Read carefully the Instructions on the Back Cover of this Test Booklet.
इस परीक्षा पुस्तिका के पिछले आवरण पर दिए गए निर्देशों को ध्यान से पढ़ें।

1. Immediately fill in the particulars on this page of the Test Booklet with only Blue / Black Ball Point Pen provided by the Board.
2. The Answer Sheet is kept inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully.
3. The test is of 3 hours duration.
4. The Test Booklet consists of 90 questions. The maximum marks are 360 .
5. There are three parts in the question paper A, B, C consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each question is allotted 4 (four) marks for correct response.
6. Candidates will be awarded miriks as stated ahove in instruction No. 5 for correct response of each question. $1 / 2$ (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
7. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instruction 6 above.
8. For writing particulars/marking responses on Side-1 and Side-2 of the Answer Sheet use only Blue/Black Ball Point Pen provided by the Board.
9. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. except the Admit Card inside the examination room/hall.
10. Rough work is to be done on the space provided for this purpose in the Test Booklet only. This space is given at the bottom of each page and in one page (i.e. Page 39) at the end of the booklet.
11. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator on duty in the Room/Hall. However, the candidates are allowed to take away this Test Booklet with them.
12. The CODE for this Booklet is E. Make sure that the CODE printed on Side-2 of the Answer Sheet and also tally the serial number of the Test Booklet and Answer Sheet are the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
13. Do not fold or make any stray mark on the Answer Sheet,
14. परीक्षा पुस्तिका के इस पृष्ठ पर आवश्यक विवरण केवल बोर्ड द्वारा उपलब्ध कराये गये नीले / काले बॉल प्वाइंट पेन से तत्काल भरें।
15. उत्तर पत्र इस परीक्षा पुस्तिका के अन्दर रखा है। जब आपको परीक्षा पुस्तिका खोलने को कहा जाए, तो उत्तर पत्र निकाल कर सावधानीपूर्वक विवरण भरें।
16. परीक्षा की अवधि 3 घंटे है।
17. इस परीक्षा पुस्तिका में 90 प्रश्न हैं। अधिकतम अंक 360 हैं।
18. इस परीक्षा पुस्तिका में तीन भाग A, B, C हैं, जिसके प्रत्येक भाग में भौतिक विज्ञान, रसायन विज़ान एवं गणित के 30 प्रश्न हैं और सभी प्रश्नों के अंक समान हैं। प्रत्येक प्रश्न के सही उत्तर के लिए 4 (चार) अंक निर्धारित किये गये हैं।
19. अभ्यर्थियों को प्रत्येक सही उत्तर के लिए उपरोक्त निर्देशन संख्या 5 के निर्देशनुसार अंक दिये जायेंगे। प्रत्येक प्रश्न के गलत उत्तर के लिये $1 / 4$ वां भाग काट लिया जायेगा। यदि उत्तर पत्र में किसी प्रश्न का उत्तर नहीं दिया गया हो तो कुल प्रासांक से कोई कटौती नहीं की जायेगी।
20. प्रत्येक प्रश्न का केदल एक ही सही उत्तर है। एक से अधिक उत्तर देने पर उसे गलत उत्तर माना जायेगा और उपरोक्त निर्देश 6 के अनुसार अंक काट लिये जायेंगे।
21. उत्तर पत्र के पृष्ठ-1 एवं पृष्ठ-2 पर वांछित विवरण एवं उत्तर अंकित करने हेतु बोर्ड द्वारा उपलब्ध कराये गये केवल नीले/ काले बॉल प्वाइ़ंट पेन का ही प्रयोग करें।
22. परीक्षार्थी द्वारा परीक्षा कक्ष/हॉल में प्रवेश़ कार्ड के अलावा किसी भी प्रकार की पाठ्य सामग्री, मुद्वित या हस्तलिखित, कागज की पर्चियाँ, पेजर, मोबाइल फोन या किसी भी प्रकार के इलेक्ट्रॉनिक उपकरणों या किसी अन्य प्रकार की सामग्री को ले जाने या उपयोग करने की अनुमति नहीं है।
23. रफ कार्य परीक्षा पुस्तिका में केवल निर्धारित जगह पर ही कीजिए। यह जगह प्रत्येक पृष्ठ पर नीचे की ओर और पुस्तिका के अंत में एक पृष्ठ पर (पृष्ठ 39) दी गई है।
24. परीक्षा समाप्त होने पर, परीक्षार्थी कक्ष/हॉल छोड़ने से पूर्व उत्तर पत्र कक्ष निरीक्षक को अवश्य सौप दें। परीक्षार्थी अपने साथ इस परीक्षा पुस्तिका को ले जा सकते हैं।
25. इस पुस्तिका का संकेत \mathbf{E} है। यह सुनिश्चित कर लें कि इस पुस्तिका का संकेत, उत्तर पत्र के पृष्ठ- 2 पर छपे संकेत से मिलता है और यह भी सुनिश्चित कर लें कि परीक्षा पुस्तिका और उत्तर पत्र की क्रम संख्या मिलती है। अगर यह भिन्न हो तो परीक्षार्थी दूसरी परीक्षा पुस्तिका और उत्तर पत्र लेने के लिए निरोक्षक को तुरन्त अवगत करएएँ।
26. उत्तर पत्र को न मोड़ें एवं न ही उस पर अन्य निशान लगाएँ।

Name of the Candidate (in Capital letters) : D on TAESHRONAR STOCHER परीक्षार्थी का नाम (बड़े अक्षरों में) :
Roll Number : in figures
अनुक्रमांक

Examination Centre Number : परीक्षा केन्द्र नम्बर :

Name of Examination Centre (in Capital letters) TILAK PuBLICSchoolRTVENS परीक्षा केन्द्र का नाम (बड़े अक्षरों में) : Candidate's Signature : दमशाष्तार +
परीक्षार्थी के हस्तार्षर :

1. Invigilator's Signature: निरीक्षक के हस्ताक्षर :

2. Invigilator's Signature :

निरीक्षक के हस्ताक्षर :

PART A - PHYSICS

all the graphs given are schematic AND NOT DRAWN TO SCALE.

1. A student measures the time period of 100 oscillations of a simple pendulum four times. The data set is $90 \mathrm{~s}, 91 \mathrm{~s}, 95 \mathrm{~s}$ and 92 s . If the minimum division in the measuring clock is 1 s , then the reported mean time should be :
(1) $92 \pm 2 \mathrm{~s}$
(2) $92 \pm 5.0 \mathrm{~s}$
(3) $92 \pm 1.8 \mathrm{~s}$
(4) $92 \pm 3 \mathrm{~s}$
2. A particle of mass m is moving along the side of a square of side ' a ', with a uniform speed v in the $x-y$ plane as shown in the figure :

Which of the following statements is false for the angular momentum \vec{L} about the origin?
(1) $\vec{L}=-\frac{m v}{\sqrt{2}} R \hat{k}$ when the particle is moving from A to B.
(2) $\vec{L}=m v\left[\frac{R}{\sqrt{2}}-a\right] \hat{k}$ when the particle is moving from C to D.
(3) $\vec{L}=m v\left[\frac{R}{\sqrt{2}}+a\right] \hat{k}$ when the particle is moving from B to C.
(4) $\vec{L}=\frac{m v}{\sqrt{2}} R \hat{k}$ when the particle is moving from D to A.

भाग A - भौतिक विज्ञान

 दिए गये सभी ग्राफ आरेखीय हैं और स्केल के अनुसार रेखांकित नहीं है।1. एक छात्र एक सरल-आवर्त-दोलक के 100 आवृत्तियों का समय 4 बार मापता है और उनको $90 \mathrm{~s}, 91 \mathrm{~s}$, 95 s और 92 s पाता है। इस्तेमाल की गई घड़ी का न्यूनतम अल्पांश 1 s है। तब मापे गये माध्य समय को उसे लिखना चाहिये :
(1) $92 \pm 2 \mathrm{~s}$
(2) $92 \pm 5.0 \mathrm{~s}$
(3) $92 \pm 1.8 \mathrm{~s}$
(4) $92 \pm 3 \mathrm{~s}$
2. चित्र में भुजा ' a ' का वर्ग $x-y$ तल में है। m द्रव्यमान का एक कण एकसमान गति, v से इस वर्ग की भुजा पर चल रहा है जैसा कि चित्र में दर्शाया गया है।

तब निम्न में से कौनसा कथन, इस कण के मूलबिंदु के गिर्द कोणीय आघूर्ण \vec{L} के लिये, गलत है ?
(1) $\vec{L}=-\frac{m v}{\sqrt{2}} R \hat{k}$, जब कण A से B की ओर चल रहा है।
(2) $\vec{L}=m v\left[\frac{R}{\sqrt{2}}-a\right] \hat{k}$, जब कण C से D की ओर चल रहा है।
(3) $\vec{L}=m v\left[\frac{R}{\sqrt{2}}+a\right] \hat{k}$, जब कण B से C की ओर चल रहा है।
(4) $\vec{L}=\frac{m v}{\sqrt{2}} R \hat{k}$, जब कण D से A की ओर चल रहा है।
3. A point particle of mass m, moves along the uniformly rough track PQR as shown in the figure. The coefficient of friction, between the particle and the rough track equals μ. The particle is released, from rest, from the point P and it comes to rest at a point R. The energies, lost by the ball, over the parts, $P Q$ and $Q R$, of the track, are equal to each other, and no energy is lost when particle changes direction from $P Q$ to $Q R$.

The values of the coefficient of friction μ and the distance $x(=Q R)$, are, respectively close to :

Horizontal $\longrightarrow \mathrm{Q}$ Surface
(1) 0.2 and 6.5 m
(2) 0.2 and 3.5 m
(3) 0.29 and 3.5 m
(4) 0.29 and 6.5 m
3. ' m ' द्रव्यमान का एक बिंदु कण एक खुरदरे पथ PQR (चित्र देखिये) पर चल रहा है। कण और पथ के बीच घर्षण गुणांक μ है। कण P से छोड़े जाने के बाद R पर पहुँच कर रूक जाता है। पथ के भाग PQ और QR पर चलने में कण द्वारा खर्च की गई ऊर्जाएँ बराबर हैं। PQ से QR पर होने वाले दिशा बदलाव में कोई ऊर्जा खर्च नहीं होती।
तब μ और दूरी $x(=\mathrm{QR})$ के मान लगभग हैं क्रमशः :

(1) 0.2 और 6.5 m
(2) 0.2 और 3.5 m
(3) 0.29 और 3.5 m
(4) 0.29 और 6.5 m
4. A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times. Assume that the potential energy lost each time he lowers the mass is dissipated. How much fat will he use up considering the work done only when the weight is lifted up ? Fat supplies $3.8 \times 10^{7} \mathrm{~J}$ of energy per kg which is converted to mechanical energy with a 20% efficiency rate. Take $g=9.8 \mathrm{~ms}^{-2}$:
(1) $2.45 \times 10^{-3} \mathrm{~kg}$
(2) $6.45 \times 10^{-3} \mathrm{~kg}$
(3) $9.89 \times 10^{-3} \mathrm{~kg}$
(4) $12.89 \times 10^{-3} \mathrm{~kg}$
5. A roller is made by joining together two cones at their vertices O. It is kept on two rails $A B$ and $C D$ which are placed asymmetrically (see figure), with its axis perpendicular to $C D$ and its centre O at the centre of line joining $A B$ and $C D$ (see figure). It is given a light push so that it starts rolling with its centre O moving parallel to CD in the direction shown. As it moves, the roller will tend to :

(1) turn left.
(2) turn right.
(3) go straight.
(4) turn left and right alternately.
4. एक भारोत्तोलक भार को पहले ऊपर और फिर निच्चे तक लाता है। यह माना जाता है कि सिर्फ भार को ऊपर ले जाने में कार्य होता है और नीचे लाने में स्थितिज ऊर्जा का ह्रास होता है। शरीर की वसा ऊर्जा देती है जो यांत्रिकीय ऊर्जा में बदलती है। मान लें कि वसा द्वारा दी गई ऊर्जा $3.8 \times 10^{7} \mathrm{~J}$ प्रति kg भार है, तथा इसका मात्र 20% यांत्रिकीय ऊर्जा में बदलता है। अब यदि एक भारोत्तोलक 10 kg के भार को 1000 बार 1 m की ऊँचाई तक ऊपर और नीचे करता है तब उसके शरीर से वसा का क्षय है : $\left(g=9.8 \mathrm{~ms}^{-2}\right.$ लें $)$
(1) $2.45 \times 10^{-3} \mathrm{~kg}$
(2) $6.45 \times 10^{-3} \mathrm{~kg}$
(3) $9.89 \times 10^{-3} \mathrm{~kg}$
(4) $12.89 \times 10^{-3} \mathrm{~kg}$
5. दो शंकु को उनके शीर्ष O पर जोड़कर एक रोलर बनाया गया है और उसे AB व CD रेल पर असममित रखा गया है (चित्र देखिये)। रोलर का अक्ष CD से लम्बवत है और O दोनों रेल के बीचोबीच है। हल्के से धकेलने पर रोलर रेल पर इस प्रकार लुढ़कना आरम्भ करता है कि O का चालन CD के समांतर है (चित्र देखिये)। चालित हो जाने के बाद यह रोलर :

(1) बाँयीं ओर मुड़ेगा।
(2) दायीं ओर मुड़ेगा।
(3) सीधा चलता रहेगा।
(4) बायें तथा दायें क्रमशः मुड़ता रहेगा।
6. A satellite is revolving in a circular orbit at a height ' h ' from the earth's surface (radius of earth $R ; h \ll R$). The minimum increase in its orbital velocity required, so that the satellite could escape from the earth's gravitational field, is close to : (Neglect the effect of atmosphere.)
(1) $\sqrt{2 g R}$
(2) $\sqrt{8 R}$
(3) $\sqrt{g R / 2}$
(4) $\sqrt{8 R}(\sqrt{2}-1)$
7. A pendulum clock loses 12 s a day if the temperature is $40^{\circ} \mathrm{C}$ and gains 4 s a day if the temperature is $20^{\circ} \mathrm{C}$. The temperature at which the clock will show correct time, and the co-efficient of linear expansion (α) of the metal of the pendulum shaft are respectively :
(1) $25^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
(2) $60^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
(3) $30^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-3} /{ }^{\circ} \mathrm{C}$
(4) $55^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-2} /{ }^{\circ} \mathrm{C}$
6. पृथ्वी की सतह से ' h ' ऊँचाई पर एक उपग्रह वृत्ताकार पथ पर चक्कर काट रहा है (पृथ्वी की त्रिज्या R तथा $h \ll R$)। पृथ्वी के गुरुत्व क्षेत्र से पलायन करने के लिये इसकी कक्षीय गति में आवश्यक न्यूनतम बदलाव है : (वायुमंडलीय प्रभाव को नगण्य लीजिए।)
(1) $\sqrt{2 g R}$
(2) $\sqrt{g R}$
(3) $\sqrt{g R / 2}$
(4) $\sqrt{g R}(\sqrt{2}-1)$
7. एक पेन्डुललम घड़ी $40^{\circ} \mathrm{C}$ तापमान पर 12 s प्रतिदिन धीमी हो जाती है तथा $20^{\circ} \mathrm{C}$ तापमान पर 4 s प्रतिदिन तेज़ हो जाती है। ताप़मान जिस पर यह सही समय दर्शायेगी तथा पेन्डुलम की धातु का रेखीय-प्रसार गुणांक (α) क्रमशः हैं :
(1) $25^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
(2) $60^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
(3) $30^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-3} /{ }^{\circ} \mathrm{C}$
(4) $55^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-2} /{ }^{\circ} \mathrm{C}$
8. An ideal gas undergoes a quasi static, reversible process in which its molar heat capacity C remains constant. If during this process the relation of pressure P and volume V is given by $P V^{n}=$ constant, then n is given by (Here C_{P} and C_{V} are molar specific heat at constant pressure and constant volume, respectively) :
(1) $n=\frac{C_{P}}{C_{V}}$
(2) $n=\frac{C-C_{P}}{C-C_{V}}$
(3) $n=\frac{C_{P}-C}{C-C_{V}}$
(4) $n=\frac{C-C_{V}}{C-C_{P}}$
9. ' n ' moles of an ideal gas undergoes a process $A \rightarrow B$ as shown in the figure. The maximum temperature of the gas during the process will be :

(1) $\frac{9 P_{0} V_{0}}{4 n R}$
(2) $\frac{3 P_{0} V_{0}}{2 n R}$
(3) $\frac{9 P_{0} V_{0}}{2 \pi R}$
(4) $\frac{9 P_{0} V_{0}}{n R}$

(1) $\frac{9 P_{0} V_{0}}{4 n R}$
(2) $\frac{3 P_{0} V_{0}}{2 n R}$
(3) $\frac{9 P_{0} V_{0}}{2 n R}$
(4) $\frac{9 P_{0} V_{0}}{n R}$
10. A particle performs simple harmonic motion with amplitude A. Its speed is trebled at the instant that it is at a distance $\frac{2 A}{3}$ from equilibrium position. The new amplitude of the motion is :
(1) $\frac{A}{3} \sqrt{41}$
(2) 3 A
(3) $A \sqrt{3}$
(4) $\frac{7 \mathrm{~A}}{3}$
11. A uniform string of length 20 m is suspended from a rigid support. A short wave pulse is introduced at its lowest end. It starts moving up the string. The time taken to reach the support is :
(take $g=10 \mathrm{~ms}^{-2}$)
(1) $2 \pi \sqrt{2} \mathrm{~s}$
(2) 2 s
(3) $2 \sqrt{2} \mathrm{~s}$
(4) $\sqrt{2} \mathrm{~s}$
10. एक कण ' A ' आयाम से सरल-आवर्त दोलन कर रहा है। जब यह अपने मूल-स्थान से $\frac{2 A}{3}$ पर पहुँचता है तब अचानक इसकी गति तिगुनी कर दी जाती है। तब इसका नया आयाम है :
(1) $\frac{A}{3} \sqrt{41}$
(2) $3 A$
(3) $A \sqrt{3}$
(4) $\frac{7 \mathrm{~A}}{3}$
11. 20 m लम्बाई की एकसमान डोरी को एक दृढ़ आधार से लटकाया गया है। इसके निचले सिरे से एक सूक्ष्म तरंग-स्पंद चालित होता है। ऊपर आधार तक पहुँचने में लगने वाला समय है :
($g=10 \mathrm{~ms}^{-2}$ लें)
(1) $2 \pi \sqrt{2} \mathrm{~s}$
(2) 2 s
(3) $2 \sqrt{2} \mathrm{~s}$
(4) $\sqrt{2} \mathrm{~s}$
12. The region between two concentric spheres of radii ' a ' and ' b ', respectively (see figure), has volume charge density $\rho=\frac{A}{r}$, where A is a constant and r is the distance from the centre. At the centre of the spheres is a point charge Q. The value of A such that the electric field in the region between the spheres will be constant, is :

(1) $\frac{Q}{2 \pi a^{2}}$
(2) $\frac{Q}{2 \pi\left(b^{2}-a^{2}\right)}$
(3) $\frac{2 Q}{\pi\left(a^{2}-b^{2}\right)}$
(4) $\frac{2 Q}{\pi a^{2}}$
12. त्रिज्या ' a ' तथा ' b ' के दो एक-केन्द्री गोलों के (चित्र देखिये) बीच के स्थान में आयतन आवेश-घनत्व $\rho=\frac{A}{r}$ है, जहाँ A स्थिरांक है तथा r केन्द्र से दूरी है। गोलों के केन्द्र पर एक बिंन्दु-आवेश Q है। ' A ' का वह मान बतायें जिससे गोलों के बीच के स्थान में एकसमान वैद्युत-क्षेत्र हो :

(1) $\frac{Q}{2 \pi a^{2}}$
(2) $\frac{Q}{2 \pi\left(b^{2}-a^{2}\right)}$
(3) $\frac{2 Q}{\pi\left(a^{2}-b^{2}\right)}$
(4) $\frac{2 Q}{\pi a^{2}}$
13. A combination of capacitors is set up as shown in the figure. The magnitude of the electric field, due to a point charge Q (having a charge equal to the sum of the charges on the $4 \mu \mathrm{~F}$ and $9 \mu \mathrm{~F}$ capacitors), at a point distant 30 m from it, would equal :

(1) $240 \mathrm{~N} / \mathrm{C}$
(2) $360 \mathrm{~N} / \mathrm{C}$
(3) $420 \mathrm{~N} / \mathrm{C}$
(4) $480 \mathrm{~N} / \mathrm{C}$
14. The temperature dependence of resistances of Cu and undoped Si in the temperature range $300-400 \mathrm{~K}$, is best described by :
(1) Linear increase for Cu , linear increase for Si .
(2) Linear increase for Cu , exponential increase for Si .
(3) Linear increase for Cu , exponential decrease for Si .
(4) Linear decrease for Cu , linear decrease for Si .
13. संधारित्रों से बने एक परिपथ को चित्र में दिखाया गया है। एक बिन्दु-आवेश Q (जिसका मान $4 \mu \mathrm{~F}$ तथा $9 \mu \mathrm{~F}$ वाले संधारित्रों के कुल आवेशों के बराबर है) के द्वारा 30 m दूरी पर वैद्युत-क्षेत्र का परिमाण होगा :

(1) $240 \mathrm{~N} / \mathrm{C}$
(2) $360 \mathrm{~N} / \mathrm{C}$
(3) $420 \mathrm{~N} / \mathrm{C}$
(4) $480 \mathrm{~N} / \mathrm{C}$

14, ताँबा तथा अमादित (undoped) सिलिकान के प्रतिरोधों की उनके तापमान पर निर्भरता, $300-400 \mathrm{~K}$ तापमान अंतराल में, के लिये सही कथन है :
(1) ताँबा के लिये रेखीय बढ़ाव तथा सिलिकान के लिये रेखीय बढ़ाव।
(2) ताँबा के लिये रेखीय बढ़ाव तथा सिलिकान के लिये चरघातांकी बढ़ाव।
(3) ताँबा के लिये रेखीय बढ़ाव तथा सिलिकान के लिये चरघातांकी घटाव।
(4) ताँबा के लिये रेखीय घटाव तथा सिलिकान के लिये रेखीय घटाव।
15. Two identical wires A and B, each of length ' l ', carry the same current I. Wire A is bent into a circle of radius R and wire B is bent to form a square of side ' a '. If B_{A} and B_{B} are the values of magnetic field at the centres of the circle and square respectively, then the ratio $\frac{B_{A}}{B_{B}}$ is :
(1) $\frac{\pi^{2}}{8}$
(2) $\frac{\pi^{2}}{16 \sqrt{2}}$
(3) $\frac{\pi^{2}}{16}$
(4) $\frac{\pi^{2}}{8 \sqrt{2}}$
16. Hysteresis loops for two magnetic materials A and B are given below :

These materials are used to make magnets for electric generators, transformer core and electromagnet core. Then it is proper to use :
(1) A for electric generators and transformers.
(2) A for electromagnets and B for electric generators.
(3) A for transformers and B for electric generators.
(4) B for electromagnets and transformers.

15/ दो एकसमान तार A व B प्रत्येक की लम्बाई ' l ', में समान धारा I प्रवाहित है। A को मोड़कर R त्रिज्या का एक वृत्त और B को मोड़कर भुजा ' a ' का एक वर्ग बनाया जाता है। यदि B_{A} तथा B_{B} क्रमशः वृत्त के केन्द्र तथा वर्ग के केन्द्र पर चुम्बकीय क्षेत्र हैं, तब अनुपात $\frac{B_{A}}{B_{B}}$ होगा :
(1) $\frac{\pi^{2}}{8}$
(2) $\frac{\pi^{2}}{16 \sqrt{2}}$
(3) $\frac{\pi^{2}}{16}$
(4) $\frac{\pi^{2}}{8 \sqrt{2}}$
16. दो चुम्बकीय पदार्थ A तथा B के लिये हिस्टेरेसिसलूप नीचे दिखाये गये हैं :

इन पदार्थों का चुम्बकीय उपयोग विद्युत-जेनेरेटर के चुम्बक, ट्रान्सफॉर्मर की क्रोड एवं विद्युत-चुम्बक की क्रोड आदि के बनाने में किया जाता है। तब यह उचित है कि :
(1) A का इस्तेमाल विद्युत-जेनेरेटर तथा ट्रान्सफॉर्मर दोनों में किया जाए।
(2) A का इस्तेमाल विद्युत-चुम्बक में तथा B का विद्युत-जेनेरेटर में किया जाए।
(3) A का इस्तेमाल ट्रान्सफॉर्मर में तथा B का विद्युत-जेनेरेटर में किया जए।
(4) B का इस्तेमाल विद्युत-चुम्बक तथा ट्रान्सफॉर्मर दोनों में किया जाए।
19. An observer looks at a distant tree of height 10 m with a telescope of magnifying power of 20 . To the observer the tree appears :
(1) 10 times taller.
(2) 10 times nearer.
(3) 20 times taller.
(4) 20 times nearer.
17. एक आर्क लैम्प को प्रकाशित करने के लिये 80 V पर 10 A की दिष्ट धारा (DC) की आवश्यकता होती है। उसी आर्क को 220 V (rms) 50 Hz प्रत्यावर्ती धारा (AC) से चलाने के लिये श्रेणी में लगने वाले प्रेरकत्व का मान है :
(1) 80 H
(2). 0.08 H
(3) 0.044 H
(4) 0.065 H
18. निम्न प्रति क्वांटम वैद्युत-चुम्बकीय विकिरणों को उनकी ऊर्जा के बढ़ते हुए क्रम में लगायें :
A : नीला प्रकाश B : पीला प्रकाश
$C: X-$ किरणें
D : रेडियो तरंग
(1) D, B, A, C
(2) A, B, D, C
(3) $\mathrm{C}, \mathrm{A}, \mathrm{B}, \mathrm{D}$
(4) B, A, D, C
19. दूर स्थित 10 m ऊँचे पेड़ को एक 20 आवर्धन क्षमता वाले टेलिस्कोप से देखने पर क्या महसूस होगा ?
(1) पेड़ 10 गुना ऊँचा है।
(2) पेड़ 10 गुना पास है।
(3) पेड़ 20 गुना ऊँचा है।
(4) पेड़ 20 गुना पास है।

E/Page 11

SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

20. The box of a pin hole camera, of length L, has a hole of radius a. It is assumed that when the hole is illuminated by a parallel beam of light of wavelength λ the spread of the spot (obtained on the opposite wall of the camera) is the sum of its geometrical spread and the spread due to diffraction. The spot would then have its minimum size (say $b_{\text {min }}$) when :
(1) $a=\frac{\lambda^{2}}{L} \quad$ and $\quad b_{\min }=\left(\frac{2 \lambda^{2}}{L}\right)$
(2) $a=\sqrt{\lambda L}$ and $b_{\text {min }}=\left(\frac{2 \lambda^{2}}{L}\right)$
(3) $a=\sqrt{\lambda L}$ and $b_{\text {min }}=\sqrt{4 \lambda L}$
(4) $a=\frac{\lambda^{2}}{L}$ and $b_{\text {min }}=\sqrt{4 \lambda L}$
21. Radiation of wavelength λ, is incident on a photocell. The fastest emitted electron has speed v. If the wavelength is changed to $\frac{3 \lambda}{4}$, the speed of the fastest emitted electron will be :
(1) $>v\left(\frac{4}{3}\right)^{\frac{1}{2}}$.
(2) $<v\left(\frac{4}{3}\right)^{\frac{1}{2}}$
$(3)=v\left(\frac{4}{3}\right)^{\frac{1}{2}}$
(4) $=v\left(\frac{3}{4}\right)^{\frac{1}{2}}$
22. एक पिन-होल कैमरा की लम्बाई ' L ' है तथा छिद्र की त्रिज्या a है। उस पर λ तरंगदैर्घ्य का समांतर प्रकाश आपतित है। छिद्र के सामने वाली सतह पर बने स्पॉट का विस्तार छिद्र के ज्यामितीय आकार तथा विवर्तन के कारण हुए विस्तार का कुल योग है। इस स्पॉट का न्यूनतम आकार $b_{\text {min }}$ तब होगा जब :
(1) $a=\frac{\lambda^{2}}{L}$ तथा $b_{\min }=\left(\frac{2 \lambda^{2}}{L}\right)$
(2) $a=\sqrt{\lambda L}$ तथा $b_{\min }=\left(\frac{2 \lambda^{2}}{L}\right)$
(3) $a=\sqrt{\lambda L}$ तथा $b_{\text {min }}=\sqrt{4 \lambda L}$
(4) $a=\frac{\lambda^{2}}{L}$ तथा $b_{\text {min }}=\sqrt{4 \lambda L}$
23. एक फोटो-सेल पर λ तरंगदैर्घ्य का प्रकाश आपतित है। उत्सर्जित इलेक्ट्राँन की अधिकतम गति ' v ' है। यदि तरंगदैर्घ्य $\frac{3 \lambda}{4}$ हो तब उत्सर्जित इलेक्ट्रॉन की अधिकतम गति होगी :
(1) $>v\left(\frac{4}{3}\right)^{\frac{1}{2}}$
(2) $<v\left(\frac{4}{3}\right)^{\frac{1}{2}}$
(3) $=v\left(\frac{4}{3}\right)^{\frac{1}{2}}$
(4) $=v\left(\frac{3}{4}\right)^{\frac{1}{2}}$
24. Half-lives of two radioactive elements A and B are 20 minutes and 40 minutes, respectively. Initially, the samples have equal number of nuclei. After 80 minutes, the ratio of decayed numbers of A and B nuclei will be :
(1) $1: 16$
(2) $4: 1$
(3) $1: 4$
(4) $5: 4$
25. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are inputs to a gate and x is its output, then, as per the following time graph, the gate is :

c

b \qquad Γ
\qquad
x \qquad
(1) NOT
(2) AND
(3) $O R$
(4) NAND
26. दो रेडियोधर्मी तत्व A तथा B की अर्द्धआयु क्रमश: 20 min तथा 40 min हैं। प्रारंभ में दोनों के नमूनों में नाभिकों की संख्या बराबर है। 80 min के उपरांत A तथा B के क्ष्य हुए नाभिकों की संख्या का अनुपात होगा :
(1) $1: 16$
(2) $4: 1$
(3) $1: 4$
(4) $5: 4$
27. एक गेट में $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ इनपुट हैं और x आऊटपुट है। तब दिये गये टाइम-ग्राफ के अनुसार गेट है :

c

b

a

x

(1) NOT

21 AND
(3) OR
(4) NAND
24. Choose the correct statement :
(1) In amplitude modulation the amplitude of the high frequency carrier wave is made to vary in proportion to the amplitude of the audio signal.
(2) In amplitude modulation the frequency of the high frequency carrier wave is made to vary in proportion to the amplitude of the audio signal.
(3) In frequency modulation the amplitude of the high frequency carrier wave is made to vary in proportion to the amplitude of the audio signal.
(4) In frequency modulation the amplitude of the high frequency carrier wave is made to vary in proportion to the frequency of the audio signal.
25. A screw gauge with a pitch of 0.5 mm and a circular scale with 50 divisions is used to measure the thickness of a thin sheet of Aluminium. Before starting the measurement, it is found that when the two jaws of the screw gauge are brought in contact, the $45^{\text {th }}$ division coincides with the main scale line and that the zero of the main scale is barely visible. What is the thickness of the sheet if the main scale reading is 0.5 mm and the $25^{\text {th }}$ division coincides with the main scale line?
(1) 0.75 mm
(2) 0.80 mm
(3) 0.70 mm
(4) 0.50 mm
24. सही कथन चुनिये :
(1) आयाम माडुलन में उच्च आवृत्ति की वाहक तरंग के आयाम में बदलाव ध्वनि सिग्नल के आयाम के अनुपाती है।
(2) आयाम माडुलन में उच्च आवृत्ति की वाहक तरंग की आवृत्ति में बदलाव ध्वनि सिग्नल के आयाम के अनुपाती है।
(3) आवृत्ति माडुलन में उच्च आवृत्ति की वाहक तरंग के आयाम में बदलाव ध्वनि सिग्नल के आयाम के अनुपाती है।
(4) आवृत्ति माडुलन में उच्च-आवृत्ति की वाहक तरंग की आयाम में बदलाव ध्वनि सिग्नल की आवृत्ति के अनुपाती है।
25. एक स्क्रू-गेज का पिच 0.5 mm है और उसके वृत्तीयस्केल पर 50 भाग हैं। इसके द्वारा एक पतली अल्युमीनियम शीट की मोटाई मापी गई। माप लेने के पूर्व यह पाया गया कि जब स्क्रू-गेज के दो जॉवों को सम्पर्क में लाया जाता है तब 45 वां भाग मुख्य स्केल लाईन के संपाती होता है और मुख्य्य स्केल का शून्य (0) मुश्किल से दिखता है। मुख्य स्केल का पाठ्यांक यदि 0.5 mm तथा 25 वां भाग मुख्य स्केल लाईन के संपाती हो, तो शीट की मोटाई क्या होगी ?
26. A pipe open at both ends has a fundamental frequency f in air. The pips is dipped vertically in water so that hall of it is in water. The fundamental frequency of the air column is now :
(1) $\frac{f}{2}$
(2) $\frac{3 f}{4}$
(3) $2 f$
(4) f
27. A galvanometer having a coil resistance of 100Ω gives a full scale deflection, when a current of 1 mA is passed through it. The value of the resistance, which can convert this galvanometer into ammeter giving a full scale deflection for a current of 10 A , is :
(1) 0.01Ω
(2) 2Ω
(3) 0.1Ω
(4) 3Ω
28. In an experiment for determination of refractive index of glass of a prism by $i-\delta$, plot, it was found that a ray incident at angle 35°, suffers a deviation of 40° and that it emerges at angle 79°. In that case which of the following is closest to the maximum possible value of the refractive index ?
(1) 1.5
(2) 1.6
(3) 1.7
(4) 1.8
26. दोनों सिरों पर खुले एक पाइप की वायु में मूल-आवृत्ति ' f ' है। पाइप को ऊर्ध्वाधर उसकी आधी-लम्बाई तक पानी में डुबाया जाता है। तब इसमें बचे वायु-कालम की मूल आवृत्ति होगी :
(1) $\frac{f}{2}$
(2) $\frac{3 f}{4}$
(3) $2 f$
(4) f
27. एक गैल्वेनोमीटर के काइल का प्रतिरोध 100Ω है। 1 mA धारा प्रवाहित करने पर इसमें फुल-स्केल विक्षेप मिलता है। इस गैल्वेनोमीटर को 10 A के एमीटर में बदलने के लिये जो प्रतिरोध लगाना होगा वह है :
(1) 0.01Ω
(2) 2Ω
(3) 0.1Ω
(4) 3Ω
28. एक प्रयोग करके तथा $i-\delta$ ग्राफ बनाकर एक काँच से बने प्रिज़्म का अपवर्तनांक निकाला जाता है। जब एक किरण को 35° पर आपतित करने पर वह 40° से विचलित होती है तथा यह 79° पर निर्गम होती है। इस स्थिति में निम्न में से कौनसा मान अपवर्तनांक के अधिकतम मान के सबसे पास है ?
(1) 1.5
(2) 1.6
(3) 1.7
(4) 1.8

I:/Page 15 SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह
$\frac{0.5}{25}$

$0 \% 0$

29. Identify the semiconductor devices whose characteristics are given below, in the order (a), (b), (c), (d) :

(a)

(c)

(b)

(d)
(1) Simple diode, Zener diode, Solar cell, Light dependent resistance
(2) Zener diode, Simple diode, Light dependent resistance, Solar cell
(3) Solar cell, Light dependent resistance, Zener diode, Simple diode
(4) Zener diode, Solar cell, Simple diode, Light dependent resistance
30. For a common emitter configuration, if α and β have their usual meanings, the incorrect relationship between α and β is :
(1) $\frac{1}{\alpha}=\frac{1}{\beta}+1$
(2) $\alpha=\frac{\beta}{1-\beta}$
(3) $\alpha=\frac{\beta}{1+\beta}$
(4) $\alpha=\frac{\beta^{2}}{1+\beta^{2}}$
29. चित्र (a), (b), (c), (d) देखकर निर्धारित करें कि चित्र क्रमशः किन सेमीकन्डक्टर डिवाईस वे अभिलक्षणिक ग्राफ हैं ?

(a)

(b)

(c)

(d)
(1) साधारण डायोड, जीनर डायोड, सोलर सेल LDR (लाईट डिपेन्डेन्ट रेजिस्टेन्स)
(2) जीनर डायोड, साधारण डायोड, LDR (लाई डिपेन्डेन्ट रेजिस्टेन्स), सोलर सेल
(3) सोलर सेल, LDR (लाईट डिपेन्डेन्ट रेजिस्टेन्स) जीनर डायोड, साधारण डायोड़
(4) जीनर डायोड, सोलर सेल, साधारण डायोड LDR (लाईट डिपेन्डेन्ट रेजिस्टेन्स)
30. उभयनिष्ठ-उत्सर्जक विन्यास के लिये α तथा β टे बीच निम्न में से कौनसा संबंध गलत है ? α तथा, चिह्न सामान्य मतलब वाले हैं :
(1) $\frac{1}{\alpha}=\frac{1}{\beta}+1$
(2) $\alpha=\frac{\beta}{1-\beta}$
(3) $\alpha=\frac{\beta}{1+\beta}$
(4) $\alpha=\frac{\beta^{2}}{1+\beta^{2}}$

PART B - CHEMISTRY

31. At 300 K and $1 \mathrm{~atm}, 15 \mathrm{~mL}$ of a gaseous hydrocarbon requires 375 mL air containing $20 \% \mathrm{O}_{2}$ by volume for complete combustion. After combustion the gases occupy 330 mL . Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is :
(1) $\mathrm{C}_{3} \mathrm{H}_{6}$
(2) $\mathrm{C}_{3} \mathrm{H}_{8}$
(3) $\mathrm{C}_{4} \mathrm{H}_{8}$
(4) $\mathrm{C}_{4} \mathrm{H}_{10}$
32. Two closed bulbs of equal volume (V) containing an ideal gas initially at pressure p_{i} and temperature T_{1} are connected through a narrow tube of negligible volume as shown in the figure below. The temperature of one of the bulbs is then raised to T_{2}. The final pressure p_{f} is :

(1) $p_{i}\left(\frac{T_{1} T_{2}}{T_{1}+T_{2}}\right)$
(2) $2 p_{i}\left(\frac{T_{1}}{T_{1}+T_{2}}\right)$
(3) $2 p_{i}\left(\frac{T_{2}}{T_{1}+T_{2}}\right)$
(4) $2 p_{i}\left(\frac{T_{1} T_{2}}{T_{1}+T_{2}}\right)$

भाग B - रसायन विज्ञान

31. 300 K तथा 1 atm दाब पर, 15 mL गैसीय हाइड्रोकार्बन के पूर्ण दहन के लिये 375 mL वायु जिसमें आयतन के आधार पर 20% ऑक्सीजन है, की आवश्यकता होती है। दहन के बाद गैसें 330 mL घेरती है। यह मानते हुए कि बना हुआ जल द्रव रूप में है तथा उसी तापमान एवं दाब पर आयतनों की माप की गई है तो हाइड्रोकार्बन का फार्मूला है :
(1) $\mathrm{C}_{3} \mathrm{H}_{6}$
(2) $\mathrm{C}_{3} \mathrm{H}_{8}$
(3) $\mathrm{C}_{4} \mathrm{H}_{8}$
(4) $\mathrm{C}_{4} \mathrm{H}_{10}$
32. समान आयतन (V) के दो बंद बल्ब, जिनमें एक आदर्श गैस प्रारम्भिक दाब p_{i} तथा ताप T_{1} पर भरी गई है, एक नगण्य आयतन की पतली ट्यूब से जुड़े हैं जैसा कि नीचे के चित्र में दिखाया गया है। फिर इनमें से एक बल्ब का ताप बढ़ाकर T_{2} कर दिया जाता है। अंतिम दाब p_{f} है :

(l) $p_{i}\left(\frac{T_{1} T_{2}}{T_{1}+T_{2}}\right)$
(2) $2 p_{i}\left(\frac{T_{1}}{T_{1}+T_{2}}\right)$
(3) $2 p_{i}\left(\frac{T_{2}}{T_{1}+T_{2}}\right)$
(4) $2 p_{i}\left(\frac{T_{1} T_{2}}{T_{1}+T_{2}}\right)$
33. A stream of electrons from a heated filament was passed between two charged plates kept at a potential difference V esu. If e and m are charge and mass of an electron, respectively, then the value of h / λ (where λ is wavelength associated with electron wave) is given by :
(1) meV
(2) 2 meV
(3) $\sqrt{m e V}$
(4) $\sqrt{2 \mathrm{meV}}$
34. The species in which the N atom is in a state of $s p$ hybridization is :
(1) NO_{2}^{+}
(2) NO_{2}^{-}
(3) NO_{3}^{-}
(4) NO_{2}
35. The heats of combustion of carbon and carbon monoxide are - 393.5 and $-283.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. The heat of formation (in kJ) of carbon monoxide per mole is :
(1) 110.5
(2) 676.5
(3) -676.5
(4) -110.5
36. एक गर्म फिलामेंट से निकली इलेक्ट्रॉन धारा को V esu के विभवान्तर पर रखे दो आवेशित प्लेटों के बीच से भेजा जाता है। यदि इलेक्ट्रॉन के आवेश तथा संहति क्रमशः e तथा m हों तो h / λ का मान निम्न में से किसके द्वारा दिया जायेगा? (जब इलेक्ट्रॉन तरंग से सम्बन्धित तरंगदैर्ध्य λ है)
(1) $m e V$
(2) $2 m e \mathrm{~V}$
(3) $\sqrt{\mathrm{meV}}$
(4) $\sqrt{2 \mathrm{meV}}$
37. वह स्पीशीज़, जिसमें N परमाणु $s p$ संकरण की अवस्था में है, होगी :
(1) NO_{2}^{+}
(2) NO_{2}^{-}
(3) NO_{3}^{-}
(4) $\quad \mathrm{NO}_{2}$
38. कार्बन तथा कार्बन मोनोक्सॉइड की दहन ऊष्मायें क्रमश: -393.5 तथा $-283.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ हैं। कार्बन मोनोक्साइड की संभवन ऊष्मा (kJ में) प्रति मोल होगी :
(I) 110.5
(2) 676.5
(姑) -676.5
(4) -110.5
39. 18 g glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is added to 178.2 g water. The vapor pressure of water (in torr) for this aqueous solution is :
(1) 7.6
(2) 76.0
(3) 752.4
(4) 759.0
40. The equilibrium constant at 298 K for a reaction $A+B \rightleftharpoons C+D$ is 100 . If the initial concentration of all the four species were 1 M each, then equilibrium concentration of D (in $\mathrm{mol} \mathrm{L}^{-1}$) will be :
(1) 0.182
(2) 0.818
(3) 1.818
(4) 1.182
41. Galvanization is applying a coating of :
(1) Pb
(2) Cr
(3) Cu
(4) Zn
42. 18 g ग्लुकोस $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ को 178.2 g पानी में मिलाया जाता है। इस जलीय विलयन के लिए जल का वाष्प दाब (torr में) होगा :
(1) 7.6
(2) 76.0
(3) 752.4
(4) 759.0
43. तापमान 298 K पर, एक अभिक्रिया $A+B \rightleftharpoons C+D$ के लिए साम्य स्थिरांक 100 है। यदि प्रारम्भिक सन्द्रता सभी चारों स्पीशीज में से प्रत्येक की 1 M होती, तो D की साम्य सान्द्रता $\left(\mathrm{mol} \mathrm{L}^{-1}\right.$ में) होगी :
(1) 0.182
(2) 0.818
(3) 1.818
(4) 1.182
44. गैल्वनाइजेशन निम्न में से किसके कोट से होता है ?
(1) Pb
(2) Cr
(3) Cu
(4) Zn

E/Page 19
SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह

$h / c=1 / \lambda$ mre | $1.393-5+28$ |
| :--- |
| $283-5$ |
| 270 |$\frac{283}{110}$

39. Decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ follows a first order reaction. In fifty minutes the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ decreases from 0.5 to 0.125 M in one such decomposition. When the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ reaches 0.05 M , the rate of formation of O_{2} will be :
(1) $6.93 \times 10^{-2} \mathrm{~mol} \mathrm{~min}^{-1}$
(2) $6.93 \times 10^{-4} \mathrm{~mol} \mathrm{~min}^{-1}$
(3) $2.66 \mathrm{~L} \mathrm{~min}^{-1}$ at STP
(4) $1.34 \times 10^{-2} \mathrm{~mol} \mathrm{~min}^{-1}$
40. For a linear plot of $\log (x / m)$ versus $\log p$ in a Freundlich adsorption isotherm, which of the following statements is correct? (k and n are constants)
(1) Both k and $1 / n$ appear in the slope term.
(2) $1 / n$ appears as the intercept.
(3) Only $1 / n$ appears as the slope.
(4) $\log (1 / n)$ appears as the intercept.
41. Which of the following atoms has the highest first ionization energy ?
(1) Rb
(2) Na
(3) K
(4) Sc
39. $\mathrm{H}_{2} \mathrm{O}_{2}$ का विघटन एक प्रथम कोटि की अभिक्रिया है। पचास मिनट में इस प्रकार के विघटन में $\mathrm{H}_{2} \mathrm{O}_{2}$ की सान्द्रता घटकर 0.5 से 0.125 M हो जाती है। जब $\mathrm{H}_{2} \mathrm{O}_{2}$ की सान्द्रता 0.05 M पहुँचती है, तो O_{2} के बनने की दर होगी :
(1) $6.93 \times 10^{-2} \mathrm{~mol} \mathrm{~min}^{-1}$
(2)) $6.93 \times 10^{-4} \mathrm{~mol} \mathrm{~min}^{-1}$
(3) $2.66 \mathrm{~L} \mathrm{~min}^{-1}$ (STP पर)
(4) $1.34 \times 10^{-2} \mathrm{~mol} \mathrm{~min}^{-1}$
40. फ्रॉयन्डलिक अधिशोषण समतापी वक्र में $\log (x / m)$ तथा $\log p$ के बीच खींचे गये रेखीय प्लाट के लिए निम्न में से कौन सा कथन सही है ? (k तथा n स्थिरांक हैं)
(7) k तथा $1 / n$ दोनों ही स्लोप पद में आते हैं।
(2) $1 / n$ इन्टरसेप्ट के रूप आता है।
(3) मात्र $1 / n$ स्लोप के रूप में आता है।
(4) $\log (1 / n)$ इन्टरसेप्ट के रूप में आता है।
41. निम्न परमाणुओं में किसकी प्रथम आयनन ऊर्जा उच्चतम है?
(1) Rb
(2) Na
(3) K
(4) Sc

E/Page 20 SPACE FOR ROUGH WORK \backslash रफ कार्य के लिए जगह

$$
\left.\log \left(X X_{m}\right)=\log ^{5} k\right)^{\pi} n
$$

42. Which one of the following ores is best concentrated by froth floatation method?
(1) Magnetite
(2) Siderite
(3) Galena
(4) Malachite
43. Which one of the following statements about water is FALSE ?
(1) Water is oxidized to oxygen during photosynthesis.
(2) Water can act both as an acid and as a base.
(3) There is extensive intramolecular hydrogen bonding in the condensed phase.
(4) Ice formed by heavy water sinks in normal water.
44. The main oxides formed on combustion of Li, Na and K in excess of air are, respectively :
(1) $\mathrm{Li}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}$ and KO_{2}
(2) $\mathrm{LiO}_{2}, \mathrm{Na}_{2} \mathrm{O}_{2}$ and $\mathrm{K}_{2} \mathrm{O}$
(3) $\mathrm{Li}_{2} \mathrm{O}_{2}, \mathrm{Na}_{2} \mathrm{O}_{2}$ and KO_{2}
(4) $\mathrm{Li}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}_{2}$ and KO_{2}
45. फ्रॉथ फ्लोटेशन विधि द्वारा निम्न में से वह कौन सा अयस्क सर्वाधिक रूप से सान्द्रित किया जा सकता है ?
(7) मैग्नेटाइट
(2) सिडेराइट
(3) गैलेना
(4) मैलाकाइट
46. जल के सम्बन्ध में निम्न कथनों में से कौन सा एक गलत है ?
(1) प्रकाशसंश्लेषण में जल आक्सीकृत होकर आक्सीजन देता है।
(2) जल, अम्ल तथा क्षारक दोनों ही रूप में कार्य कर सकता है।
(3) इसके संघनित प्रावस्था में विस्तीर्ण अंतःअणुक हाइड्रोजन आबन्ध होते हैं।
(4) भारी जल द्वारा बना बर्फ सामान्य जल में डूबता है।
47. हवा के आधिक्य में Li, Na और K के दहन पर बननेवाली मुख्य आक्साइडें क्रमश: हैं :
(1) $\mathrm{Li}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}$ तथा KO_{2}
(2) $\mathrm{LiO}_{2}, \mathrm{Na}_{2} \mathrm{O}_{2}$ तथा $\mathrm{K}_{2} \mathrm{O}$
(3) $\mathrm{Li}_{2} \mathrm{O}_{2}, \mathrm{Na}_{2} \mathrm{O}_{2}$ तथा KO_{2}
(4) $\mathrm{Li}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}_{2}$ तथा KO_{2}
48. The reaction of zinc with dilute and concentrated nitric acid, respectively, produces :
(1) $\mathrm{N}_{2} \mathrm{O}$ and NO_{2}
(2) NO_{2} and NO
(3) NO and $\mathrm{N}_{2} \mathrm{O}$
(4) $\quad \mathrm{NO}_{2}$ and $\mathrm{N}_{2} \mathrm{O}$
49. The pair in which phosphorous atoms have a formal oxidation state of +3 is :
(1) Orthophosphorous and pyrophosphorous acids
(2) Pyrophosphorous and hypophosphoric acids
(3) Orthophosphorous and hypophosphoric acids
(4) Pyrophosphorous and pyrophosphoric acids
50. Which of the following compounds is metallic and ferromagnetic?
(1) TiO_{2}
(2) CrO_{2}
(3) VO_{2}
(4) MnO_{2}
51. तनु तथा सान्द्र नाइट्रिक एसिड के साथ जिंक की अभिक्रिया द्वारा क्रमशः उत्पन्न होते हैं :
(1) $\mathrm{N}_{2} \mathrm{O}$ तथा NO_{2}
(2) NO_{2} तथा NO
(3) NO तथा $\mathrm{N}_{2} \mathrm{O}$
(4) $\quad \mathrm{NO}_{2}$ तथा $\mathrm{N}_{2} \mathrm{O}$

46y वह युग्म जिनमें फास्फोरस परमाणुओं की फार्मल ऑक्सीकरण अवस्था +3 है, है :
(1) आर्थोफास्फोरस तथा पायरोफास्फोरस एसिड
(2) पायरोफास्फोरस तथा हाइपोफास्फोरिक एसिड
(3) आर्थोफास्फोरस तथा हाइपोफास्फोरिक एसिड
(4) पायरोफास्फोरस तथा पायरोफास्फोरिक एसिड
47. निम्न में से कौन सा यौगिक धात्विक तथा फेरोमैगनेटिक (लौह चुम्बकीय) है ?
(1) TiO_{2}
(2) CrO_{2}
(3) VO_{2}
(4) MnO_{2}
48. The pair having the same magnetic moment is :
[At. No.: $\mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27$]
(1) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{CoCl}_{4}\right]^{2-}$
(2) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(3) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(4) $\left[\mathrm{CoCl}_{4}\right]^{2-}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
49. Which one of the following complexes shows optical isomerism?
(1) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
(2) \quad cis $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
(3) $\operatorname{trans}\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
(4) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
(en $=$ ethylenediamine)
50. The concentration of fluoride, lead, nitrate and iron in a water sample from an underground lake was found to be $1000 \mathrm{ppb}, 40 \mathrm{ppb}, 100 \mathrm{ppm}$ and 0.2 ppm , respectively. This water is unsuitable for drinking due to high concentration of :
(1) Fluoride
(2) Lead
(3) Nitrate
(4) Iron
48. एकही चुम्बकीय आघूर्ण का युग्म है :
[At. No.: $\mathrm{Cr}=24, \mathrm{Mr}=25, \mathrm{Fe}=26, \mathrm{Co}=27$]
(1) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ तथा $\left[\mathrm{CoCl}_{4}\right]^{2-}$
(2) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ तथा $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(3X $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ तथा $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(4) $\left[\mathrm{CoCl}_{4}\right]^{2-}$ तथा $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
49. निम्न में से कौन सा कॉम्प्लेक्स प्रकाशिक समावयवता प्रदर्शित करेगा ?
(1) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
(2) $\operatorname{cis}\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
(3) $\operatorname{trans}\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
(4) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
($\mathrm{en}=$ ethylenediamine)
50. भूमिगत झील से प्राप्त जल प्रतिदर्श में फ्लोराइड, लेड, नाइट्रेट तथा आयरन की सान्द्रता क्रमशः 1000 ppb , $40 \mathrm{ppb}, 100 \mathrm{ppm}$ तथा 0.2 ppm पाई गई। यह जल निम्न में से किसकी उच्च सान्द्रता से पीने योग्य नहीं है ?
(1) फ्लोराइड
(2) लेड
(3) नाइट्रेट
(4) आयरन

(\ddagger)

(b)

($\varepsilon)$

(L)

: S!

Letile malle ()
 thptile teltill (L)

иопеп!!̣!

: sị Kinsnput deos

53. The absolute configuration of

is :
(1) $(2 R, 3 S)$
(2) $(2 S, 3 \mathrm{R})$
(3) $(2 S, 3 S)$
(4) $(2 R, 3 R)$
54. 2-chloro-2-methylpentane on reaction with sodium methoxide in methanol yields:
(a)

(b)

(c)

(1) All of these
(2) (a) and (c)
(3) (c) only
(4) (a) and (b)
53. दिए गये यौगिक का निरपेक्ष विन्यास है :

(1Y (2R, 3S)
(2) $(2 S, 3 R)$
(3) $(2 S, 3 S)$
(4) $(2 R, 3 R)$
54. मेथेनॉल में 2-क्लोरो-2-मेथिलपेन्टेन, सोडियम मेथाक्साइड के साथ अभिक्रिया करके देती है :
(a)

(b) $\begin{gathered}\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}_{2} \\ \mathrm{CH}_{3}\end{gathered}$
(c) $\begin{gathered}\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}=\underset{\mathrm{C}}{\mathrm{C}}-\mathrm{CH}_{3} \\ \stackrel{\mathrm{CH}}{3}\end{gathered}$
(1) इनमें से सभी
(2) (a) तथा (c)
(3) मात्र (c)
(4) (a) तथा (b)
55. The reaction of propene with HOCl $\left(\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}\right)$ proceeds through the intermediate :
(1) $\mathrm{CH}_{3}-\mathrm{CH}^{+}-\mathrm{CH}_{2}-\mathrm{OH}$
(2) $\mathrm{CH}_{3}-\mathrm{CH}^{+}-\mathrm{CH}_{2}-\mathrm{Cl}$
(3)
$\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}^{+}$
(4)

56. In the Hofmann bromamide degradation reaction, the number of moles of NaOH and Br_{2} used per mole of amine produced are:
(1) One mole of NaOH and one mole of Br_{2}.
(2) Four moles of NaOH and two moles of Br_{2}.
(3) Two moles of NaOH and two moles of Br_{2}.
(4) Four moles of NaOH and one mole of Br_{2}.
57. Which of the following statements about low density polythene is FALSE?
(1) Its synthesis requires high pressure.
(2) It is a poor conductor of electricity.
(3) Its synthesis requires dioxygen or a peroxide initiator as a catalyst.
(4) It is used in the manufacture of buckets, dust-bins etc.
55. प्रोपीन की $\mathrm{HOCl}\left(\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}\right)$ के साथ अभिक्रिया

6 जिस मध्यवर्ती से होकर सम्पन्न होती है, वह है :
(1) $\mathrm{CH}_{3}-\mathrm{CH}^{+}-\mathrm{CH}_{2}-\mathrm{OH}$
(2) $\mathrm{CH}_{3}-\mathrm{CH}^{+}-\mathrm{CH}_{2}-\mathrm{Cl}$
(3) $\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}^{+}$
(4) $\mathrm{CH}_{3}-\mathrm{CHCl}-\mathrm{CH}_{2}^{+}$
56. हाफमान ब्रोमामाइड निम्नीकरण अभिक्रिया में, NaOH तथा Br_{2} के प्रयुक्त मोलों की संख्या प्रतिमोल अमीन के बनने में होगी :
(1) एक मोल NaOH तथा एक मोल Br_{2} ।
(2) चार मोल NaOH तथा दो मोल Br_{2} ।
(3) दो मोल NaOH तथा दो मोल Br_{2} ।
(4) चार मोल NaOH तथा एक मोल Br_{2} ।
57. निम्न घनत्व के पालीथीन के सम्बन्ध में निम्न में से कौन सा कथन गलत है ?
(1) इसके संश्लेषण में उच्च दाब की आवश्यकता होती है।
(2) यह विद्युत का हीन चालक है।
(3) इसमें डाईआक्सीजन अथवा परआक्साइड इनीसियेटर (प्रारम्भक) उत्प्रेरक के रूप में चाहिए।
(4) यह बकेट (बाल्टी), डस्ट-बिन, आदि के उत्पादन में प्रयुक्त होती है।
58. Thiol group is present in :
(1) Cytosine
(2) Cystine
(3) Cysteine
(4) Methionine
59. Which of the following is an anionic detergent?
(1) Sodium stearate
(2) Sodium lauryl sulphate
(3) Cetyltrimethyl ammonium bromide
(4) Glyceryl oleate
60. The hottest region of Bunsen flame shown in the figure below is:

(1) region 1
(2) region 2
(3) region 3
(4) region 4
58. थायोल ग्रुप जिसमें उपस्थित है, वह है :
(1) साइटोसीन
(2) सिस्टिन (Cystine)
(3) सिस्टीन (Cysteine)
(4) मेथाइओनीन
59. निम्न में से कौन सा एनाइनिक डिटरजेंट है ?
(1) सोडियम स्टीअरेट
(2) सोडियम लारिल सल्फेट
(3) सेटिलट्राइमेथिल अमोनियम ब्रोमाइड
(4) ग्लिसरिल ओलिएट
60. नीचे दी गई फिगर में बुन्सन फ्लेम का सर्वाधिक गर्म भाग है :

(1) रीजन 1
(2) रीजन 2
(3) रीजन 3
(4) रीजन 4

PART C - MATHEMATICS
61. If $f(x)+2 f\left(\frac{1}{x}\right)=3 x, x \neq 0$, and $\mathrm{S}=\{x \in \mathbf{R}: f(x)=f(-x)\}$; then S :
(1) is an empty set.
(2) contains exactly one element.
(3) contains exactily two elements.
(4) contains more than two elements.
62. A value of θ for which $\frac{2+3 i \sin \theta}{1-2 i \sin \theta}$ is purely imaginary, is :
(1) $\frac{\pi}{3}$
(2) $\frac{\pi}{6}$
(3) $\sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)$
(4) $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
63. The sum of all real values of x satisfying the equation $\left(x^{2}-5 x+5\right)^{x^{2}+4 x-60}=1$ is :
(1) 3
(2) -4
(3) 6
(4) 5

भाग C - गणित

61. यदि $f(x)+2 f\left(\frac{1}{x}\right)=3 x, x \neq 0$ है, तथा $\mathrm{S}=\{x \in \mathbf{R}: f(x)=f(-x)\}$ है ; तो S :
(1) एक रिक्त समुच्चय है।
(2) में केवल एक अवयव है।
(3) में तथ्यत: दो अवयव हैं।
(4) में दो से अधिक अवयव हैं।
62. θ का वह एक मान जिसके लिए $\frac{2+3 i \sin \theta}{1-2 i \sin \theta}$ पूर्णत: काल्पनिक है, है :
(1) $\frac{\pi}{3}$
(2) $\frac{\pi}{6}$
(3) $\sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)$
(4) $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
63. x के उन सभी वास्तविक मानों का योग जो समीकरण $\left(x^{2}-5 x+5\right)^{x^{2}+4 x-60}=1$ को संतुष्ट करते हैं, है :
(1) 3
(2) -4
(3) 6
(4) 5
64. If $A=\left[\begin{array}{cc}5 a & -b \\ 3 & 2\end{array}\right]$ and $A \operatorname{adj} A=A A^{T}$, then $5 a+b$ is equal to :
(1) -1
(2) 5
(3) 4
(4) 13
65. The system of linear equations

$$
\begin{aligned}
& x+\lambda y-z=0 \\
& \lambda x-y-z=0 \\
& x+y-\lambda z=0
\end{aligned}
$$

has a non-trivial solution for :
(1) infinitely many values of λ.
(2) exactly one value of λ.
(3) exactly two values of λ.
(4) exactly three values of λ.
66. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is :
(1) $46^{\text {th }}$
(2) $59^{\text {th }}$
(3) $52^{\text {nd }}$
(4) $58^{\text {th }}$
64. यदि $A=\left[\begin{array}{cc}5 a & -b \\ 3 & 2\end{array}\right]$ तथा $A \operatorname{adj} A=A A^{T}$ हैं, तो $5 a+b$ बराबर है :
(1) -1
(2) 5
(3) 4
(4) 13
65. रैखिक समीकरण निकाय

$$
\begin{aligned}
& x+\lambda y-z=0 \\
& \lambda x-y-z=0 \\
& x+y-\lambda z=0
\end{aligned}
$$

का एक अतुच्छ हल होने के लिए :
(1) λ के अनंत मान हैं।
(2) λ का तथ्यत: एक मान है।
(3) λ के तथ्यत: दो मान हैं।
(4) λ के तथ्यत: तीन मान हैं।
66. शब्द SMALL के अक्षरों का प्रयोग करके, पाँच अक्षरों वाले सभी शब्दों (अर्थपूर्ण अथवा अर्थहीन) को शब्दकोश के क्रमानुसार रखने पर, शब्द SMALL का स्थान है :
(1) 46 वां
(2) 59 वां
(z) 52 वां
(4) 58 वां
67. If the number of terms in the expansion of $\left(1-\frac{2}{x}+\frac{4}{x^{2}}\right)^{n}, x \neq 0$, is 28 , then the sum of the coefficients of all the terms in this expansion, is :
(1) 64
(2) 2187
(3) 243
(4) 729
68. If the $2^{\text {nd }}, 5^{\text {th }}$ and $9^{\text {th }}$ terms of a non-constant A.P. are in G.P., then the common ratio of this G.P. is :
(1) $\frac{8}{5}$
(2) $\frac{4}{3}$
(3) 1
(4) $\frac{7}{4}$
69. If the sum of the first ten terms of the series $\left(1 \frac{3}{5}\right)^{2}+\left(2 \frac{2}{5}\right)^{2}+\left(3 \frac{1}{5}\right)^{2}+4^{2}+\left(4 \frac{4}{5}\right)^{2}+\ldots \ldots$, is $\frac{16}{5} m$, then m is equal to :
(1) 102
(2) 101
(3) 100
(4) 99
67. यदि $\left(1-\frac{2}{x}+\frac{4}{x^{2}}\right)^{n}, x \neq 0$ के प्रसार में पदों की संख्या 28 है, तो इस प्रसार में आने वाले सभी पदों के गुणांकों का योग है :
(1) 64
(2) 2187
(3) 243
(4) 729
68. यदि एक अचरेतर समांतर श्रेढ़ी का दूसरा, 5 वां तथा 9 वां पद एक गुणोत्तर श्रेढ़ी में हैं, तो उस गुणोत्तर श्रेढ़ी का सार्व अनुपात है :
(1) $\frac{8}{5}$
(2) $\frac{4}{3}$
(3) 1
(4) $\frac{7}{4}$

69. यदि श्रेणी

$\left(1 \frac{3}{5}\right)^{2}+\left(2 \frac{2}{5}\right)^{2}+\left(3 \frac{1}{5}\right)^{2}+4^{2}+\left(4 \frac{4}{5}\right)^{2}+\ldots \ldots$.
के प्रथम दस पदों का योग $\frac{16}{5} m$ है, तो m बराबर है :
(1) 102
(2) 101
(3) 100
(4) 99
70. Let $p=\lim _{x \rightarrow 0+}\left(1+\tan ^{2} \sqrt{x}\right)^{\frac{1}{2 x}}$ then $\log p$ is equal to :
(1) 2
(2) 1
(3) $\frac{1}{2}$
(4) $\frac{1}{4}$
71. For $x \in \mathbf{R}, f(x)=|\log 2-\sin x|$ and $g(x)=f(f(x))$, then :
(1) g is not differentiable at $x=0$
(2) $g^{\prime}(0)=\cos (\log 2)$
(3) $g^{\prime}(0)=-\cos (\log 2)$
(4) g is differentiable at $x=0$ and $g^{\prime}(0)=-\sin (\log 2)$
72. Consider
$f(x)=\tan ^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right), x \in\left(0, \frac{\pi}{2}\right)$.
A normal to $y=f(x)$ at $x=\frac{\pi}{6}$ also passes through the point :
(1) $(0,0)$
(2) $\left(0, \frac{2 \pi}{3}\right)$
(3) $\left(\frac{\pi}{6}, 0\right)$
(4) $\left(\frac{\pi}{4}, 0\right)$
70. माना $p=\lim _{x \rightarrow 0+}\left(1+\tan ^{2} \sqrt{x}\right)^{\frac{1}{2 x}}$ है, तो $\log p$ बराबर है :
(1) 2
(2) 1
(3) $\frac{1}{2}$

71. $x \in \mathbf{R}$ के लिए $f(x)=|\log 2-\sin x|$ तथा $g(x)=f(f(x))$ हैं, तो :
(1) $x=0$ पर g अवकलनीय नहीं है।
(2) $g^{\prime}(0)=\cos (\log 2)$ है।
(3) $g^{\prime}(0)=-\cos (\log 2)$ है।
(4) $x=0$ पर g अवकलनीय है तथा $g^{\prime}(0)=-\sin (\log 2)$ है।
72. $f(x)=\tan ^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right), x \in\left(0, \frac{\pi}{2}\right)$ पर विचार कीजिए। $y=f(x)$ के बिंदु $x=\frac{\pi}{6}$ पर खींचा गया अभिलंब निम्न बिंदु से भी होकर जाता है :
(1) $(0,0)$
(2) $\left(0, \frac{2 \pi}{3}\right)$
(3) $\left(\frac{\pi}{6}, 0\right)$
(4) $\left(\frac{\pi}{4}, 0\right)$
73. A wire of length 2 units is cut into two parts which are bent respectively to form a square of side $=x$ units and a circle of radius $=r$ units. If the sum of the areas of the square and the circle so formed is minimum, then :
(1) $2 x=(\pi+4) r$
(2) $(4-\pi) x=\pi r$
(3) $x=2 r$
(4) $2 x=r$
74. The integral $\int \frac{2 x^{12}+5 x^{9}}{\left(x^{5}+x^{3}+1\right)^{3}} d x$ is equal to :
(1) $\frac{-x^{5}}{\left(x^{5}+x^{3}+1\right)^{2}}+C$
(2) $\frac{x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+\mathrm{C}$
(3) $\frac{x^{5}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C$
(4) $\frac{-x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C$
where C is an arbitrary constant.
73. 2 इकाई लंबी एक तार को दो भागों में काट कर उन्हें क्रमश: x इकाई भुजा वाले वर्ग तथा r इकाई त्रिज्या वाले वृत्त के रूप में मोड़ा जाता है। यदि बनाये गये वर्ग तथा वृत्त के क्षेत्रफलों का योग न्यूनतम है, तो :
(1) $2 x=(\pi+4) r$
(2) $(4-\pi) x=\pi r$
(3) $x=2 r$
(4) $2 x=r$
74. स्रमाकल $\int \frac{2 x^{12}+5 x^{9}}{\left(x^{5}+x^{3}+1\right)^{3}} d x$ बराबर है :
(1) $\frac{-x^{5}}{\left(x^{5}+x^{3}+1\right)^{2}}+C$
(2) $\frac{x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C$
(3) $\frac{x^{5}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C$
(4) $\frac{-x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C$

जहाँ C एक स्वेच्छ अचर है।
75. $\lim _{n \rightarrow \infty}\left(\frac{(n+1)(n+2) \ldots 3 n}{n^{2 n}}\right)^{1 / n}$ is equal to :
(1) $\frac{18}{e^{4}}$
(2) $\frac{27}{e^{2}}$
(3) $\frac{9}{e^{2}}$
(4) $3 \log 3-2$
76. The area (in sq. units) of the region $\left\{(x, y): y^{2} \geqslant 2 x\right.$ and $\left.x^{2}+y^{2} \leq 4 x, x \geqslant 0, y \geqslant 0\right\}$ is:
(1) $\pi-\frac{4}{3}$
(2) $\pi-\frac{8}{3}$
(3) $\pi-\frac{4 \sqrt{2}}{3}$
(4) $\frac{\pi}{2}-\frac{2 \sqrt{2}}{3}$
75. $\lim _{n \rightarrow \infty}\left(\frac{(n+1)(n+2) \ldots 3 n}{n^{2 n}}\right)^{1 / n}$ बराबर है :
(1) $\frac{18}{e^{4}}$
(2) $\frac{27}{e^{2}}$
(3) $\frac{9}{e^{2}}$
(4) $3 \log 3-2$
76. क्षेत्र
$\left\{(x, y): y^{2} \geqslant 2 x\right.$ तथा $\left.x^{2}+y^{2} \leq 4 x, x \geqslant 0, y \geqslant 0\right\}$
का क्षेत्रफल (वर्ग इकाइयों में) है :
(1) $\pi-\frac{4}{3}$
(2) $\pi-\frac{8}{3}$
(3) $\pi-\frac{4 \sqrt{2}}{3}$
(4) $\frac{\pi}{2}-\frac{2 \sqrt{2}}{3}$
77. If a curve $y=f(x)$ passes through the point $(1,-1)$ and satisfies the differential equation, $y(1+x y) d x=x d y$, then $f\left(-\frac{1}{2}\right)$ is equal to :
(1) $-\frac{2}{5}$
(2) $-\frac{4}{5}$
(3) $\frac{2}{5}$
(4) $\frac{4}{5}$
78. Two sides of a rhombus are along the lines, $x-y+1=0$ and $7 x-y-5=0$. If its diagonals intersect at $(-1,-2)$, then which one of the following is a vertex of this rhombus?
(1) $(-3,-9)$
(2) $(-3,-8)$
(3) $\left(\frac{1}{3},-\frac{8}{3}\right)$
(4) $\left(-\frac{10}{3},-\frac{7}{3}\right)$
79. The centres of those circles which touch the circle, $x^{2}+y^{2}-8 x-8 y-4=0$, externally and also touch the x-axis, lie on :
(1) a circle.
(2) an ellipse which is not a circle.
(3) a hyperbola.
(4) a parabola.
77. यदि एक वक्र $y=f(x)$ बिंदु $(1,-1)$ से होकर जाता है तथा अवकल समीकरण $y(1+x y) d x=x d y$ को संतुष्ट करता है, तो $f\left(-\frac{1}{2}\right)$ बराबर है :
(1) $-\frac{2}{5}$
(2) $-\frac{4}{5}$
(3) $\frac{2}{5}$
(4) $\frac{4}{5}$
78. यदि एक समचतुर्भुज की दो भुजाएँ, रेखाओं $x-y+1=0$ तथा $7 x-y-5=0$ की दिशा में हैं तथा इसके विकर्ण बिंदु $(-1,-2)$ पर प्रतिच्छेद करते हैं, तो इस समचतुर्भुज का निम्न में से कौन-सा शीर्ष है ?
(1) $(-3,-9)$
(2) $(-3,-8)$
(3) $\left(\frac{1}{3},-\frac{8}{3}\right)$
(4) $\left(-\frac{10}{3},-\frac{7}{3}\right)$
79. उन वृत्तों के केन्द्र, जो वृत्त $x^{2}+y^{2}-8 x-8 y-4=0$ को बाह्य रूप से स्पर्श करते हैं तथा x-अक्ष को भी स्पर्श करते हैं, स्थित हैं :
(1) एक वृत्त पर।
(2) एक दीर्घवृत्त पर जो वृत्त नहीं है।
(3) एक अतिपरवलय पर।
(4) एक परवलय पर।
80. If one of the diameters of the circle, given by the equation, $x^{2}+y^{2}-4 x+6 y-12=0$, is a chord of a circle S, whose centre is at $(-3,2)$, then the radius of S is :
(1) $5 \sqrt{2}$
(2) $5 \sqrt{3}$
(3) 5
(4) 10
81. Let P be the point on the parabola, $y^{2}=8 x$ which is at a minimum distance from the centre C of the circle, $x^{2}+(y+6)^{2}=1$. Then the equation of the circle, passing through C and having its centre at P is :
(1) $x^{2}+y^{2}-4 x+8 y+12=0$
(2) $x^{2}+y^{2}-x+4 y-12=0$
(3) $x^{2}+y^{2}-\frac{x}{4}+2 y-24=0$
(4) $x^{2}+y^{2}-4 x+9 y+18=0$
82. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is :
(1) $\frac{4}{3}$
(2) $\frac{4}{\sqrt{3}}$
(3) $\frac{2}{\sqrt{3}}$
(4) $\sqrt{3}$
80. यदि समीकरण $x^{2}+y^{2}-4 x+6 y-12=0$ द्वारा प्रदत्त एक वृत्त का एक व्यास एक अन्य वृत्त S, जिसका केन्द्र $(-3,2)$ है, की जीवा है, तो वृत्त S की त्रिज्या है :
(1) $5 \sqrt{2}$
(2) $5 \sqrt{3}$
(3) 5
(4) 10
81. माना परवलय $y^{2}=8 x$ का P एक ऐसा बिंदु है जो वृत्त $x^{2}+(y+6)^{2}=1$, के केन्द्र C से न्यूनतम दूरी पर है, तो उस वृत्त का समीकरण जो C से होकर जाता है तथा जिसका केन्द्र P पर है, है :
(1) $x^{2}+y^{2}-4 x+8 y+12=0$
(2) $x^{2}+y^{2}-x+4 y-12=0$
(3) $x^{2}+y^{2}-\frac{x}{4}+2 y-24=0$
(4) $x^{2}+y^{2}-4 x+9 y+18=0$
82. उस अतिपरवलय, जिसके नाभिलंब की लंबाई 8 है तथा जिसके संयुग्मी अक्ष की लंबाई उसकी नाभियों के बीच की दूरी की आधी है, की उत्केन्द्रता है :
(1) $\frac{4}{3}$
(2) $\frac{4}{\sqrt{3}}$
(3) $\frac{2}{\sqrt{3}}$
(4) $\sqrt{3}$

E/Page 35

83. The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=y=z$ is :
(1) $3 \sqrt{10}$
(2) $10 \sqrt{3}$
(3) $\frac{10}{\sqrt{3}}$
(4) $\frac{20}{3}$
84. If the line, $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in the plane, $l x+m y-z=9$, then $l^{2}+m^{2}$ is equal to :
(1) 26
(2) 18
(3) 5
(4) 2
85. Let \vec{a}, \vec{b} and \vec{c} be three unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\sqrt{3}}{2}(\vec{b}+\vec{c})$. If \vec{b} is not parallel to \vec{c}, then the angle between \vec{a} and \vec{b} is:
(1) $\frac{3 \pi}{4}$
(2) $\frac{\pi}{2}$
(3) $\frac{2 \pi}{3}$
(4) $\frac{5 \pi}{6}$
83. बिंदु $(1,-5,9)$ की समतल $x-y+z=5$ से वह दूरी जो रेखा $x=y=z$ की दिशा में मापी गई है, है :
(1) $3 \sqrt{10}$
(2) $10 \sqrt{3}$
(3) $\frac{10}{\sqrt{3}}$
(4) $\frac{20}{3}$
84. यदि रेखा $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$, समतल $l x+m y-z=9$ में स्थित है, तो $l^{2}+m^{2}$ बराबर है :
(1) 26
(2) $18 /$
(3) 5
(4) 2
85. माना \vec{a}, \vec{b} तथा \vec{c} तीन ऐसे मात्रक सदिश हैं कि $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\sqrt{3}}{2}(\vec{b}+\vec{c})$ है। यदि \vec{b}, \vec{c} के समांतर नहीं है, तो \vec{a} तथा \vec{b} के बीच का कोण है :
(1) $\frac{3 \pi}{4}$
(2) $\frac{\pi}{2}$
(3) $\frac{2 \pi /}{3}$
(4) $\frac{5 \pi}{6}$

86. If the standard deviation of the numbers $2,3, a$ and 11 is 3.5 , then which of the following is true ?
(1) $3 a^{2}-26 a+55=0$
(2) $3 a^{2}-32 a+84=0$
(3) $3 a^{2}-34 a+91=0$
(4) $3 a^{2}-23 a+44=0$
87. Let two fair six-faced dice A and B be thrown simultaneously. If E_{1} is the event that die A shows up four, E_{2} is the event that die B shows up two and E_{3} is the event that the sum of numbers on both dice is odd, then which of the following statements is NOT true ?
(1) E_{1} and E_{2} are independent.
(2) E_{2} and E_{3} are independent.
(3) E_{1} and E_{3} are independent.
(4) E_{1}, E_{2} and E_{3} are independent.
88. If $0 \leq x<2 \pi$, then the number of real values of x, which satisfy the equation $\cos x+\cos 2 x+\cos 3 x+\cos 4 x=0$, is :
(1) 3
(2) 5
(3) 7
(4) 9
86. यद्धि संख्याओं $2,3, a$ तथा 11 का मानक विचलन 3.5 है, तो निम्न में से कौन-सा सत्य है ?
(1) $3 a^{2}-26 a+55=0$
(2) $3 a^{2}-32 a+84=0$
(3) $3 a^{2}-34 a+91=0$
(4) $3 a^{2}-23 a+44=0$
87. माना दो अनभिनत छ: फलकीय पासे A तथा B एक साथ उछाले गये। माना घटना E_{1} पासे A पर चार आना दर्शाती है, घटना E_{2} पासे B पर 2 आना दर्शाती है तथा घटना E_{3} दोनों पासों पर आने वाली संख्याओं का योग विषम दर्शाती है, तो निम्न में से कौन-सा कथन सत्य नहीं है ?
(1) E_{1} तथा E_{2} स्वतंत्र हैं।
(2) E_{2} तथा E_{3} स्वतंत्र हैं।
(3) E_{1} तथा E_{3} स्वतंत्र हैं।
(4) E_{1}, E_{2} तथा E_{3} स्वतंत्र हैं।
88. यदि $0 \leq x<2 \pi$ है, तो x के उन वास्तविक मानों की संख्या जो समीकरण
$\cos x+\cos 2 x+\cos 3 x+\cos 4 x=0$ को संतुष्ट करते हैं, है :
(1) 3
(2) \ngtr
(3) 7
(4) 9
89. A man is walking towards a vertical pillar in a straight path, at a uniform speed. At a certain point A on the path, he observes that the angle of elevation of the top of the pillar is 30°. After walking for 10 minutes from A in the same direction, at a point B, he observes that the angle of elevation of the top of the pillar is 60°. Then the time taken (in minutes) by him, from B to reach the pillar, is :
(1) 6
(2) 10
(3) 20
(4) 5
90. The Boolean Expression $(p \wedge \sim q) \vee q \vee(\sim p \wedge q)$ is equivalent to:
(1) $\sim p \wedge q$
(2) $p \wedge q$
(3) $p \vee q$
(4) $p \vee \sim q$

89/ एक व्यक्ति एक ऊर्ध्वाधर खंभे की ओर एक सीधे पथ पर एक समान चाल से जा रहा है। रास्ते पर एक बिंदु A से वह खंभे के शिखर का उत्नयन कोण 30° मापता है। A से उसी दिशा में 10 मिनट और चलने के बाद बिंदु B से वह खंभे के शिखर का उत्रयन कोण 60° पाता है, तो B से खंभे तक पहुँचने में उसे लगने वाला समय (मिनटों में) है :
(1) 6
(2) 10
(3) 20
(4) 5
90. बूले के व्यंजक (Boolean Expression) $(p \wedge \sim q) \vee q \vee(\sim p \wedge q)$ का समतुल्य है :
(1) $\sim p \wedge q$
(2) $p \wedge q$
(3) $p \vee q$
(4) $p \vee \sim q$
$-0 \mathrm{Oo}-$
SPACE FOR ROUGH WORK / रफ कार्य के लिए जगह
$\left(\frac{8}{5}\right)^{2}+\left(\frac{12}{5}\right)^{2}+\left(\frac{16}{5}\right)^{2}+16+\left(\frac{24}{5}\right)^{2}$
$\frac{64}{25}+\frac{144}{25}+\frac{256}{25}+16+\frac{496}{25}$
$64+14 H+256+30+4406$

E/Page 38

