)CMPS

3. Write an ALP to convert lowercase to upper case using the modular programming approach.

4. Use two far procedures one for reading from keyboard and one for displaying.
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UNIT: 4:

8086 INTERRUPTS: 8086 Interrupts and interrupt responses, Hardware interrupt applications,

Software interrupt applications, Interrupt examples

What is an interrupt ?

An interrupt is the method of accessing the MPU by a peripheral device. An interrupt is

used to cause a temporary halt in the execution of a program. The MPU responds to the interrupt

with an interrupt service routine, which is a short program or subroutine that instructs the MPU on

how to handle the interrupt. When the 8086 is executing a program, it can get interrupted because

of one of the following.

1.Due to an interrupt getting activated. This is called as hardware interrupt .

2.Due to an exceptional happening during an instruction execution, such as division of a

number by zero. This is generally termed as exceptions or Traps.

3.Due to the execution of an Interrupt instruction like "INT 21H". This is called a Software

interrupt. The action taken by the 8086 is similar for all the three cases, except for minor

differences. There are two basic types of interrupts, Maskable and non-maskable.

Nonmaskable interrupt requires an immediate response by the MPU. It is usually used

for serious circumstances like power failure. A maskable interrupt is an interrupt that theMPU can

ignore depending upon some predetermined condition defined by the status register. Interrupts are

also prioritized to allow for the case when more than one interrupt needs to be serviced at the same

time.

Hardware interrupts of 8086

In a microcomputer system whenever an I/O port wants to communicate with

themicroprocessor urgently, it interrupts the microprocessor. In such a case, themicroprocessor

completes the instruction it is presently executing. Then, it saves theaddress of the next instruction

on the stack top. Then it branches to an Interrupt Service Subroutine (ISS), to service the

interrupting I/O port. An ISS is also commonly called as an Interrupt Handler . After completing

the ISS, the processor returns to the original program, making use of the return address that was

saved on the stack top.In 8086 there are two interrupt pins. They are NMI and INTR. NMI stands

for non maskable interrupt. Whenever an external device activates this pin, themicroprocessor will

be interrupted. This signal cannot be masked. NMI is a vectored

Definition: The meaning of ‘interrupts’ is to break the sequence of operation.While the

cpu is executing a program,on ‘interrupt’ breaks the normal sequence of execution of
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instructions, diverts its execution to some other program called Interrupt Service Routine

(ISR).After executing ISR , the control is transferred back again to the main

program.Interrupt processing is an alternative to polling.

Need for Interrupt: Interrupts are particularly useful when interfacing I/O devices, that

provide or require data at relatively low data transfer rate.

Types of Interrupts: There are two types of Interrupts in 8086. They are:

(i)Hardware Interrupts and

(ii)Software Interrupts

(i) Hardware Interrupts (External Interrupts). The Intel microprocessors support

hardware interrupts through:

 Two pins that allow interrupt requests, INTR and NMI

 One pin that acknowledges, INTA, the interrupt requested on INTR.

INTR and NMI

 INTR is a maskable hardware interrupt. The interrupt can be enabled/disabled

using STI/CLI instructions or using more complicated method of updating the

FLAGS register with the help of the POPF instruction.

When an interrupt occurs, the processor stores FLAGS register into stack,

disables further interrupts, fetches from the bus one byte representing interrupt

type, and jumps to interrupt processing routine address of which is stored in

location 4 * <interrupt type>. Interrupt processing routine should return with the

IRET instruction.

 NMI is a non-maskable interrupt. Interrupt is processed in the same way as the

INTR interrupt. Interrupt type of the NMI is 2, i.e. the address of the NMI

processing routine is stored in location 0008h. This interrupt has higher priority

than the maskable interrupt.

 – Ex: NMI, INTR.

(ii) Software Interrupts (Internal Interrupts and Instructions) .Software interrupts can

be caused by:

 INT instruction - breakpoint interrupt. This is a type 3 interrupt.

 INT <interrupt number> instruction - any one interrupt from available 256

interrupts.

 INTO instruction - interrupt on overflow

 Single-step interrupt - generated if the TF flag is set. This is a type 1 interrupt.
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When the CPU processes this interrupt it clears TF flag before calling the

interrupt processing routine.

 Processor exceptions: Divide Error (Type 0), Unused Opcode (type 6) and Escape

opcode (type 7).

 Software interrupt processing is the same as for the hardware interrupts.

 - Ex: INT n (Software Instructions)

 Control is provided through:

o IF and TF flag bits

o IRET and IRETD
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TEXT BOOKS:

1. Microcomputer systems-The 8086 / 8088 Family – Y.C. Liu and G. A. Gibson, 2E PHI -

2003

2. The Intel Microprocessor, Architecture, Programming and Interfacing-Barry B. Brey,

6e, Pearson Education / PHI, 2003
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REVIEW QUESTION
1. Explain the operation of the following DOS function using INT 21H interrupt. Jan 09

(10 marks)

2. Write a program that clears the screen (monitoring )using MACRO HOME. JAN
09.(10 marks)

3. Describe the working of 8086 in minimum mode configuration with 8284 clock
generator jan 09(10 marks)

4. Explain the function of type 0 to type 4 interrupts of 8086 with interrupt vector table.
Jan  09 ( 10 marks)
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UNIT: 5-8086 INTERFACING
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UNIT: 6: 8086 BASED MULTIPROCESSSING SYSTEMS

8087 Numeric Co-processor

Need for a numeric co-processor
The 8086 microprocessor is basically an integer processing unit and works directly on a variety of integer

data types. Many programs used in engineering, science, business, need to perform mathematical operations

like logarithms of a number, square root of a number, sine of an angle etc. It may also be needed to perform

computations with very large numbers like 10+56, or very small numbers like 10-67. There are no instructions

in 8086 to directly find sine of an angle etc. Also 8086 can only perform computations on 16 bit fixed point

numbers, with a range of –32768 to +32767. In other words, 8086 does not provide any intrinsic support for

operations on floating point numbers.

It is possible to perform any calculations using only 8086. But if speed becomes important, it is necessary to

use the dedicated Numeric co-processor Intel 8087, to speed up the matters. It typically provides a 100 fold

speed increase for floating point operations. A numeric co-processor is also variously termed as arithmetic

co-processor, math co-processor, numeric processor extension, numeric data processor, floating point

processor etc.
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8087 Pin diagram

Description of 8087 pins

INT: This is an active high output pin. The 8087 activates this pin whenever an exception occurs during

8087 instruction execution, provided the 8087 interrupt system is enabled and the relevant exceptions is not

masked using the 8087 control register.

The INT output of 8087 is connected directly to NMI or INTR input of 8086. Alternatively, INT output of

8087 is connected to an interrupt request input of 8259 Interrupt controller, which in turn interrupts the

8086 on its INTR input.

BUSY: Let us say, the 8086 is used in maximum mode and is required to wait for some result from the co-

processor 8087 before proceeding with the next instruction. Then we can make the 8086 execute the WAIT

instruction. Then the 8086 enters an idle state, where it is not performing any processing. The 8086 will stay
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in this idle state till TEST* input of 8086 is made 0 by the co-processor, indicating that the co-processor has

finished its computation.

When the 8087 is busy executing an arithmetic instruction, its BUSY output line will be in the 1 state. This

pin is connected to TEST*pin of 8086. Thus when the BUSY pin is made 0 by the 8087 after the

completion of execution of an arithmetic instruction, the 8086 will carry on with the next instruction after

the WAIT instruction.

Internal Structure of the 80X87

Fig: The internal structure of the 80X87 arithmetic coprocessor

8087 Data Types
The 8087 always works on 80 bit data internally. This 80 bit floating point format is termed as Temporary

Real format. However, it can read from memory a number, which is represented using any of the following

data types.

a. Signed integers of size 16, 32 or 64 bits
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b. 18 digit signed integer packed BCD number using 80 bits

c. Floating point numbers using 32, 64, or 80 bits

This number read from memory is internally converted to the 80 bit temporary real format before

performing any computations. Similarly, the result is converted automatically by the 8087 to one of the

formats mentioned above before storing it in memory.

8087 Data Types:

1. Integer Data Types

(a) Word integer (16 Bit Signed Integer)

S Magnitude

15 0

Sign bit is 0 for positive and 1 for negative.

Range: –32768<=X<=+32767. Negative number representation in 2’s complement form.

(b) Short integer (32 Bit Signed Integer)

S Magnitude

31 0

Range: –2 x 109 <=X<= 2 x 109

(c) Long Integer (64 Bit Signed Integer)

S Magnitude

63 0

This is called binary integer. Range: –9 x 1018 <=X<= 9 x 1018

2. Packed BCD type

Packed Decimal (18 BCD digits)

S Don’t care Magnitude (BCD)

79 72 71

0

-99… … 99<=X<=+99… …99(18 digits)

3. 32 Bit Short real

Short real (Single precision)
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S Biased exponent Significant

31 23 0

0, 1, 2x10-38 <=! X! <=3.4x1038

Example 1:

Let us say, we want to represent 23.25 in this the short real notation. First of all we represent 23.25 in

binary as 10111.01. Then we represent this as +1.011101x2+4. This is called the Normalized form of

representation. In the normalized form, the mantissa will always have an integer part with value 1. The

floating point notations supported by 8087 always represent a number in the normalized form. In the 32 bit

and 64 bit floating point notations the integer part of mantissa, of value 1, is just implied to be present, but

not explicitly indicated in the bit pattern for the number. Thus the LS 23 bits are used to indicate only the

fractional part of the mantissa and so will be 011 1010 0000 0000 0000 0000. The MS bit will be 0 to

indicate that the number is positive. The next 8 bits provide the exponent in excess 7FH format. Thus the

next 8 bits will be 4 + 7F=83H = 1000 0011. Thus the 32 bit floating point representation for 23.25 will be

sign Exp. In Ex 7FH 23 bit fractional part of mantissa

0 1000 0011 011 1010 0000 0000 0000 0000

Example 2:

Now let us see what is the value of the 32 bit floating point number 10111 1100 100 0000 0000 0000 0000

0000. It has its MS bit as a 1. Thus the number is negative. The next 8 bits are 0111 1100 = 7CH. Thus 7CH

is the exponent in excess 7FH format. In other words, the actual exponent is 7CH-7FH=-03. the actual

mantissa is obtained by appending 1. to the LS 23 bits. Thus the actual mantissa is 1.100 0000 0000 0000

0000 0000. Thus the value of the given 32 bit floating point number would be

-1.100 0000 0000 0000 0000 0000 x 2-03

= -1.1 x 2-03

= -0.0011 x 20

= -0.0011

= -0.1875

Thus the given 32 bit number represents the value –0.1875

4. 64 bit Long Real

Long Real (Double precision)

S Biased exponent Significand

63 52 0
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0,2,3 x 10-308 !X!<= 1.7x 10308

In both single and double precision cases the 1 after . is assumed to be present.

Sign

0 = +

1 = -

11 bits

exponent in

Ex3FFH

52 bits for fractional part

with implied ‘1. ’ before

the fractional part.

Example 1:

Let us say, we want to represent 23.255 in this notation. First of all we represent 23.25 in binary as

10111.01. Then we represent this as +1.011101x2+4. This is called the Normalized form of representation.

In the normalized form, the mantissa will always have an integer part with value 1. The floating point

notations supported by 8087 always represent a number in the normalized form. In the 32 bit and 64 bit

floating point notations the integer part of the mantissa, of value 1, is just implied to be present, but not

explicitly indicated in the bit pattern for the number. Thus the LS 52 bits are used to indicate only he

fractional part of the mantissa and so will be 0111 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000

0000 0000.  The MS bit will be 0 to indicate that the number is positive. The next 11 bits provide the

exponent in excess 3FFH format. Thus the next 11 bits will be 4+3FF=403H=100 0000 0011. Thus the 64

bit floating point representation for 23.25 will be

sign Exp. In Ex 7FH 52 bit fractional part of mantissa

0 100 0000 0011 0111 0100 00……….00

Example 2:

Now let us see what is the value of the 64 bit floating point number 1 100 0000 0011 0100 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000 0000. It has its MS bit as a 1. Thus the number is negative. The

next 11 bits are 100 0000 0011 = 403H. Thus 403H is the exponent in excess 3FFH format. In other words,

the actual exponent is 403H – 3FFH=+04. The actual mantissa is obtained by appending 1. to the LS 52 bits.

Thus the actual mantissa is 1.0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000. Thus

the value of the given 64 bit floating point number would be

-1.0100 0000 … 0000 x 2+04

= -1.01 x 2+04

= -10100 x 20

= -10100

= -20

Thus the given 64 bit number represents the value –20.
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5. Temporary Real

S Biased exponent 1 Significand

79 64 63 0

0,3.4x10-4932 <= !X! <= 1.1x104932

Example 1:

Let us say, we want to represent 23.25 in this notation. First of all we represent 23.25 in binary as 10111.01.

Then we represent this as +1.011101 x 2+4. This is called the normalized form of representation. In the

normalized form, the mantissa will always have an integer part with value 1. The floating point notations

supported by 8087 always represent a number in the normalized form.

Thus the LS 64 bits are used to indicate the mantissa and so will be 1011 1010 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000 0000. The MS bit will be 0 to indicate that the number is

positive. The next 15 bits provide the exponent in excess 3FFFH format. Thus the next 15 bits will be

4+3FFF = 4003H = 100 0000 0000 0011. Thus the 80 bit floating point representation for 23.25 will be

sign Exp. In Ex. 3FFFH 64 bit mantissa

0 100 0000 0000 0011 1011 1010 00 …………….00

Example 2:

Now let us see what is the value of the 64 bit floating point number 1 100 0000 0000 0011 1010 0000 ….

0000. It has its MS bit as a 1. Thus the number is negative. The next 15 bits are 100 0000 0000 0011 =

4003H. Thus 4003H is the exponent in excess 3FFFH format. In other words, the actual exponent is 4003H-

3FFFH=+04. The actual mantissa is 1.010 0000 …. 0000, where the binary point is implied to be present

after the MS bit of the mantissa. Thus the value of the given 80 bit floating point number would be

-1.010 0000 … 0000 x 2+04

= -1.01 x 2+04

= -10100 x 20

= -10100

= -20

Thus the given 80bit number represents the value –20.

8087 Data types in a nut shell

Data

format

Range Precision 7  0!7  0!7  0!7  0!7  0!7  0!7 0!7  0!7  0!7  0!

Word

integer

104 16 bits 115 10 two’s complement
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Short

integer

104 32 bits 131 10 two’s complement

Long

integer

1018 64 bits 163 10 two’s complement

Packed

BCD

1018 18 digits S D17 D16 D0

Short real 10+38 24 bits SE7 E0 F1 F23 F0 implicit

Long real 10+308 53 bits SE10 E0 F1 F52 F0 implicit

Temporary

real

10+4932 64 bits SE14 E0 F0 F63

• Integer : 1

• Packed BCD : (-1)S (D17 … D0)

• Real : (-1)S (2E-Bias) (F0.F1..)

• Bias = 127 for short Real

= 1023 for long Real

= 16383 for Temp. Real
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Interconnection of 8087 with 8086/88

8087 can be connected with any of the 8086/8088/80186/80188 CPU’s only in their maximum mode of

operation. I.e. only when the MN/MX* pin of the CPU is grounded. In maximum mode, all the control

signals are derived using a separate chip known as bus controller. The 8288 is 8086/88 compatible bus

controller while 82188 is 80186/80188 compatible bus controller.

The BUSY pin of 8087 is connected with the TEST* pin of the used CPU. The QS0 and QS1 lines may be

directly connected to the corresponding pins in case of 8086/8088 based systems. However, in case of

80186/80188 systems these QS0 and QS1 lines are passed to the CPU through the bus controller. In case of

8086/8088 based systems the RQ*/GT0* of 8087 may be connected to RQ*/GT1* of the 8086/8088. The

clock pin of 8087 may be connected with the CPU 8086/8088 clock input. The interrupt output of 8087 is

routed to 8086/8088 via a programmable interrupt controller. The pins AD0 - AD15, BHE*/S7, RESET, A19 /

S6 - A16 / S3 are connected to the corresponding pins of 8086/8088. In case of 80186/80188 systems the

RQ/GT lines of 8087 are connected with the corresponding RQ*/GT* lines of 82188. The interconnections

of 8087 with 8086/8088 and 80186/80188 are shown in fig.
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Control Register of 8087

In addition to the 8 registers, which are 80 bits wide, the 8087 has a control register, a status register, and a

Tag register each 16 bits wide.

The contents of the control register, generally referred to as the Control word, direct the working
of the 8087. A common way of loading the control register from a memory location is by
executing the instruction ‘FLDCW src’, where ‘src’ is the address of a memory location. FLDCW
stands for ‘Load Control Word’. For example, FLDCW [BX] instruction loads the control register
of 8087 with the contents of the memory location whose 16 bit effective address is provided in BX
register.

The bit description of the control register is shown below.

Bit No 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved I

C

Round

ctrl

Prec.

ctrl

Intr

mask

x P

M

U

M

O

M

Z

M

D

M

I

M

The LS 6 bits are used for individually masking 6 possible numerical error exceptions. If an
exception is masked, by setting the corresponding bit to 1, the 8087 will handle the exception
internally. It does not set the corresponding exception bit in the status register and it does not
generate an interrupt request. This is termed the Masked response.

They LS 6 bits, which correspond to the exception mask bits, are briefly described below.

IM bit (Invalid operation Mask) at bit position 0 is used for masking invalid operation. An invalid operation

exception generally indicates a stack overflow or underflow error, or an arithmetic error like, divisor is 0 or

dividend is infinity.

DM bit (Denormalized operand mask) at bit position 1 is used for masking denormalized operand exception.

A denormalized result occurs when there is a floating point underflow. Thus, this exception occurs, for

example, when an attempt is made to load a denormalized operand from memory.

ZM bit (Zero divide mask) at bit position 2 is used for masking zero divide exception. This exception

occurs when an attempt is made to divide a valid non zero operand by zero. This can happen in the case of

explicit division instructions as well as for operations that perform division internally like in FXTRACT.

OM bit (Overflow exception Mask) at bit position 3 is used for masking overflow exception. A overflow

exception occurs when the exponent of the actual result is too large for the destination.

UM bit (Underflow exception Mask) at bit position 4 is used for masking underflow exception. An

underflow exception occurs when the exponent of the actual result is too small for the destination.

PM bit (Precision exception Mask) at bit position 5 is used for masking precision exception. A precision

exception occurs when the result of an operation loses significant digits when stored in the destination.
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Precision control bits (bits 9 and 8)

These bits control the internal operating precision of the 8087. Normally, the 8087 uses 64 bit mantissa for

all internal calculations. However, this can be reduced to 53 or 24 bits, for compatibility with earlier

generation math processors, as shown below.

Bit 9 Bit 8 Length of mantissa

0 0 24 bits

0 1 Reserved

1 0 53 bits

1 1 64 bits

Rounding control bits (bits 11 and 10)

These bits control the type of rounding that is used in calculations, as shown below.

Bit  11 Bit 10 Rounding scheme

0 0 Round to nearest

0 1 Round down, towards -

1 0 Roundup, towards +

1 1 Chop or truncate towards 0

Infinity control bit (bit 12)

This bit controls the way infinity is treated. In the affine model of infinity, +  and -  are treated as a

single unsigned quantity.

Bit 12 Infinity model

0 Projective

1 Affine

Contents of Control register after reset of 8087

When the 8087 is reset, the control register is loaded with 037FH = 000 0 00 11 0 1 11 1111, which means

the following. The same condition results when FINIT (stands for Initialize) instruction is executed.

This condition is generally acceptable to a programmer. So, there is normally no need to explicitly load the

control register using FLDCW instruction.

Status register of 8087

The status register is 16 bits wide. The contents of the status register, generally referred to as the Status

word, indicates the status of the 8087. A common way of storing the contents of the status register into a

memory location is by executing the instruction ‘FSTSW dst’, where ‘dst’ is the address of a memory
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location. FSTSW stands for Store Status Word’. For example, FSTSW [BX] instruction stores the status

register of 8087 into the memory location whose 16 bit effective address is provided in BX register. This

status can then be read by the 8086, by executing say MOV AX, [BX], to take action depending on the

status of 8087.

The bit description of the status register is shown below.

Bit no. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Busy C

3

Stack pointer C

2

C

1

C

0

Intr

Req

x P

E

U

E

O

E

Z

E

D

E

I

E

If the 8087 encounters an error exception during execution of an instruction, the corresponding exception

bit is set to the 1 state, if the exception is not masked using the control word. The possible exceptions, as

already discussed, are as follows.

Invalid operation Exception (IE, bit 0 of the status register)

Denormalized operand Exception (DE, bit 1 of status register)

Zero divide Exception (ZE, bit 2 of status register)

Overflow Exception (OE, bit 3 of status register)

Underflow Exception (UE, bit 4 of status register)

Precision Exception (PE, bit 5 of status register)

The only way these exception bits are cleared is by the execution of FINIT, FCLEX (stands for clear

exceptions), FLDENV (stands for load environment), FSAVE (stands for save environment and stack of

registers), and FRSTOR (stands for restore environment and stack of registers). The term Environment

stands for the following group of information of size 14 bytes.

1. control word (2 bytes)

2. Status word (2 bytes)

3. Tag word (2 bytes)

4. Exception pointer (8 bytes)

The interrupt request bit (bit 7) in the status word is set to 1 by the 8086, if one or more exception bits are

set to 1. Then the INT output pin of 8087 is activated if interrupt is not masked using the control word.

C2, C2, C1, and C0 (bits 14, 10, 9, and 8) are the condition code flags of the 8087. The 8087 updates these

flags depending on the status of arithmetic operations. The FTST (stands for Test) and FCOM (stands for

Compare) instructions also use these flags to report the result of their operations. Some of these bits are

discusses later when the Compare instruction is described.

Bits 13, 12, and 11 provide the address of the register which is currently the stack top. For example, if these

bits are 110, it means that R6 is the current stack top. In other words, ST is R6, ST(1) is R7, ST(2) is R0,

and so on.
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The Busy bit (bit 15) is set to 1 when the 8087 is busy executing an instruction, or busy executing an

exception routine. When this bit is a 1, the BUSY output pin of 8087 is activated.

A programmer needs to read the status register contents after the execution of FTST or FCOM instruction,

to know the result of these instructions. In most of other cases, the programmer is not required to read the

status register contents.

Exception Pointer of 8087
When the 8086 comes across an 8087 instruction, it saves the following information in a 4 word area

termed as the exception pointer.

1. 20 bit physical address of the instruction

2. 11 bit opcode of the instruction

3. 20 bit physical address of the data, if 8087 needs it.

4. Remaining 13 bits are zeros.

However, some instructions like FLDCW which need a memory operand, do not affect the 20 bit area of the

exception pointer meant for address of data.

The exception pointer is located in the 8086, and not in 8087, but appears to be part of 8087.

Tag register of 8087
The Tag register is 16 bits wide. The contents of the Tag register indicates the status of each of the 80 bit

registers of the 8087. A common way of storing the contents of the Tag register is by executing the

instruction ‘FSTENV dst’, where ‘dst’ is the address of a memory location. It stores the environment of

8087, of which Tag word is a part. FSTENV stands for ‘Store environment’. For example, FSTENV [BX]

instruction stores the environment of 8087 into 14 byte memory locations whose 16 bit effective address is

provided in BX register.

The Tag register is loaded with a new value, when one of FINIT, FLDENV, or FRSTOR instructions are

executed.

The bit description of the Tag register is as shown below.

Bit no. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TAG 7 TAG 6 TAG 5 TAG 4 TAG 3 TAG 2 TAG 1 TAG 0

The status of each 80 bit stack register is provided using a 2 bit field in the Tag register. The field labeled

TAG 3 indicates the status of R3. It should be noted that TAG 3 is not indicating the status of ST(3). The

Tag bits indicate the status of a stack register as shown below.

Tag bits Status

00 Valid data in the register
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01 Zero value in the register

10 Special number, like _ or decimal, in the

register

11 The register is empty

The Tag word is not normally used in programs. However it can be used to quickly interpret  the contents of

a floating point register, without the need for extensive decoding.

FINIT instruction
 Infinity condition is projective (treats +  and -  as same)

 Rounds to nearest

 Length of mantissa is 64 bits

 Interrupt is enabled

 All exceptions are masked

 No need for FLDCW

8087 Instruction Set
The instruction set of 8087 starts with F, stands for floating point. The instruction of 8087 numeric data

processor can be classified into following six groups:

1. Data transfer instructions

2. Arithmetic instructions

3. Compare Instructions

4. Transcendental instructions

5. Load constant instructions

6. Processor control instructions

1. Data Transfer Instructions

(a) Real Transfers

S. No. Instruction Description with example

1 FLD source Decrements stack pointer by one and copies a real number from a

stack element or memory to the new ST. A short – real or long-

real number from memory is automatically converted to

temporary real format by the 8087 before it is put in ST.

Examples:

FLD  ST(2) ; Copies ST(2) to ST
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FLD  [BX] ; Number from memory pointed by BX copied to

ST

2 FST Destination Copies ST to a specified stack position or to a specified memory

location.

Examples:

FST  ST(3) ; Copy ST to ST(3)

FST  [BX] ; Copy ST to memory pointed by [BX]

3 FSTP destination Copies ST to a specified stack element or memory location and

increments stack pointer by one to point to the next element on

the stack. This is a stack POP operation.

4 FXCH destination Exchanges contents of ST with the contents of a specified stack

element. If no destination is specified, then ST(1) is used.

Example:

FXCH  ST(4) ; Swap ST and ST(4)

(b) Integer transfers

S. No. Instruction Description with example

5 FILD source Integer load. Converts integer number from memory to temporary

real format and pushes converted number on 8087 stack.

Example:

FILD  DWORD  PTR  [BX] ; Short integer from memory

location pointed by [BX]

6 FIST destination Integer store. Converts number from ST to integer form, and

copies to memory.

Example:

FIST  INT_NUM ; ST to memory locations named

INT_NUM

7 FISTP destination Integer store and pop. Similar to FIST except that stack pointer is

incremented after copy.

(c) Packed Decimal Transfers

S. No. Instruction Description with example

8 FBLD source Packed decimal (BCD) load. Convert number from memory to

temporary-real format and push on top of 8087 stack.

Example:

FBLD AMOUNT ; Ten byte BCD number from memory
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location AMOUNT to ST

9 FBSTP destination BCD store in memory and pop 8087 stack. Pops temporary – real

from stack, converts to 10-byte BCD, and stores result to

memory.

Example:

FBSTP MONEY ; Contents from top of stack are

converted to BCD, and stored in memory.

2. Arithmetic Instructions
S. No. Instruction Description with example

1 FADD  destination,

source

Will add real number from specified source to real number at

specified destination. Source can be stack element or memory

location. Destination must be a stack element. If no source or

destination is specified, then ST is added to ST(1) and the stack

pointer is incremented so that the result of the addition is at ST.

Examples:

FADD  ST(2), ST ; Add ST to ST(2), result in ST(2)

FADD ST, ST(5) ; Add ST(5) to ST, result in ST

FADD SUM ; Real number from memory + ST

FADD ; ST + ST(1), pop stack-result at ST

2 FADDP

destination, source

Adds ST to specified stack element and increments stack pointer

by one.

Example:

FADDP  ST(2) ; Add ST(2) to ST

; Increment stack pointer so ST(2)

; becomes ST

3 FIADD source Adds integer from memory to ST, Stores the result in ST.

Example:

FIADD CARS_SOLD ;Integer number from memory + ST

4 FSUB destination,

source

Subtracts the real number at the specified source from the real

number at the specified destination and puts the result in the

specified destination.

Examples:

FSUB  ST(3), ST ; ST(3) ST(2) – ST

FSUB DIFFERENCE ; STST-real from memory

FSUB ; ST(ST(1)-ST)
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5 FSUBP destination,

source

Subtracts ST from specified stack element and puts result in

specified stack element. Then increments stack pointer by one.

Examples:

FSUBP ST(2) ; ST(2) – ST . ST(1) becomes new ST.

6 FISUB source Subtracts integer number stored in memory from ST and stores

result in ST.

Example:

FISUB  DIFFERENCE ; STST-integer from memory

7 FSUBR

destination, source

These instructions operate same as FSUB instructions discussed

earlier except that these instructions subtract the contents of the

specified destination from the contents of the specified source and

put the difference in the specified destination.

[Normal FSUB instruction subtracts source from destination.]

8 FSUBRP

destination, source

9 FISUBR source

10 FMUL destination,

source

Multiply real number from source by real number from specified

destination, and put result in specified stack element.

Examples:

FMUL  ST(2), ST ; Multiply ST(2) and ST, result in ST(2)

FMUL  ST, ST(5) ; Multiply ST(5) to ST, result in ST

FMULP

destination, source

Multiplies the real number from specified source by real number

from specified destination, puts result in specified stack element,

and increment stack pointer by one. With no specified operands

FMULP multiplies ST(1) by ST and Pops stack to leave result at

ST.

Example:

FMULP  ST(2) ; Multiply ST(2) to ST. increment stack

pointer so STI(1) becomes ST

11 FIMUL source Multiply integer from memory at ST and put result in ST.

Example:

FIMUL  DWORD  PTR  [BX]

;Integer number from memory pointed by BX x ST and result in

ST

12 FDIV destination,

source

Divides destination real by source real, stores result in

destination.

Example:

FDIV  ST(2), ST ; Divides ST by ST(2)

; stores result in ST

13 FDIVP destination, Same as FDIV, but also increments stack pointer by one after
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source DIV

Example:

FDIV  ST(2), ST ; Divides ST by ST(2), stores result in ST

and increments stack pointer

14 FIDIV source Divides ST by integer from memory, stores result in ST.

Example:

FIDIV  PERCENTAGE; STST/integer number

15 FDIVR destination,

source

16 FDIVP destination,

source

17 FIDIVR source These three instructions are identical in format to the FDIV,

FDIVP and FIDIV instructions above except that they divide the

source operand by the destination operand and put the result in

the destination.

18 FSQRT Contents of ST are replaced with its square root.

Example:

FSQRT

19 FSCALE Scales the number in ST by adding an integer value in ST(1) to

the exponent of the number in ST. Fast way of multiplying by

integral powers of two.

20 FPREM Partial reminder. The contents of ST(1) are subtracted from the

contents of ST over and over again until the contents of ST are

smaller than the contents of ST(1)

Example:

FPREM

21 FRNDINT Round number in ST to an integer. The round – control (RC) bits

in the control word determine how the number will be rounded.

22 FXTRACT Separates the exponent and the significant parts of a temporary

real number in ST. After the instruction executes, ST contains a

temporary – real representation of the significant of the number

and ST(1) contains a temporary real representation of the

exponent of the number.

23 FABS Replaces ST by its absolute value. Instruction simply makes sign

positive.

24 FCHS Complements the sign of the number in ST.
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3. Compare Instructions

These instructions compare the contents of ST with contents of specified or default source. The source may

be another stack element or real number in memory. Such compare instructions set the condition code bits

C3, C2 and C0 of the status words use as shown in the table below.

C3 C2 C0 Description

0 0 0 ST contents is greater than the other operand

0 0 1 ST contents is smaller than the other operand

1 0 0 ST contents is equal to the other operand

1 1 1 The operands are not comparable

Different compare instructions:

S. No. Instruction Description with example

1 FCOM source Compares ST with real number in another stack element or

memory.

Examples:

FCOM ; Compares ST with ST(1)

FCOM  ST(4) ; Compares ST with ST(4)

FCOM VALUE ; Compares ST with real number from

memory

2 FCOMP source Identical to FCOM except that the stack pointer is incremented by

one after the compare operation.

3 FCOMPP Compares ST with ST(1) and increments stack pointer by 2 after

compare.

4 FICOM source Compares ST to a short or long integer from memory.

5 FICOMP source Identical to FICOM except stack pointer is incremented by one

after compare.

6 FTST Compares ST with zero.

7 FXAM Tests ST to see if it is zero, infinity, unnormalized, or empty. Sets

bits C3, C2, C1 and C0 to indicate result.

4. Transcendental Instructions (Trigonometric and Exponential Instructions)

S. No. Instruction Description with example

1 FPTAN Computes the values for a ratio of Y/X for an angle in ST. the

angle must be expressed in radians, and the angle must be in the
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range of 0 < angle < /4.

(FPTAN does not work correctly for angles of exactly 0 and /4.)

2 FPATAN Computes the angle whose tangent is Y/X. The X value must be

in ST, and the Y value must be in ST(1). Also X and Y must

satisfy the inequality 0 < Y < X < . The resulting angle

expressed in radians replaces Y in the stack. After the operation

the stack pointer is incremented so the result is then ST.

3 F2XM1 Computes the function Y = 2x – 1 for an X value in ST. the result,

Y replaces X in ST. X must be in the range 0 ≤ X ≤ 0.5

4 FYL2X Calculates Y times the log to the base 2 of X or Y (log2X). X

must be in the range of 0 < X <  and Y must be in the range

- < Y < +. X must initially be in ST and Y must be in ST(1).

The result replaces Y and then the stack is popped so that the

result is then at ST.

5 FYL2XP1 Computes the function Y times the log to the base 2 of (X+1) or

Y (log2 (X+1)). This instruction is almost identical to FYL2X

except that it gives more accurate results when computing the

logoff a number very close to one.

5. Load constant Instructions

S. No. Instruction Description

1 FLDZ - Push 0.0 onto stack

2 FLDI - Push + 1.0 onto stack

3 FLDPI - Push the value  onto stack

4 FLD2T - Push log of 10 to the base 2 onto stack (log210)

5 FLDL2E - Push log of e to the base 2 onto stack (log2e)

6 FLDLG2 - Push log of 2 to the base 10 onto stack (log102)

Note: The load constant instruction will just push indicated constant into the stack.

6. Processor Control Instructions

S. No. Instruction Description

1 FINIT/FNINT Initializes 8087. Disables interrupt output, sets stack pointer

to register 7, sets default status.

2 FDISI/FNDISI Disables the 8087 interrupt output pin so that it can not
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cause an interrupt when an exception (error) occurs.

3 FENI/FNENI Enables 8087 interrupt output so it can cause an interrupt

when an exception occurs.

4 FLDCW source Loads a status word from a memory location into the 8087

status register. This instruction should be preceded by the

FCLEX instruction to prevent a possible exception response

if an exception bit in the status word is set.

5 FSTCW/FNSTCW

destination

Copies the 8087 control word to a memory location. You

can determine its current value with 8086 instructions.

6 FSTSW/FNSTW

destination

Copies the 8087 status word to a memory location. You can

check various status bits with 8086 instructions and take

further action on the state of these bits.

7 FCLEX/FNCLEX Clears all of the 8087 exception flag bits in the status

register. Unasserts BUSY and INT outputs.

8 FSAVE/FNSAVE

destination

Copies the 8087 control word, status word, pointers and

entire register stack to 94-byte area of memory. After

copying all of this the FSAVE/FNSAVE instruction

initializes the 8087.

9 FRSTOR source Copies a 94 byte area of memory into the 8087 control

register, status register, pointer registers, and stack registers.

10 FSTENV / FNSTENV

destination

Copies the 8087 control register, status register, tag words,

and exception pointers to a series of memory locations. This

instruction does not copy the 8087 register stack to memory

as the FSAVE / FNSAVE instruction does.

11 FLDENV source Loads the 8087 control register, status register, tag word and

exception pointers from a named area in memory.

12 FINCSTP Increment the 8087 stack pointer by one.

13 FDECSTP Decrement the stack pointer by one.

14 FFREE destination Changes the tag for the specified destination register to

empty.

15 FNOP Performs no operation. Actually copies ST to ST.

16 FWAIT This instruction is actually an 8086 instruction which makes

the 8086 wait until it receives a not busy signal from the

8087 to its TEST* pin.

Note: the processor control instructions actually do not perform computations but they are made used to

perform tasks like initializing 8087, enabling intempty, etc.
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8087 Programs

1. Calculate area of a circle (A = R2) given R, radius of the circle.

; Procedure that calculates the area of a circle.

; The radius must be stored at memory location RADIUS before calling this procedure.

; The result is found in memory location AREA after the procedure.

AREAS PROC FAR

FINIT ; Initialize 8087

FLD RADIUS ; radius to ST

FMUL ST, ST(0) ; square radius

FLDPI ;  to ST

FMUL ; multiply ST=ST X ST(1)

FSTP AREA ; save area

FWAIT ; wait for coprocessor

RET

AREAS ENDP

OR

Program to calculate the area of circle. This program takes test data from array RAD that contains five

sample radii. The five areas are stored in a second array called AREA. No attempt is made in this program

to use the data from the AREA array.

; A short program that finds the area of five circles whose radii are stored in array RAD

. MODEL SMALL

.386 ; Select 80386

.387 ; Select 80387

.DATA

.CODE

.STARTUP
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MOV SI, 0 ; source element 0

MOV DI, 0 ; destination element 0

MOV CX, 5 ; count of 5

MAIN1:

FLD RAD [SI] ; radius to ST

FMUL ST, ST (0) ; square radius

FLDPI ;  to ST

FMUL ; multiply ST=ST X ST(1)

FSTP AREA [DI] ; save area

INC SI

INC DI

LOOP MAIN1

.EXIT

END

ST

STST

ST

ST

FLD RAD [SI]

ST (0)

ST (1)

ST (2)

ST (3)

RADIUS

FMUL ST, ST (0)

ST (0)

ST (1)

ST (2)

ST (3)

RADIUS2

FLDPI

ST (0)

ST (1)

ST (2)

ST (3)


RADIUS2

FMUL

ST (0)

ST (1)

ST (2)

ST (3)

 RADIUS2

FSTP AREA [DI]

ST (0)

ST (1)

ST (2)

ST (3)
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Fig: Operation of the stack for the above program. Note that the stack is shown after the execution
of the indicated instruction.

2. Program for determining the resonant frequency of an LC circuit. The equation solved by the
program is Fr = 1 / 2 LC. This example uses L1 for inductance L, C1 for capacitor C, and RESO
for the resultant resonant frequency.

; A sample program that finds the resonant frequency of an LC tank circuit.

. MODEL SMALL

.386 ; Select 80386

.387 ; Select 80387

.DATA

RESO DD ? ; resonant frequency

L1 DD 0.000001 ; inductance

C1 DD 0.000001 ; capacitance

TWO DD 2.0 ; constant

.CODE

.STARTUP

FLD L1 ; get L

FMUL C1 ; find LC

FSQRT ; find LC

FMUL TWO ; find 2LC

FLDPI ; get 

FMUL ; get 2LC

FLD1 ; get 1

FDIVR ; form 1/2LC

FSTP RESO ; save frequency

.EXIT

END

3. Program to find the roots of a polynomial expression (ax2+bx+cc=0) by using the quadratic

equation. The quadratic equation is b(b2 - 4ac)/2a

Note: In this program R1 and R2 are the roots for the quadratic equation. The constants are stored in

memory locations A1, B1, and C1. Note that no attempt is made to determine the roots if they are imaginary.

This example tests for imaginary roots and exits to DOS with a zero in the roots (R1 and R2), if it finds

them. In practice, imaginary roots could be solved for and stored in a separate set of memory locations.
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; A program that finds the roots of a polynomial equation using the quadratic equation. Note

; imaginary roots are indicated if both root1 (R1) and root 2 (R2) are zero.

. MODEL SMALL

.386 ; Select 80386

.387 ; Select 80387

.DATA

TWO DD 2.0

FOUR DD 4.0

A1 DD 1.0

B1 DD 0.0

C1 DD -9.0

R1 DD ?

R2 DD ?

.CODE

.STARTUP

FLDZ

FST R1 ;clear roots

FSTP R2

FLD TWO

FMUL A1 ; form 2a

FLD FOUR

FMUL A1

FMUL C1 ; form 4ac

FLD B1

FMUL B1 ; form b2

FSUBR ; form b2 - 4ac

FTST ; test b2 – 4ac for zero

FSTSW AX ; copy status register to AX

SAHF ; move to flags

JZ ROOTS1 ; if b2 - 4ac is zero

FSQRT ; find square root of b2 - 4ac

FSTSW AX

TEST AX, 1 ; test for invalid error (negative)

JZ ROOTS1

FCOMPP ; clear stack

JMP ROOTS2 ; end

ROOTS1:
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FLD B1

FSUB ST, ST (1)

FDIV ST, ST (2)

FSTP R1 ; save root1

FLD B1

FADD

FDIVR

FSTP R2 ; save root2

ROOTS2:

.EXIT

REVIEW QUESTION

1.Draw the internal struccture  of 8087 arithmatic coprocessor                 july 2009 (10 marks)

2.explain the following coprocessor instruction: FSQRT,FSTP,F SCALE, F RNDINT, F COM

July 2009 (10 marks)

3. Data transfer instruction of 8087.          Jan 09 (10 marks)

4. Expain the interconnection of 8087  with 8086   july 2008  (10 marks)

5. Explain the control register of 8086                july 2008  (5 marks)

END

cc
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UNIT:7: SYSTEM BUS STRUCTURE

BASIC 8086 CONFIGURATION
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Review questions:
1. Explain 8288 bus controller jan 09
2. Explain programmable interrupt controller jan 08
3. Explain LPT jan 09
4. Write a short notes on PCI, LPT, july09
5. Explain USB, USB data,USB commands. July 09
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UNIT:8:

80386, 80486 AND PENTIUM PROCESSORS: Introduction to the 80386 microprocessor,
Special 80386 registers, Introduction to the 80486 microprocessor, Introduction to the Pentium
microprocessor.

7 Hours

TEXT BOOKS:

1. Microcomputer systems-The 8086 / 8088 Family – Y.C. Liu and G. A. Gibson, 2E PHI -
2003

2. The Intel Microprocessor, Architecture, Programming and Interfacing-Barry B. Brey,
6e, Pearson Education / PHI, 2003

INTRODUCTION TO 80386 MICROPROCESSOR:

Introduced in 1986, the Intel 80386 provided a major upgrade to the earlier 8086 and 80286
processors in system architecture and features. The 80386 provided a base reference for the design
of all Intel processors in the X86 family since that time, including the 80486, Pentium, Pentium
Pro, and the Pentium II and III. All of these processors are extensions of the original design of the
80386. All are upwardly compatible with it. Programs written to run on the 80386 can be run with
little or no modification on the later devices. The addressing scheme and internal architecture of
the 80386 have been maintained and improved in the later microprocessors – thus a family of
devices has evolved over the years that is the standard of a wide industry and upon which is based
a vast array of software and operating system environments.

Major features of the 80386 include the following:

 A 32-bit wide address bus providing a real memory space of 4 gigabytes.
 A 32-bit wide data bus.
 Preemptive multitasking.
 Memory management, with four levels of protection.
 Virtual memory support, allowing 64 terabytes of virtual storage.
 Support for 8, 16, and 32-bit data types.
 Three primary modes of operation (Real, Protected, Virtual 8086).
 CMOS IV technology, 132-pin grid array.
 Object code compatibility with earlier X86 designs.

PIN DESCRIPTIONS

Symbol Type Function

CLK2 In Provides the fundamental timing for the device.

D0 – D31 I/O Data Bus inputs data during memory, I/O, or interrupt read cycles, and
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outputs data during memory and I/O cycles.

A2 – A31 Out Address Bus provides physical memory or I/O port addresses.

BE0# -
BE3#

Out
Byte Enable signals decode A0 and A1 to indicate specific banks for memory
data transfers.

W/R# Out Write/Read defines nature of data transaction in progress.

D/C# Out
Data/Control distinguishes data transfer cycles (memory or I/O) from control
cycles (interrupt, halt, instruction fetch).

M/IO# Out Memory/IO identifies source/destination of current cycles.

LOCK# Out
Bus Lock responds to a prefix byte on an instruction that indicates that other
bus masters may not intercede the current cycle until it is complete.

ADS# Out
Address Status indicates that a valid set of addressing signals are being
driven onto the device pins.These include W/R#, D/C#, M/IO#, BE0#-BE3#,
and A2-A31.

NA# In Next Address is used to request address pipelining.

READY# In Bus Ready requests a wait state from attached devices.

BS16# In Bus Size 16 requests a 16-bit rather than a 32-bit data transfer.

HOLD In Bus Hold Request initiates a DMA cycle.

HLDA Out
Bus Hold Acknowledge indicates that the processor is honoring a DMA
request./TD>

BUSY# In Busy is a synchronization signal from an attached coprocessor, e.g., 80387.

ERROR# In Error signals an error condition in an attached coprocessor.

PEREQ In
Processor Extension Request synchronizes a coprocessor data transfer via
the 80386.

INTR In Interrupt accepts a request from a interrupting device (maskable).

NMI In Non-Maskable Interrupt forces an interrupt that cannot be ignored.

RESET In
Reset causes the processor to enter a known state and destroys any execution
in progress.

N/C No Connect indicates pins that are not to have any electrical connections.

VCC In Power Supply typically +5 volts.

VSS In Ground.

DATA FLOW
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Refer to the following diagram for illustration.
The Intel 80386 data flow consists of three primary areas. These are the bus interface unit (BIU),
the central processing unit (CPU), and a memory management unit (MMU). These are
interconnected within the device by several 32-bit-wide data busses and an internal control bus.
The Bus Interface Unit (BIU) provides the attachments of the device to the external bus system.
The circuits include a set of address bus drivers which generate or receive the A2 – A31 address
lines; the BE0 – BE3 byte selection lines; the control lines M/IO, D/C, W/R, Lock, ADS, NA,
BS16, and Ready; and interface with the D0 – D31 data bus lines. The unit includes a pipeline
control element which provides the memory access pipelining that permits fast data transfer from
contiguous memory locations. The unit also includes a set of multiplex transceivers to handle the
direction of incoming or outgoing data and address information. Also included is a control element
that handles requests for interrupts, DMA cycles, and coprocessor synchronization.
The Central Processing Unit (CPU) is connected to the BIU via two paths. One is the direct ALU
bus (across the bottom of the drawing) that allows exchange of addressing information and data
between the CPU and the BIU if needed. The second is the normal path for instruction parts which
go by way of an instruction prefetching element that is responsible for requesting instruction bytes
from the memory as needed; an instruction predecoder that accepts bytes from the queue and
ensures at least 3 instructions are available for execution; the instruction decoder and execution
unit that causes the instruction to be performed. This is accomplished by the use of microprograms
stored in the system control ROM which is stepped through to control the data flow within and
around the Arithmetic Logic Unit (ALU).
The ALU consists of a register stack which contains both programmer-accessible and non-
accessible 32-bit registers; a hardware multiply/divide element; and a 64-bit barrel shifter for
shifts, rotates, multiplies, and divides. The ALU provides not only the data processing for the
device but also is used to compute effective addresses (EAs) for protected mode addressing.
The Memory Management Unit (MMU) provides the support for both the segmentation of main
memory for both protected mode and real mode, and the paging elements for virtual memory. In
real mode, the segmentation of the main memory is limited to a maximum segment size of 64K
bytes, and a maximum memory space of 1.024 megabytes. This is in concert with the Intel 8086
upon which this processor is based. In protected mode, several additional registers are added to
support variable length segments to a maximum theoretical size of 4 gigabytes, which in turn
supports multitasking and execution priority levels. Virtual mode using the device’s paging unit
allows a program or task to consume more memory than is physically attached to the device
through the translation of supposed memory locations into either real memory or disk-based data.
MODES OF OPERATION
The Intel 80386 has three modes of operation available. These are Real Mode, Protected Mode,
and Virtual 8086 mode.
Real Mode operation causes the device to function as would an Intel 8086 processor. It is faster by
far that the 8086. While the 8086 was a 16-bit device, the 80386 can provide 32-bit extensions to
the 8086’s instructions. There are additional instructions to support the shift to protected mode as
well as to service 32-bit data. In Real Mode, the address space is limited to 1.024 megabytes. The
bottom 1,024 bytes contain the 256 4-byte interrupt vectors of the 8086. The Reset vector is
FFFF0h. While the system can function as a simple DOS computer in this mode forever, the main
purpose of the mode is to allow the initialization of several memory tables and flags so that a jump
to Protected Mode may be made.
Protected Mode provides the 80386 with extensive capabilities. These include the memory
management, virtual memory paging, multitasking, and the use of four privilege levels which
allows the creation of sophisticated operating systems such as Windows NT and OS/2. (These will
be further explained.)
Virtual 8086 Mode allows the system, once properly initialized in Protected Mode, to create one
or more virtual 8086 tasks. These are implemented essentially as would be a Real Mode task,
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except that they can be located anywhere in memory, there can be many of them, and they are
limited by Real Mode constructs. This feature allows a 386-based computer, for example, to
provide multiple DOS sessions or to run multiple operating systems, each one located in its own
8086 environment. OS/2 made use of this feature in providing multiple DOS sessions and to
support its Windows 3.1 emulator. Windows NT uses the feature for its DOS windows.
REGISTER ORGANIZATION
Programmer-visible Registers
The ‘386 provides a variety of General Purpose Registers (GPRs) that are visible to the
programmer. These support the original 16-bit registers of the 8086, and extend them to 32-bit
versions for protected mode programming.
Chart goes here.
The AX, BX, CX, and DX registers exist in the same form as in the 8086. The may be used as 16-
bit registers when called with the "X" in their name. They may also be used as 8-bit registers when
defined with the "H" and "L" in their names. Hence, the AX register is used as a 16-bit device
while the AH and AL are used as 8-bit devices. Similarly, Source Index (SI), Destination Index
(DI), Base Pointer (BP) and Stack Pointer (SP) registers exist in their traditional 16-bit form.
To use any of these registers as 32-bit entities, the letter "E", for extended, is added to their names.
Hence, the 16-bit AX register can become the 32-bit EAX register, the 16-bit DI register becomes
the 32-bit EDI register, etc.
The registers of the ‘386 includes the 8086’s Code Segment (CS) register, Stack Segment (SS)
register, Data Segment (DS) register, and Extra Segment (ES) register which are used as containers
for values pointing to the base of these segments. Additionally, two more data-oriented segment
registers, the FS and GS registers, are provided. In real mode, these registers contain values that
point to the base of a segment in the real mode’s 1.048 megabyte address space. An offset is added
to this displaced to the right which generates a real address. In protected mode, the segment
registers contain a "selector" value which points to a location in a table where more information
about the location of the segment is stored.
The ‘386 also provides an Instruction Pointer (IP) register and a Flags (FLAGS) register which
operate as they did in the 8086 in real mode. In protected mode, these become 32-bit devices
which provide extended features and addressing.
The 32-bit FLAGS register contains the original 16 bits of the 8086-80286 flags in bit positions 0
through 15 as follows. These are available to real mode.

Bit Flag Description

0 CF Carry Flag

1 1 Always a 1

2 PF Parity Flag

3 0 Always a 0

4 AF Auxiliary Carry Flag

5 0 Always a 0

6 ZF Zero Flag

7 SF Sign Flag

8 TF Trap Flag



Microprocessor 10EC62

SJBIT/ECE Department 155

9 IF Interrupt Enable

10 DF Direction Flag

11 OF Overflow Flag

12-13 PL1,2 I/O Privilege Level Flags

14 NT Nested Task Flag

15 0 Always a 0

Two more flags are provided to support protected mode.

Bit Flag Description

16 RF Resume Flag

17 VM Virtual Mode

Here are some brief descriptions of the functions of these flags.
CARRY FLAG – This flag is set when a mathematical function generated a carry out of the
highest bit position of the result, such as when 9 + 1 = 10.
PARITY FLAG – This flag is set when the low order 8 bits of an operation results in an even
number of one’s set on, that is, even parity.
AUXILIARY CARRY FLAG – This flag is set when there is a carry out of the lower four bits of a
8-bit byte due to a mathematical operation. It supports the use of packed BCD encoding for
accounting.
ZERO FLAG – This flag is set if all bits of a result are 0.
SIGN FLAG – This bit is set if the high-order bit of a result is a 1. In signed mathematics, this
indicates a negative number.
TRAP ENABLE FLAG – This flag supports the use of Exception 1 when single stepping through
code with a debugger package. When the flag is set, the ‘386 will execute an Exception 1 interrupt
after the execution of the next instruction. If reset, the ‘386 will execute an Exception 1 interrupt
only at breakpoints.
INTERRUPT ENABLE FLAG – This flag, when set, allows interrupts via the INTR device pin to
be honored.
DIRECTION FLAG – This flag supports string OP codes that make use of the SI or DI registers. It
indicates which direction the succeeding count should take, decrement if the flag is set, and
increment if the flag is clear.
OVERFLOW FLAG – This flag is set if an operation results in a carry into the uppermost bit of
the result value, that is, if a carry in the lower bits causes the sign bit to change.
I/O PRIVILEGE LEVEL - These two flags together indicate one of four privilege levels under
which the processor operates in protected mode. These are sometimes called "rings", with ring 0
being the most privileged and ring 3 the least.
RESUME FLAG – This flag supports a debug register used to manage breakpoints in protected
mode.
VIRTUAL MODE – This flag supports the third mode of operation of the processor, Virtual 8086
mode. Once in protected mode, if set, this flag causes the processor to switch to virtual 8086 mode.
Programmer-invisible Registers
To support protected mode, a variety of other registers are provided that are not accessible by the
programmer. In real mode, the programmer can see and reference the segment registers CS, SS,
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DS, ES, FS, and GS as 16-bit entities. The contents of these registers are shifted four bit positions
to the left, then added to a 16-bit offset provided by the program. The resulting 20-bit value is the
real address of the data to be accessed at that moment. This allows a real address space of 220 or
1.048 megabytes. In this space, all segments are limited to 64K maximum size.
In protected mode, segments may from 1 byte to 4.3 gigabytes in size. Further, there is more
information that is needed than in real mode. Therefore, the segment registers of real mode become
holders for "selectors", values which point to a reference in a table in memory that contains more
detail about the area in the desired segment. Also, a set of "Descriptor Registers" is provided, one
for each segment register. These contain the physical base address of the segment, the segment
limit (or the size of the segment relative to the base), and a group of other data items that are
loaded from the descriptor table. In protected mode, when a segment register is loaded with a new
selector, that selector references the table that has previously been set up, and the descriptor
register for that segment register is given the new information from the table about that segment.
During the course of program execution, addressing references to that segment are made using the
descriptor register for that segment.
Four Control Registers CR0 – CR3 are provided to support specific hardware needs. CR0 is called
the Machine Control Register and contains several bits that were derived in the 80286. These are:
PAGING ENABLED, bit 31 – This bits when set enables the on-chip paging unit for virtual
memory.
TASK SWITCHED, bit 3 – This bit is set when a task switch is performed.
EMULATE COPROCESSOR, bit 2 – This bit causes all coprocessor OP codes to cause a
Coprocessor-Not-Found exception. This is turn will cause 80387 math coprocessor instructions to
have to be interpreted by software.
MONITOR COPROCESSOR, bit 1 – Works with the TS bit above to synchronize the coprocessor.
PROTECTION ENABLED, bit 0 – This bit enables the shift to protected mode from real mode.

1. A system reset.

PROTECTED MODE ARCHTECTURE
The 80386 is most impressive when running in protected mode. The linear address space can be as
great as 232 (4294967295) bytes. With the paging unit enabled, the limit is 246 or about 64
terabytes. The device can run all 8086 and 80286 code. It provides a memory management and a
hardware-assisted protection mechanism that keeps one program’s execution from interfering with
another. Additional instructions are provided to support multitasking. The programmer sees an
expanded address space available to her/him, and different addressing scheme.
Memory Segmentation
Memory segmentation in protected mode uses a segment base value and an offset in the manner of
real mode. However, because of the increased size of the address space now available, a more
complex arrangement is used. The segment register now contains a value called a selector. This is
a 16-bit value which contains an offset into a table. This table, called a descriptor table, contains
descriptors which are 8-byte values that describe more about the segment in question. Two tables
provided are the Global Descriptor Table (GDT) and the Local Descriptor Table (LDT). The GDT
contains information about segments that are global in nature, that is, available to all programs and
normally used most heavily by the operating system. The LDT contains descriptors that are
application specific. Both of these tables have a limit of 64K, that is, 8,192 8-byte entries. There is
also an Interrupt Descriptor Table (IDT) that contains information about segments containing code
used in servicing interrupts. This table has a maximum of 256 entries.
The upper 13 bits of the selector are used as an offset into the descriptor table to be used. The
lower 3 bits are:

 TI, a table selection bit – 0 = use the GDT, 1 = use the LDT.
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 RPL, Requested Privilege Level bits = 00 is the highest privilege level, 11 is the lowest.

The selector identifies the table to be used and the offset into that table where a set of descriptor
bytes identifies the segment specifically. Each table can be 64K bytes in size, so if there are 8
bytes per table entry, a total of 8,192 entries can be held in one table at a given time. The contents
of a descriptor are:
Bytes 0 and 1 – A 16-bit value that is connected to bits 0 – 3 of byte 6 to form the uppermost
offset, or limit, allowed for the segment. This 20 bit limit means that a segment can be between 1
byte and 1 megabyte in size. See the discussion of the granularity bit below.
Bytes 2 and 3 – A 16-bit value connected to byte 4 and byte 7 to form a 32-bit base value for the
segment. This is the value added to the offset provided by the program execution to form the linear
address.
AV bit – Segment available bit, where AV=0 indicates not available and AV=1 indicates available.
D bit – If D=0, this indicates that instructions use 16-bit offsets and 16-bit registers by default. If
D=1, the instructions are 32-bit by default.
Granularity (G) bit – If G=0, the segments are in the range of 1 byte to 1 megabyte. If G=1, the
segment limit value is multiplied by 4K, meaning that the segments can have a minimum of 4K
bytes and a maximum limit of 4 gigabytes in steps of 4K.
Byte 5, Access Rights byte – This byte contains several flags to further define the segment:

 Bit 0, Access bit – A=0 indicates that the segment has not been accessed; A=1 indicates
that the segment has been accessed (and is now "dirty").

 Bits 1, R/W bit; bit 2, ED/C bit; and bit 3, E bit. If bit 3 = 0, then the descriptor references a
data segment and the other bits are interpreted as follows: bit 2, interpreted as the ED bit, if
0, indicates that the segment expands upward, as in a data segment; if 1, indicates that the
segment expands in the downward direction, as in a stack segment; bit 1, the R/W bit, if 0,
indicates that the segment may not be written, while if 1 indicates that the segment is
writeable.

If bit 3 = 1, then the descriptor references a code segment and the other bits are interpreted
as follows: bit 2, interpreted as the C bit, if 0, indicates that we should ignore the descriptor
privilege for the segment, while if 1 indicates that privilege must be observed; bit 1, the
R/W bit, if 0, indicates that the code segment may not be read, while if 1 indicates that the
segment is readable.

 Bit 4, System bit – If 0, this is a system descriptor; if 1, this is a regular code or data
segment.

 Bits 5 and 6, Descriptor Privilege Level (DPL) bits – These two bits identify the privilege
level of the descriptor.

 Bit 7, Segment Valid (P) bit – If 0, the descriptor is undefined. If 1, the segment contains a
valid base and limit.

Use the illustration below to follow the flow of address translation. Numbers in circles on the
drawing match those below.
File goes here

1. The execution of an instruction causes a request to access memory. The segment portion of
the address to be used is represented by a selector value. This is loaded into the segment
register. Generally, this value is not changed too often, and is controlled by the operating
system.
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2. The selector value in the segment register specifies a descriptor table and points to one of
8,192 descriptor areas. These contain 8 bytes that identify the base of the real segment, its
limit, and various access and privilege information.

3. The base value in the descriptor identifies the base address of the segment to be used in
linear address space.

4. The limit value in the descriptor identifies the offset of the top of the segment area from the
base.

5. The offset provided by the instruction is used to identify the specific location of the desired
byte(s) in linear address space, relative to the base value.

The byte(s) thus specified are read or written as dictated by the instruction.
Program Invisible Registers
Several additional registers are provided that are normally invisible to the programmer but are
required by the hardware of the processor to expedite its functions.
Each of the segment registers (CS, DS, SS, ES, FS, and GS) have an invisible portion that is called
a cache. The name is used because they store information for short intervals – they are not to be
confused with the L1 or L2 cache of the external memory system. The program invisible portions
of the segment registers are loaded with the base value, the limit value, and the access information
of the segment each time the segment register is loaded with a new selector. This allows just one
reference to the descriptor table to be used for multiple accesses to the same segment. It is not
necessary to reference the descriptor table again until the contents of the segment register is
changed indicating a new segment of that type is being accessed. This system allows for faster
access to the main memory as the processor can look in the cache for the information rather than
having to access the descriptor table for every memory reference to a segment.
The Global Descriptor Table Register (GDTR) and the Interrupt Descriptor Table Register (IDTR)
contain the base address of the descriptor tables themselves and their limits, respectively. The limit
is a 16-bit value because the maximum size of the tables is 64K.
System Descriptors
The Local Descriptor Table Register contains a 16-bit wide selector only. This value references a
system descriptor, which is similar to that as described above, but which contains a type field that
identifies one of 16 types of descriptor (specifically type 0010) that can exist in the system. This
system descriptor in turn contains base and limit values that point to the LDT in use at the moment.
In this way, there is one global descriptor table for the operating system, but there can be many
local tables for individual applications or tasks if needed.
System descriptors contain information about operating system tables, tasks, and gates. The system
descriptor can identify one of 16 types as follows. You will notice that some of these are to support
backward compatibility with the 80286 processor.

Type Purpose

0000 Invalid

0001 Available 80286 Task State Segment

0010 Local Descriptor Table

0011 Busy 80286 Task State Segment

0100 80286 Call Gate

0101 Task Gate
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0110 80286 Interrupt Gate

0111 80286 Trap Gate

1000 Invalid

1001 Available 80386 Task State Segment

1010 Reserved

1011 Busy 80386 Task State Segment

1100 80386 Call Gate

1101 Reserved

1110 80386 Interrupt Gate

1111 80386 Trap Gate

Protection and Privilege Levels
The 80386 has four levels of protection which support a multitasking operating system. These
serve to isolate and protect user programs from each other and from the operating system. The
privilege levels manage the use of I/O instructions, privileged instructions, and segment and
segment descriptors. Level 0 is the most trusted level, while level 3 is the least trusted level.
Intel lists the following rules for the access of data and instruction levels of a task:

 Data stored in a segment with privilege level P can be accessed only by code executing at a
privilege level that is at least as privileged as P.

 A code segment or procedure with privilege level P can only by called by a task executing
at the same or a less privileged level than P.

At any point in time, a task can be operating at any of the four privilege levels. This is called the
task’s Current Privilege Level (CPL). A task’s privilege level may only be changed by a control
transfer through a gate descriptor to a code segment with a different privilege level.
The lower two bits of selectors contain the Requested Privilege Level (RPL). When a change of
selector is made, the CPL of the task and the RPL of the new selector are compared. If the RPL is
more privileged than the CPL, the CPL determines the level at which the task will continue. If the
CPL is more privileged than the RPL, the RPL value will determine the level for the task.
Therefore, the lowest privilege level is selected at the time of the change. The purpose of this
function is to ensure that pointers passed to an operating system procedure are not of a higher
privilege than the procedure that originated the pointer.
Gates
Gates are used to control access to entry points within the target code segment. There are four
types:

 Call Gates – those associated with Call, Jump, Return and similar operations codes. They
provide a secure method of privilege transfer within a task.

 Task Gates – those involved with task switching.
 Interrupt Gates – those involved with normal interrupt service needs.
 Trap Gates – those involved with error conditions that cause major faults in the execution.
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A gate is simply a small block of code in a segment that allows the system to check for privilege
level violations and to control entry to the operating system services. The gate code lives in a
segment pointed to by special descriptors. These descriptors contain base and offset values to
locate the code for the gate, a type field, a two-bit Default Privilege Level (DPL) and a five-bit
word count field. This last is used to indicate the number of words to be copied from the stack of
the calling routine to that of the called routine. This is used only in Call Gates when there is a
change in privilege level required. Interrupt and Trap gates work similarly except that there is no
pushing of parameters onto the stack. For interrupt gates, further interrupts are disabled. Gates are
part of the operating system and are mainly of interest to system programmers.
Task Switching
An important part of any multitasking system is the ability to switch between tasks quickly. Tasks
may be anything from I/O routines in the operating system to parts of programs written by you.
With only a single processor available in the typical PC, it is essential that when the needs of the
system or operator are such that a switch in tasks is needed, this be done quickly.
The 80386 has a hardware task switch instruction. This causes the machine to save the entire
current state of the processor, including all the register contents, address space information, and
links to previous tasks. It then loads a new execution state, performs protection checks, and begins
the new task, all in about 17 microseconds. The task switch is invoked by executing an
intersegment jump or call which refers to a Task Switch Segment (TSS) or a task gate descriptor in
the LDT or GDT. An INT n instruction, exception, trap, or external interrupt may also invoke a
task switch via a task gate descriptor in the associated IDT.
Each task must have an associated Task Switch Segment. This segment contains an image of the
system’s conditions as they exist for that task. The TSS for the current task, the one being executed
by the system at the moment, is identified by a special register called the Task Switch Segment
Register (TR). This register contains a selector referring to the task state segment descriptor that
defines the current TSS. A hidden base and limit register connected to the TR are loaded whenever
TR is updated. Returning from a task is accomplished with the IRET instruction which returns
control to the task that was interrupted with the switch. The current task’s segment is stored and
the previous task’s segment is used to bring it into the current task.
Control Registers
The 80386 has four "Control Registers" called CR0 through CR3. CR0 contains several bit flags as
follows:
PG – When set to 1, causes the translation of linear addresses to physical addresses. Indicates that
paging is enabled and virtual memory is being used.
ET – When set to 1, indicates that the 80387 math coprocessor is in use.
TS – When set to 1, indicates that the processor has switched tasks.
EM – When set to 1, causes a type 7 interrupt for the ESC (escape) instruction for the math
coprocessor.
MP – When set to 1, indicates that the math coprocessor is present in the system.
PE – Selects protected mode of operation.
CR 1 is not used by the ‘386. CR2 contains page fault linear addresses for the virtual memory
manager. CR3 contains a pointer to the base of the page directory for virtual memory management.
Switching to Protected Mode
At reset, the 80386 begins operation in Real Mode. This is to allow setup of various conditions
before the switch to Protected Mode is made. The actual switch is accomplished by setting the PE
bit in CR0. The following steps are needed.

1. Initialize the interrupt descriptor table to contain valid interrupt gates for at least the first 32
interrupt types. The IDT can contain 256 8-byte gates.

2. Set up the GDT so that it contains a null descriptor at position 0, and valid descriptors for at
least one code, one data, and one stack segment.
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3. Switch to protected mode by setting PE to 1.
4. Execute a near JMP to flush the internal instruction queue and to load the TR with the base

TSS descriptor.
5. Load all the data selectors with initial values.
6. The processor is now running in Protected Mode using the given GDT and IDT.

In the case of a multitasking system, an alternate approach is to load the GDT with at least two
TSS descriptors in addition to the code and data descriptors needed for the first task. The first JMP
following the setting of the PE bit will cause a task switch that loads all the data needed from the
TSS of the first task to be entered. Multitasking is then initialized.
VIRTUAL 8086 MODE
The third mode of operation provided by the 80386 is that of Virtual 8086 Mode. Once in
protected mode, one or more virtual 8086 tasks can be initiated. Virtual 8086 tasks appear to be
like real mode. The task is limited to 1 megabyte of memory whose address space is located at 0
through FFFFFh; the segment registers are used as they are in real mode (no selectors or lookup
tables are involved). Each of the virtual 8086 tasks are given a certain amount of time using a time-
slice algorithm typical of mainframes (timesharing). The software for such tasks is written as if
they were to run in a real mode address space. However, using paging, multiple such sessions can
be located anywhere in the virtual memory space of the 80386.
Windows NT and OS/2 use this technique to support one or more DOS sessions, or low-priority
utilities such as a print spooler.
VIRTUAL MEMORY AND PAGING
Using selectors and tables, the 80386 generates what Intel defines as a linear address as a means of
locating data or instructions for real mode or for the current task in protected mode. If the system is
not using virtual memory or paging, then the linear address is the physical address of the desired
data or bytes, and is forwarded to the pins of the device to become the physical address.
Paging allows a level of interpretation to be inserted between the linear address and the physical
address. The linear address is passed to the paging unit, and it in turn converts it to a physical
address that will be different than the linear one. This allows several options, including 1) mapping
a linear address to some other physical address according to the needs of a multitasking operating
system to place tasks at convenient locations, or 2) mapping linear addresses to memory that does
not exist in the system, but might be replaced by disk space.
Paging logically divides the available virtual space into "pages" that are 4Kbytes in size. Three
elements are needed to implement paging. These are the page directory, the page table, and the
actual physical memory page. Values in these tables are obtained by combining parts of the linear
address with values from the tables which point to other values.
The page directory is a table of as many as 1,024 4-byte entries. (This is a maximum number; most
systems use far fewer entries.) The base of the page directory is determined by the value contained
in CR3. An offset into the directory is created from the uppermost 10 bits (positions 22-31) of the
linear address. At this offset in the directory, we find a pointer to the base of a page table. This
means that there can be as many as 1,024 page tables in a system.
There are 1,024 entries possible in each page table. The middle 10 bits of the linear address (bit
positions 12 through 21) are used as a offset into the selected page table. The value thus
determined is a pointer to the base of a 4K memory page. The offset into the page to located the
specific data needed is contained in the lower 12 bits of the linear address.
The entries in the page directory and page tables are identical. They contain 10 bits of addressing,
and the following flags:
D or DIRTY bit: This bit is not used in the page directory. In the page table entries, it indicates that
the 4K area defined by this entry has been written to, and so must be saved (as to disk) if the area
is to be reused for something else.
A or ACCESSED bit: This bit is set to a 1 when the processor accesses the 4K page.
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R/W or Read/Write and U/S or User/Supervisor bits: These are used in conjunction with privilege
management.
P or PRESENT bit: This bit when set to 1 indicates that the referenced page is present in memory.
If 0, it can be used to indicate that the page is not in RAM, e.g., is on disk.
Performance of the paging system would be affected if the system needed to reference memory
tables each time a reference to RWM was made. To offset this, a Translation Lookaside Buffer
(TLB) is provided. This is a 4-way set-associative cache that contains entries for the last 32 pages
needed by the processor. This provides immediate information about 98% of the time, causing
only 2% of memory accesses to make the page directory-page table translation.
HARDWARE HIGHLIGHTS
The instructor will provide you with illustrations of the timing sequences for the various read and
write cycles available on the 80386. There are two items of interest that we note here.
Address Pipelining
Under non-pipelined conditions, the bus signals of the ‘386 function very much like any other
processor. A machine cycle consists of two T-states, T1 and T2. These are defined by the
following edge of the system clock signal. At the beginning of T1, an address appears on the BE0#
through BE3# and A2 through A31 lines, along with various control lines. The address is held
valid until very near the end of T2. The ADS# line is pulled low (active) during T1 to indicate that
the address bus contains a valid address; the ADS# line is pulled high (negated) during T2. The
data is passed in or out at the transition between the end of T2 of the current cycle and the start of
T1 of the following machine cycle. During this time, the NA# line is maintained high (negated).
In pipelining, the address bits are available ½ machine cycle earlier than with no pipelining. The
ADS# line is pulled low during T2 of a cycle rather than T1, indicating that during T2, the address
of the data to be exchanged during the next machine cycle is available. Pipelining is initiated by
the incoming line NA#, that is controlled by the memory subsystem. If pulled low during a T1, the
memory expects that the address of the next bytes needed will be available ½ cycle early.
The purpose of pipelining is to minimize the need for wait states. The time needed to read or write
data remains the same. However, the time an address is available before the data is expected is
lengthened so that a wait state may not be needed. The memory subsystem has to be designed to
work within these parameters.
Dynamic Bus Sizing
Normally, the 80386 expects data to be transferred on a 32-bit wide data bus. However, it is
possible to force the system to transfer 32-bit data as two 16-bit quantities in two successive bus
cycles. This is initiated by the BS16# signal coming from the memory or I/O device subsystem.
This line is pulled low during the middle of T2. It indicates to the processor that 32-bit data will be
sent as two 16-bit words, with D0-D15 on the first transfer and D16-D31 on the second. The data
is transferred on the D0-D15 bus lines; the D16-D31 lines are ignored.
INSTRUCTION SET
The instruction set of the 80386 is compatible with that of the 8086 and the programming for that
processor can run on the ‘386 without modification. However, the ‘386 includes extension of the
base instruction set to support 32-bit data processing and operation in protected mode. The reader
is referred to the Intel documentation for full particulars on each instruction and its possible
versions. Here we discuss the essential aspects of instruction organization.
Instructions vary in length, depending upon how much information must be given for the
instruction, the addressing modes used, and the location of data to be processed. The generic
instruction contains the following:
BYTE 1: This is the operation (OP) code for the instruction. Bit position 0 may be interpreted as
the "w" bit, where w=0 indicates byte mode and w=1 indicates word mode. Also, bit position 1
may be interpreted as the operation direction bit in double operand instructions as follows:

d Direction of Operation
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0

Register/Memory <- Register quot;reg"
field indicates source operand "mod r/m"
or "mod ss index base" indicates
destination operand

1

Register <- Register/Memory "reg" field
indicates destination operand "mod r/m" or
"mod ss index base" indicates source
operand

BYTE 2 (optional): This second byte of OP code may or may not be used depending on the
operation.
BYTE 3: This is the "mod r/m" byte. Bits 3, 4, and 5 contain more OP code information. Bits 0, 1,
and 2 contain the "r/m", or "register/memory" of the instruction. These identify which registers are
in use or how the memory is addressed (the addressing mode). The r/m bits are interpreted
depending upon the two "mod" or mode bits according to this chart:

Mod r/m 16-bit Effective Address 32-bit Effective Address

00 000 DS: [BX+SI] DS: [EAX]

00 001 DS: [BX+DI] DS: [ECX]

00 010 DS: [BP+SI] DS: [EDX]

00 011 DS: [BP+DI] DS: [EBX]

00 100 DS: [SI] sib byte is present

00 101 DS: [DI] DS: d32

00 110 DS: d16 DS: [ESI]

00 111 DS: [BX] DS: [EDI]

01 000 DS: [BX+SI+d8] DS: [EAX+d8]

01 001 DS: [BX+DI+d8] DS: [ECX+d8]

01 010 SS: [BP+SI+d8] DS: [EDX+d8]

01 011 SS: [BP+DI+d8] DS: [EBX+d8]

01 100 DS: [SI+d8] sib is present

01 101 DS: [DI+d8] SS: [EBP+d8]

01 110 SS: [BP+d8] DS: [ESI+d8]

01 111 DS: [BX+d8] DS: [EDI+d8]

10 000 DS: [BX+SI+d16] DS: [EAX+d32]
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10 001 DS: [BX+DI+d16] DS: [ECX+d32]

10 010 SS: [BP+SI+d16] DS: [EDX+d32]

10 011 SS: [BP+DI+d16] DS: [EBX+d32]

10 100 DS: [SI+d16] sib is present

10 101 DS: [DI+d16] SS: [EBP+d32]

10 110 SS: [BP+d16] DS: [ESI+d32]

10 111 DS: [BX+d16] DS: [EDI+d32]

16-Bit Reg, w=0 16-Bit Reg, w=1 32-Bit Reg, w=0 32-Bit Reg, w=1

11 000 AL AX AL EAX

11 001 CL CX CL ECX

11 010 DL DX DL EDX

11 011 BL BX BL EBX

11 100 AH SP AH ESP

11 101 CH BP CH EBP

11 110 DH SI DH ESI

11 111 BH DI BH EDI

BYTE 4 (optional): This is the "sib" byte and is not found in the 8086. It appears only in some
80386 instructions as needed. This byte supports the "scaled index" addressing mode. Bit positions
0-2 identify a general register to be used as a base value. Bit positions 3-5 identify a general
register which contains an index register. Bit positions 6 and 7 identify a scaling factor to be used
to multiply the value in the index register as follows:

ss Scale Factor

00 1

01 2

10 4

11 8

The index field of the sib byte is interpreted as follows:

Index Index Register

000 EAX
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001 ECX

010 EDX

011 EBX

100 No index register used

101 EBP

110 ESI

111 EDI

The mod field of the mod r/m byte taken with the base value of the sib byte generates the
following scaled indexing modes:

Mod base Effective Address

00 000 DS: [EAX + (scaled index)]

00 001 DS: [ECX + (scaled index)]

00 010 DS: [EDX + (scaled index)]

00 011 DS: [EBX + (scaled index)]

00 100 SS: [ESP + (scaled index)]

00 101 DS: [d32 + (scaled index)]

00 110 DS: [ESI + (scaled index)]

00 111 DS: [EDI + (scaled index)]

01 000 DS: [EAX + (scaled index) + d8]

01 001 DS: [ECX + (scaled index) + d8]

01 010 DS: [EDX + (scaled index) + d8]

01 011 DS: [EBX + (scaled index) + d8]

01 100 SS: [ESP + (scaled index) + d8]

01 101 SS: [EBP + (scaled index) + d8]

01 110 DS: [ESI + (scaled index) + d8]

01 111 DS: [EDI + (scaled index) + d8]

10 000 DS: [EAX + (scaled index) + d32]
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10 001 DS: [ECX + (scaled index) + d32]

10 010 DS: [EDX + (scaled index) + d32]

10 011 DS: [EBX + (scaled index) + d32]

10 100 SS: [ESP + (scaled index) + d32]

10 101 SS: [EBP + (scaled index) + d32]

10 110 DS: [ESI + (scaled index) + d32]

10 111 DS: [EDI + (scaled index) + d32]

Following a possible byte 4, there may be 1, 2, or 4 bytes of address displacement which provide
an absolute offset into the current segment for data location. Also following may be 1, 2, or 4 bytes
to implement immediate data.
The byte and bit pattern of instructions vary. For instance, in conditional instructions a four-bit
field called "tttn" implements the conditions to be tested:

Mnemonic Condition tttn

O Overflow 0000

NO No Overflow 0001

B/NAE Below/Not Above or Equal 0010

NB/AE Not Below/Above or Equal 0011

E/Z Equal/Zero 0100

NE/NZ Not Equal/Not Zero 0101

BE/NA Below or Equal/Not Above 0110

NBE/A Not Below or Equal/Above 0111

S Sign 1000

NS Not Sign 1001

P/PE Parity/Parity Even 1010

NP/PO No Parity/Parity Odd 1011

L/NGE Less Than/Not Greater or Equal 1100

NL/GE Not Less Than/Greater or Equal 1101

LE/NG Less Than or Equal/Not Greater Than 1110

NLE/G Not Less Than or Equal/Greater Than 1111
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Pentium

About the Pentium Architecture
------------------------------

-- It is not a load/store architecture.

-- The instruction set is huge!  We go over only a fraction of
the instruction set.  The text only presents a fraction.

-- There are lots of restrictions on how instructions/operands are
put together, but there is also an amazing amount of flexibility.

Registers
---------

The Intel architectures as a set just do not have enough registers
to satisfy most assembly language programmers.  Still, the processors
have been around for a LONG time, and they have a sufficient number
of registers to do whatever is necessary.

For our (mostly) general purpose use, we get

32-bit      16-bit    8-bit             8-bit
(high part of 16) (low part of 16)

EAX         AX        AH                AL
EBX         BX        BH                BL
ECX         CX        CH                CL
EDX         DX        DH                DL

and

EBP         BP
ESI         SI
EDI         DI
ESP         SP

There are a few more, but we won't use or discuss them.  They
are only used for memory accessability in the segmented memory
model.
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Using the registers:
As an operand, just use the name (upper case and lower case both
work interchangeably).

EBP is a frame pointer (see Chapter 11).
ESP is a stack pointer (see Chapter 11).

Oddities:
This is the only architecture that I know of where the programmer
can designate part of a register as an operand.  On ALL other
machines, the whole register is designated and used.

ONE MORE REGISTER:
Many bits used for controlling the action of the processor and
setting state are in the register called EFLAGS.  This register
contains the condition codes:

OF  Overflow flag
SF  Sign flag
ZF  Zero flag
PF  Parity flag
CF  Carry flag

The settings of these flags are checked in conditional control
instructions.  Many instructions set one or more of the flags.

There are many other bits in the EFLAGS register:  TO BE DISCUSSED
LATER.

The use of the EFLAGS register is implied (rather than explicit)
in instructions.

Accessing Memory
----------------

There are 2 memory models supported in the Pentium architecture.
(Actually it is the 486 and more recent models that support 2 models.)

In both models, memory is accessed using an address.  It is the
way that addresses are formed (within the processor) that differs
in the 2 models.

FLAT MEMORY MODEL

-- The memory model that we use.  AND, the memory model that every
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other manufactures' processors also use.

--

SEGMENTED MEMORY MODEL

-- Different parts of a program are assumed to be in their own,
set-aside portions of memory.  These portions are called
segments.

-- An address is formed from 2 pieces:  a segment location and
an offset within a segment.

Note that each of these pieces can be shorter (contain fewer
bits) than a whole address.  This is much of the reason that
Intel chose this form of memory model for its earliest
single-chip processors.

-- There are segments for:

code
data
stack
other

-- Which segment something is in can be implied by the memory
access involved.  An instruction fetch will always be looking
in the code segment. A push instruction (we'll talk about this
with chapter 11) always accesses the stack segment. Etc.

Addressing Modes
----------------

Some would say that the Intel architectures only support 1 addressing
mode.  It looks (something like) this:

effective address = base reg + (index reg x scaling factor) + displacement

where
base reg is EAX, EBX, ECX, EDX or ESP or EBP
index reg is EDI or ESI
scaling factor is 1, 2, 4, or 8

The syntax of using this (very general) addressing mode will
vary from system to system.  It depends on the preprocessor
and the syntax accepted by the assembler.
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For our implementation, an operand within an instruction that
uses this addressing mode could look like

[EAX][EDI*2 + 80]

The effective address calculated with be the contents of
register EDI multiplied times 2 added to the constant 80,
added to the contents of register EAX.

There are extremely few times where a high-level language
compiler can utilize such a complex addressing mode.  It is
much more likely that simplified versions of this mode
will be used.

SOME ADDRESSING MODES

-- register mode --
The operand is in a register.  The effective address is the
register

Example instruction:

mov  eax, ecx

Both operands use register mode.  The contents of register ecx
is copied to register eax.

-- immediate mode --
The operand is in the instruction.  The effective address is within
the instruction.

Example instruction:

mov  eax, 26

The second operand uses immediate mode.  Within the instruction
is the operand. It is copied to register eax.

-- register direct mode --
The effective address is in a register.

Example instruction:

mov  eax, [esp]

The second operand uses register direct mode.  The contents of
register esp is the effective address.  The contents of memory
at the effective address are copied into register eax.
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-- direct mode --
The effective address is in the instruction.

Example instruction:

mov  eax, var_name

The second operand uses direct mode.  The instruction contains
the effective address.  The contents of memory
at the effective address are copied into register eax.

-- base displacement mode --
The effective address is the sum of a constant and the contents
of a register.

Example instruction:

mov  eax, [esp + 4]

The second operand uses base displacement mode.  The instruction
contains a constant.  That constant is added to the contents
of register esp to form an effective address.  The contents
of memory at the effective address are copied into register eax.

-- base-indexed mode -- (Intel's name)
The effective address is the sum of the contents of two registers.

Example instruction:

mov  eax, [esp][esi]

The contents of registers esp and esi are added to form an
effective address.  The contents of memory at the effective
address are copied into register eax.

Note that there are restrictions on the combinations of registers
that can be used in this addressing mode.

-- PC relative mode --
The effective address is the sum of the contents of the PC and
a constant contained within the instruction.

Example instruction:

jmp  a_label

The contents of the program counter is added to an offset that
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is within the machine code for the instruction.  The resulting
sum is placed back into the program counter.  Note that from the
assembly language it is not clear that a PC relative addressing
mode is used.  It is the assembler that generates the offset
to place in the instruction.

Instruction Set
----------------

Generalities:
-- Many (most?) of the instructions have exactly 2 operands.

If there are 2 operands, then one of them will be required
to use register mode, and the other will have no restrictions
on its addressing mode.

-- There are most often ways of specifying the same instruction
for 8-, 16-, or 32-bit oeprands.  I left out the 16-bit ones
to reduce presentation of the instruction set. Note that
on a 32-bit machine, with newly written code, the 16-bit form
will never be used.

Meanings of the operand specifications:
reg - register mode operand, 32-bit register
reg8 - register mode operand, 8-bit register
r/m - general addressing mode, 32-bit
r/m8 - general addressing mode, 8-bit
immed - 32-bit immediate is in the instruction
immed8 - 8-bit immediate is in the instruction
m - symbol (label) in the instruction is the effective address

Data Movement
-------------

mov   reg, r/m                 ; copy data
r/m, reg
reg, immed
r/m, immed

movsx reg, r/m8                ; sign extend and copy data

movzx reg, r/m8                ; zero extend and copy data

lea   reg, m                   ; get effective address
(A newer instruction, so its format is much restricted
over the other ones.)
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EXAMPLES:

mov EAX, 23  ; places 32-bit 2's complement immediate 23
; into register EAX

movsx ECX, AL  ; sign extends the 8-bit quantity in register
; AL to 32 bits, and places it in ECX

mov [esp], -1  ; places value -1 into memory, address given
; by contents of esp

lea EBX, loop_top ; put the address assigned (by the assembler)
; to label loop_top into register EBX

Integer Arithmetic
------------------

add   reg, r/m                 ; two's complement addition
r/m, reg
reg, immed
r/m, immed

inc   reg                      ; add 1 to operand
r/m

sub   reg, r/m                 ; two's complement subtraction
r/m, reg
reg, immed
r/m, immed

dec   reg                      ; subtract 1 from operand
r/m

neg   r/m                      ; get additive inverse of operand

mul   eax, r/m                 ; unsigned multiplication
; edx||eax <- eax * r/m

imul   r/m                     ; 2's comp. multiplication
; edx||eax <- eax * r/m

reg, r/m                ; reg <- reg * r/m
reg, immed              ; reg <- reg * immed

div   r/m                      ; unsigned division
; does edx||eax / r/m
; eax <- quotient
; edx <- remainder

idiv   r/m                     ; 2's complement division
; does edx||eax / r/m
; eax <- quotient
; edx <- remainder



Microprocessor 10EC62

SJBIT/ECE Department 174

cmp   reg, r/m ; sets EFLAGS based on
r/m, immed               ; second operand - first operand
r/m8, immed8
r/m, immed8              ; sign extends immed8 before subtract

EXAMPLES:

neg [eax + 4]    ; takes doubleword at address eax+4
;   and finds its additive inverse, then places
;   the additive inverse back at that address
;   the instruction should probably be
;      neg  dword ptr [eax + 4]

inc ecx ; adds one to contents of register ecx, and
;   result goes back to ecx

Logical
-------

not   r/m                     ; logical not

and   reg, r/m                ; logical and
reg8, r/m8

r/m, reg
r/m8, reg8

r/m, immed
r/m8, immed8

or    reg, r/m                ; logical or
reg8, r/m8

r/m, reg
r/m8, reg8

r/m, immed
r/m8, immed8

xor   reg, r/m                ; logical exclusive or
reg8, r/m8

r/m, reg
r/m8, reg8

r/m, immed
r/m8, immed8

test  r/m, reg                ; logical and to set EFLAGS
r/m8, reg8

r/m, immed
r/m8, immed8
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EXAMPLES:

and edx, 00330000h   ; logical and of contents of register
;   edx (bitwise) with 0x00330000,
;   result goes back to edx

Floating Point Arithmetic
-------------------------
Since the newer architectures have room for floating point
hardware on chip, Intel defined a simple-to-implement
extension to the architecture to do floating point arithmetic.
In their usual zeal, they have included MANY instructions to
do floating point operations.

The mechanism is simple.  A set of 8 registers are organized
and maintained (by hardware) as a stack of floating point
values.  ST refers to the stack top.  ST(1) refers to the
register within the stack that is next to ST.  ST and ST(0)
are synonyms.

There are separate instructions to test and compare the values
of floating point variables.

finit                         ; initialize the FPU

fld   m32                     ; load floating point value
m64
ST(i)

fldz ; load floating point value 0.0

fst   m32                     ; store floating point value
m64
ST(i)

fstp  m32                     ; store floating point value
m64                     ;   and pop ST
ST(i)

fadd  m32                     ; floating point addition
m64
ST, ST(i)
ST(i), ST
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faddp ST(i), ST               ; floating point addition
;   and pop ST

I/O
---
The only instructions which actually allow the reading and
writing of I/O devices are priviledged.  The OS must handle
these things.  But, in writing programs that do something
useful, we need input and output.  Therefore, there are some
simple macros defined to help us do I/O.

These are used just like instructions.

put_ch  r/m           ; print character in the least significant
;   byte of 32-bit operand

get_ch  r/m           ; character will be in AL

put_str m             ; print null terminated string given
; by label m

Control Instructions
--------------------
These are the same control instructions that all started with
the character 'b' in SASM.

jmp   m               ; unconditional jump
jg    m               ; jump if greater than 0
jge   m               ; jump if greater than or equal to 0
jl    m               ; jump if less than 0
jle m               ; jump if less than or equal to 0

--------------------------------------------------------------------------------------------------------
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