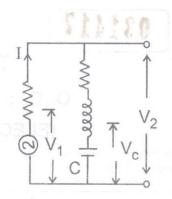
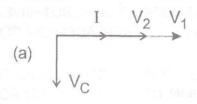
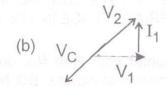
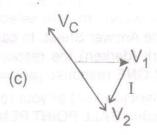
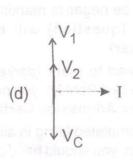

- 1. Which of the following does not have dual relation?
 - (a) Current voltage
 - (b) Inductance capacitance
 - (c) Tie set-cut-set
 - (d) Resistance reactance
- For the two port network in the fig(1), the Z-Matrix is given by:

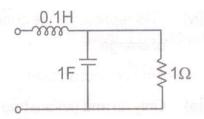

(a)
$$\begin{pmatrix} Z_1 & Z_1 + Z_2 \\ Z_1 + Z_2 & Z_2 \end{pmatrix}$$

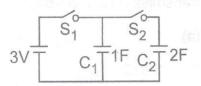

(b)
$$\begin{pmatrix} Z_1 & Z_1 \\ Z_1 + Z_2 & Z_2 \end{pmatrix}$$


(c)
$$\begin{pmatrix} Z_1 & Z_2 \\ Z_2 & Z_1 + Z_2 \end{pmatrix}$$


(d)
$$\begin{pmatrix} Z_1 & Z_1 \\ Z_1 & Z_1 + Z_2 \end{pmatrix}$$


3. The circuit shown in the figure is energized by a sinusoidal voltage source V₁ at a frequency which causes resonance with a current of I. The phasor diagram which is applicable to this circuit is:

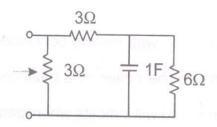




- 4. The Thevenin's equivalent of a circuit operating at W = 5 rad/sec, has $V_{oc} = 3.71 \angle -15.9^{\circ}$ and $Z_0 = 2.38$ $-j0.667\Omega$. At this frequency, the minimum realization of the Thevenin's impedance will have a :
 - (a) Resistor and a capacitor and an inductor
 - (b) Resistor and a capacitor
 - (c) Resistor and an inductor
 - (d) Capacitor and an inductor
- 5. The resonant frequency for the given circuit will be:

- (a) 1 rad/sec
- (b) 2 rad/sec
- (c) 3 rad/sec
- (d) 4 rad/sec
- 6. In the figure shown, all elements used are ideal. For t < 0, S₁ remained closed and S₂ open. At t = 0, S₁ is opened and S₂ is closed. If the voltage across the capacitor C₂ at t = 0 is zero, the voltage

across the capacitor combination at $t = 0^+$ will be:



- (a) 1 V
- (b) 2 V
- (c) 1.5 V
- (d) 3 V
- One of the watt meters connected to measure the power in a balanced 3phase load will indicate when load p.f.

is:

- (a) Unity
- (b) Zero
- (c) 0.5
- (d) None of these
- 8. The no. of fundamental loops for a network with 'n' nodes and 'b' branches is:
 - (a) b n + 1
 - (b) b-n
 - (c) n-b+1
 - (d) None of these

- 9. The reflection coefficient resulting from mismatching a 50Ω and 300Ω transmission line will be :
 - (a) 1.0
 - (b) 0.875
 - (c) 0.714
 - (d) 0.166
- 10. The driving point impedance Z₁ for the shown circuit is given by:

(a)
$$\left(\frac{3}{2}\right) \frac{\left(s + \frac{1}{2}\right)}{\left(s + \frac{1}{3}\right)}$$

(b)
$$\frac{\left(\frac{3}{2}\right)\left(s+\frac{1}{3}\right)}{\left(s+\frac{1}{2}\right)}$$

(c)
$$\frac{3\left(s + \frac{1}{2}\right)}{\left(s + \frac{1}{3}\right)}$$

(d)
$$\frac{3\left(s+\frac{1}{3}\right)}{\left(s+\frac{1}{2}\right)}$$

- 11. If \overline{E} is the electric field intensity, $\nabla \cdot (\nabla \times E)$ is equal to :
 - (a) <u>E</u>
 - (b) |<u>E</u>|
 - (c) Null vector
 - (d) Zero
- 12. Consider the following statements with reference to the equation $\nabla \cdot J = -\delta P/\delta t$:
 - (i) This is the point form of the continuity equation.
 - (ii) Divergence of current density is equal to the decrease of charge for unit volume per unit at every point.
 - (iii) This is Maxwell's equation.
 - (iv) This represents the conservation of charge.

Select the correct answer:

- (a) Only (ii) and (iv) are true
- (b) (i), (ii) and (iii) are true
- (c) (ii), (iii) and (iv) are true
- (d) (i), (ii) and (iv) are true
- 13. Two point charges $Q_1 = 10 \mu C$ and $Q_2 = 20 \mu C$ are placed at coordinates (1, 1, 0) and (-1, -1, 0) respectively. The total electric flux density passing through a plane z = 20 will be :
 - (a) 7.5 μC
 - (b) 13.5 μC
 - (c) 15.0 μC
 - (d) 22.5 µC

- Electric field 100m from a λ/2 antenna at 2 MHz with current 60A.
 - (a) 31.2 + J18 V/m
 - (b) -31.2 + J18 V/m
 - (c) -31.2 J18 V/m
 - (d) 31.2 J18 V/m
- 15. Percentage of incident power reflected from a transmission line of 72Ω characteristic impedance is:
 - (a) 1.24%
 - (b) 2.24%
 - (c) 3.24%
 - (d) 4.24%
- 16. Phase velocity of a telephone line having R = 30 Ω/km, L = 100 mH/km, c = 20 μF/km at f = 1kHz is:
 - (a) 6×10^5 m/s
 - (b) $7 \times 10^5 \,\text{m/s}$
 - (c) 8×10^5 m/s
 - (d) $9 \times 10^5 \text{ m/s}$
- 17. Retentivity of a magnetic material is:
 - (a) The ability to retain residual magnetism
 - (b) The demagnetization force when field is reversed
 - (c) The ability to cover up lag infield when field is increasing
 - (d) None of these

- 18. Above the Curie temperature, a magnetic material become :
 - (a) Ferromagnetic
 - (b) Paramagnetic
 - (c) Diamagnetic
 - (d) None of these
- 19. Which of the following composition corresponds to common soldering alloys?
 - (a) 85Sn 15Pb
 - (b) 85Pb 15Sn
 - (c) 70Pb 15Pb 15B
 - (d) None of these
- 20. Which of the following composition corresponds to common stainless steel?
 - (a) 18Ni 8Cr 1Ti 0.3C Fe
 - (b) 8Ni 18Cr 1Ti 0.2C Fe
 - (c) 8Ni 18Cr 1Mn 0.1C Fe
 - (d) None of these
- 21. The thickness of the depletion layer in a PN junction is in the order of:
 - (a) $10^6 \, \text{m}$
 - (b) 10^{-10} m
 - (c) 10^{-4} m
 - (d) None of these
- 22. It is possible to obtain P-type or N-type

semiconductor from a simple co	mpound
by adding Ge. That compound	is:

- (a) InSb
- (b) GaP
- (c) GaAs
- (d) None of these

23. Hall's effect can be used to measure:

- (a) Electric field intensity
- (b) Magnetic field intensity
- (c) Carrier concentration
- (d) None of these
- 24. The silicon used for electrical purposes have silicon percentage :
 - (a) 0.5%
 - (b) 2.5%
 - (c) 3.5%
 - (d) None of these
- 25. Which is an important mechanical etching process of physical etching?
 - (a) Sputtering
 - (b) Ion milling
 - (c) Surface polishing
 - (d) None of these
- 26. The volume concentration related to diffusion is given by the formula:

(a)
$$N_1 = \frac{\sqrt{3}dn_1}{A_1}$$

(b)
$$N_1 = \frac{\sqrt{3}n_1}{Ad}$$

(c)
$$N_1 = \frac{\sqrt{3} dA}{n_1}$$

(d)
$$N_1 = \frac{n_1 A}{\sqrt{3} d}$$

27. Mesa isolation includes n-GaAs on:

- (a) Si GaAs
- (b) GaAs
- (c) Si
- (d) None of these
- 28. The MOS transistor is a high-impedance device, so that its power dissipation is:
 - (a) High
 - (b) Low
 - (c) Medium
 - (d) Very High
- Potential reliability problem occurs when the sum of the small signal current gains of the parasitic transistors
 - (a) Equal to unity
 - (b) Exceeds unity
 - (c) Equals to zero
 - (d) Less than unity
- 30. Schottky diodes are confined to:
 - (a) Low speed logic gates
 - (b) High speed logic gates
 - (c) Logic gates
 - (d) Medium speed logic gates
- 31. Given the signal $x(t) = 16 \cos(20\pi t + \pi/4) + 6 \cos(30\pi t + \pi/6) + 4 \cos(40\pi t + \pi/3)$.

The power contained in the frequency interval 12 Hz to 22 Hz is:

- (a) 22 W
- (b) 26 W
- (c) 10 W
- (d) 20 W
- 32. An input $x(t) = \exp(-2t) u(t) + \delta(t-6)$ is applied to an LTI system with impulse response h(t) = u(t). The output is :
 - (a) $[1 \exp(-2t) u(t)] + u(t+6)$
 - (b) $[1 \exp(-2t) u(t)] + u(t-6)$
 - (c) $0.5[1 \exp(-2t) u(t)] + u(t+6)$
 - (d) $0.5[1 \exp(-2t) u(t)] + u(t-6)$
- 33. The initial and final value of x(z) = [2z(z-5/12)]/[(z-1/2)(z-1/3)]; |z| < (0.5) is respectively:
 - (a) 2, 0
 - (b) 0, 2
 - (c) 0, 1
 - (d) 1, 0
- 34. A signal represented by x(t) = 5 cos(400 πt) is sampled at 300 Hz. The resulting samples are passed through an ideal LPF with cut-off frequency of 150 Hz. Which of the following is contained in the output of LPF?
 - (a) 100 Hz
 - (b) 100 Hz, 150 Hz

- (c) 20, 100, 150 Hz
- (d) 50 Hz, 100 Hz
- 35. Highest frequency component of a speech signal needed for telephonic communication is about 3.1 kHz. Suggest a suitable value for the sampling rate:
 - (a) 6 kHz
 - (b) 8 kHz
 - (c) 10 kHz
 - (d) 12 kHz
- 36. A system with an input x(t) and output y(t) is described by the relation $y(t) = tx(t) + x^2(t)$ is described by:
 - (a) Linear time invariant system
 - (b) Linear and time varying system
 - (c) Nonlinear system
 - (d) None of these
- 37. What are the next four terms in the sequence $u_{n+2} 5u_{n+1} + 6u_n = 20$, where $u_1 = 4$ and $u_2 = 9$?
 - (a) $u_2 = 9$, $u_3 = 14$, $x_4 = 74$, $u_5 = 308$
 - (b) $u_3 = 41$, $x_4 = 171$, $u_5 = 629$, $u_6 = 2139$
 - (c) $u_2 = 9$, $u_3 = 41$, $x_4 = 171$, $u_5 = 629$
 - (d) $u_3 = 14$, $x_4 = 74$, $u_5 = 308$, $u_6 = 1116$
- A unity feedback control system has Open Loop Transfer Function (OLTF) is

$$G(s) = \frac{K}{s(s^2 6s + 25)}.$$
 Find the value

of K at which the root loci will cross the imaginary axis:

- (a) 150
- (b) 50
- (c) 25
- (d) 6
- 39. Find the range of values of K for the system to be stable with the given characteristic equation S³ + 2KS² + (K + 2) S + 4 = 0 :
 - (a) K = 0
 - (b) K > 0.732
 - (c) K > 8.67
 - (d) K < 2
- The Open Loop Transfer Function (OLTF)
 of a unity feedback system is given by

$$G(s) = \frac{10}{s^2(s+10)(s^2+3s+1)}.$$

Find the steady state error when subjected to an input given by $r(t) = A + Bt + Ct^2$.

- (a) 1
- (b) 100
- (c) C
- (d) 10
- 41. The polar plot of a system with transfer

function
$$G(s) = \frac{K}{s(s+T)}$$
 for + ve T and

- ve K will be:

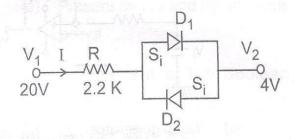
- (a) In the first quadrant
- (b) In the second quadrant
- (c) In the third quadrant
- (d) In the fourth quadrant
- 42. A unity feedback second order control system with a step input have approximately 6% overshoot and with settling time = 2sec. The value of damping ratio (ξ) and undamped natural frequency (ω) in rad/s of this closed loop control system are respectively:
 - (a) 0.5, 5
 - (b) 0.7, 8.982
 - (c) 0.2, 4
 - (d) 0.667, 3
- 43. Which of the following is true for PD controller?
 - (a) Transient response becomes sluggish
 - (b) It is a high pass filter
 - (c) It is a lead compensator
 - (d) All of these
- 44. A system has transfer function G(s) = [(s + 1) / ((1 + s/10) (1 + s/100))]. The maximum phase lag in its Bode plot is:
 - (a) $-180 \deg$
 - (b) $-135 \deg$

(c) 90 de (d) -270	eg O deg			uction, programme or action gned in software is called:
45. For a first of	order instrument a 5% settling	190	(a)	Interrupting Soubs A (b)
NAC 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	ual to : e times the time constant		(b)	Cross assembling
,	times the time constant		(c)	Documentation
(c) The	time constant		(d)	Debugging
3. 2.	required for the output to h 5% of the final value	50.		ch of the flag conditions are not lable in 8085 Microprocessor?
46. How many	y digits in binary notation are		(a)	Zero Flag
required f	or the decimal number 17?		(b)	Parity Flag
(a) 4			(c)	Overflow Flag
(b) 6			(d)	Auxiliary Carry Flag
(c) 7 (d) 5		51.		le time is the time required for the cution of a :
	Ilpha numeric code is able to characters.		(a)	Item to be written and then read from the memory
(a) 36			(b)	Item to be read from the memory
(b) 64			(c)	Programme Instruction
(c) 48			(d)	Subroutine
(d) 128		52.	Hai	mming Code is
	successive memory locations		(a)	An error correction code system
	cessible on a Last in First out	ent.	(b)	An error indication code system
	asis is called : (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(c)	A programmable conversion code
the months of he	gister			system
- Feredoutt	nter		(d)	None of these
(d) Sta	ck nworla	53.	Tw	o holes are provided in the rotating
49. To corre	ect and eliminate errors in	1		c of an energy meter to :
	nmes, the act of using ar		(a)	Cut the eddy current path
KR - 10A/21		(9)		(Turn over)

(9)

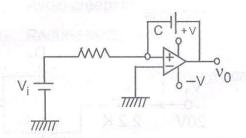
KR - 10A/21

instruction, programme or action


- (b) Compensate friction at light load
- (c) Avoid creeping
- (d) Reduce frictional force
- 54. Moving Iron instruments have a scale which is:
 - (a) Uniform
 - (b) Cramped at both end
 - (c) Logarithm
 - (d) None of these
- 55. A metal strain gauge has factor of two. Its nominal resistance is 120 ohms. If it undergoes a strain of 10⁻⁵, the value of change of resistance in response to the strain is:
 - (a) 240 Ohms
 - (b) 2×10^{-5} Ohms
 - (c) 2.5×10^{-5} Ohms
 - (d) 1.2×10^{-3} Ohms
- 56. In an experiment, it was observed that when the length of a wire in an electrical circuit is doubled, everything else remaining same, the current becomes half. On the other hand, if the thickness (diameter) of the wire is doubled, the current becomes 4 times. Two wires W₁ and W₂ of the same metal have the same current passing through them. The thickness of wire W₂ is twice that of W₁, then the length of the wire W₂ is:
 - (a) Sixteen times that of wire W₁
 - (b) Four times that of wire W₁

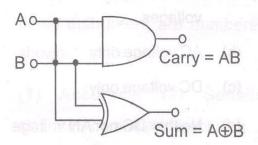
- (c) Two times that of wire W₁
- (d) Same as that of wire W₁
- 57. The purpose of providing a mirror behind the pointer in a measuring instrument is:
 - (a) The scale is illuminated through mirror
 - (b) With the help of mirror it can be seen whether the pointer is bent or not
 - (c) The mirror is semi-transparent so as to allow the observation of the interior of the instrument
 - (d) Reading errors due to inclined observations are eliminated by removing parallax between the pointer and its image in the mirror
- 58. The resolution of a 4bit counting ADC is 0.5 V. For an analog input of 6.6 V, the digital output of ADC will be :
 - (a) 1110
 - (b) 1011
 - (c) 1101
 - (d) 1100
- 59. The following terms used in the context of an instrument are numbered as shown:
 - (1) Accuracy, (2) Sensitivity,
 - (3) Precision and (4) Resolution.

Match these with their possible definitions listed below:


- P. Repeatability of readings on successive observations
- Q. Smallest perceptible change in the output
- R. Deviation of the output from the true value
 - S. Minimum value of the input from the true value
 - T. Ratio of the change in the instrument reading to the change in the measured variable
 - (a) 1-P, 2-Q, 3-R, 4-S
 - (b) 1-S, 2-Q, 3-P, 4-T
 - (c) 1-R, 2-T, 3-P, 4-Q
 - (d) 1-T, 2-Q, 3-P, 4-R
- 60. A Cathode Ray Oscilloscope is being used to display a voltage waveform in a circuit that contains both an AC voltage source and a DC voltage source. If the oscilloscope's input-coupling switch is set to AC, the scope displays ______.
 - (a) A combination of AC and DC voltages
 - (b) AC voltage only
 - (c) DC voltage only
 - (d) Neither DC nor AN voltage

61. The current 'I' through R in the network shown is:

- (a) 6.5 mA
- (b) 7.27 mA
- (c) 8 mA
- (d) 9.01 mA
- 62. The Field Effect Transistor (FET) is a:
 - (a) Bipolar device
 - (b) Voltage controlled device
 - (c) Current controlled device
 - (d) None of these
- 63. A major advantage of an emitter follower is that it provides :
 - (a) Maximum gain
 - (b) Maximum efficiency
 - (c) Maximum output impedance
 - (d) Maximum distortion
- 64. For a better differential amplifier, the Common Mode Rejection Ratio (CMRR) should be:
 - (a) Large Control of the Control of
 - (b) Low
 - (c) Unity
 - (d) None of these


65. The circuit shown is a:

- (a) Ramp generator
- (b) Low pass filter
- (c) High pass filter
- (d) None of these
- 66. Which of the following devices is used as a voltage controlled resistor?
 - (a) JFET solveb aloged
 - (b) Diode
 - (c) BJT
 - (d) SCR
- 67. The stability of a crystal oscillator operating in a parallel resonant mode is:
 - (a) High
 - (b) Low

 - (d) None of these
- 68. For an op-amp having a slow rate of 2V/ μs, the maximum closed loop voltage gain when the input signal varies by 0.5 V in 10 μs is :
 - (a) 10
 - (b) 40 9884 10 860M (b)

- (c) $\frac{1}{40}$
- (d) None of these
- 69. The h-parameters are called hybrid parameters because:
 - (a) They are obtained from different characteristics
 - (b) They have mixed dimensions
 - (c) They are mixed with other parameters
 - (d) All of these
- 70. The higher operating speed of a TTL gate is mainly due to :
 - (a) An input resistor with single emitter
 - (b) An input transistor with multiple emitters
 - (c) An input diode
 - (d) None of these
- 71. Which of the following is related to emitter coupled logic circuit?
 - (a) High speed
 - (b) High power dissipation
 - (c) Does not operate fully saturated
 - (d) All of these
- 72. The circuit given below is:

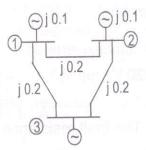
- (a) An half adder circuit
- (b) Full adder circuit
- (c) Half subtractor circuit
- (d) Full subtractor circuit
- 73. A block of successive memory locations that is accessible on a Last in, First out basis is called :
 - (a) Register
 - (b) Program counter
 - (c) Stack
 - (d) Accumulator
- 74. Which of the following is used as a Binary to Gray code converter?
 - (a) X-OR gate
 - (b) NOR gate
 - (c) AND gate
 - (d) None of these
- 75. The dynamic MOS RAM uses one of the following as storage cell is:
 - (a) Flip-flop
 - (b) Small capacitor and a MOS transistor
 - (c) Register
 - (d) None of these
- 76. A combinational circuit is one in which the output depends on the :
 - (a) Input combination at that time
 - (b) Input combination and the previous output

- (c) Input combination at that time and the previous input combination
- (d) Present output and the previous output
- 77. The compliment of the Boolean expression AB ($\overline{B}C + AC$) is:
 - (a) $(\overline{A} \cdot \overline{B}) + (B\overline{C} + \overline{A}\overline{C})$
 - (b) $(\overline{A} + \overline{B}) + (B + \overline{C}) \cdot (\overline{A} + \overline{C})$
 - (c) $(\overline{A} + \overline{B}) \cdot (B + \overline{C}) \cdot (\overline{A} + \overline{C})$
 - (d) $(A + B) \cdot (\overline{B} + C) \cdot (A + C)$
- 78. MOVA, M is:
 - (a) A register addressing mode
 - (b) An immediate addressing mode
 - (c) A register indirect addressing mode
 - (d) None of these
- 79. The phase modulation is widely used in:
 - (a) Analog transmission
 - (b) Digital transmission
 - (c) High power transmission
 - (d) None of these
- 80. The bandwidth requirement for an FM signal having a modulating frequency of 3.1 kHz and the maximum deviation of 21.7 kHz is:
 - (a) 49.6 kHz
 - (b) 50 kHz
 - (c) 65 kHz
 - (d) None of these

- 81. A 400 Watt high frequency carrier wave is modulated to a depth of 75%. The total power in the modulated wave is:
 - (a) 552 Watts
 - (b) 512.5 Watts
 - (c) 524 Watts
 - (d) None of these
- 82. For a fixed Bandwidth, the performance of delta modulation over pulse code modulation is:
 - (a) Superior
 - (b) Inferior
 - (c) Same
 - (d) None of these
- 83. The Adcock Antenna has high interval impedance which is:
 - (a) Largely capacitive
 - (b) Largely inductive
 - (c) Both (a) and (b)
 - (d) None of these
- 84. The code division multiple access technique is not usually used because:
 - (a) The system becomes too expensive
 - (b) The circuitry required is very complex
 - (c) It requires very large bandwidth
 - (d) Its technology has not been completely developed as yet

- 85. Microwave links are generally preferred to co-axial cables for television transmission because:
 - (a) They are cheaper
 - (b) Of their greater bandwidth
 - (c) They have less overall phase distortion
 - (d) None of these
- 86. In a colour picture tube, the shadow mask is used to:
 - (a) Increase screen brightness
 - (b) Ensure that each beam hits only its own dots
 - (c) Providing degaussing for the screen
 - (d) Reduce X-ray emission
- 87. A stationary CW radar transmits at frequency of 5 GHz. The Doppler frequency seen by it when the target has a radial velocity of 120 kmph is:
 - (a) 1019 Hz
 - (b) 1111 Hz
 - (c) 11.11 Hz
 - (d) None of these
- 88. Another name for the horizontal retrace in a TV receiver is :
 - (a) Burst
 - (b) Damper
 - (c) Flyback
 - (d) None of these

- 89. Which one of the following is not a PTM?
 - (a) PDM
 - (b) PWM
 - (c) PPM
 - (d) PCM
- 90. A radar is to have a maximum range of 300 km. What is the maximum allowable pulse repetition frequency for unambiguous reception?
 - (a) 500 pulses per second
 - (b) 1000 pulses per second
 - (c) 250 pulses per second
 - (d) None of these
- 91. A 500 KVA transformer has constant losses of 500 W and copper losses at full load are 2000 W. Then the load at which efficiency is maximum?
 - (a) 250 KVA
 - (b) 500 KVA
 - (c) 1000 KVA
 - (d) 125 KVA
- 92. Neglecting losses, the power transferred inductively is equal to that of conductively in case of an autotransformer. Then the secondary to primary ratio of transformer is:
 - (a) 0.5
 - (b) 2
 - (c) 1.5
 - (d) None of these


- 93. Among the parallel combinations of 3phase to 3-phase transformers, the connection that is not possible is:
 - (a) Y-Y to delta-delta
 - (b) Y Y to Y Y
 - (c) Y delta to delta Y
 - (d) Delta Y to delta-delta
- 94. A 4-pole, lap wound DC generator has a developed power of P watts and voltage of E volts. Two adjacent brushes of the machine are removed as they were out. If the machine operates with the remaining brushes, the developed voltage and power that can be obtained are:
 - (a) E, P
 - (b) E/2, P
 - (c) E, P/4
 - (d) E, P/2
- 95. If the armature current is increased to double its previous value and the time of communication is halved, the reactance voltage will be:
 - (a) Half
 - (b) Same
 - (c) Double
 - (d) Fourtimes
- 96. A4-pole, 40 kW, 400 V, wave connected DC generator has 492 conductors on its armature. The brushes are shifted by an angle of 8 mechanical degrees. The sum of demagnetizing AT per pole and across magnetizing AT per pole is:
 - (a) 546.67

- (b) 1503.33
- (c) 2050
- (d) 956.67
- 97. In a 230 V, 10 kW, DC shunt motor, it is required that starting current should not exceed twice its rated armature current. During starting of the motor, the starting resistance of the motor is cut in steps until armature current drops to rated value. The field resistance is $115 \,\Omega$ and total armature resistance is $0.348 \, \text{ohm}$. The total resistance at the second stud in ohms is:
 - (a) 2.432
 - (b) 1.39
 - (c) 2.78
 - (d) 0.348
- 98. A 5 kW, 200 V, DC shunt motor has armature resistance of one ohm and shunt field resistance of 100 ohms. At no load, the motor draws 6 A from 200 V supply and runs at 1000 rpm. The total copper loss in the machine is:
 - (a) 400 W
 - (b) 16 W
 - (c) 36 W
 - (d) 416 W
- 99. A 10 pole, 25 Hz alternator is directly coupled to and is driven by a 60 Hz synchronous motor. Then the number of poles on the synchronous motor are:
 - (a) 48
 - (b) 12

- (c) 24
- (d) 10
- 100. The armature current upon symmetrical 3 phase short circuit of a synchronous machine (neglecting armature resistance):
 - (a) Constitutes q-axis current only
 - (b) Constitutes d-axis current only
 - (c) Has both d-axis and q-axis components
 - (d) Short circuit current can not be resolved into d and q axis components
- 101. Which type of motor is most suitable for computer printer drive?
 - (a) Reluctance motor
 - (b) Hysteresis motor
 - (c) Shaded-pole motor
 - (d) Stepper motor
- 102. The most appropriate operating speeds in rpm of generators used in thermal, nuclear and hydro-power plants would respectively be :
 - (a) 3000, 300, 1500
 - (b) 3000, 3000, 300
 - (c) 1500, 1500, 3000
 - (d) 1000, 900, 750
- 103. A medium line with parameter A, B, C, D is extended by connecting a short line of impedance Z in series. The overall ABCD parameters of the series combination will be:
 - (a) A, AZ, C + D/Z, D

- (b) A, AZ + B, C, CZ + D
- (c) A + BZ, B, C + DZ, D
- (d) AZ, B, C/Z, D
- 104. The voltage at the two end of a line are132 kV and its reactance is 40 ohms.The capacity of the line (MW) is:
 - (a) 436
 - (b) 218
 - (c) 252
 - (d) 500
- 105. The main criterion for selecting the size of a distributor for a radial distribution system is:
 - (a) Voltage drop
 - (b) Corona loss
 - (c) Temperature rise
 - (d) Capital cost
- 106. Corona loss can be reduced by the use of hollow conductors, because :
 - (a) Current density is reduced
 - (b) Eddy current in conductor is eliminated
 - (c) For a given cross section, radius of conductor is increased
 - (d) Better ventilation of the conductor
- 107. The sample power system network is shown in figure below. The reactances

marked are in per unit (pu) the value of Y₂₂ of bus admittance matrix is:

- (a) j 10
- (b) j 0.4
- (c) -j0.1
- (d) -j20.0
- 108. The synchronous reactance of a 200 MVA, 10 kV, 3 phase, 50 Hz generator is 1.0 pu at its own base. Its pu reactance at 100 MVA, 20 kV base will be:
 - (a) 0.125
 - (b) 0.200
 - (c) 0.250
 - (d) 0.500
- 109. In the optium generator scheduling of different power plants the minimum fuel cost is obtained when:
 - (a) Only incremental fuel cost of each plant is same
 - (b) Penalty factor of each plant is same
 - (c) Ratio of incremental fuel cost to penalty factor of each plant is the same

- (d) Incremental fuel cost of each plant multiplied by its penalty factor is the same
- 110. A long distance overhead transmission line of 220 kV rating is to be protected against faults between phases and ground. The fault resistance including that of the ground is found to vary over a wide range. Which one of the following types of relays will give the best performance under the situation indicted above?
 - (a) Over current relay
 - (b) Percentage biased different relay
 - (c) Reactance type distance relay
 - (d) Impedance type distance relay
- 111. In a HVDC transmission scheme, reactive power is needed both for the rectifier at sending end and inverter at receiving end. During the operation of such a dc link the rectifier receives:
 - inverter supplies leading reactive power
 - (b) Leading reactive power and inverter supplies lagging reactive power
 - (c) Lagging reactive power and inverter supplies lagging reactive power

- (d) Leading reactive power and inverter supplies leading reactive power
- 112. A thyristor and transistor as a switch is compared. The true statement in:
 - (a) Both require turn-off circuits
 - (b) Voltage drop of thyristor is less than transistor
 - (c) Thyristor requires a continuous gate current
 - (d) Transistor draws a continuous base current
- 113. A SMPS operating at 20 kHz to 100 kHz range uses _____ as the main switching element.
 - (a) Thyristor
 - (b) MOSFET
 - (c) Triac
 - (d) UJT
- 114. Snubber circuit is used to limit the rate of:
 - (a) Rise of current
 - (b) Conduction period
 - (c) Rise of voltage across SCR
 - (d) None of these
- 115. When gate triggering is employed, a thyristor can withstand higher value of rate of change of forward current, if (1) gate current is increased, (2) rate of rise of gate current is increased, (3) gate current is decreased and (4) rate of rise

correct statement are:

- 3 and 4 (a)
- 1 and 4 (b)
- (C) 2 and 3
- 1 and 2 (d)
- 116. The frequency of ripple in the output voltage of 3 phase half controlled rectifier depends on:
 - Firing angle (a)
 - Load inductance (b)
 - Load resistance (c)
 - Supply frequency
- 117. A dc to dc chopper from fixed voltage dc source feeds a fixed R-L load and a free wheeling diode. The chopper operates at 1 kHz and 50% duty cycle. Without changing the value of the average d. c. current through the load, if it is desired to reduce the ripple content of the load current, the control action needed will be:
 - (a) Increase chopper frequency keeping duty cycle constant
 - Increase chopper frequency and duty cycle in equal ratio
 - (c) Decrease only chopper frequency
 - Decrease only duty cycle (d)

- of gate current is decreased. The 118. A half wave SCR controlled circuit with 10 ohms load resistor has an applied voltage of 300 V rms for a conduction angle of 60 degrees. The reading of true rms reading ammeter is:
 - (a) 9.37 A
 - 11.97 A (b)
 - 30 A (c)
 - 0 A (d)
 - 119. It is required to drive a DC shunt motor at different speeds in both directions and also to brake it in both directions. Which of the following would you use?
 - Half controlled thyristor bridge (a)
 - Full controlled thyristor bridge (b)
 - **Dual** convertor (c)
 - (d) Diode bridge
 - 120. An inverter capable of supplying a balanced 3 phase variable voltage variable frequency output is feeding a 3 phase induction motor rated for 50 Hz and 440 V. The stator winding resistance of the motor are negligible. During starting, the current inrush can be avoided without sacrificing the starting torque by suitably applying:
 - Low voltage at rated frequency (a)
 - Low voltage with v/f ratio constant (b)
 - Rated voltage at low frequency (c)
 - Rated voltage at rated frequency (d)

Subject :- Electrical Engineering

Q. No Answer 1. d		Q.No.	Answer	of Answer			
2.	d	31	В	61	a		
3.		32	D	١, ١		83	α
	a	33	A	62	6	84	C_
4.	Ь	34	D			04	45
5.	С	35	·B	63	d	85	C
6.	· c	37	C B.	64	a		
7.	С	38	A A		. a	86	6
		39	В	65	4		i.
8.	a	40	· C	6060	a	87	6
9.	С	41.	A	6.7	a	200	0
10.	а	42 43	D			88	C
11.	d	44	D	68	6	CO	. 1.
12.	С	45	A A	69	d t	89	. d.
		46	, D			90	α
13.	С	47	. В	70	. b		
14.	С	48	D	71	d	91.	a
15.	c · -	49	D			9 0	
16.	<u></u> -	50 51	C	72	a		
17.	a	52	C A	73	C.		
		53	C				
18.	b -	54	В	71			
19.	b _	55 .	C	75	b.		
20.	c -	56	C	76	, a		
21.	a	57 58	D			92	a
22.		59	A	7.7			
		60	Ç B	78	C		
23.	a —		<u> </u>	70		1	
24.	С			1-	1 6		
25.	b	for the second		80) a		
26.	b	n #		81	ko	0-	1
27.	a		- a - 3			93	d
28.	ь		F a	82	L 6		
29.		* 1				94	d
	b.						
30.	b		(* 1	E # 12		95	d

grighth)

ANSWER KEY Subject: Electrical Engg.

Q.no.	Answer a,b,c & d	Q.no.	Answer a,b,c & d	Q.no.	Answer a,b,c & d	Q.no.	Answer a,b,c & d	Q.no.	Answer a,b,c & d
96,,	ı.ς	99	C	104	a	109	d	. u7 .	a
				105	a	110	c		
		100	Ь	106	С			118.	a
		, 101	d	107	d				
97	b	102	Ь						
		103	Ь						
			-			111-	d	119.	C
Y .	to the second of			100		112.	d		
98				108	a	113.	Ь	120.	Ь
O U	ં દા	M.				114.	C		
		9				115.	a d		
	l		L			116.	d		

