

1 st		3	1	0			
Semester	MULTIVARIABLE CALCULUS & PARTIAL DIFFERENTIAL EQUATIONS						
PREREQUISITES	10+2 Level mathematics / Basic Mathematics						
OBJECTIVES	This Mathematics course provides requisite and relevant background necessary to understand the other important engineering mathematics courses offered for Engineers and Scientists. Three important topics of applied mathematics, namely the Multiple integrals, Vector Calculus, Laplace transforms which require knowledge of integration are introduced.						
Expected Outcome	By the end of the course the students are expected to learn (i) how to evaluate multiple integrals in Cartesian, Cylindrical and Spherical geometries. (ii) the powerful language of Vector calculus with physical understanding to deal with subjects such as Fluid Dynamics and Electromagnetic fields. (iii) to solve ordinary differential equations directly and also use transform methods where its possible						
Module 1	Multivariable Calculus & Multiple Integrals						
	or two variables-maxima and minima-constrained maxima and minima-Lagran ethod- Jacobians Evaluation of double integrals-change of order of integration			C			
variables be cartesian and of multiple i	tween cartesian and polar co-ordinates- evaluation of triple integrals-change of d cylindrical and spherical polar co-ordinates-beta and gamma functions– inter ntegrals using gamma and beta functions-error functionproperties Vector Calculus & Ordinary Differential Equations	f vari	ables	betw			
variables bet cartesian and of multiple i Module 2 Scalar and ve directional de proof) - scala Gauss diverg Them ,Linea non homoger reducible to b	tween cartesian and polar co-ordinates- evaluation of triple integrals-change of d cylindrical and spherical polar co-ordinates-beta and gamma functions— inter- ntegrals using gamma and beta functions-error functionproperties Vector Calculus & Ordinary Differential Equations ector valued functions - gradient–physical interpretation-total derivative– erivative-divergence and curl –physical interpretations-vector identities(without ar and vector potentials-line, surface and volume integrals-Green's , Stoke's and gence theorems (without proof)-verification and evaluation of vector integrals usir r higher order ordinary differential equation with constant coefficients— solutions nous odes- method of undetermined coefficients –method of variation of parameter linear equations with constant coefficients	f varia rrelati	ables on-ev	betw valuar	tion		
variables bet cartesian and of multiple i Module 2 Scalar and ve directional de proof) - scala Gauss diverg Them ,Linea non homogen reducible to 1 Module 3	tween cartesian and polar co-ordinates- evaluation of triple integrals-change of d cylindrical and spherical polar co-ordinates-beta and gamma functions- inter- integrals using gamma and beta functions-error functionproperties Vector Calculus & Ordinary Differential Equations ector valued functions - gradient-physical interpretation-total derivative- erivative-divergence and curl -physical interpretations-vector identities(without ar and vector potentials-line, surface and volume integrals-Green's , Stoke's and gence theorems (without proof)-verification and evaluation of vector integrals usin r higher order ordinary differential equation with constant coefficients- solutions nous odes- method of undetermined coefficients -method of variation of parameter linear equations with constant coefficients Laplace Transforms	f varia rrelati	ables on-ev	betw valuar	tion		
variables bet cartesian and of multiple i Module 2 Scalar and ve directional de proof) - scala Gauss diverg Them ,Linea non homoger reducible to 1 Module 3 Definition-L values theore	tween cartesian and polar co-ordinates- evaluation of triple integrals-change of d cylindrical and spherical polar co-ordinates-beta and gamma functions inter- ntegrals using gamma and beta functions-error functionproperties Vector Calculus & Ordinary Differential Equations ector valued functions - gradientphysical interpretation-total derivative erivative-divergence and curlphysical interpretations-vector identities(without ar and vector potentials-line, surface and volume integrals-Green's , Stoke's and gence theorems (without proof)-verification and evaluation of vector integrals usir r higher order ordinary differential equation with constant coefficients- solutions nous odes- method of undetermined coefficientsmethod of variation of parameter linear equations with constant coefficients Laplace Transforms aplace transforms of functions-properties of Laplace transforms-initial and final ems-inverse transforms-transforms of periodic functions-convolution theorems- is, impulse functions-concept of transfer functionsapplications to the solution of	f varia rrelati of ho ers – e	ables on-ev	betw valuar	tion		
variables bet cartesian and of multiple i Module 2 Scalar and ve directional de proof) - scala Gauss diverg Them ,Linea non homogen reducible to Module 3 Definition-L values theore step function	tween cartesian and polar co-ordinates- evaluation of triple integrals-change of d cylindrical and spherical polar co-ordinates-beta and gamma functions inter- ntegrals using gamma and beta functions-error functionproperties Vector Calculus & Ordinary Differential Equations ector valued functions - gradientphysical interpretation-total derivative erivative-divergence and curlphysical interpretations-vector identities(without ar and vector potentials-line, surface and volume integrals-Green's , Stoke's and gence theorems (without proof)-verification and evaluation of vector integrals usir r higher order ordinary differential equation with constant coefficients- solutions nous odes- method of undetermined coefficientsmethod of variation of parameter linear equations with constant coefficients Laplace Transforms aplace transforms of functions-properties of Laplace transforms-initial and final ems-inverse transforms-transforms of periodic functions-convolution theorems- is, impulse functions-concept of transfer functionsapplications to the solution of	ng of ho ers – e	moger equation	nous	tion		

	MODERN PHYSICS	3	0	2	4			
prerequisites	Physics as one subject in 12th Standard or equivalent level.							
Objectives	To enable the students to understand the basics of the latest advancements in Physics, viz., Quantum Mechanics, Lasers, Fiber Optics, Ultrasonics, Microwaves and Nanotechnology							
Expected Outcome	At the end of the course, students will acquire the necessary knowledge about modern applications in various engineering and technology Disciplines.	phys	sics a	nd it	S			
Module 1	Quantum Physics							
uncertainty pr Quantum Mec Laser characte Schawlow and	Dual nature of electron magnetic radiation - de Broglie waves – Compton effect experimental verification -Heisenberg uncertainty principle – Schrodinger equation – application - particle in a box (ID) – Spectroscopy. Application of Quantum Mechanics - Scanning Tunneling Microscope - Atomic Force Microscope problems Laser characteristics - Einstein's coefficients - its significance - population inversion – three level, four level laser – Schawlow and Townes condition – Nd. YAG, He-Ne-CO2 laser – welding, drilling, cutting – optical disk systems – recording – data readout from optical disks – Holography – Recording and Reconstruction – Problems.							
Module 2	Fiber Optics , Ultrasonic's & Microwaves							
single mode, r LED – Laser o Properties – g	Light propagation through fibers – Acceptance angle - numerical aperture – types of fibers – step index, graded index – single mode, multimode – dispersion– intermodal, intramodal – application of fiber optics in communication – source LED – Laser diode – Detector – PIN photodiode – endoscope – problems Properties – generation – Magnetostriction method – Piezo-electric method – detection of ultrasonic – applications- NDT Characteristic features of micro waves – TE and TM modes – Klystron – Gunn diode – applications of microwaves.							
Module 3	Nano Technology							
Nanocomposi	Vanomaterials – properties of Nanomaterials – Moore's Law Semiconductor nanoparticl tes – Quantum well – Wire – Dots – Nanolithography – Applications of Nanotechnolog sensors – Medicine		Aeros	pace	;			
Text Books								
1.Modern Physical (3rd Indian Edit	cs, Raymond A. Serway, Clement J. Mosses, Curt A. Moyer, Cengage learning ion 2010).							
2. Laser System	s and Applications, Nityanand Choudhary and Richa Verma, PHI							
Learning Private 3. Introduction t	o Fiber Optics, Ajoy Ghatak and K. Thyagarajan, Cambridge University Press							
	2011) 4. Microwave devices and circuits-second edition-Samuel Y.Liao – Pearson Education-New Delhi, 3rd Edition 2012.							
Reference								
 Modern Physical Dubson, PHI Modern Physical 	Aodern Physics, Arthur Beiser, Tata McGraw Hill,2009 ics for Scientists and Engineers, John R. Taylor, Chris D. Zafiratos and Michael Learning Private Limited 2011. ics, Kenneth Krane, Wiley, Indian Edition, 2010. ics, Stephen T. Thornton and Andrew Rex, Cengage learning, First Indian							
5. The essentials Hill Publishing	s understanding nanoscience and nanotechnology, J. Pradeep, Tata McGraw- Company Ltd., 2007. nysics (New Revised Sixth Edition), S. O. Pillai, New Age International							

	CIRCUITS , ELECTRONICS & ELECTRICAL MACHINES	3	1	0	4				
PREREQUISITES	-								
OBJECTIVES	To make the student understand the fundamentals of electrical circuit analysis, logic circuits, and make them understand the working of semiconductor devices and electrical machines								
Expected Outcome	The students will be able to make simple electrical circuits and logical Circuits. The students will be able to select suitable semiconductor devices and electrical machine	Circuits. The students will be able to select suitable semiconductor devices							
Module 1	ELEMENTARY CIRCUIT ANALYSIS								
Thevenin's capacitors a second orde	Ohm's law, KCL, KVL, node voltage analysis, mesh current, circuits with dependant and controlled sources, Thevenin's & Norton's equivalent, maximum power transfer and superposition theorem, VI characteristics for capacitors and inductors, Steady state DC analysis, RL and RC transients in circuits with DC source, analysis of a second order circuit with a DC source, RMS values, the use of phasors for constant frequency sinusoidal sources, steady state AC analysis of a series circuit, series and parallel combinations of complex impedances, AC power								
Module 2	DIGITAL SYSTEMS & SEMICONDUCTOR DEVICES								
synthesis of memory typ sensors, sig concepts, ic amplifier co bias circuits relationship	circuit concepts, representation of numerical data in binary form - combinatorial lo f logic circuits, minimization of logic circuits - sequential logic circuits - computer bes, digital process control, computer based instrumentation systems, measurement nal conditioning, analog to digital conversion. Basic diode concepts, zener diode v leal diode model, rectifier and wave-shaping circuits, linear small signal equivalent oncepts, cascaded amplifiers, ideal amplifiers, differential amplifiers, NMOS and P s, small signal equivalent circuits, CMOS logic gates, bipolar junction transistors, c o, common emitter characteristics, large signal DC circuit models, small signal equi amplifiers, inverting and non-inverting amplifiers, integrators & differentiators ELECTROMECHANICS	organ conce voltag t circu MOS curren	izatic pts an e regu its, ba trans t and	on, nd ilator asic istors volta	ge				
machines, s	elds and circuits, self and mutual inductance, ideal and real transformers, principle shunt, separately excited and series connected DC motors, speed control of DC mot notors, synchronous machines and single phase induction motors, stepper motors and	ors, 3	-phas	e					
Text Books	 Allan R. Hambley, "Electrical Engineering-Principles & Applications", Pearson Education, Ed. 6, 2014. Basic Electrical Engineering Third edition by Kothari D. P and Nagrath I. J., Ta MacGraw Hills, 2010. 								
Reference	 W. H. Hayt, J.E. Kemmerly and S. M. Durbin, 'Engineering Circuit Analysis',8, McGraw Hill, New Delhi, 2012. Theory and Problem of Basic Electrical Engineering by Kothari D. P and Nagra Prentice Hall of India New Delhi - 2009. 								

	APPLICATION OF ENGINEERING MECHANICS	3	1	0	4			
PREREQUISITES	-			<u> </u>	<u> </u>			
OBJECTIVES	1. To calculate the reactive forces.2. To analyse the structures.3. To know the geometric properties of the different shapes.4. To teach energy and momentum methods.							
Expected Outcome	 Student will be able to Solve the engineering problems in case of equilibrium conditions. Calculate the reaction forces of various supports of different structures. Solve the problems involving dry friction. Determine the centroid, centre of gravity and moment of inertia of various surfaces and solids. Calculate the forces acting on the rigid body, structures using the principle of virtual work. 	nt nertia of						
Module 1	STATICS							
diagram – dimensions Characteris Square thre – Degrees of Centroid – Product of of inertia Module 2 Position, Vo Normal cor plane motio Linear mon D'Alember								
Module 3	ENERGY AND MOMENTUM METHODS							
of impulse	Principle of work and energy for a particle and a rigid body in plane motion – Conservation of energy - Principle of impulse and momentum for a particle and a rigid bodies in plane motion – Conservation of momentum – System of rigid bodies – Impact - direct and central impact – coefficient of restitution Text Books 1. Ferdinand P. Beer, E. Russell Johnston (2013) Vector Mechanics for Engineers: Statics							
Reference	and Dynamics, McGraw-Hill International Edition, 10th Edition 1. J.L. Meriamhttpand L. G. Kraige (2012) Engineering Mechanics: Statics and D Wiley Publishers, 7th Edition							

2. Russell C Hibbeler (2009) Engineering Mechanics: Statics and Dynamics, Prentice

	ENGLISH FOR ENGINEERS - I	2	0	2	3
PREREQUISITES	Clearing the English Proficiency Test				
OBJECTIVES	 Students 1. Can use the English language effectively with proper grammar and vocabulary to suit the needs of the present world. 2. Can differentiate various forms of writing according to the situation and tone. Can be aware of 'cross cultural communication' 				
Expected	The learners will be efficient in English language with the development of the				
Outcome	four skills of communication – LSRW.				
Module 1					
Nature and p	rocess of communication Types of communication				
• Time, ten	se and tense consistency				
• E-mail Et	iquette,				
• Writing e	ffective sentences – sentence coherence, length, avoiding ambiguity and				
thematic emp	phasis				
• Use of vo	ice (Impersonal passive)				
• Writing f	ormal letters (Call for quotations, Placing orders)				
• •	communication: Intra-personal, Interpersonal, Group-verbal and non-verbal				
Communicat Module 2	ion				
Wodule 2					
Indian Engli	sh				
• Describin	g a process				
• Writing I	Definitions				
• Letter Wi	iting-Letter of Complaint and Apology				
• Concord					
Cross-cultural Communication					
• Conditionals					
• Paragraph	Paragraph writing –Coherence- Jumbled Sentences				
• Paragraph	n: Definition. Identifying the Topic Sentence. Order (Examples, reasoning,				
cause & effe	cause & effect, compare & contrast)				
	g Paragraphs (Using Connectors)				
Module 3					

Reading Skills - Scanning , Skimming , Intensive Reading , Word meaning and Recognition

- Cloze Test
- Use of prepositions

• Use of	prepositions
Text Books	
Reference	 1.Rizvi,M.Ashraf, Effective Technical Communication, Tata McGraw – Hill, 2006 2.Ibbotson,Mark, Cambridge English for Engineering, Cambridge University Press, 2008 3. Richard Johnson-Sheehan, Technical Communication Today fourth Edition 2011 4. Sherron Kenton & Deborah Valentine, Cross Talk: Communicating in a Multicultural Work place, Prentice Hall (Sep 1996) 5. Laura M English, Sarah Lynn Business Across Cultures: Effective Communication
	Strategies, Addison Wesley Longman Publication

	PROBLEM SOLVING USING C	2	0	2	3	
PREREQUISITES	-				<u> </u>	
OBJECTIVES	To provide an overview of computers and problem solving methods using 'C' Language to serve as a foundation for the study of programming languages					
Expected Outcome	The student would acquire various problem solving techniques and will be able to implement them in 'C' language.					
Module 1	OVERVIEW OF PROBLEM SOLVING					
Conversion,	Anterpreters, linkers, loaders, Examples : Summation of set of numbers, sine function computation, Base Conversion, character to number conversion, Reversing digits of an integer, Square root of a number, Smallest divisor, generation of the Fibonacci sequence, Raising a number to a large power Module 2 FUNDAMENTALS OF C PROGRAMMING					
Array handling in C – declaration – single dimensional arrays, two – dimensional arrays, multi-dimensional arrays, sorting and searching on single and two dimensional arrays. Array order reversal, array counting or histogramming, finding the maximum number in a set, removal of duplicates from an ordered array, partition an array, finding the kth smallest element strings: Character array – string handling functions – manipulation on strings. Module 3 PROGRAMMING CONSTRUCTS, FUNCTIONS & FILE HANDLING					n	
Prototype – declaration - arguments (formal and actual) – return types – types of functions difference between built-in and user-defined functions. Functions- Prototype – declaration - arguments (formal and actual) – return types – types of functions; difference between built-in and user-defined functions; Recursion. Introduction to File handling in C: Opening, Closing, input / output. Text Books 1. Greg Perry, Dean Miller, "C Programming Absolute Beginner's Guide", Que Publishing; 3 edition (2013)						

	2. Herbert Schildt ," C: The Complete Reference", 4th Edition, McGraw Hill, 2000.
Reference	 B.W. Kernighan & D.M. Ritchie, "The C Programming Language", PHI,1989. Richard Johnson-Baugh & Martin Kalin, "Application Programming in C", Macmillan International editions, 1990. Kenneth A.,C, "Problem Solving and Programming", PHI. R.G. Dromey, "How to Solve it by Computer", 1st Edition, PHI, 2008.

DEFECTIVE			-	-	2	
PREREQUISITES	-				<u> </u>	
OBJECTIVES	 To create awareness and emphasize the need for Engineering Graphics in all the branches of engineering. To follow basic drawing standards and conventions. To develop skills in three-dimensional visualization of engineering component. To develop an understanding of 2D and 3D drawings using the SolidWorks software. 					
Expected Outcome	 On completion of this course, the students will be able to 1. Prepare drawings as per standards (BIS). 2. Solve specific geometrical problems in plane geometry involving lines, plane figures and special Curves. 3. Produce orthographic projection of engineering components working from pictorial drawings. 4. Prepare 2D Drawings using the SolidWorks software 	vill be able to ane geometry involving eering components working				
Module 1	INTRODUCTION AND PROJECTIONS					
Sketching – Projection –	to Engineering Graphics – Geometrical Construction – Conics and Special Curves Dimensioning Principles. Orthographic Projection – Projection of Points and lines Projection of solids in simple position, Axis Inclined to one plane. Conversion of ic projections	. Orth	nograj	ohic	to	
Module 2	SECTION OF SOLID , DEVELOPMENT OF SURFACES					
Introduction	to Sections of Solids. Development of Surfaces. Isometric Projection and drawing	ç.				
Module 3	SOLID MODELLING					
Isometric Pr	rojection and drawing. Solid Modelling of Engineering Components using SolidWo	orks.				
	1. Venugopal K & Prabhu Raja V (2009) A Textbook of Engineering Graphics, New AGE International Publishers					
	1. K.V.Natarajan (2009) A text Book of Engineering Graphics, Dhanalakshmi Pub 2. N.D.Bhatt (2012) Engineering Drawing", Charotar publishing house.	olishe	r.			

ENGLISH FOR ENGINEERS-1 (LAB) **EXPERIMENTS** Listening to casual conversations • Speaking: Introducing oneself, Strengths and Weaknesses • Speaking: Asking for Information, Interrupting and disagreeing . Speaking: Telephoning Skills (Through Role-plays) • Speaking: Adzap` • Speaking: Taking Roles in an Event ٠ REFRENCES **EVALUATION**

	MODERN PHYSICS LABORATORY
EXPERIMENTS	
0	nicroscope – Length of a glass plate
2. Spectromet	ter – Angle of Prism
3. Air Wedge	– Thickness of a thin wire
4. Planck's co	onstant – LED method
5. Ultrasonic	interferometer – Velocity of Ultrasonic waves in liquid
6. Sonometer	- Frequency of AC mains
7. Spectromet	ter – Refractive index of a glass Prism
8. Refractive	index of liquid
9. Laser gratin	ng – Determination of wavelength
10. Optical fi	ber – Numerical aperture and acceptance angle
REFRENCES	
EVALUATION	

MODERN PHYSICS LABORATORY

EXPERIMENTS 1.Write C Program using a. Input/Output b. Control structures c. Array d. Structures e. Files 2. Write Program for finding a. Summation of set of numbers b. Sine function computation c. Base Conversion d. Character to number conversion e. Reversing digits of an integer f. Square root of a number g. Smallest divisor h. Generation of the Fibonacci sequence i. Raising a number to a large power j. Factorial of number REFRENCES **EVALUATION**

2nd Semester

	COMPLEX VARIABLE AND PARTIAL DIFFERENTIAL EQUATION	3	1	0	4		
PREREQUISITES	-				I		
OBJECTIVES	The aim of this course is to present a comprehensive, compact and integrated treatment of two most important branches of applied mathematics for engineers and scientists namely (i) the functions of complex variable and (ii) Partial differential equations in finite and infinite domains.						
Expected	By the end of the course, the students are expected to develop the necessary						
Outcome	mathematical skills, physical understanding of problems and intuition to independently analyze the mathematical equations which model the problems in their respective fields of study.						
Module 1	COMPLEX INTEGRATION						
applications cuts, linear discussion Cauchy-Gou residues- Ca lemma -inde Module 2	Limits and continuity- Cauchy – Riemann equations- analytic and harmonic functions –complex potential – applications to flow around a corner and around a cylinder, multivalued functions(logz,)- branch points- branch cuts, linear transformations- bilinear transformation-cross-ratio- conformal mappings(w=z2, w=e2)– qualitative discussion applications (regions bounded by straight lines). Integration of a complex plane along a contour - Cauchy-Goursat theorem- Cauchy's integral formula – Taylor and Laurent series- zeros- singularities – poles-residues- Cauchy's residue theorem – evaluation of integrals by the method of residues- statement of Jordan's lemma -indented contour integral. Module 2 APPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS						
Introduction – formation of PDEs – solution of PDE – general, particular, and complete singular integrals – Lagrange's linear equations – linear PDE of higher order with constant coefficients – homogeneous and non homogeneous equations – solution of PDE's by the method of separation of variables. Classification of PDEs- solution of Laplaces equations in cartesian, cylindrical and spherical coordinates – variable separable method: potential flow over a sphere. Wave equation-vibrations of a stretched string- D'Alembert's solution for the initial value problem, vibrations of a circular membrane diffusion equation in cartesian and cylindrical coordinates.							
Module 3	FOURIER TRANSFORMS						

Complex Fourier series – Fourier integral theorem- Fourier transform pairs – Fourier sine and cosine transform pairs – simple problems-properties of Fourier transforms – Convolution theorem for Fourier transforms – Parseval's identity for Fourier transforms -application of Fourier transforms to partial differential equations: (i) Heat flow in an infinite bar (ii) Wave propagation on a semi infinite string (iii) Steady state heat flow in a semi-infinite domain.

Text Books	1. Erwin Kreysizing, 'Advanced Engineering Mathematics', 8thEdition, John Wiley & Sons,
	(Wiley student Edison)(2004).
	2. B.S.Grewal, 'Higher Engineering Mathematics', 40thEdition. Khanna Publications(2007).
Reference	1. J. W. Brown and R.V. Churchill, 'Complex variables and application', Mc Graw Hill
	International ed., 7 th Edition (2004).
	2. R. V. Churchill and J. W. Brown, 'Fourier series and Boundary value problems', International
	student edition (1978).

	MATERIAL SCIENCE & METALLURGY	2	1	2	4
PREREQUISITES	MODERN PHYSICS				
OBJECTIVES	 The main objective of this course is to provide the basic knowledge needed to discipline of materials science and engineering. To develop the knowledge of how the structure of materials is Described techn crystallography, microstructure, defects, and phase diagrams To develop the knowledge of how the properties of materials are described technic materials is probabled. 	nically	y, inc	luding	-
	material failure is analyzed4. To introduce the concepts of structure-property relationships5. To develop knowledge in various class of materials and their applications				
Expected	Student will be able to				
Outcome	 Understand how materials are formed and their classification based on atomic Describe the mechanical behaviour of metallic systems and its importance Evaluate system for fatigue failures Gain knowledge on different class of materials and their applications Evaluate the failure mode of the materials and to know the steps to be taken to failures. 				
Module 1	MICROSCOPIC STRUCTURES & PHASE DIAGRAMS				
materials –S Lattice- Mil stacking faul	to materials science – Primary and Secondary bonding in materials-Crystall Single crystal and polycrystalline materials – Space Lattice-Unit cell –Crystal ler indices – Closed packed structures- Principal Metallic crystal structures sta lts and crystal defects- Point, Line, Planar and volume; Volume, planar and Linear Polymorphism and allotropy. Basics of Solidification mechanism – Cooling curv	l syst icking dens	ems - g sequ ity	– Bra ience	avais and

calculations- Polymorphism and allotropy. Basics of Solidification mechanism – Cooling curve of pure metal and alloy – Phase –Phase Diagram– Gibbs's Phase rule – Interpretation of mass fractions using Lever's rule – Hume Rothery rules-Binary Iso-morphous system- Binary Eutectic alloy system (Lead-Tin System) –Binary Peritectic alloy system (Iron-Nickel System) – Invariant reactions – Iron- Iron carbide phase diagram- Slow cooling of Hypo and hyper eutectoid steels – Temperature-Time-Transformation (TTT) and Continuous Cooling Transformation (CCT) Diagrams – Effect of alloying elements in steel – types of stainless steel and cast iron.

Module 2	HEAT TREATMENT & MATERIAL TESTING

Heat Treatment – Annealing and its types, Normalizing, Hardening tempering, Austempering and Mar-tempering – Microstructure observation – Surface Heat treatment processes – Carburizing, Nitriding, cyaniding, carbonitriding, flame and induction hardening. Mechanical properties of materials – Strengthening mechanism – Plastic deformation of single and poly-crystalline materials – Effect of Slip and twinning – Stress-strain curves of various ferrous and non-ferrous metals –Engineering stress strain – true stress strain relations –problems - Tensile test of ductile material – properties evaluation Hardness measurement tests – Fracture of metals – Ductile and Brittle fracture; Fatigue – Endurance limit of ferrous and non-ferrous metals – Fatigue test ; Creep and stress rupture– mechanism of creep – stages of creep and creep test – SEM, XRD.

1	
Module 3	ADVANCED MATERIALS AND APPLICATIONS
Composites	s – Fiber reinforced, Metal Matrix, Ceramic Matrix – properties and applications; Ceramics – Alumina,
Zirconia, Si	licon Carbide, Sialons, Reaction Bonded Silicon Nitride(RBSN), Glasses- properties and applications-
Magnetic m	naterials – Hard and soft magnets – Ferromagnetic Hysteresis – properties of magnetic materials
Intermetalli	c compounds-Polymers – thermosetting and thermoplastics – mechanical properties of polymers-
Material se	lection procedure (two case studies)
Text Books	1. W.D. Callister, Jr., (2010), Materials Science and Engineering: An Introduction, Wiley &

	Sons, 8th edition.
Reference	1. Donald R. Askeland, Pradeep P. Fulay, Wendelin J. Wright (2010), The Science and
	Engineering of Materials, Cengage Learning, 6th Edition
	2. Sidney H Avner, (2005) "Introduction to Physical Metallurgy, Tata McGraw Hill
	Publishing Company Limited

	VEHICLE TECHNOLOGY(Automotive chassis & Body Engineering)	3	1	0	4
PREREQUISITES	-	1			1
OBJECTIVES	1. The objective of the course is to make the student understand the various asp and steering, braking and suspension systems of the vehicle.	ects c	of vehi	cle bo	ody
Expected	By the end of this course the student will be able to design a car for safety, iden	ify a	nd dev	elop	
Outcome	suitable chassis, design and select suitable subsystems for the vehicle.				
Module 1	VEHICLE BODY				
automobile v Angle of app rail, cant rail diagonals, gu visibility and Types, Mini height, engin	sideration relating to chassis layout, power plant location, types of automobiles, I with reference to power plant, weight distribution, stability, Terms used in body b broach, Angle of departure, Ground clearance, Cross bearers, Floor longitudes, po, Roof stick, Roof longitude, Rub rail, skirt rail, truss panel, wheel arch structure, ussets. Car Body: Types, Regulations, drivers visibility, tests for visibility, method space in cars, safety design, safety requirements for car, car body construction. I bus, single-decker, double-decker, two level, split level and articulated bus, bus the location, entrance and exit locations, seating dimensions, constructional details construction, types of metal sections used, regulations, conventional and integral FRONT AXLE , BRAKES & STREERING SYSTEMS	uildir sts, so whee ds for Bus B ody l , fram	ng con eat rai el arch impro ody D ayout ne con	struct l, wai , post oving)etails , floor struct	st s: r tion,

Axle parts and materials, loads and stresses, centre sections, section near steering head, spring pads, front axle loads, steering heads, factors of wheel alignment, wheel balancing, centre point steering, correct steering angle, steering mechanisms, cornering force, self righting torque, under steer and over steer, Steering linkages, steering gears, special steering columns, power steering, trouble shooting, Numerical problems. Necessity, stopping distance and time, brake efficiency, weight transfer, brake shoe theory, determination of braking torque, classification of brakes, types, construction, function, operation, braking systems - mechanical, hydraulic, disc, drum, details of hydraulic system, mechanical system and components, types of master & wheel cylinders, bleeding of brakes, brake drums, brake linings, brake fluid, factors influencing operation of brakes such as operating temperature, lining, brake clearance, pedal pressure, linkages etc, Numerical problems. Brake compensation, Parking and emergency brakes, hill holder, automatic adjustment, servo brakes, Power brakes-Air brakes, Wagner air brake, vacuum brakes and electric brakes and components brake valve, un-loader valve, diaphragm, air-hydraulic brakes, vacuum boosted hydraulic brakes, trouble shooting, Numerical problems.

Module 3 **SUSPENSION, WHEELS & TYRES**

Objects, basic considerations, Types of suspension springs, construction, operation & materials, leaf springs, coil springs, torsion bar, rubber springs, plastic springs, air bellows or pneumatic suspension, hydraulic suspension, constructional details of telescopic shock absorbers, independent suspension, front wheel independent suspension, types, stabilizer, trouble shooting, Numerical problems. Wheels And Tyres: Types of wheels, construction, structure and function, wheel dimensions, structure and function of tyres, static and dynamic properties of pneumatic tyres, types of tyres, materials, tyre section & designation, factors affecting tyre life, quick change wheels, special wheels, trouble shooting'

Text Books	1. Kirpal Singh, "Automobile Engineering Vol. I", Standard publications, New Delhi,
	2011.
Reference	1. James E Duffy, "Modern Automotive Technology", Goodheart-Willcox; Seventh Edition,
	2011
	2. Jack Erjavec, "Automotive Techology – A systems approach",

	APPLIED THERMODYNAMICS	2	1	0	3
PREREQUISITES	-				<u> </u>
OBJECTIVES	 To teach students the basic principles of classical thermodynamics and prepare basic conversion principles of mass and energy to closed and open systems. To enable the students to understand second law of thermodynamics and apply systems, note the significance of the results and to know about availability, entro aspects of daily life. 	y it to	vario	us	aw
	 3. To teach students about properties of pure substances and to analyze the perform thermodynamic air and vapour power cycles. 4. To help the students understand various gas laws and equations of state and approblems of gas mixtures in estimating enthalpy, entropy, specific heat and interposed for the students about fuels and combustion phenomenon, solve problems or complete combustion, gravimetric and volumetric analysis. 	ply tl nal er	hem to hergy.		′e
Expected	Student will be able to				
Outcome	 Demonstrate an understanding of the concepts such as conservation of mass, c energy, work interaction, heat transfer and first law of thermodynamics. Identify closed and open systems and analyze related problems. Apply the concept of second law to design simple systems. Analyze the performance of gas and vapor power cycles and identify methods thermodynamic performance. Demonstrate the importance of phase change diagrams of various pure substar Apply gas laws to mixtures. 	to im			

7. Analyze problems of combustion and stoichiometry. Module 1 **BASIC CONCEPTS AND LAW'S OF THERMODYNAMICS** Basic concepts of Thermodynamics - Thermodynamics and Energy - Closed and open systems - Properties of a system - State and equilibrium - Processes and cycles - Forms of energy - Work and heat transfer - Temperature and Zeroth law of thermodynamics - First law of thermodynamics - Energy balance for closed systems - First law applied to steady – flow engineering devices Limitations of the first law of Thermodynamics - Thermal energy reservoirs - Kelvin- Planck statement of the second law of thermodynamics - Clausius statement - Equivalence of Kelvin-Planck and Clausius statements - Refrigerators, Heat Pump and Air-Conditioners - COP - Perpetual Motion Machines - Reversible and Irreversible process - Carnot cycle - Entropy - The Clausius inequality -Availability and irreversibility - Second law efficiency. Module 2 **VAPOUR & GAS POWER CYCLES** Properties of pure substance-Property diagram for phase - change processes - Carnot vapour cycle - Rankine cycle - Methods for improving the efficiency of Rankine cycle – Ideal Reheat and Regenerative cycles - Binary vapour cycles - Combined gas - vapour power cycles - Analysis of power cycles - Carnot cycle - Air standard assumptions - Otto cycle - Diesel and Dual cycles - Brayton cycle - Stirling and Ericsson cycles Module 3 **IDEAL GAS MIXTURES, FUELS & COMBUSTION** Ideal and real gases - Vander Waals equation - Principle of corresponding states - Ideal gas equation of state -Other equations of state - Compressibility factor - Compressibility charts - Composition of gas mixtures - Mass and mole fractions - Dalton's law of additive pressures - Amagat's law of additive volumes - Relating pressure, volume and temperature of ideal gas mixtures - Evaluating internal energy - enthalpy - entropy and specific heats. Types of fuels - Exothermic and endothermic reactions - Combustion equations - Stoichiometry - Combustion analysis by mass and volume - Conversion of gravimetric to volumetric analysis - Conversion of volumetric to

 gravimetric analysis - Analysis of exhaust gas - Excess air and air-fuel ratio - Combustion problem by mole

 method - Complete combustion of fuel - Calorific value – Definition - Types of calorimeter.

 Text Books
 1. P K Nag, (2013), Engineering Thermodynamics, Tata McGraw-Hill Publishing
Company Ltd.

 Reference
 1. Yunus A. Cengel Michael A. Boles, (2011), Thermodynamics: Engineering Approach,

 Tata McGraw Hill Publishing Company Ltd

Tata McGraw-Hill Publishing Company Ltd.
2. M. Achuthan, (2013), Engineering Thermodynamics, Prentice Hall India Limited.
3. Eastop, (2013), Applied Thermodynamics for Engineering Technologies, Addison-Wesley Logman Limited

	COMPUTER AIDED MACHINE DRAWING	0	0	4	2
PREREQUISITES	Engineering graphics			1	I
OBJECTIVES	 To introduce students to the basics and standards of engineering drawing relation components. To teach students technical skills regarding assembly, production and part drawing assembly, production and part drawing. To familiarize students with various limits, fits and tolerances. To help students gain knowledge about standard CAD packages on modeling as a standard component. 	wings			und

Expected	Student will be able to
Outcome	1. Acquire the knowledge of various standards and specifications about standard machine
	components.
	2. Make drawings of assemblies with the help of part drawings given.
	3. Ability to select, configure and synthesize mechancial components into assemblies.
	4. Apply the knowledge of fits and tolerances for various applciaitons.
	5. Able to model components of their choice using CAD software.
	6. Get exposure to advanced CAD packag
Module 1	DRAWING STANDARDS
	actice for Engineering Drawing - BIS specifications –Conventional representation – Welding symbols - tts - keys - fasteners – Reference to hand book for the selection of standard components like bolts - nuts keys etc.
Module 2	LIMITS, FITS & TOLERANCES
	s and tolerances – Allocation of fits for various mating parts – Tolerance data sheet – Tolerance table –Geometric tolerance.
Module 3	COMPUTER AIDED ASSEMBLY & DETAILED DRAWING
body and A	Lefting of simple and intricate machine and automobile components – Surface modelling of automobile appliances(electrical and domestic) - Preparation of assembled and detailed drawings of I.C.Engine s viz: Cylinder head - Piston - Connecting rod and Crankshaft assembly - Carburettor - Fuel pump etc.,
Text Books	1. James Barclay, Brian Griffiths, (2003), Engineering Drawing for Manufacture.
Reference	1. Cecil Jensen, Jay Helsel and Donald D. Voisinet (2000) Computer-aided engineering
Reference	

	STRENGTH OF MATERIALS	2	1	2	4
PREREQUISITES	ENGINEERING MECHANICS				
	1. To develop the relationship between the loads applied to a non-rigid body and and deformations induced in the body.	the ir	nterna	l stre	sses
OBJECTIVES 2. To study the general state of stresses and strains in a given loaded member and th direction of the principal stresses		the 1	nagni	tude	and
	3. To understand the different approaches to calculate slope and deflection for vabeams.	rious	types	of	
	4. To analyze the columns with different edge conditions by using different theorem	ries.			
Expected	Student will be able to				
Outcome	1. Apply concepts of strength of materials to obtain solutions to real time Engine 2. Able to analyze the different types of loading and the consequent deflection.	ering	probl	ems.	
Module 1	STRESS, STRAIN AND BASIC CONCEPTS OF BENDING				

Definition/derivation of normal stress, shear stress, and normal strain and shear strain – Stress-strain diagram-Elastic constants – Poisson's ratio – relationship between elastic constants and Poisson's ratio – Generalised Hook's law – Strain energy – Deformation of simple and compound bars – thermal stresses. Types of beams: Cantilever, Simply supported, Overhanging: Shear Force and Bending Moment Diagrams Theory of simple bending – bending stress and shear stress in beams.

Module 2DEFLECTION OF BEAMS & TORSIONAL LOAD APPLICATION

Deflection of beams by Double integration method – Macaulay's method – Area moment theorems for computation of slopes and deflections in beams – Conjugate beam method. Introduction to Torsion – derivation of shear strain – Torsion formula – stresses and deformations in circular and hollow shafts – Stepped shafts – shafts fixed at the both ends – Stresses in helical springs. Theory of columns – Long column and short column - Euler's formula – Rankine's formula - Secant formula - beam column.

Module 3 **BIAXIAL STRES STATE SYSTEM**

Biaxial state of stress – Stress at a point – stresses on inclined planes – Principal stresses and Principal strains and Mohr's circle of stress, Theories of failure Thin cylinders and shells – deformation of thin cylinders and shells; Thick Cylinders, Shrink fits, Compounding. Fundamentals of theory of elasticity.

Text Books	1. S. Ramamrutham and R. Narayanan, (2011), Strength of Materials, Dhanpat Rai
	Publications, 16th edition.
Reference	1. Rowland Richards, (2011), Principles of Solid Mechanics, CRC Press.
	2. Timoshenko, S.P. and Young, D.H., (2011), Strength of Materials, East West Press
	Ltd. 5th edition
	3. R.K. Bansal, (2012), Strength of Materials, Laxmi Publications, 4th edition

	ENGLISH FOR ENGINEERS-II	2	0	2	3
PREREQUISITES	ENGLISH FOR ENGINEERS-I			I	<u> </u>
OBJECTIVES	 Students : Can write and prepare the necessary technical documents. Can face interview with confidence. Will be a better performer professionally 				
Expected Outcome Module 1	 Tune up writing skills and prepare technical documents without errors. Enhance the students with strong writing and presentation skills. 				
Revising and Drafts of Ab					

Module 2					
Droporing	Preparing Questionnaires				
	atements of Purpose – Definitions, format and Sample				
0					
	Report writing				
	Writing a Proposal				
	Formation/ Transcoding (Use of graphs, tables, charts)				
	Agenda, Minutes				
Module 3					
Resume (A	rchival and Functional)				
Writing eff	ective Applications (Emphasizing Education and Emphasizing Work Experience)				
	Letter and apology letters (after interviews or refusing a job offer)				
Text Books					
Reference	1. Technical Communication Today –Richard Johnson and Sheehan 4th Edn 2011				
	2. Porter, Patricia A., and Margaret Grant. Communicating Effectively in English: Oral				
	Communication for Non-Native Speakers. 2nd ed. Belmont, CA: Wadsworth, 1992. ISBN:				
	9780534172688.				
	3. Alley, Michael. The Craft of Scientific Presentations: Critical Steps to Succeed and Critical				
	Errors to Avoid. New York, NY: Springer, 2007. ISBN: 9780387955551.				
	4. Writing Resumes-Kilmet, Stephen. "The Resume," and "The Computerized Resume." In				
	Writing for Design Professionals. New York, NY: W.W. Norton, 2006, pp. 127-129.				
	ISBN: 0393731855.				
	5. Writing Cover Letters-Kilmet, Stephen. "Cover Letter," and "Enclosures and				
	Attachments." In Writing for Design Professionals. New York, NY: W.W. Norton, 2006,				
	pp. 128-129. ISBN: 0393731855.				
	6. Writing a Proposal "Standard Proposal for Funding." in Writing in the Disciplines. Fort				
	Worth, TX: Harcourt Brace College Publisher, 1995. ISBN: 0155025384.				
	7. http://www.job-interview.net/ http://www.interviewmastery.com/				
	r nupar w w wijee interview neu nupar w w winterview naster y com				

	MATERIAL SCIENCE & METALLURGY LAB				
PREREQUISITES	-		I	I	
OBJECTIVES	To train students in the preparation of samples to perform characterization such as microstructure, olume fraction of phases, determination of porosity, film thickness, grain size and avoid easurement. To help the students understand the microstructure of engineering materials, phase diagrams, arious testing standards and acquire knowledge on the material behaviour by conducting tests. To teach students how to improve the mechanical properties of materials by various methods				
Expected	Student will be able to	11045	metho	<i>J</i> us	
Outcome	1. Acquire experimentation skills in the field of metallurgy.				
	2. Develop theoretical understanding of the mechanical properties of materials by experiments.	/ perfo	orming	g	
	3. Apply the knowledge of phase diagrams and testing methods in related areas.				
	4. Know how to improve structure of materials for various industrial applications	.			
	LIST OF EXPERIMENTS				

- Metallographic sample preparation
 Phase diagram determination
- 3. Microstructures of plain carbon steel
- 4. Microstructures of cast iron
- 5. Heat treatment of plain carbon steels
- 6. Hardness measurement
- 7. Phase analysis and porosity determination using image analysis soft ware
- 8. Microstructure of non-ferrous alloys
- 9. Determination of grain size
- 10. NDT testing using ultrasonic flaw detector
- 11. Stress analysis using XRD pattern
- 12. Creep Test
- Reference

	STRENGTH OF MATERIALS LAB
PREREQUISITES	-
OBJECTIVES	 To help the students gain experience in the determination of creep for various materials and understand how this property varies with time. To provide students an opportunity to learn how to measure hardness of materials and analyze how heat treatment affects hardening. To impart knowledge on phase development of two isomorphous metals. To teach students determine phases present in a material using XRD graph.
Expected Outcome	 Student will be able to 1. Interpret hardness curve measured after heat treatment. 2. Find correlation between material structure and its creep. 3. Index XRD plot and determine phases of a material. 4. Perform non destructive failure analysis.
	LIST OF EXPERIMENTS
under tension 2. Compress 3. Deflection 4. Comparise Rockwell ha 5. Estimation 6. Estimation 7. Double sh 8. Fatigue te 9. Load mea	tion test on Bricks, Concrete blocks. In test – Verification of Maxwell theorem. In of hardness values of Steel, Copper and Aluminium using Brinell and Induction of Spring Constant under Tension and Compression. In of Spring Constant under Tension and Compression. In of Notch Toughness of Steel using Charpy Impact Testing Machine. Inear test in U.T.M.

LIST OF	ENGLISH FOR ENGINEER-II LAB
EXPERIMENTS	

- Group Discussions Process, Skills, Guidelines, Evaluation
- Oral Presentation Skills Planning, Preparing, Organizing, Presenting
- Starting A Career Making Goals And Setting Plans
- · Interviews Identifying Career Options, Preparing For An Interview, Facing An Interview

3RD SEMESTER

	THERMAL ENGINEERING SYSTEMS	2	1	2	4
PREREQUISITES	APPLIED THERMODYNAMICS				
OBJECTIVES	 To enable the students understand the principles, working and performance of To introduce students to the working of compressors, steam nozzles and vario air-conditioning systems. To teach students the principles of waste heat recovery and thermal storage sy 	us ref	rigera		and
Expected	Student will be able to				
Outcome	1. Solve problems on internal combustion engines and prepare heat balance shee				
	2. Get an insight of various components and principles of engines, compressors e	etc.			
	3. Design refrigeration and air-conditioning system for a particular application.				
	4. Demonstrate the knowledge of waste heat recovery and thermal storage.				

Module 1	PERFORMANCE ANALYSIS OF IC ENGINES
 SI engin remedies – Fuel inje Cooling an parameters Indicated p and Morse 	construction and working of two stroke and four stroke engines – Types of carburetor – Wankel engines es – Fuel systems – Simple carburetor – Ignition systems – Combustion – Detonation factors and Rating of fuels – Introduction to multi point and microprocessor based fuel injection system CI engines ection system – Fuel pump – Combustion – Knocking – Factors and remedies – Rating of fuels – d lubrication of IC engines. Supercharging and turbocharging of IC engines and their effect on various – Stratified charged engines – Lean burn engines; Performance test- Measurement of brake power – ower – Fuel consumption – Air consumption; Heat balance test – heat carried away by exhaust gases test on IC engines – Standard testing procedure of IC engines – Performance curves and effect of ameters on the performance of the engines.
Module 2	POSITIVE DISPLACEMENT COMPRESSORS & STEAM NOZZLES
efficiency -	ng compressors – Construction – Working – Effect of clearance volume – Multi staging - Volumetric Isothermal efficiency. Steam Nozzle – One-dimensional steady flow of steam through a convergent ent nozzle – Equilibrium and Meta stable flow. REFRIDGERATION & AIR CONDITIONING
Reverse C	arnot cycle- Bell-Colman's cycle – Air craft refrigeration cycles – Vapor compression cycle – ts – Working – P-H and T-S diagrams – Calculation of COP – Effect of sub-cooling and super-heating
– Vapour a gases – Ap	absorption system – Ideal and actual cycles – Cryogenic engineering- Introduction – Liquefaction of oplication. Psychometric - Processes – Chart – Summer and winter air conditioning – Cooling load $s - SHF - RSHF - GSHF - ESHF$ components used in air conditioner – Types of air conditioning units.
Sources of	waste heat – Heat recovery for industrial application – Thermal storage principles and applications of d systems – Sensible heat and latent heat system – Phase change storage materials.
Text Books	1. Rajput R.K., (2013), Thermal Engineering, Ninth Edition, Laxmi Publications (P) Ltd.
Reference	 Manohar Prasad., (2010), Refrigeration and Air Conditioning, New Age International. Soman.K, (2013), Thermal Engineering, PHI Learning Private Ltd. Mathur.M.L & Sharma R.P, (2012), Internal Combustion Engine, Dhanpat Rai Publications.

	MACHINE DYNAMICS	2	1	2	4
PREREQUISITES	ENGINEERING MECHANICS				
OBJECTIVES	Understanding of different types of mechanisms. Analyze cam-follower motion and gear train configurations. Gyroscopic effect on vehicles, ships and planes. Familiarize balancing procedures for rotating and reciprocating masses, rotors and engines. Fundamentals of free and forced vibrations				
Expected Outcome	By the end of the course, the students will be able to analyze and solve problems associated with mechanisms, cam-followers and gear trains. Further the students will be able to analyze and apply the concept of gyroscopic couple in real time problems				
Module 1	INTRODUCTION TO MECHANISMS				

Introduction to mechanisms – Links - Pairs - Chains - Mobility - Degree of freedom –Gruebler's and Kutzbach criterion – Kinematics inversions- Grashoff's Law. Determination of velocity and acceleration – simple mechanisms – Relative motion method. Introduction to synthesis of mechanism. Inertia force analysis of slider crack mechanism- Klein's construction. Friction in screw and nut – Pivot and collar – Thrust bearing – Plate and disc clutches – Belt (flat and V) and rope drives. Ratio of tensions – Effect of centrifugal and initial tension – Condition for maximum power transmission – Open and crossed belt drive. Gyroscopic forces and couple – Gyroscopic effects on the movement of air planes and ships - Stability of two wheel drive and fourwheel drive and space vehicles - Gyroscope stabilization.

Module 2 CAMS & GEARS

Types of Cams and Followers - Applications – Displacement - Velocity and Acceleration and construction of cam profiles for Uniform velocity - Uniform acceleration and retardation – Simple Harmonic Motion (SHM) - Cycloidal motions of followers Spur gear terminology and definitions - Types of gears- Fundamental law of toothed gearing– Interference and under cutting –Comparison of Involute and Cycloidal tooth forms, gear trains: Simple, compound gear trains and epicylic gear trains - Determination of speed and torque.

5p.10, 00	nie onie gem umme chechne gem umme. De terministich er spette mit terdine
Module 3	BALANCING VIBRATIONS
Static and	Dynamic balancing of rotating masses in different planes – Balancing of rotors - Balancing of machines
- Partial b	alancing of reciprocating masses of inline. Free and damped vibrations of single degree of freedom
systems -	longitudinal, transverse and torsional -Forced vibration - harmonic excitation - Magnification factor -
Vibration	isolation and Transmissibility. Introduction to vibrations of multi-degree freedom systems.
Text Books	1. Robert L. Norton (2013) Kinematics and Dynamics of Machinery (SI units), McGraw-Hill, 1st
	Edition
Reference	1. S. Graham Kelly, (2011), Mechanical Vibrations: Theory and Application, Cengage Learning, 1st
	Ed.
	2. J.E. Shigley and J.J Unicker, (2010), Theory of Machines and Mechanism, Oxford University
	Press, USA; 4th Ed.
	3. Thomson. W.T. (2008), Theory of Vibration with applications, Pearson.
	4. Dukkipati, Srinivas, (2005), Theory of mechanical vibrations, Prentice Hall of India.

	MANUFACTURING PROCESS	3	0	2	4
PREREQUISITES	-				<u> </u>
OBJECTIVES	The objectives of the course are to make the students to understand the basic con and casting, metal forming and welding processes. Acquire knowledge about var materials that are commonly used for various applications and their manufacturin	ious p	olastic		T
Expected Outcome	By the end of this course student will be able to get in-depth knowledge of va processes and select appropriate manufacturing process for a particular engineer				ıring

Module 1	
Monufactur	ing selecting manufacturing process, global compatitivaness of manufacturing costs. Fundamentals
	ing - selecting manufacturing process, global competitiveness of manufacturing costs - Fundamentals Their behavior and manufacturing properties - Ferrous metals and alloys – Non-ferrous metals and
	adamentals of metal casting, fluidity of molten metal, solidification time, sand casting, shell mold
	estment casting, plaster mold casting, ceramic mold casting, die-casting, centrifugal casting - Melting
	l furnaces defects in casting - Testing and inspection of casting, Metal fusion welding processes – Oxy-
	lding, arc welding processes – Consumable electrode: SMAW, SAW, GMAW, FCAW, electro gas
-	d electro slag welding – Nonconsumable electrode: GTAW, AHW, PAW, EBM, LBM - Solid state
	ocesses: Ultrasonic welding, friction welding, and resistance welding. weld quality - Testing of welded
Joints	
Module 2	
Cold and h	ot working: Rolling, forging, extrusion, drawing, sheet metal forming processes – High energy rate
	cesses: Explosive forming, electro-hydraulic forming, Electromagnetic forming
01	
Module 3	
	of metal powders: Compaction, sintering and finishing - Shaping of ceramics, forming and shaping of
•	pes of plastics, types of molding, reinforced plastics - Metal matrix composites, ceramic matrix
composites	,Lathe and its operations - Drilling machine and its types – Shaper – Planner-milling machine
Text Books	1. S. Kalpakjian and S.R. Schmid, "Manufacturing Engineering and Technology", 7 th Edition,
Text Books	Prentice-Hall, 2013
Reference	1. S.K. Hajra Choudhury (2001), Elements of Workshop Technology, Vol I, Media Promoters
	Pvt Ltd., Mumbai.
	2. P.N. Rao (1998), Manufacturing Technology – Foundry, Forging and Welding, Tata McGraw-
	Hill Publishing Co., New Delhi.
	3. Roy A. Lindberg (2004), Processes and Materials of Manufacture, 4th Edition, Prentice-Hall of
	India, New Delhi.

	FLUID MECHANICS & MACHINERY	3	1	2	5
PREREQUISITES	Multivariable calculus & partial differential equations, Engineering Thermodynamic	S			
OBJECTIVES	The objective of this course is to introduce and explain basic fundamentals of flu applications in aerodynamics, hydraulics, marine engineering, gas dynamics and To understand the concept of advanced fluid mechanics in relation to C Dynamics. To understand the energy exchange process and complexities involve machinery and turbo machinery components.	elect Compu	ronics statior	c00	ling.

Expected	By the end of this course student will be able to understand and formulate the governing equations,
Outcome	apply boundary layer concepts for various practical industrial fluid problems.
Module 1	FLUID DYNAMICS & DIMENSIONAL ANALYSIS
curved surfa Industrial ap flow – Buoy layer detach structure - N two-species generation - flow, Unstea Streamline a equation-Na Flow over fl	¹ Sicosity – Surface tension – compressibility – capillarity – Hydrostatic forces on plane – inclined and aces – Buoyant flow - Basic concept, Grashoff's number and its importance - Buoyancy driven flow in oplications like Radiator cooling - Electronics cooling - Buoyancy driven Micro channel/ Micro cavity yant Nano- fluids for Power electronics cooling - Cavitation - Saturation pressure driven - Boundary ment driven – Causes - Possibility of estimation with local boiling phenomena & its effect on solid Noise induced by Cavitation at high pressure drop - Free surface flow - Layer between two-phases, - Effect of hydrodynamic force due to layer of free surface - Effects on Ship sailing, Tidal energy Wind effect on High raise buildings. Control volume – Fluid Kinematics - Types of flows; Steady ady flow, Uniform and Non Uniform flow, Rotational flow, Irrotational flow, 1-D, 2-D, 3-D flows– and Velocity potential lines- Euler and Bernoulli's equations and their applications – Momentum twier-Stokes Equations - Exact Solutions of Navier –Stokes Equations – Low Reynolds Number flow – lat plate – Hagen Poiseuille equation – Turbulent flow. Introduction to dimensional analysis – Raleigh
and Bucking	gham • theorems.
Module 2	HYDRAULIC PUMPS & TURBINES
Francis turb speed - effic classification Reciprocatin performance	of energy transfer - degree of reaction. Hydro turbines: definition and classifications - Pelton turbine - ine – propeller turbine - Kaplan turbine - working principles - velocity triangles - work done - specific ciencies - performance curve for turbines. Pumps: definition and classifications - Centrifugal pump: ns, working principles, velocity triangles, specific speed, efficiency and performance curves - ng pump: classification, working principles, indicator diagram, and work saved by air vessels and e curves - cavitations in pumps - rotary pumps: working principles of gear and vane pumps. TURBOMACHINERY
speed, appli- Types, stage curves and flow losses, Triangles, e problems an characteristi Text Books	asfer between fluid and rotor, classification of fluid machinery, dimensionless parameters, specific cations, stage velocity triangles, work and efficiency for compressors and turbines. Centrifugal Fan - e and design parameters, flow analysis in impeller blades, volute and diffusers, losses, characteristics selection, fan drives and fan noise. Centrifugal Compressors - Construction details, types, impeller slip factor, diffuser analysis, losses and performance curves. Axial Compressors - Stage Velocity enthalphy – entrophy diagrams, stage losses and efficiency, work done factor, simple stage design d performance curves. I. R.W. Fox, P. J. Pritchard and A.T. McDonald's (2010), Introduction to Fluid Mechanics Wiley Publication, 8th edition.
	2 Yahya, S.H., " Turbines, Compressor and Fans ", Tata Mc Graw Hill Publishing Company, 2013

PREREQUISITES	INDUSTRIAL ENGINEERING & MANAGEMENT	3	0	0	3
	-				
	 To enable the students understand the demand forecasting techniques and cost To provide students an insight into the concepts of industrial engineering and 		izatio	n.	
OBJECTIVES	3. To familiarize the students with principles of work-study and Ergonomics.4. To introduce students to various aspects of plant design and materials planning	g.			
Expected	Student will be able to	5			
Outcome	1. Conduct market research, demand forecasting and costing				
	2. Demonstrate the knowledge of designing plants and controlling production.				
	3. Optimize the resources of an organization and improve productivity.				
Module 1	DEMAND FORECAST AND ELEMENT OF COST				
Macro and 1	micro economics - Demand and supply – Factors influencing demand – Ela	sticity	of d	lema	nd -
	ecasting – Time series - Exponential smoothing casual forecast - Delphi metho				
Regression -	Barometric method - Long run and Short run forecast. Elements of cost - Deter	minat	ion of	f Mat	eria
cost - Labou	r cost - Expenses - Types of cost - Cost of production - Over head expenses - Pr	oblen	ns. Int	rodu	ctior
to Industrial	Engineering - Concepts - History and Development of Industrial engineering -	- Rol	es of	Indus	stria
Engineer – A	Applications – Productivity – Factors affecting productivity – Increasing produc	tivity	of re	sourc	es -
Kinds of pro	ductivity measures.				
Module 2	WORK DESIGN PLANT LAYOUT & GROUP TECHNOLOGY				
Introduction	to work study – Method study – Time study – stopwatch time study – Standard	data	- Met	hod 7	Fime
Measuremen	t (M-T-M) - Work sampling - Ergonomics Plant location - Factors - Plant layer	out - '	Types	- La	you
design proce	ess - Computerized Layout Planning - Construction and Improvement alg	gorith	ms -A	ALDI	EP ·
CORELAP a	nd CRAFT. Group technology-Problem definition - Production flow analysis - H	eurist	ic met	thods	of
grouping by	machine matrices - Flexible Manufacturing System - FMS work stations- M	ateria	l han	dling	and
Storage syste	em-Cellular Manufacturing System.				
Module 3	PRODUCTION PLANNING & CONTROL				
Types of p	roductions, Production cycle-Process planning, Forecasting, Loading, Sched	luling	, Dis	spatel	ning
	nple problems. Materials Planning – ABC analysis – Incoming materials control		anban	syste	em -
	MRP systems- Master Production Schedule – Bill of Materials – MRP calculation	1S -			
MRP II.					
	L Elwood S Buffa, Rakesh K Sarin (2009) Modern Production / Operations Mana	geme	nt,		
J	John Wiley & Sons.				
	R. Danried, Nada R.Sanders (2009) Operations Management, John Wiley & So	ns.			
		D '			
Reference]	2. R Panneerselvam, (2012) Production and Operations Management, PHI Learnin	ig Pri	vate		

	APPLIED NUMERICAL METHODS	3	1	0	4
PREREQUISITES	COMPLEX VARIABLES AND PARTIAL DIFFERENTIAL EQUATIONS				<u> </u>
OBJECTIVES	 This course is organized to expose students to some of the most important, bas methods likely to be of great use to engineers The emphasis is mainly on computer oriented numerical methods for Solving differential equations. The students are expected to develop MATLAB / FORTR for the numerical methods and obtain results including graphics 	ordina	ary an	d par	tial

Expected	On completion of this course, the student will be able to understand and solve
Outcome	Transcendental/Polynomial equations, system of Linear Algebraic equations, Interpolation and approximation, Differentiation and Integration and find solutions of differential equations by finite difference approximations.
Module 1	SYSTEM OF EQUATIONS , NUMERICAL DIFFERENTIATION & INTEGRATION
	erative method- secant method- Newton – Raphson method - non-linear equationssolution of system of
	generalized Newton's method(roots of equation-solution of system of equations), - rate of convergence-
Gauss –Se	idel method for system of linear equations – convergence criterion- positive definiteness of a
matrixspec	ctral radius of a matrixtridiagonal system of equations – Thomas algorithm Interpolation- finite
difference	s- Newton's formulae for interpolation- Langrage interpolation, interpolation with cubic splines, -
numerical	differentiation- maxima minima for tabulated values-numerical integration: Trapezoidal rule, Simpsons
1/3 rd and	3/8 th rules. –Romberg's method.
Module 2	ORDINARY DIFFERENTIAL EQUATIONS
D : 7	
	Caylor series method-Euler and modified Euler's methods) Runge Kutta methods - fourth order R.K
ma a tha a d	avistance of acustions and higher order acustions multi-star methods. Adams Dashfarth method
boundary	value problems- the shooting method, eigen value problems- finite difference method. Elliptic equation
boundary Laplace ec	value problems- the shooting method, eigen value problems- finite difference method. Elliptic equation- quation- Liebmann's method –Jacobi's method- Gauss- Seidal method- parabolic equations - hyperbolic
boundary Laplace ec equations	value problems- the shooting method, eigen value problems- finite difference method. Elliptic equation- quation- Liebmann's method –Jacobi's method- Gauss- Seidal method- parabolic equations - hyperbolic
boundary Laplace ec equations	systems of equations and higher order equations multi step methods: Adams-Bashforth method- value problems- the shooting method, eigen value problems- finite difference method. Elliptic equation- quation- Liebmann's method –Jacobi's method- Gauss- Seidal method- parabolic equations - hyperbolic –explicit methods – Crank – Nicholson implicit method -Von Neumann stability condition- ant–Friedrichs–Lewy) stability condition. CALCULUS OF VARIATION
boundary Laplace ed equations <u>CFL(Cour</u> Module 3 Functiona	value problems- the shooting method, eigen value problems- finite difference method. Elliptic equation- quation- Liebmann's method –Jacobi's method- Gauss- Seidal method- parabolic equations - hyperbolic –-explicit methods – Crank – Nicholson implicit method -Von Neumann stability condition- ant–Friedrichs–Lewy) stability condition. CALCULUS OF VARIATION
boundary Laplace ed equations <u>CFL(Cour</u> Module 3 Functiona	value problems- the shooting method, eigen value problems- finite difference method. Elliptic equation- quation- Liebmann's method –Jacobi's method- Gauss- Seidal method- parabolic equations - hyperbolic –-explicit methods – Crank – Nicholson implicit method -Von Neumann stability condition- ant–Friedrichs–Lewy) stability condition. CALCULUS OF VARIATION
boundary Laplace ed equations <u>CFL(Cour</u> Module 3 Functiona	value problems- the shooting method, eigen value problems- finite difference method. Elliptic equation- quation- Liebmann's method –Jacobi's method- Gauss- Seidal method- parabolic equations - hyperbolic –-explicit methods – Crank – Nicholson implicit method -Von Neumann stability condition- ant–Friedrichs–Lewy) stability condition. CALCULUS OF VARIATION
boundary Laplace ec equations <u>CFL(Cour</u> Module 3 Functiona Galerkin's	 value problems- the shooting method, eigen value problems- finite difference method. Elliptic equation- quation- Liebmann's method –Jacobi's method- Gauss- Seidal method- parabolic equations - hyperbolic –explicit methods – Crank – Nicholson implicit method -Von Neumann stability condition- ant–Friedrichs–Lewy) stability condition. CALCULUS OF VARIATION als Euler- Lagrange equation- extremals- isoperimetric problems – The Rayleigh – Ritz method- se method. 1. M. K. Jain, S. R. K. Iyengar and R. K. Jain, "Numerical methods for scientific and Engineering", New Age International Ltd., 5th Edition (2010).The topics in the chapters
boundary Laplace ec equations <u>CFL(Cour</u> Module 3 Functiona Galerkin's	 value problems- the shooting method, eigen value problems- finite difference method. Elliptic equation- quation- Liebmann's method –Jacobi's method- Gauss- Seidal method- parabolic equations - hyperbolic explicit methods – Crank – Nicholson implicit method -Von Neumann stability condition- ant–Friedrichs–Lewy) stability condition. CALCULUS OF VARIATION alls Euler- Lagrange equation- extremals- isoperimetric problems – The Rayleigh – Ritz method- s method. 1. M. K. Jain, S. R. K. Iyengar and R. K. Jain, "<i>Numerical methods for scientific and</i> <i>Engineering</i>", New Age International Ltd., 5th Edition (2010). The topics in the chapters 2,3,4,5,6,7
boundary Laplace ec equations <u>CFL(Cour</u> Module 3 Functiona Galerkin's	 value problems- the shooting method, eigen value problems- finite difference method. Elliptic equation- quation- Liebmann's method –Jacobi's method- Gauss- Seidal method- parabolic equations - hyperbolic explicit methods – Crank – Nicholson implicit method -Von Neumann stability condition- ant-Friedrichs-Lewy) stability condition. CALCULUS OF VARIATION als Euler- Lagrange equation- extremals- isoperimetric problems – The Rayleigh – Ritz method- s method. 1. M. K. Jain, S. R. K. Iyengar and R. K. Jain, "<i>Numerical methods for scientific and</i> <i>Engineering</i>", New Age International Ltd., 5th Edition (2010). The topics in the chapters 2,3,4,5,6,7 2. C. F. Gerald and P.V. Wheatley. <i>Applied Numerical analysis</i>, Addition-Wesley, 7th
boundary Laplace ec equations <u>CFL(Cour</u> Module 3 Functiona Galerkin's	 value problems- the shooting method, eigen value problems- finite difference method. Elliptic equation- quation- Liebmann's method –Jacobi's method- Gauss- Seidal method- parabolic equations - hyperbolic explicit methods – Crank – Nicholson implicit method -Von Neumann stability condition- ant-Friedrichs-Lewy) stability condition. CALCULUS OF VARIATION alls Euler- Lagrange equation- extremals- isoperimetric problems – The Rayleigh – Ritz method- semethod. 1. M. K. Jain, S. R. K. Iyengar and R. K. Jain, "<i>Numerical methods for scientific and</i> <i>Engineering</i>", New Age International Ltd., 5th Edition (2010). The topics in the chapters 2,3,4,5,6,7 2. C. F. Gerald and P.V. Wheatley. <i>Applied Numerical analysis</i>, Addition-Wesley, 7th Edition (2009). 1. S. S. Sastry, "Introductory Methods of Numerical Analysis", PHI Pvt Ltd ,New
boundary Laplace ec equations CFL(Cour Module 3 Functiona Galerkin's Text Books	 value problems- the shooting method, eigen value problems- finite difference method. Elliptic equation- quation- Liebmann's method –Jacobi's method- Gauss- Seidal method- parabolic equations - hyperbolic explicit methods – Crank – Nicholson implicit method -Von Neumann stability condition- ant-Friedrichs-Lewy) stability condition. CALCULUS OF VARIATION alls Euler- Lagrange equation- extremals- isoperimetric problems – The Rayleigh – Ritz method- method. 1. M. K. Jain, S. R. K. Iyengar and R. K. Jain, "<i>Numerical methods for scientific and</i> <i>Engineering</i>", New Age International Ltd., 5th Edition (2010). The topics in the chapters 2,3,4,5,6,7 2. C. F. Gerald and P.V. Wheatley. <i>Applied Numerical analysis</i>, Addition-Wesley, 7th Edition (2009). 1. S. S. Sastry, "Introductory Methods of Numerical Analysis", PHI Pvt Ltd ,New Delhi(2012)
boundary Laplace ec equations CFL(Cour Module 3 Functiona Galerkin's Text Books	 value problems- the shooting method, eigen value problems- finite difference method. Elliptic equation- quation- Liebmann's method –Jacobi's method- Gauss- Seidal method- parabolic equations - hyperbolic explicit methods – Crank – Nicholson implicit method -Von Neumann stability condition- ant-Friedrichs-Lewy) stability condition. CALCULUS OF VARIATION Ils Euler- Lagrange equation- extremals- isoperimetric problems – The Rayleigh – Ritz method- smethod. 1. M. K. Jain, S. R. K. Iyengar and R. K. Jain, "<i>Numerical methods for scientific and</i> <i>Engineering</i>", New Age International Ltd., 5th Edition (2010). The topics in the chapters 2,3,4,5,6,7 2. C. F. Gerald and P.V. Wheatley. <i>Applied Numerical analysis</i>, Addition-Wesley, 7th Edition (2009). 1. S. S. Sastry, "Introductory Methods of Numerical Analysis", PHI Pvt Ltd ,New Delhi(2012) 2. W.Y. Yang, W. Cao, T.S. Chung and J. Morris, Applied Numerical Methods Using
boundary Laplace ec equations CFL(Cour Module 3 Functiona Galerkin's Text Books	 value problems- the shooting method, eigen value problems- finite difference method. Elliptic equation- quation- Liebmann's method –Jacobi's method- Gauss- Seidal method- parabolic equations - hyperbolic explicit methods – Crank – Nicholson implicit method -Von Neumann stability condition- ant-Friedrichs-Lewy) stability condition. CALCULUS OF VARIATION Ils Euler- Lagrange equation- extremals- isoperimetric problems – The Rayleigh – Ritz method- method. 1. M. K. Jain, S. R. K. Iyengar and R. K. Jain, "<i>Numerical methods for scientific and</i> <i>Engineering</i>", New Age International Ltd., 5th Edition (2010). The topics in the chapters 2,3,4,5,6,7 2. C. F. Gerald and P.V. Wheatley. <i>Applied Numerical analysis</i>, Addition-Wesley, 7th Edition (2009). 1. S. S. Sastry, "Introductory Methods of Numerical Analysis", PHI Pvt Ltd ,New Delhi(2012) 2. W.Y. Yang, W. Cao, T.S. Chung and J. Morris, Applied Numerical Methods Using MATLAB Wiley India Edt (2007)
boundary Laplace ec equations CFL(Cour Module 3 Functiona Galerkin's Text Books	 value problems- the shooting method, eigen value problems- finite difference method. Elliptic equation- quation- Liebmann's method –Jacobi's method- Gauss- Seidal method- parabolic equations - hyperbolic explicit methods – Crank – Nicholson implicit method -Von Neumann stability condition- ant-Friedrichs-Lewy) stability condition. CALCULUS OF VARIATION Ils Euler- Lagrange equation- extremals- isoperimetric problems – The Rayleigh – Ritz method- smethod. 1. M. K. Jain, S. R. K. Iyengar and R. K. Jain, "<i>Numerical methods for scientific and</i> <i>Engineering</i>", New Age International Ltd., 5th Edition (2010). The topics in the chapters 2,3,4,5,6,7 2. C. F. Gerald and P.V. Wheatley. <i>Applied Numerical analysis</i>, Addition-Wesley, 7th Edition (2009). 1. S. S. Sastry, "Introductory Methods of Numerical Analysis", PHI Pvt Ltd ,New Delhi(2012) 2. W.Y. Yang, W. Cao, T.S. Chung and J. Morris, Applied Numerical Methods Using

	ENGLISH FOR ENGINEER-II LAB
OBJECTIVES	 To teach students how to apply the knowledge of Thermodynamics and Thermal Engineering Systems to conduct experiments. To help the students measure thermal properties, temperature effect on other properties of processes and use various working fluids.

EXPECTED	Student will be able to
OUTCOME	1. Conduct the experiments on various thermal engineering systems and calculate performance
	oriented.
	2. Analyze the performance of blowers, fan, internal combustion engines and refrigeration systems.
EXPERIMENTS	
1. Performance	e and Heat balance test on S.I & C.I engines
2. Morse test	
3. Measuremen	t of Frictional power using retardation.
4. Determination	on of calorific value of fuels

- 5. Performance test on reciprocating air compressor
- 6. Performance test on air blower
- 7. Performance test on vapour compressor refrigeration system
- 8. Performance test on air-conditioning system
- 9. Test on Boiler
- 10. Test on Steam turbine.

MANUFACTURING PROCESS LAB

Experiments

Foundry:

- 1. Preparation of green sand mould using wooden pattern
- 2. Determination of grain fineness number of moulding sand
- 3. Determination of permeability number of moulding sand
- 4. Determination of compressive strength of moulding sand

5. Demonstration of pouring non-ferrous metal using crucible tilting furnace Welding:

1. Straight line bead and butt welding joints (ARC)

2. Preparation of MIG weld lap joint

3. Preparation of TIG weld 'T'-joint

Lathe: (Simple operations only)

- 1. Facing and straight turning
- 2. Shoulder turning
- 3. Taper turning
- 4. Drilling, countersinking and tapping

- 1. Flow through Orifice
- 2. Constant Head Method
- 3. Variable Head Method
- 4. Flow through Triangular Notch
- 5. Flow through Venturimeter
- 6. Flow through Orifice Meter
- 7. Reynold's apparatus
- 8. Verification of Bernoulli's Apparatus
- 9. Measurement of lift and drag of an aerofoil
- 10. Measurement of static pressure distribution around an aerofoil using wind tunnel apparatus.

4[™] Semester

Design of machine elements	2	1	0	3

PREREQUISITES	Strength of Materials, Machine Dynamics
	1. To understand the design methodology for machine elements.
	2. To analyse the forces acting on a machine element and apply the suitable design methodology.
OBJECTIVES	
	4. To apply the concept of parametric design and validation by strength analysis.
Expected	Student will be able to
Outcome	1. Analyze and select machine elements/components.
	2. Know the applications of the various elements, materials used to make them, and methods used
	3. Integrate various machine elements and components into the design of a machine or mechanical
	system through a design project
Module 1	Design process for better Products
Introductio	n to Design process – Factors – Materials selection direct - Bending and Torsional stress equation -
	Shock loading - Stress concentration factor - Size factor - Surface limits factor - Factor of safety -
Design stre	ss - Theories of failures - Problems, Variable and cyclic loads - Fatigue strength - S- N curve -
	cyclic stress – Soderberg and Goodman equations – Design of Helical – Leaf - Disc springs under
	yene suess – Soderberg and Goodman equations – Design of Henear – Dear - Disc springs under
	d Varying loads.
Constant an Module 2	d Varying loads. Design of necessary Machine members
Constant an Module 2 Design of S	d Varying loads. Design of necessary Machine members hafts – Riveted joints, Welded joints and Screwed fasteners, Computer aided design of machine
Constant an Module 2 Design of S elements. D	A Varying loads. Design of necessary Machine members hafts – Riveted joints, Welded joints and Screwed fasteners, Computer aided design of machine besign and drawings of couplings – Rigid – Flexible – Design and Drawings of Cotter joints - Knuckle
Constant an Module 2 Design of S elements. D	A Varying loads. Design of necessary Machine members hafts – Riveted joints, Welded joints and Screwed fasteners, Computer aided design of machine
Constant an Module 2 Design of S elements. D joints, Com Module 3	d Varying loads. Design of necessary Machine members hafts – Riveted joints, Welded joints and Screwed fasteners, Computer aided design of machine besign and drawings of couplings – Rigid – Flexible – Design and Drawings of Cotter joints - Knuckle puter aided design of machine elements. Design of Engine Components
Constant an Module 2 Design of S elements. D joints, Com Module 3 Design and	A Varying loads. Design of necessary Machine members hafts – Riveted joints, Welded joints and Screwed fasteners, Computer aided design of machine besign and drawings of couplings – Rigid – Flexible – Design and Drawings of Cotter joints - Knuckle puter aided design of machine elements.
Constant an Module 2 Design of S elements. D joints, Com Module 3 Design and	d Varying loads. Design of necessary Machine members hafts – Riveted joints, Welded joints and Screwed fasteners, Computer aided design of machine besign and drawings of couplings – Rigid – Flexible – Design and Drawings of Cotter joints - Knuckle puter aided design of machine elements. Design of Engine Components Drawings of Piston – Connecting rod – Crankshaft – Flywheel, Design of Cams for parabolic – SHM
Constant an Module 2 Design of S elements. D joints, Com Module 3 Design and and Cycloid	d Varying loads. Design of necessary Machine members hafts – Riveted joints, Welded joints and Screwed fasteners, Computer aided design of machine besign and drawings of couplings – Rigid – Flexible – Design and Drawings of Cotter joints - Knuckle puter aided design of machine elements. Design of Engine Components Drawings of Piston – Connecting rod – Crankshaft – Flywheel, Design of Cams for parabolic – SHM lal follower motions. Computer aided design of machine elements.
Constant an Module 2 Design of S elements. D joints, Com Module 3 Design and and Cycloid	 d Varying loads. Design of necessary Machine members hafts – Riveted joints, Welded joints and Screwed fasteners, Computer aided design of machine besign and drawings of couplings – Rigid – Flexible – Design and Drawings of Cotter joints - Knuckle puter aided design of machine elements. Design of Engine Components Drawings of Piston – Connecting rod – Crankshaft – Flywheel, Design of Cams for parabolic – SHM lal follower motions. Computer aided design of machine elements. 1. Joseph Edward Shigley and Charles, R. Mischke, (2011), Mechanical Engineering
Constant an Module 2 Design of S elements. D joints, Com Module 3 Design and and Cycloid Text Books	d Varying loads. Design of necessary Machine members hafts – Riveted joints, Welded joints and Screwed fasteners, Computer aided design of machine besign and drawings of couplings – Rigid – Flexible – Design and Drawings of Cotter joints - Knuckle puter aided design of machine elements. Design of Engine Components Drawings of Piston – Connecting rod – Crankshaft – Flywheel, Design of Cams for parabolic – SHM hal follower motions. Computer aided design of machine elements. 1. Joseph Edward Shigley and Charles, R. Mischke, (2011), Mechanical Engineering Design, McGraw –Hill International Editions, 9th Edition

PREREQUISITES	
OBJECTIVES	The objective of the course is to make the student understand the need and working of automotive transmission system, and emphasize the need for maintenance of transmission equipments.
Expected	On completion of this course, the students will be able to select proper transmission system for a
Outcome	vehicle, identify and solve problems related to transmission system.
Module 1	CLUTCH . GEAR BOX & TRANSMISSION

Necessity of clutch in an automobile, different types of clutches, friction clutches namely Single plate clutch, multi plate clutch, cone clutch, centrifugal clutch, electromagnetic clutch, hydraulic clutches, Clutch - adjustment, Clutch troubles and their causes, requirements of a clutch , Clutch materials, clutch lining Vacuum operated clutch. Fluid coupling. Various Resistances to Motion of the Automobile, Traction, tractive effort Performance curves, acceleration grade ability, drawbar pull. The need for transmissions, Necessity of gear box, Desirable ratios of 3-speed & 4-speed gear boxes, Constructional details of sliding-mesh gear box, constant-mesh gear box, synchromesh gear box, automatic and semi-automatic transmission, overdrive. Principal of torque conversion, single, multi stage and polyphase torque converters, performance characteristics, constructional and operational details of typical hydraulic transmission drives. Automatic transmission: relative merits and demerits when compared to conventional transmission – epicyclic and hydromatic transmission – continuously variable transmission.

Module 2 SPECIAL TRANSMISSION SYSTEM

Hydrostatic drives: advantages and disadvantages, principles of hydrostatic drive systems, construction and working of typical hydrostatic drives, Janney Hydrostatic drive. Electrical drives: advantages and limitations, principles of Ward Leonard system of control Modern electric drive for buses and performance characteristics.

principies	
Module 3	DRIVELINE
	driving thrust and torque reaction. Hotchkiss drive. Torque tube drive, radius rods. Propeller shaft.
Universal j	oints. Final drives – different types, double reaction final drive. Two speed rear axle. Rear axle
constructio	n – full floating, three quarter floating and semi-floating arrangements. Differential – conventional
type, non-s	lip type. Differential locks.
Text Books	1. Fischer and Pollack, "The automotive transmission book", Springer, 2014
Reference	1. Newton K and Steeds. W. "The Motor Vehicle", Butter Worth's & Co., Publishers Ltd, 2001
	2. Automatic vehicle transmission, John Wiley Publications 1995
	3. Crouse. W.H., Anglin., D.L., "Automotive Transmission and Power Trains construction ",

McGraw-Hill 4. Heldt P.M - Torque converters- Chilton Book Co.-1992

	VEHICLE DYNAMICS	2	1	0	3
PREREQUISITES					<u> </u>
OBJECTIVES	Familiarize the students with the modal analysis of the vibrating systems characteristics of the tires. Understand the stability and handling characteristics different tracks. To introduce the dynamics of the chassis structures.				
Expected Outcome	On completion of this course, the students will be able to simulate and anal vehicles. Analyze the stability and handling characteristics of vehicle at conditions. Analyze and select suitable tires for a vehicle				
Module 1	INTRODUCTION				
	Don of vibration, Specification and Vibration, Vibration System and human comforts Two DOF, Free and Forced Vibration, Random Vibration, Magnification and Trans bsorber.				S,
Module 2	TYRES AND SUSPENSION				
Cornering, Inclination, Requirement	es designation and specifications, Relative merits and demerits, Ride characteristics Slip angle, Cornering force, Power consumed by Tyre, Definition of Camber, Caste Scrub Radius, Toe-in Toe-out and Effect of Camber, Camber Thrust. Suspension: hts wheel Hop, Wheel Wobble and Wheel Shimmy. Solid Axles, Independent Susp ted Suspension, Active Suspension, Latest Trends.	or, Kin Types	ng Pir s,		<u> </u>
Module 3	STABILITY OF VEHICLE AND HANDLING CHARACTERSTICS				
Acceleratio motions, La steering. Ef Text Books	bution, Stability on Curved Track and on slope, Gyroscopic Effect, weight Transfer n, Cornering and Braking, Overturning and Sliding. Cross wind stability, stability a test Trends. Over steer, under steer, steady state cornering. Effect of braking, drivin fect of camber, transient effects in cornering. Directional stability of vehicles. 1. Rao V. Dukkipati, Jian Pang, "Road Vehicle Dynamics problems and solution", SAE,2010	and Ec	quatio		
Reference	 Thomas D.Gillespie, Fundamentals of vehicle dynamics,SAE,1992 J.G. Giles, 'Steering, Suspension and Tyres, Illiffe Books Ltd., 1968. J. Y. Wong, 'Theory of Ground Vehicles', John Wiley and Sons Inc., New Yorl David Corolla, 'Automotive Engineering', 'Powertrain, chasis system and Vehi Body', Butterworth Heinmann, 2009 		1.		

INDUSTRY LINKED B.TECH AUTOMOTIVE ENGINEERING

(With Automotive product design specialization)

	CAD/CAM	2	0	4	4
PREREQUISITES	DESIGN OF MACHIME ELEMENTS				
	1. To understand the basics of CAD/CAM.				
	2. To gain exposure over the concepts of computer graphics.				
OBJECTIVES	3. To learn about the geometric issues concerned to the manufacturing and its rel	ated a	areas.		
	4. To understand the latest advances in the manufacturing perspectives.				
Expected	Student will be able to				
Outcome	1. Understand the importance of CAD/CAM principles in the Product developme	ent.			
	2. Develop programs related to manufacturing using codes.				
	3. Analyze the importance of networking in manufacturing environment.				
Module 1	PRINCIPLES OF COMPUTER GRAPHICS				
2D and 3D composite t	Modeling – Wireframe, Surface and Solid – CSG and B-Rep- World/device coordir geometric transformations, Matrix representationtranslation, scaling, shearing, rotat ransformations, concatenation – Graphics software, Graphics functions, output prin s Algorithm and DDA	tion a	nd ref		
Module 2	CNC MACHINE TOOLS				
using NC c	to NC, CNC, DNC- Manual part Programming – Computer Assisted Part Program odes- Adaptive Control – Canned cycles and subroutines – CAD / CAM approach t ng – APT language, machining from 3D models			ampl	es
	ig – Ar i language, machining nom 5D models				
Module 3	CIM				
Module 3		Netw	ork s	tructu	re –
Module 3 CIM wheel	CIM				re –
Module 3 CIM wheel	CIM – CIM Database- CIM-OSI Model– Networking Standards in CIM Environment – chitecture –TCP/IP, MAP – Virtual Reality, Augmented Reality- Artificial Intellige				re –
Module 3 CIM wheel Network ar	CIM – CIM Database- CIM-OSI Model– Networking Standards in CIM Environment – chitecture –TCP/IP, MAP – Virtual Reality, Augmented Reality- Artificial Intellige	nce a	ind Ex		re –
Module 3 CIM wheel Network ar system in C	CIM – CIM Database- CIM-OSI Model– Networking Standards in CIM Environment – chitecture –TCP/IP, MAP – Virtual Reality, Augmented Reality- Artificial Intellige IM.	nce a	ind Ex		re –
Module 3 CIM wheel Network ar system in C	CIM – CIM Database- CIM-OSI Model– Networking Standards in CIM Environment – chitecture –TCP/IP, MAP – Virtual Reality, Augmented Reality- Artificial Intellige IM. 1. Ibrahim Zeid and R. Sivasubramaniam, (2010) CAD/CAM: Principles and Appl Tata McGraw Hill, India, 3rd Edition 1. Mikell P. Groover, (2007) Automation, Production Systems and Computer Integ	icatio	ons		re –
Module 3 CIM wheel Network ar system in C Text Books	CIM – CIM Database- CIM-OSI Model– Networking Standards in CIM Environment – chitecture –TCP/IP, MAP – Virtual Reality, Augmented Reality- Artificial Intellige IM. 1. Ibrahim Zeid and R. Sivasubramaniam, (2010) CAD/CAM: Principles and Appl Tata McGraw Hill, India, 3rd Edition 1. Mikell P. Groover, (2007) Automation, Production Systems and Computer Integ Manufacturing, Pearson Education	icatio	ons		re –
Module 3 CIM wheel Network ar system in C Text Books	CIM – CIM Database- CIM-OSI Model– Networking Standards in CIM Environment – chitecture –TCP/IP, MAP – Virtual Reality, Augmented Reality- Artificial Intellige IM. 1. Ibrahim Zeid and R. Sivasubramaniam, (2010) CAD/CAM: Principles and Appl Tata McGraw Hill, India, 3rd Edition 1. Mikell P. Groover, (2007) Automation, Production Systems and Computer Integ Manufacturing, Pearson Education 2. James A. Rehg, Henry W. Kraebber,(2007) Computer Integrated Manufacturing	icatio	ons		re –
Module 3 CIM wheel Network ar system in C Text Books	CIM – CIM Database- CIM-OSI Model– Networking Standards in CIM Environment – chitecture –TCP/IP, MAP – Virtual Reality, Augmented Reality- Artificial Intellige IM. 1. Ibrahim Zeid and R. Sivasubramaniam, (2010) CAD/CAM: Principles and Appl Tata McGraw Hill, India, 3rd Edition 1. Mikell P. Groover, (2007) Automation, Production Systems and Computer Integ Manufacturing, Pearson Education 2. James A. Rehg, Henry W. Kraebber,(2007) Computer Integrated Manufacturing Education.	icatio gratec	ind Exons		re –
Module 3 CIM wheel Network ar system in C Text Books	CIM – CIM Database- CIM-OSI Model– Networking Standards in CIM Environment – chitecture –TCP/IP, MAP – Virtual Reality, Augmented Reality- Artificial Intellige IM. 1. Ibrahim Zeid and R. Sivasubramaniam, (2010) CAD/CAM: Principles and Appl Tata McGraw Hill, India, 3rd Edition 1. Mikell P. Groover, (2007) Automation, Production Systems and Computer Integ Manufacturing, Pearson Education 2. James A. Rehg, Henry W. Kraebber,(2007) Computer Integrated Manufacturing	icatio gratec	ind Exons		re –

	AUTOMOTIVE AERODYNAMICS	2	1	0	3
PREREQUISITES	NIL				<u> </u>
OBJECTIVES	The objective of the course is to broaden the understanding of vehicle aerody familiarize the students with the application of computational fluid dynamics study. To introduce the use of wind tunnels in testing the vehicles.				s
Expected Outcome	Upon completion of this course the student will be able to appreciate the use the different testing techniques and apply CFD for aerodynamic design of vel		nd tui	nnels	and
Module 1	FUNDAMENTALS OF AERODYNAMICS				
problems – – Flow fiel- origin of fo coefficients components	velopment trends – Flow phenomena related to vehicles – External and Interna Performance of cars and light vans – Resistance to vehicle motion – Drag – Ty d around car – Aerodynamic development of cars – Optimization of car bodie rces and moments – effects – vehicle dynamics under side wind – Force and M – Safety limit – dirt accumulation on vehicle – wind noise – Air flow around it s – High performance vehicles – Very log drag cars – Design alternatives – Hig angement – Development and simulation methods.	pes o s for omen ndivio	f drag low d t dual	drag.	The
Module 2	WIND TUNNEL AND TEST TECHNIQUES				
tunnels – C	f wind technology – Limitations of simulation – Scale models – Existing autom limatic tunnels – Measuring equipment and transducers. Pressure measureme ents – Flow visualization techniques – Road testing methods – Wind noise mea	nt – v	veloci	-	
Module	APPLICATION OF CFD				
3					
in a flow fie Potential fle	solve Navier–Stokes equation – Forces acting in a fluid element – Compressib eld – Inviscid flow – Governing equations – Irrotation flow field and consequer ows – Boundary layer methods – Numerical modeling of fluid flow around veh nt and simulation methods –cars, buses, trucks	nces –	-	8	
Text Books	Yomi Obidi, 'Theory and Applications of Aerodynamics for Ground Vehicles' 2014	, SAI	E Pub	licati	ons,
Reference	 W.H. Hucho, 'Aerodynamics of Road Vehicles', SAE Publications, 4th edition R.McCallen, Browand, Ross, "The Aerodynamics of Heavy Vehicles", Sprint Smits, Lim, "Flow Visualization: Techniques and Examples", 2nd Edition, In 2012 Schlichting, H, Kirsten K. 'Boundary Layer Theory', Springer, 2000. 	nger,	2004	llege,	

	AUTOMOTIVE PLASTICS	2	1	0	3			
PREREQUISITES	NIL	1	<u> </u>	1	L			
OBJECTIVES	This course explains how and why plastics are different and cites several different types of polymers and processing considerations. Understanding Plastics emphasizes material handling, explains regrind, and covers the effects that moisture can have on molded part properties during processing.							
Expected Outcome	Student should understand processing of plastic, injection molding machine and design die cavity.							
Module 1	UNDERSTANDING PLASTICS							
Plastic intro	duction, type of polymers, polymer classification, plastic processing and mater	rial ha	amdlii	ng.				
Module 2	INJECTION MOLDING BASICS							
Shut down p guidelines, c	cess intro, molding machine types, modes of operations, machine components, sta procedures, Machine safety, material preparation, Injection molding phases, Gener common defects, Mold fuction, Mold construction, Mold configurations, Cold runn ral Mold Maintainace.	ral pro	ocessi	ng				
Module 3	PLASTIC PART DESIGN ESSENTIALS							
	esign considerations, Plastic part design basics, fastening & snap features, Texture echnical details	and	secou	ndary				
Text Books								
Reference								
I								

CAD / CAM LAB

CAD EXPERIMENTS:

- 1. Structural analysis of Trusses
- 2. Structural analysis of Beams
- 3. Structural analysis of Frames
- 4. Plane stress/Plane strain analysis
- 5. Model analysis of different structures
- 6. Steady state thermal analysis
- 7. Transient thermal analysis
- 8. Flow analysis
- 9. Thermo-mechanical analysis

CAM EXPERIMENTS:

1. Manual part programming using G and M codes for Turning, Step turning, Taper turning, multiple turning, Facing, Multiple facing, thread cutting and radius turning on cylindrical components.

- 2. CNC Milling program involving linear motion and circular interpolation.
- 3. CNC Milling program involving contour motion and canned cycles.
- 4. CNC Milling program involving Pocket milling
- 5. Diagnosis and trouble shooting in CNC machine
- 6. CNC code generation using any CAM software.
- 7. Simulation of machining operations using any CAM software.
- 8. Route sheet generation using CAM software.
- 9. Study and practical demonstration on Wire-Cut EDM,
- 10. Study and practical demonstration on Coordinate measuring machine,

11. Study and practical demonstration on Vertical Machining center and Horizontal Machining center

12. Study on Rapid Prototyping Technologies, Student shall submit team work in the form of project /assignments with neat documentation.

5TH SEMESTER

	HEAT AND MASS TRANSFER	3	1	2	5
PREREQUISITES	Applied Thermodynamics	<u> </u>		I	<u> </u>
OBJECTIVE	 To teach the students to comprehend and evaluate various modes of heat and a To help the students to design fin enhanced systems, evaporators, condensers To enable the students understand boundary layer theory, condensation and be To expose students to heat exchangers and heat pipes. 	and h	eat ex		gers.
Expected	Student will be able to				
Outcome	 Apply basic principles of fluid mechanics, thermodynamics, heat transfer and mass transfer systems. Model heat, mass and momentum transport systems and develop predicti 3. Assess and evaluate various designs for heat and mass transfer and optim 	ive co	rrelat	tion.	
Module 1	CONDUCTION AND CONVECTION				
Derivation i simple geom composite sp coefficient – general equa Three dimension shape factor conduction – Heisler and laminar flow Internal flow convection i Module 2	epts – conduction - convection and radiation – Laws – General equation of n cartesian - cylindrical and spherical coordinates – One dimensional steady state netries – plane wall - cylinder and sphere – Heat transfer composite walls - com- pheres – Critical thickness of insulation – Thermal contact resistance – Overall he - Electrical analogy – Heat generation in plane wall - cylinder and sphere – Extende ations – types and applications of fins – Fin efficiency and effectiveness – Fin performance - Unsteady state heat conduction – Analytical - Graphical and Numerical methor - Unsteady state heat conduction – Lumped parameter system – Non-dimensiona - Significance of Biot and Fourier numbers – Transient heat flow in semi-infinite - Grober charts, Boundary layer theory – Conservation equations of mass - momentor over a flat plate – Turbulent flow over a flat plate – Flow over cylinders - sphere w through pipes – annular spaces – Analogy between momentum and heat transfer n vertical - inclined and horizontal surfaces – Mixed convection – Dimentional an CONDENSATION , BOILING & RADIATION	te hea nposit at trar led su corma ods – 0 l num solid – solid – num an s - tuh – Nat salysis	t cond e cylin isfer infaces nce. T Condu ibers in - Use nd ene be ban tural s.	luction nders wo at action n of rgy fa k –	on in and nd
Regimes of – Black bod	Boiling – Forced convection boiling – Radiation heat transfer – Thermal radiation y concept – Emissive power – Radiation shape factor – Gray bodies – Radiation s	– La	ws of		tion
Module 3	HEAT AND MASS TRANSFER				
heat exchan Transfer-Ma	ngers – Types and practical applications – Use of LMTD – Effectiveness – NTU n gers – Plate heat exchangers – Fouling factor – Heat pipes –Types and application ass transfer by molecular diffusion – Fick's law of diffusion – Analogy of heat and 1. R.C. Sachdeva, (2010) Fundamentals of Heat and Mass Transfer (SI Units),	s – Pr	rincipl	e of N	
	 Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera and David P. De (2011) Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 7th Edition Sarit K. Das (2010) Fundamentals of Heat and Mass Transfer, Narosa Publishin J.P. Holman (2009) Heat Transfer, McGraw Hill Publishing Co. Ltd. 10th Edition Data Book: C.P Kothadaraman and S. Subramanyan (2012) Heat and Mass Transfer Data E Age International Publishers, 7th Edition 	ng Ho on			

DEEDEOLUCITES	FINITE ELEMENT ANALYSIS	3	1	2	5	
PREREQUISITES	Numerical Methods, Strength of materials	1				
OBJECTIVE	 To enable the students understand the mathematical and physical principles un Element Method (FEM) as applied to solid mechanics and thermal analysis Introduce students to the theory of elasticity To teach students the characteristics of various elements in structural and thermal selection of suitable elements for the problemsbeing solved To introduce students to various field problems and the discretization of the pro- 5. To make the students derive finite element equations for simple and complex of 	mal a	nalysi n		ite	
Expected	Student will be able to					
Outcome	 Apply the knowledge of Mathematics and Engineering to solve problems in structural and thermal engineering by approximate and numerical methods Design a new component or improve the existing components using FEA Solve the problems in solid mechanics and heat transfer using FEM Use commercial FEA packages like ANSYS and modern CAD/CAE tools for solving real life problems 					
MODULE 1	INTRODUCTION TO THEORY OF ELASTICITY					
	thods – Galerkin – sub domain – method of least squares and collocation met Discretization of the Problem: Introduction – Geometrical approximations – S	thod -	num	erica	- 	
residual me problems. I through syr elements –] Function: S	ethods – Galerkin – sub domain – method of least squares and collocation met Discretization of the Problem: Introduction – Geometrical approximations – S nmetry – Element shapes and behaviour – Choice of element types – size and Element shape and distortion – Location of nodes – Node and Element number Simplex - complex and multiplex elements – Linear interpolation polynomials Convergence requirements – derivation of shape function equations. STIFFNESS MATRIX FORMULATION	thod - Simpl num ering.	num ificati ber of Inter	erica on pola	tion	
residual me problems. I through syn elements – 1 Function: S elements – 0 Module 2 One dimensional problems, G conduction a	Discretization of the Problem: Introduction – Geometrical approximations – S nmetry – Element shapes and behaviour – Choice of element types – size and Element shape and distortion – Location of nodes – Node and Element number Simplex - complex and multiplex elements – Linear interpolation polynomials Convergence requirements – derivation of shape function equations.	thod - Simpl num ering. for va ss mer	num ificati ber of Inter arious	erica on pola s sim	tion plex	
residual me problems. I through syn elements – I Function: S elements – O Module 2 One dimensional problems, G conduction a Module 3 Natural coor function equ formulation	Discretization of the Problem: Introduction – Geometrical approximations – S mmetry – Element shapes and behaviour – Choice of element types – size and Element shape and distortion – Location of nodes – Node and Element number implex - complex and multiplex elements – Linear interpolation polynomials Convergence requirements – derivation of shape function equations. STIFFNESS MATRIX FORMULATION ional elasticity – Bar with constant and varying cross section - and Pin jointed trus elasticity – Plane stress - plane strain and axisymmetric simplex elements only - s eneral field equation – Formulation of 1D and 2D – steady state heat transfer prob and convection and torsion of prismatic members – simple numerical problems. HIGHER ODER PROBLEMS	thod - Simpl num ering. for va ss mer simple blems erivati eleme	num ificati ber of Inter arious nber e nume involv	erica on pola s sim - Two erical /ing	ion plex	
residual me problems. I through syn elements – I Function: S elements – O Module 2 One dimensional problems, G conduction a Module 3 Natural coor function equ formulation Text Books	Discretization of the Problem: Introduction – Geometrical approximations – S nmetry – Element shapes and behaviour – Choice of element types – size and Element shape and distortion – Location of nodes – Node and Element number Simplex - complex and multiplex elements – Linear interpolation polynomials Convergence requirements – derivation of shape function equations. STIFFNESS MATRIX FORMULATION ional elasticity – Bar with constant and varying cross section - and Pin jointed trus elasticity – Plane stress - plane strain and axisymmetric simplex elements only - s eneral field equation – Formulation of 1D and 2D – steady state heat transfer prob and convection and torsion of prismatic members – simple numerical problems. HIGHER ODER PROBLEMS rdinate system and numerical integration – Higher order 1D and 2D elements – De lations for Four node quadrilateral - six node triangle and eight node quadrilateral	thod - Simpl num ering. for va ss mer simple blems erivati eleme	num ificati ber of Inter arious nber e nume involv	erica on pola s sim - Two erical /ing	ion plex	

	COMPUTATIONAL FLUID DYNAMICS	2	1	0	3
PREREQUISITES	FLUID MECHANICS, NUMERICAL METHODS, HEAT & MASS TRANSFER				<u> </u>
OBJECTIVE	 To provide the students with sufficient background to understand the mathema of the governing equations of fluid flow and heat transfer. To enable the students to solve one and two-dimensional ordinary and partial of using traditional CFD tools. To teach students how to express derivatives and differential equations through techniques. To help the students to understand the general transformation equations for gripts. To teach students how to apply explicit, implicit and semi-implicit methods of 	differe h disc d gen	ential retiza	equat tion on.	tions
	6. To help the students solve fluid flow field using some popular CFD techniques		unic	Tener	11 <u>5</u> .
Expected Outcome	Student will be able to 1. Possess the knowledge of CFD techniques, basic aspects of discretization and 2. Solve fluid flow fields using CFD methods. 3. Model fluid flow problems and heat transfer		genera	tion.	
Module 1	INTRODUCTION & GOVERNING EQUATIONS				
conditions - Application volume and		c and diffe	l Mixe rence uction	ed typ - Fin to F	pes - ite inite
	GRID GENERATION & TRANSFORMATION tion – Transformation of non-uniform grids to uniform grids – General transforma	tion o	of the		ions
- Form of th Elliptic grid and three-di	e governing equations suitable for CFD - Compressed grids - Boundary fitted co- generation - Adaptive grids - Modern developments in grid generation. Steady on mensional conduction - Steady one-dimensional convection and diffusion - Transi mensional conduction – Explicit - Implicit - Crank-Nicolson - ADI scheme – Stabil	ordina e-dim ent or	te sys iensio ne-din	tems nal, t nensio	– wo
Module 3	CALUCATION OF FLOW FIELD				
Representat Pressure and Boundary co case studies		oment SIMP	tum eo PLE al	quatio goriti	ons -
Text Books	1. John, D. Anderson. J R. Computational Fluid Dynamics, McGraw Hill, 2011.	_	_	_	_
Reference	 Chung t.J., (2002) Computational Fluid Dynamics, Cambridge University press G.Biswas and K.Muralidhar (2003) Computational Fluid Flow and Heat Transf Narosa Publishing House, New Delhi Joel H. Ferziger, Milovan Peric. (2002) Computational Methods for Fluid Dyna Heidelberg Vladimir D. Liseikin (2010) Grid generation methods, Springer, 2nd Edition Veersteeg. H. K. & Malaseekara (2007) Introduction to CFD, The Finite Volun Method, Longman Scientific & Technical. 	er, mics,	, Verla	ag Be	rlin

	PRODUCT DEVELOPMENT & LIFECYCLE	2	1	0	3
PREREQUISITES	Nil		L		
OBJECTIVE					
Expected					
Outcome					
Module 1	PRODUCT LIFECYCLE ENVIRONMENT				
Product Da	ta and Product Workflow, Company's PLM vision, The PLM Strategy, Principles	for P	LM st	rate	gy,
Preparing f	or the PLM strategy, Developing a PLM strategy, Strategy identification and se	lectio	n,		
Change Ma	nagement for PLM				
Module 2	PROCESS & METHODOGIES				
design, Vali Build/Asser Bottom-up Concurrent - problem,	Product development process - Conceive – Specification, Concept design, Design dation and analysis (simulation), Tool design, Realize – Plan manufacturing, M mble, Test (quality check), Service - Sell andDeliver, Use, Maintain and Suppo design, Top-down design, Front loading design workflow, Design in context, M engineering - work structuring and team Deployment - Product and process so identification and solving methodologies. Product Reliability, Mortality Curve. ring, Design for Assembly. Design for Six Sigma. DFMA	lanufa ort, Di Iodula ystem	acture spose ar des nizatic	e, e. lign.	
models -Ty demands. I assembly a experiment costs and a	odeling - Definition of concepts – FundamentaL issues - Role of Process chains a pes of product models – model standardization efforts-types of process chains Design for manufacturing - machining - casting and metal forming - optimum de nd disassembly - probabilisticdesign concepts - FMEA - QFD - Taguchi Method is -Design for product life cycle. Estimation of Manufacturing costs, Reducing to ssembly costs, Minimize system complexity.	- Ind esign for de	ustria - Desi esign (l ign fo of	or
Text Books					
Reference	 Grieves, Michael. Product Lifecycle Management, McGraw-Hill, 2006. ISBN 0071452303 Product Life Cycle Management - by Antti Saaksvuori, Anselmi Immonen, Sp Edition (Nov.5, 2003) Stark, John. Product Lifecycle Management: Paradigm for 21st Century Proc Realisation, Springer-Verlag, 2004. ISBN 1852338105 Product Design & Process Engineering, McGraw Hill – Kogalkusha Ltd., Toky Product Design & Development – by Kari Ulrich and Steven D. Eppinger, Mc International Edns, 1999 	duct o, 19	74.		

	AUTOMOTIVE INTERIORS & EXTERIORS	2	1	0	3
PREREQUISITES	nil	1			
OBJECTIVE					
Expected					
Outcome					
Module 1	PRODUCT LIFECYCLE ENVIRONMENT				
Product Da	ita and Product Workflow, Company's PLM vision, The PLM Strategy, Principl	es fo	r PLM		
strategy, P	reparing for the PLM strategy, Developing a PLM strategy, Strategy identifica				ion,
	anagement for PLM				
Module 2	PROCESS & METHODOGIES				
-	Product development process - Conceive – Specification, Concept design, Desi	-			
	idation and analysis (simulation), Tool design, Realize – Plan manufacturing , Maintain and Surger				
-	mble , Test (quality check) , Service - Sell andDeliver , Use , Maintain and Suppo design, Top-down design, Front loading design workflow, Design in context, N		•		
-	t engineering - work structuring and team Deployment - Product and process s			-	
	identification and solving methodologies. Product Reliability, Mortality Curve.	-		Л	
-	ring, Design for Assembly. Design for Six Sigma.	Desig	,		
Module 3	DFMA				
	odeling - Definition of concepts – FundamentaL issues - Role of Process chains				
-	pes of product models – model standardization efforts-types of process chains				
	Design for manufacturing - machining - casting and metal forming - optimum d	-		-	or
-	nd disassembly - probabilisticdesign concepts - FMEA - QFD - Taguchi Method		-		
-	ts -Design for product life cycle. Estimation of Manufacturing costs, Reducing t	he co	mpor	ient	
COSTS and a Text Books	ssembly costs, Minimize system complexity.				
TEXT BOOKS					
Reference	1. Grieves, Michael. Product Lifecycle Management, McGraw-Hill, 2006. ISBN 0071452303				
	2. Product Life Cycle Management - by Antti Saaksvuori, Anselmi Immonen, Sj Edition (Nov.5, 2003)	oringe	er, 1st		
	3. Stark, John. Product Lifecycle Management: Paradigm for 21st Century Prod	duct			
	Realisation, Springer-Verlag, 2004. ISBN 1852338105				
	4. Product Design & Process Engineering, McGraw Hill – Kogalkusha Ltd., Toky				
	5. Product Design & Development – by Kari Ulrich and Steven D. Eppinger, Mc International Edns, 1999	Graw	/ Hill		

6TH SEMESTER

	ERGONOMICS & STYLING	2	1	0	3
PREREQUISITES	nil				
OBJECTIVE					
Expected					
Outcome					
Module 1	MOBILITY RELATED VEHICEL PLAN AND INTEGRATION				
	ng context related problems, User research customer's explicit needs and late	ent no	eeas.		
	trend, style Analysis anning, development of product brief. Concept generation, creativity and inno	avati	n		
-	techniques. Peer reviews.	Jvati	511		
	ding of the packaging concept and the problems connected with traveling spa	ice tr		بامعر	
	and aesthetics/ styling.	icc, ii		1089	,
•	nd exercises in mobility related topics				
Module 2	EXPLORATION OF FUTURE MOBILITY & SUSTAINABLE SOLUTIONS				
Understan	ding mobility issues at system level.				
	e mobility – ecology / environment, culture, technology, legislation, safety,				
	portation, Urban, semi-urban, rural transport systems & mobility needs				
	intelligent transport systems etc.				
• Future tecl	nnologies for mobility				
• Tasks: Tech	nnology watch, Scenario creation for integrated systems, Strategic approach t	o mo	bility	desi	gn
Module 3	ERGONOMICS OF PASSENGER DRIVERAND AMENITIES				
	on to human body.				
•	netrics and its application to vehicle ergonomics and cockpit design.				
	fort – seating, visibility, man-machine system.				
	cal factors – stress, attention	duct	and f	umo	
_	comfort - Ingress and egress, spaciousness, ventilation, temperature control, nd vibration.	uusi	anu i	ume	
•	itures and conveniences—Use of modern technology for the same.				
	es- active and passive safety features in vehicles.				
-	research methods / ergonomic audit				
-	ical work aimed at integrating design and ergonomics.				
Readings a					
Text Books					

Reference	• B.Peacock, Waldemar Karwowski; Automobile ergonomics. Publisher: CRC; 1 edition, 1993
	• S.P. Taylor C.M. Haslegrave; Vision in Vehicles VI. Publisher: North Holland; 1 edition, 1998
	• Cristy ho, Charles Spenser; The multi- sensory drives: Implication for ergonomics car interface
	design. Publisher CRC press 1993.
	• Don Harris (Editor); Engineering Psychology and Cognitive Ergonomics: 8th International
	conference. Publisher: Springer; 1 edition (20095. Product Design & Development – by Kari
	Ulrich and Steven D. Eppinger, McGraw Hill
	International Edns, 1999

	Vehicle Inspection & Maintenance	2	1	0	3
PREREQUISITES				<u> </u>	<u> </u>
OBJECTIVE	To make the student understand the need for vehicle maintenance and its imp familiarize the maintenance procedure for various components of an automob		ce an	d to	
Expected Outcome	On completion of this course, the students will be able to inspect and diagnos occurring in the various components of the vehicle.	e the	probl	ems	
Module 1	Inspection schedule and maintenance of records				
maintenand forms, safe dismantling crankshaft	aintenance, types of maintenance: preventive and breakdown maintenance, require, preparation of check lists. Inspection schedule, maintenance of records, log s ty precautions in maintenance: General safety, tool safety. Tools used for engine g of engine components: cylinder head, valve train, cylinder block, connecting r assembly; cleaning and inspection of engine components, reconditioning of con	heets e disa od, p	and one and on	other Ibly,	
Module 2	Engine subsystem maintenance				
radiator, th maintenance maintenance	nd maintenance of fuel system, Engine tune-up, cooling system: water pump, ermostat. Lubrication system maintenance, Anticorrosion and anti freeze additive e of clutch, gear box, universal joints, propeller shaft, differential system. Servi- e of brake – disc and drum brakes, steering wheel and suspension systems, whe ly maintenance	ce an	d	C	nd
Module 3	Electrical system maintenance				
	nd maintenance of battery, starter motor, alternator and generator, ignition syste stem, electric horn, and wiper motor	em,			
Text Books	1. Knott and Phil Knott, "An Introductory Guide to Motor Vehicle Maintenanc Vehicles", EMS publishing, 2010		-		
Reference	 William H. Crouse and Donald L. Anglin, "Automotive Mechanics", 10th ed Tim Giles, "Automotive service: Inspection, maintenance and repair", 3rd edi Jack Erjavec, "Automotive technology: A systems approach", 5th edition, 20 Service manuals of various OEMs 	tion,		,	

	COMPUTER SIMULATION OF ENGINES	2	1	0	3
PREREQUISITES		<u> </u>	<u> </u>		
OBJECTIVE	The objective of this course is to make the student understand the thermodyna various process of an engine and help them to mathematically model the proc			lved	in
Expected Outcome	By the end of the course student will be able to explain the physical process i engine completely with mathematics and can develop code for simulating the		ved in	an	
Module 1	Ideal Cycle Simulation of SI Engines (ICS)				
temperature pressure, ter deflagration medium –	h – Heat of reaction – Measurement of URP – Measurement of HRP – Adiabati – Calculations under constant Pressure and constant volume — Effect of chan mperature on Heat of reaction – Introduction to laminar flame speed – detonati a - Complete and Partial combustion . Basic approach – Assumptions of cycle Ideal Otto cycle – Ideal cycle simulation – Deviation between actual a ble exercises	ge of on – with	air as		
Module 2	Fuel – Air Cycle Simulation (FCS)				
operation – operation –	 Working medium – Effect of temperature drop due to fuel vaporization – Fu Adiabatic heat addition – work output and efficiency calculations – Part throttl super charged operation – programmable exercises. Progressive Combustion Simulation (PCS) and Actual Cycle Simulation (ACS) 		ottle		
reexaminati determination simulation - angle – brak Effect of sp Text Books Reference	nbustion process simulation – progressive not instantaneous - Gas ex on of inlet and exhaust processes – Heat transfer process – Actual Cycle simulation of heat transfer coefficients – Friction Calculations – Comparison of various Comparison of simulated values – Validation of engine performance like press ce power – brake thermal efficiency – Mechanical and Volumetric efficiency – eed on engine performance 1. C.R. Ferguson, A.T. Kirkpatrick, "Internal Combustion Engines- Applied TI Wiley Publication, 2013 1. Ramoss A.L, "Modelling of Internal Combustion Engines Processes" McGr. Co., 1992 2. Ashley Campbel, "Thermodynamic analysis of Combustion Engines", John New York, 1996 3. Benson R.S., Whitehouse N.D, "Internal Combustion Engines", Pergamon F 4. V. Ganesan, "Computer Simulation of Spark – Ignition Engine Processes". I (India) Limited, 1996	ation s surec herme aw H Wile Press,	rank oscier ill Pu y and Oxfo	nces" blish Sons rd, 1	, ing 3, 979

	FUNDAMENTALS OF NOISE AND VIBRATION	2	1	0	3
PREREQUISITES			1		
OBJECTIVE	The objective of the course is to broaden the understanding of the source of nois familiarize with the measurement, statistical and frequency analysis of noises	e and	vibra	tion,	to
Expected	Upon completion of this course the student will be able to identify the sources of				tion,
Outcome	measure sound intensity and human sensitivity and carryout statistical and freque	ency	analys	sis.	
Module 1	Introduction to Vibrations				
Reciprocati	ion formulation, Lagrange's Equation, Damped – Undamped Vibration, Forced vib ng mass, Balancing of Rotary Mass, Transmissibility, Logarithmic decrement, Isol (2 DOF) Coupled System. MULTI DOF				
Damping in	de of Vibrations-Flexibility and Stiffness Matrix, Eigen Values & Vectors, Orthog forced Vibration, Forced Vibration by Matrix inversion, Numerical methods of fu			s, Mo	dal
frequencies Module 3	, Continuous System Vibration of String, Euler's Equation of Beams.				
Module 5	Noise and Measuring Instruments				
Pressure level hearing los Vibration te	 bise? Decibel, Various noise sources, Sound Quality, Sound Propagation, Souvel, Sound Intensity ratio, Sound power, Quantification of sound Machinery noises. Noise Control. Vibration Instruments- Vibration Exciters, Analyzers, Principest, Frequency and Domain Analysis, Sound Intensity and mapping and introduction Digital Signaling Process 1. William T Thomson, Dahleh and C Padmanabhan, "Theory of Vibration with Applications", Pearson, 5th ed, 2011 1. Malcom J. croker, "Noise and Vibration Control", Wiley, 2007. 2. Norton MP "Fundamental of Noise and Vibration", Cambridge University Pres 3. Boris and Korney, "Dynamic Vibration Absorbers", John Wiley, 1993. 4. Lewis L, "Industrial Noise Control", McGraw Hill Inc, 1991. 	e and le, F n to a	Nois ree ar array	e ind	uced

	ENGINE DESIGN & DEVELOPMENT	2	1	0	3
PREREQUISITES					<u> </u>
OBJECTIVE	The objective of this course is to make the student understand the functions and ovarious components of an engine and understand the mechanical limitations in or performance of an engine	btaini	ng ide	eal	f
Expected	By the end of this course the student will be able to design the various componer	nts of	an en	gine.	
Outcome					
Module 1	Engine Basic Theory				
& configu Functional Cylinder he loads, 2 Va Module 2 Function, F	on of I.C Engines, Customer & Functional requirements, Efficiency, Overall engineration, General design considerations, Forces generated within engine, Duty requirement, Block material like Gray Iron, Aluminum, Compacted Graphite Iread alloys, Design layout, Basic block, Block head design, Cylinder liner design approx & 4 valve cylinder heads. Bolts loads and gasket design. Crank & Valve train Requirements, Materials – Piston and crankshaft. Recent trends in design of piston approximately and the second seco	cycle on an oproac	e, Do nd Ma ch and	wnsiz ignes l The	zing, ium, rmal
Module 3	s, Piston pin, Connecting rod assembly and Crankshaft. Intake & Exhaust System				
inoutio 5	Intuke & Exhiust System				
Injection Pa types. Lubr Requirement	requirement, Fuel Filter, Types of Injectors, Pump-line-injector injector system, Ur ressure, Multiple Injections. Cooling system, Cooling Circuits, Water Pump and Th ication – Types & Layout, Requirement of Lubricants, Oil Filters, Oil Pan, Oil pun nt, Air Induction, Swirl & Turbulence, Swirl Generation, Air Filter, Intake Manifol Ventilation (PCV), Exhaust Manifold, Turbochargers, EGR, EGR Cooler, Silencer	ermos np typ d, Pos	stat ar es. Fu sitive	nd its inctio	
Text Books	1. John B Heywood, "Internal Combustion Engine Fundamentals", Tata McGraw	Hill, 2	2011		
Reference	 Design Of Automotives Engine, Kolchin A. & Demidov V; MIR Publishers, 198 Goetze, "Piston Rings Manual", 2008. Kevin Hoag, "Vehicular Engine Design", Springer, 2006 Edward Fredric Obert, "Internal Combustion Engines", International Text book 		1968)		

	AUTOMOTIVE STRUCTURES	2	1	0	3			
PREREQUISITES		1	1		<u> </u>			
OBJECTIVE	The course explains how to create automotive structural parts within th assembly environment. We emphasize modeling parts to fit within a l existing geometry as the boundaries, and to design the parts to accommoda	imite	d spa	ice u				
Expected								
Outcome								
Module 1	Body in White Design Principles							
1. BIW	l Design Overview							
2. BIW	Design Process							
	s in Body in White Design							
	-Planning Stage							
5. BIW	-Starting the CAD Model							
Module 2	Die design & Tooling							
1. Die	Design Overview (AS)							
2. Die	Design Structure (AS)							
3. Die	Design Advantages and Disadvantages (AS)							
4. Die	Tooling Design (AS							
Module 3	Body in White Modelling							
1. BIW	-Clean Edge Modeling Technique							
2. BIW	-Clean Edge Application							
3. BIW	-Shaping the Part Overview							
4. BIW	-Rough Shape Envelope Cre							
5. BIW	W-Front Hinge Pillar Envelope							
6. BIW	V-Shaping the Part							
7. BIW	-Stamped Depressions							
8. BIW	-Complex Depression Creation Techniques							
9. BIW	-Complex Depressions on Contoured							
10. BIW	-Front Hinge Pillar Depressions							
11. BIW	-Flanges for Stamped Sheetmetal							
12. BIW	-Flange Creation							

- 13. BIW-Offset Flange
- 14. BIW-Door Inner Flange
- 15. BIW-Front Hinge Pillar Flanges
- 16. BIW Beads
- 17. BIW-Bead Creation
- 18. BIW-Front Hinge Pillar Bead
- 19. BIW-Dart Creation
- 20. BIW-Dart Creation Using Tool Solids
- 21. BIW-Front Hinge Pillar Completion

Text Books		
Reference		