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1.0 OBJECTIVES

After going through this unit, you will be able to:
• Understand the fundamental concepts and techniques of

operating systems.
• Build a core knowledge of what makes an operating system

tick.



• Identify various classes of operating systems and distinguish
between them.

1.1 INTRODUCTION

Each user has his own personal thoughts on what the
computer system is for. The operating system, or OS, as we will
often call it, is the intermediary between users and the computer
system. It provides the services and features present in abstract
views of all its users through the computer system.

An operating system controls use of a computer system’s
resources such as CPUs, memory, and I/O devices to meet
computational requirements of its users.

1.2 OS AND COMPUTER SYSTEM

In technical language, we would say that an individual user has
an abstract view of the computer system, a view that takes in only
those features that the user considers important. To be more
specific, typical hardware facilities for which the operating system
provides abstractions include:

• processors
• RAM (random-access memory, sometimes known as primary

storage, primary memory, or physical memory)
• disks (a particular kind of secondary storage)
• network interface
• display
• keyboard
• mouse

An operating system can also be commonly defined as “a
program running at all times on the computer (usually called the
kernel), with all other being application programs”.



Fig. 1.1 An abstract view of the components of an Operating
System

A computer system can be divided roughly into four
components: the hardware, the operating system, the application
programs and the users.

1.3 SYSTEM PERFORMANCE

A modern OS can service several user programs
simultaneously. The OS achieves it by interacting with the
computer and user programs to perform several control functions.



Fig 1.2 Schematic of a computer

The CPU contains a set of control registers whose contents
govern its functioning. The program status word (PSW) is the
collection of control registers of the CPU; we refer to each control
register as a field of the PSW. A program whose execution was
interrupted should be resumed at a later time. To facilitate this, the
kernel saves the CPU state when an interrupt occurs.

The CPU state consists of the PSW and program-accessible
registers, which we call general-purpose registers (GPRs).
Operation of the interrupted program is resumed by loading back
the saved CPU state into the PSW and GPRs.

The input-output system is the slowest unit of a computer; the
CPU can execute millions of instructions in the amount of time
required to perform an I/O operation. Some methods of performing
an I/O operation require participation of the CPU, which wastes
valuable CPU time.

Hence the input-output system of a computer uses direct
memory access (DMA) technology to permit the CPU and the I/O
system to operate independently. The operating system exploits
this feature to let the CPU execute instructions in a program while
I/O operations of the same or different programs are in progress.
This technique reduces CPU idle time and improves system
performance.



1.4 CLASSES OF OPERATING SYSTEMS

Classes of operating systems have evolved over time as
computer systems and users’ expectations of them have
developed; i.e., as computing environments have evolved.

Table 1.1 lists eight fundamental classes of operating systems
that are named according to their defining features. The table
shows when operating systems of each class first came into
widespread use; what fundamental effectiveness criterion, or prime
concern, motivated its development; and what key concepts were
developed to address that prime concern.

OS Class Period Prime Concern Key Concepts

Batch
Processing
Systems

1960s CPU idle time Automate transition
between jobs

Time Sharing
Systems

1970s Good response
time

Time-slice, round-
robin scheduling

Multiprocessing
Systems

1980s Master/Slave
processor
priority

Symmetric/Asymmetric
multiprocessing

Real Time
Systems

1980s Meeting time
constraints

Real-time scheduling

Distributed
Systems

1990s Resource
sharing

Distributed control,
transparency

Desktop
Systems

1970s Good support to
a single user

Word processing,
Internet access

Handheld
Systems

Late
1980s

32-bit CPUs
with
protected mode

Handle telephony,
digital photography,
and third party
applications

Clustered
Systems

Early
1980s

Low cost µps,
high speed
networks

Task scheduling, node
failure management

TABLE 1.1
KEY FEATURES OF CLASSES OF OPERATING SYSTEMS

1.4.1 BATCH PROCESSING SYSTEMS
To improve utilization, the concept of a batch operating

system was developed. It appears that the first batch operating
system (and the first OS of any kind) was developed in the mid-



1950s by General Motors for use on an IBM 701 [WEIZ81]. The
concept was subsequently refined and implemented on the IBM
704 by a number of IBM customers. By the early 1960s, a number
of vendors had developed batch operating systems for their
computer systems. IBSYS, the IBM operating system for the
7090/7094 computers, is particularly notable because of its
widespread influence on other systems.

In a batch processing operating system, the prime concern is
CPU efficiency. The batch processing system operates in a strict
one job-at-a-time manner; within a job, it executes the programs
one after another. Thus only one program is under execution at any
time.

 The opportunity to enhance CPU efficiency is limited to
efficiently initiating the next program when one program ends, and
the next job when one job ends, so that the CPU does not remain
idle.

1.4.1.1  SIMPLE BATCH SYSTEMS
With a batch operating system, processor time alternates

between execution of user programs and execution of the monitor.
There have been two sacrifices: Some main memory is now given
over to the monitor and some processor time is consumed by the
monitor. Both of these are forms of overhead. Despite this
overhead, the simple batch system improves utilization of the
computer.

Fig 1.3 System utilisation example

1.4.1.2  MULTI-PROGRAMMED BATCH SYSTEMS

Multiprogramming operating systems are fairly sophisticated
compared to single-program, or uniprogramming, systems. To have
several jobs ready to run, they must be kept in main memory,
requiring some form of memory management. In addition, if several
jobs are ready to run, the processor must decide which one to run,
this decision requires an algorithm for scheduling. These concepts
are discussed in later chapters.

There must be enough memory to hold the OS (resident
monitor) and one user program. Suppose there is room for the OS
and two user programs.



When one job needs to wait for I/O, the processor can switch
to the other job, which is likely not waiting for I/O (Figure 1.4(b)).
Furthermore, we might expand memory to hold three, four, or more
programs and switch among all of them (Figure 1.4(c)). The
approach is known as multiprogramming, or multitasking. It is the
central theme of modern operating systems.

Fig 1.4 Multiprogramming Example

This idea also applies to real life situations. You do not have
only one subject to study. Rather, several subjects may be in the
process of being served at the same time. Sometimes, before
studying one entire subject, you might check some other subject to
avoid monotonous study. Thus, if you have enough subjects, you
never need to remain idle.



1.4.2 TIME SHARING SYSTEMS
A time-sharing operating system focuses on facilitating quick

response to subrequests made by all processes, which provides a
tangible benefit to users. It is achieved by giving a fair execution
opportunity to each process through two means: The OS services
all processes by turn, which is called round-robin scheduling. It also
prevents a process from using too much CPU time when scheduled
to execute, which is called time-slicing. The combination of these
two techniques ensures that no process has to wait long for CPU
attention.

1.4.3 MULTIPROCESSING SYSTEMS
Many popular operating systems, including Windows and

Linux, run on multiprocessors. Multiprocessing sometimes refers to
the execution of multiple concurrent software processes in a
system as opposed to a single process at any one instant.
However, the terms multitasking or multiprogramming are more
appropriate to describe this concept, which is implemented mostly
in software, whereas multiprocessing is more appropriate to
describe the use of multiple hardware CPUs. A system can be both
multiprocessing and multiprogramming, only one of the two, or
neither of the two.

Systems that treat all CPUs equally are called symmetric
multiprocessing (SMP) systems. In systems where all CPUs are not
equal, system resources may be divided in a number of ways,
including asymmetric multiprocessing (ASMP), non-uniform
memory access (NUMA) multiprocessing, and clustered
multiprocessing.

1.4.3.1 SYMMETRIC MULTIPROCESSING SYSTEMS

Symmetric multiprocessing or SMP involves a
multiprocessor computer architecture where two or more identical
processors can connect to a single shared main memory. Most
common multiprocessor systems today use an SMP architecture.

In the case of multi-core processors, the SMP architecture
applies to the cores, treating them as separate processors. SMP
systems allow any processor to work on any task no matter where
the data for that task are located in memory; with proper operating
system support, SMP systems can easily move tasks between
processors to balance the workload efficiently.



Fig 1.5 A typical SMP system

1.4.3.2 ASYMMETRIC MULTIPROCESSING SYSTEMS

Asymmetric hardware systems commonly dedicated
individual processors to specific tasks. For example, one processor
may be dedicated to disk operations, another to video operations,
and the rest to standard processor tasks .These systems don't have
the flexibility to assign processes to the least-loaded CPU, unlike
an SMP system.

Unlike SMP applications, which run their threads on multiple
processors, ASMP applications will run on one processor but
outsource smaller tasks to another. Although the system may
physically be an SMP, the software is still able to use it as an
ASMP by simply giving certain tasks to one processor and deeming
it the "master", and only outsourcing smaller tasks to "slave
"processors.

Fig 1.6 Multiple processors with unique access to memory and
I/O

1.4.4 REAL TIME SYSTEMS
A real-time operating system is used to implement a computer

application for controlling or tracking of real-world activities. The
application needs to complete its computational tasks in a timely
manner to keep abreast of external events in the activity that it
controls. To facilitate this, the OS permits a user to create several
processes within an application program, and uses real-time
scheduling to interleave the execution of processes such that the
application can complete its execution within its time constraint.



1.4.4.1 HARD AND SOFT REAL-TIME SYSTEMS
To take advantage of the features of real-time systems while

achieving maximum cost-effectiveness, two kinds of real-time
systems have evolved.

A hard real-time system is typically dedicated to processing
real-time applications, and provably meets the response
requirement of an application under all conditions.

A soft real-time system makes the best effort to meet the
response requirement of a real-time application but cannot
guarantee that it will be able to meet it under all conditions. Digital
audio or multimedia systems fall in this category. Digital telephones
are also soft real-time systems.

1.4.4.2 FEATURES OF A REAL-TIME OPERATING SYSTEM

Feature Explanation

Concurrency
within an
application

A programmer can indicate that some parts of an
application should be executed concurrently with
one another. The OS considers execution of each
such part as a process.

Process
priorities

A programmer can assign priorities to processes.

Scheduling The OS uses priority-based or deadline-aware
scheduling.

Domain-
specific
events,
interrupts

A programmer can define special situations within
the external system as events, associate interrupts
with them, and specify event handling actions for
them.

Predictability Policies and overhead of the OS should be
predictable.

Reliability The OS ensures that an application can continue to
function even when faults occur in the computer.

1.4.5 DISTRIBUTED SYSTEMS
A distributed operating system permits a user to access

resources located in other computer systems conveniently and
reliably. To enhance convenience, it does not expect a user to
know the location of resources in the system, which is called
transparency. To enhance efficiency, it may execute parts of a
computation in different computer systems at the same time. It uses
distributed control; i.e., it spreads its decision-making actions



across different computers in the system so that failures of
individual computers or the network does not cripple its operation.

A distributed operating system is one that appears to its users
as a traditional uniprocessor system, even though it is actually
composed of multiple processors. The users may not be aware of
where their programs are being run or where their files are located;
that should all be handled automatically and efficiently by the
operating system.

True distributed operating systems require more than just
adding a little code to a uniprocessor operating system, because
distributed and centralized systems differ in certain critical ways.
Distributed systems, for example, often allow applications to run on
several processors at the same time, thus requiring more complex
processor scheduling algorithms in order to optimize the amount of
parallelism.

1.4.6 DESKTOP SYSTEMS
A desktop system is a personal computer (PC) system in a

form intended for regular use at a single location, as opposed to a
mobile laptop or portable computer. Early desktop computers were
designed to lay flat on the desk, while modern towers stand upright.
Most modern desktop computer systems have separate screens
and keyboards.

Modern ones all support multiprogramming, often with dozens
of programs started up at boot time. Their job is to provide good
support to a single user. They are widely used for word processing,
spreadsheets, and Internet access. Common examples are Linux,
FreeBSD, Windows 8, and the Macintosh operating system.
Personal computer operating systems are so widely known that
probably little introduction is needed.

1.4.7 HANDHELD SYSTEMS
A handheld computer or PDA (Personal Digital Assistant) is a

small computer that fits in a shirt pocket and performs a small
number of functions, such as an electronic address book and
memo pad. Since these computers can be easily fitted on the
palmtop, they are also known as palmtop computers. Furthermore,
many mobile phones are hardly any different from PDAs except for
the keyboard and screen. In effect, PDAs and mobile phones have
essentially merged, differing mostly in size, weight, and user
interface. Almost all of them are based on 32-bit CPUs with
protected mode and run a sophisticated operating system.

One major difference between handhelds and PCs is that the
former do not have multigigabyte hard disks, which changes a lot.



Two of the most popular operating systems for handhelds are
Symbian OS and Android OS.

1.4.8 CLUSTERED SYSTEMS
A computer cluster consists of a set of loosely connected

computers that work together so that in many respects they can be
viewed as a single system.

The components of a cluster are usually connected to each
other through fast local area networks, each node (computer used
as a server) running its own instance of an operating system.
Computer clusters emerged as a result of convergence of a number
of computing trends including the availability of low cost
microprocessors, high speed networks, and software for high
performance distributed computing.

In Clustered systems, if the monitored machine fails, the
monitoring machine can take ownership of its storage, and restart
the application(s) that were running on the failed machine.  The
failed machine can remain down, but the users and clients of the
application would only see a brief interruption of the service.

In asymmetric clustering, one machine is in hot standby mode
while the other is running the applications.  The hot standby host
(machine) does nothing but monitor the active server. If that server
fails, the hot standby host becomes the active server. In symmetric
mode, two or more hosts are running applications, and they are
monitoring each other.  It does require that more than one
application be available to run.

Other forms of clusters include parallel clusters and clustering
over a WAN. Parallel clusters allow multiple hosts to access the
same data on the shared storage and are usually accomplished by
special version of software and special releases of applications. For
example, Oracle Parallel Server is a version of Oracle’s database
that has been designed to run parallel clusters. Storage-area
networks (SANs) are the feature development of the clustered
systems includes the multiple hosts to multiple storage units.



Fig 1.7 Cluster Computer Architecture

1.5 LET US SUM UP

• The batch processing system operates in a strict one job-at-a-
time manner; within a job, it executes the programs one after
another.

• A time-sharing operating system focuses on facilitating quick
response to subrequests made by all processes, which provides
a tangible benefit to users.

• Systems that treat all CPUs equally are called symmetric
multiprocessing (SMP) systems.

• In systems where all CPUs are not equal, system resources
may be divided in a number of ways, including asymmetric
multiprocessing (ASMP), non-uniform memory access (NUMA)
multiprocessing, and clustered multiprocessing.

• A hard real-time system is typically dedicated to processing
real-time applications, and provably meets the response
requirement of an application under all conditions.

• A soft real-time system makes the best effort to meet the
response requirement of a real-time application but cannot
guarantee that it will be able to meet it under all conditions.

• A distributed operating system is one that appears to its users
as a traditional uniprocessor system, even though it is actually
composed of multiple processors.



• A desktop system is a personal computer (PC) system in a form
intended for regular use at a single location, as opposed to a
mobile laptop or portable computer.

• One major difference between handhelds and PCs is that the
former do not have multigigabyte hard disks, which changes a
lot.

• Computer clusters emerged as a result of convergence of a
number of computing trends including the availability of low cost
microprocessors, high speed networks, and software for high
performance distributed computing.

1.6 UNIT END QUESTIONS

1. State the various classes of an operating system.
2. What are the differences between symmetric and asymmetric

multiprocessing system?
3. Briefly explain Real-Time Systems.
4. Write a note on Clustered Systems.
5. What are the key features of classes of operating systems?
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2.0 OBJECTIVES

After going through this unit, you will be able to:
• Study the transformation and execution of a program.

2.1 INTRODUCTION

An operating system is the code that carries out the system
calls. Editors, compilers, assemblers, linkers, and command
interpreters are not part of the operating system, even though they
are important and useful. But still we study them as they use many
OS resources.

2.2 TRANSLATORS AND COMPILERS

A translator is a program that takes a program written in one
programming language (the source language) as input and
produces a program in another language (the object or target
language) as output.

If the source language is a high-level language such as
FORTRAN (FORmula TRANslator), PL/I, or COBOL, and the object
language is a low-level language such as an assembly language
(machine language), then such a translator is called a compiler.



Executing a program written in a high-level programming
language is basically a two-step process. The source program must
first be compiled i.e. translated into the object program. Then the
resulting object program is loaded into memory and executed.

Fig 2.1 Schematic diagram of transformation and execution of
a program

Compilers were once considered almost impossible
programs to write. The first FORTRAN compiler, for example, took
18 man-years to implement (Backus et al. [1957]). Today, however,
compilers can be built with much less effort. In fact, it is not
unreasonable to expect a fairly substantial compiler to be
implemented as a student project in a one-semester compiler
design course. The principal developments of the past twenty years
which led to this improvement are:

• The understanding of organizing and modularizing the process of
compilation.

• The discovery of systematic techniques for handling many of the
important tasks that occur during compilation.

• The development of software tools that facilitate the
implementation of compilers and compiler components.



Fig 2.2 Working of a Compiler

2.3 ASSEMBLERS

Assembly language is a type of low-level language and a
program that compiles it is more commonly known as
an assembler, with the inverse program known as a disassembler.

The assembler program recognizes the character strings that
make up the symbolic names of the various machine operations,
and substitutes the required machine code for each instruction. At
the same time, it also calculates the required address in memory
for each symbolic name of a memory location, and substitutes
those addresses for the names resulting in a machine language
program that can run on its own at any time.

In short, an assembler converts the assembly codes into
binary codes and then it assembles the machine understandable
code into the main memory of the computer, making it ready for
execution.

The original assembly language program is also known as the
source code, while the final machine language program is
designated the object code. If an assembly language program
needs to be changed or corrected, it is necessary to make the
changes to the source code and then re-assemble it to create a
new object program.



Fig 2.3 Working of an Assembler

The functions of an assembler are given below:
• It allows the programmer to use mnemonics while writing source

code programs, which are easier to read and follow.

• It allows the variables to be represented by symbolic names, not
as memory locations.

• It translates mnemonic operations codes to machine code and
corresponding register addresses to system addresses.

• It checks the syntax of the assembly program and generates
diagnostic messages on syntax errors.

• It assembles all the instructions in the main memory for
execution.

• In case of large assembly programs, it also provides linking
facility among the subroutines.

• It facilitates the generation of output on required output medium.

2.4 INTERPRETERS

Unlike compilers, an interpreter translates a statement in a
program and executes the statement immediately, before
translating the next source language statement. When an error is
encountered in the program, the execution of the program is halted
and an error message is displayed. Similar to compilers, every
interpreted language such as BASIC and LISP have their own
interpreters.

Assembly
Program

Assembler

Machine Language
Program

Error Messages,
Listings, etc.

(Source Code)

(Object Code)



Fig 2.4 Working of an Interpreter

We may think of the intermediate code as the machine
language of an abstract computer designed to execute the source
code. For example, SNOBOL is often interpreted, the intermediate
code being a language called Polish postfix notation.

In some cases, the source language itself can be the
intermediate language. For example, most command languages,
such as JCL, in which one communicates directly with the operating
system, are interpreted with no prior translation at all.

Interpreters are often smaller than compilers and facilitate
the implementation of complex programming language constructs.
However, the main disadvantage of interpreters is that the
execution time of an interpreted program is usually slower than that
of a corresponding compiled object program.

2.4.1   COMPILED VERSUS INTERPRETED LANGUAGES

Higher-level programming languages usually appear with a
type of translation in mind: either designed as compiled
language or interpreted language. However, in practice there is
rarely anything about a language that requires it to be exclusively
compiled or exclusively interpreted, although it is possible to design
languages that rely on re-interpretation at run time. The
categorization usually reflects the most popular or widespread
implementations of a language — for instance, BASIC is
sometimes called an interpreted language, and C a compiled one,
despite the existence of BASIC compilers and C interpreters.



Interpretation does not replace compilation completely. It only
hides it from the user and makes it gradual. Even though an
interpreter can itself be interpreted, a directly executed program is
needed somewhere at the bottom of the stack (see machine
language). Modern trends toward just-in-time
compilation and bytecode interpretation at times blur the traditional
categorizations of compilers and interpreters.

Some language specifications spell out that implementations
must include a compilation facility; for example, Common Lisp.
However, there is nothing inherent in the definition of Common Lisp
that stops it from being interpreted. Other languages have features
that are very easy to implement in an interpreter, but make writing a
compiler much harder; for example, APL, SNOBOL4, and many
scripting languages allow programs to construct arbitrary source
code at runtime with regular string operations, and then execute
that code by passing it to a special evaluation function. To
implement these features in a compiled language, programs must
usually be shipped with a runtime library that includes a version of
the compiler itself.

2.5 LINKERS

An application usually consists of hundreds or thousands of
lines of codes. The codes are divided into logical groups and stored
in different modules so that the debugging and maintenance of the
codes becomes easier. Hence, for an application, it is always
advisable to adhere to structural (modular) programming practices.
When a program is broken into several modules, each module can
be modified and compiled independently. In such a case, these
modules have to be linked together to create a complete
application. This job is done by a tool known as linker.

A linker is a program that links several object modules and
libraries to form a single, coherent program (executable). Object
modules are the machine code output from an assembler or
compiler and contain executable machine code and data, together
with information that allows the linker to combine the modules
together to form a program.

Generally, all high-level languages use some in-built functions
like calculating square roots, finding logarithmic values, and so on.
These functions are usually provided by the language itself, the
programmer does not need to code them separately. During the
program execution process, when a program invokes any in-built
function, the linker transfers the control to that program where the
function is defined, by making the addresses of these functions
known to the calling program.



The various components of a process are illustrated in Fig. 2.5
for a program with three C files and two header files.

Fig 2.5 The process of compiling C and header files to
make an executable file

The addresses assigned by linkers are called linked
addresses. The user may specify the linked origin for the program;
otherwise, the linker assumes the linked origin to be the same as
the translated origin. In accordance with the linked origin and the
relocation necessary to avoid address conflicts, the linker binds
instructions and data of the program to a set of linked addresses.
The resulting program, which is in a ready-to-execute program form
called a binary program, is stored in a library. The directory of the
library stores its name, linked origin, size, and the linked start
address.



2.6 LET US SUM UP

• A translator is a program that takes a program written in one
programming language (the source language) as input and
produces a program in another language (the object or target
language) as output.

• If the source language is a high-level language such as
FORTRAN (FORmula TRANslator), PL/I, or COBOL, and the
object language is a low-level language such as an assembly
language (machine language), then such a translator is called a
compiler.

• An assembler converts the assembly codes into binary codes
and then it assembles the machine understandable code into
the main memory of the computer, making it ready for
execution.

• An interpreter translates a statement in a program and executes
the statement immediately, before translating the next source
language statement.

• A linker is a program that links several object modules and
libraries to form a single, coherent program (executable).

2.7 UNIT END QUESTIONS

1.  Define :
a. Translator
b. Assembler
c. Compiler
d. Interpreter
e. Linker

2.  State the functions of an assembler.
3.  Briefly explain the working of an interpreter.
4.  Distinguish between Compiled versus interpreted

Languages.
5.  What is a linker? Explain with the help of a diagram.
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3.0 OBJECTIVES

After going through this unit, you will be able to:
• Study different OS Services
• Study different System Calls

3.1 INTRODUCTION

Fig 3.1 A view of Operating System Services

3.2 OPERATING SYSTEM SERVICES

The Operating –System Services are provided for the
convenience of the programmer, to make the programming task
easier. One set of operating-system services provides functions
that are helpful to the user:

3.2.1 PROGRAM EXECUTION:

The system must be able to load a program into memory and
to run that program. The program must be able to end its execution,
either normally forcefully (using notification).

3.2.2 I/O OPERATION:



I/O may involve a file or an I/O device. Special functions may
be desired (such as to rewind a tape drive, or to blank a CRT
screen). I/O devices are controlled by O.S.

3.2.3 FILE-SYSTEMS:

File system program reads, writes, creates and deletes files
by name.

3.2.4 COMMUNICATIONS:

 In many circumstances, one process needs to exchange
information with another process. Communication may be
implemented via shared memory, or by the technique of message
passing, in which packets of information are moved between
processes by the O.S..

3.2.5 RESOURCE ALLOCATION:

When multiple users are logged on the system or multiple jobs
are running at the same time, resources such as CPU cycles, main
memory, and file storage etc. must be allocated to each of them.
O.S. has CPU-scheduling routines that take into account the speed
of the CPU, the jobs that must be executed, the number of registers
available, and other factors. There are routines for tape drives,
plotters, modems, and other peripheral devices.

3.2.6 ACCOUNTING:

To keep track of which user uses how many and what kinds of
computer resources. This record keeping may be used for
accounting (so that users can be billed) or simply for accumulating
usage statistics.

3.2.7 ERROR DETECTION:

Errors may occur in the CPU and memory hardware (such as
a memory error or a power failure), in I/O devices (such as a parity
error on tape, a connection failure on a network, or lack of paper in
the printer), and in the user program (such as an arithmetic
overflow, an attempt to access an illegal memory location, or vast
use of CPU time). O.S should take an appropriate action to resolve
these errors.

3.2.8 PROTECTION AND SECURITY:



The owners of information stored in a multiuser or networked
computer system may want to control use of that information,
concurrent processes should not interfere with each other

• Protection involves ensuring that all access to system
resources is controlled.

• Security of the system from outsiders requires user
authentication, extends to defending external I/O devices from
invalid access attempts.

• If a system is to be protected and secure, precautions must be
instituted throughout it. A chain is only as strong as its weakest
link.

Fig 3.2 Microsoft Windows 8 Operating System Services
3.3 USER OPERATING SYSTEM INTERFACE



Almost all operating systems have a user interface (UI)
varying between Command-Line Interface (CLI) and Graphical User
Interface (GUI). These services differ from one operating system to
another but they have some common classes.

3.3.1  Command Interpreter:

 It is the interface between user and OS. Some O.S. includes
the command interpreter in the kernel. Other O.S., such as MS-
DOS and UNIX, treat the command interpreter as a special
program that is running when a job is initiated, or when a user first
logs on (on time-sharing systems). This program is sometimes
called the control-card interpreter or the command-line
interpreter, and is often known as the shell.  Its function is simple:
To get the next command statement and execute it. The command
statements themselves deal with process creation and
management, I/O handling, secondary storage management, main-
memory management, file –system access, protection, and
networking. The MS-DOS and UNIX shells operate in this way.

3.3.2  Graphical User Interface (GUI):

With the development in chip designing technology,
computer hardware became quicker and cheaper, which led to the
birth of GUI based operating system. These operating systems
provide users with pictures rather than just characters to interact
with the machine.

A GUI:
• Usually uses mouse, keyboard, and monitor.
• Icons represent files, programs, actions, etc.
• Various mouse buttons over objects in the interface cause

various actions (provide information, options, execute
function, open directory (known as a folder)

• Invented at Xerox PARC.

Many systems now include both CLI and GUI interfaces
• Microsoft Windows is GUI with CLI “command” shell.
• Apple Mac OS X as “LION” GUI interface with UNIX kernel

underneath and shells available.
• Solaris is CLI with optional GUI interfaces (Java Desktop,

KDE).

3.4 SYSTEM CALLS

A system call is a request that a program makes to the
kernel through a software interrupt.



System calls provide the interface between a process and
the operating system. These calls are generally available as
assembly-language instructions.

Certain systems allow system calls to be made directly from a
high-level language program, in which case the calls normally
resemble predefined function or subroutine calls.

Several languages-such as C, C++, and Perl-have been
defined to replace assembly language for system programming.
These languages allow system calls to be made directly. E.g., UNIX
system calls may be invoked directly from a C or C++ program.
System calls for modern Microsoft Windows platforms are part of
the Win32 application programmer interface (API), which is
available for use by all the compilers written for Microsoft Windows.

Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X), and Java API for the Java
virtual machine (JVM).

Fig 3.3 Example of System Calls

Call Call
number name Description

1 exit Terminate execution of this
program



3 read Read data from a file
4 write Write data into a file
5 open Open a file
6 close Close a file
7 waitpid Wait for a program’s execution to

terminate
11 execve Execute a program
12 chdir Change working directory
14 chmod Change file permissions
39 mkdir Make a new directory
74 sethostname Set hostname of the computer
system
78 gettimeofday Get time of day
79 settimeofday Set time of day

Table 3.1 Some Linux System Calls

3.4.1 TYPES OF SYSTEM CALLS:

Traditionally, System Calls can be categorized in six groups,
which are: Process Control, File Management, Device
Management, Information Maintenance, Communications and
Protection.

3.4.1.1 PROCESS CONTROL
End, abort
Load, execute
Create process, terminate process
Get process attributes, set process attributes
Wait for time
Wait event, signal event
Allocate and free memory

3.4.1.2  FILE MANAGEMENT
Create, delete file
Open, close
Read, write, reposition
Get file attributes, set file attributes

3.4.1.3  DEVICE MANAGEMENT
Request device, release device
Read, write, reposition
Get device attributes, set device attributes
Logically attach or detach devices

3.4.1.4  INFORMATION MAINTENANCE
Get time or date, set time or date
Get system data, set system data
Get process, file, or device attributes
Set process, file, or device attributes



3.4.1.5  COMMUNICATIONS
Create, delete communication connection
Send, receive messages
Transfer status information
Attach or detach remote devices

3.4.1.6  PROTECTION
Get File Security, Set File Security
Get Security Group, Set Security Group

Table 3.2 Examples of Windows and UNIX System Calls

3.5 SYSTEM PROGRAMS

System programs provide a convenient environment for
program development and execution. System programs, also
known as system utilities, provide a convenient environment for
program development and execution. Some of them are simply
user interfaces to system calls; others are considerably more
complex. They can be divided into these categories:



3.5.1 FILE MANAGEMENT:

         These programs create, delete, copy, rename, print, dump,
list, and generally manipulate files and directories.

.

3.5.2 STATUS INFORMATION:

Some programs simply ask the system for the date, time,
amount of available memory or disk space, number of users, or
similar status information. Others are more complex, providing
detailed performance, logging, and debugging information.
Typically, these programs format and print the output to the
terminal or other output devices or files or display it in a window of
the GUI. Some systems also support a registry which is used to
store and retrieve configuration information.

3.5.3 FILE MODIFICATION:

Several text editors may be available to create and modify the
content of files stored on disk or other storage devices. There may
also be special commands to search contents of files or perform
transformations of the text.

3.5.4 PROGRAMMING-LANGUAGE SUPPORT:

Compilers, assemblers, debuggers, and interpreters for
common programming languages (such as C, C++, Java, Visual
Basic, and PERL) are often provided to the user with the operating
system.

3.5.5 PROGRAM LOADING AND EXECUTION:

Once a program is assembled or compiled, it must be loaded
into memory to be executed. The system may provide absolute
loaders, re-locatable loaders, linkage editors, and overlay loaders.
Debugging systems for either higher-level languages or machine
language are needed as well.

3.5.6 COMMUNICATIONS:

These programs provide the mechanism for creating virtual
connections among processes, users, and computer systems. They
allow users to send messages to one another's screens, to browse
Web pages, to send electronic-mail messages, to log in remotely,
or to transfer files from one machine to another.

3.5.7 APPLICATION PROGRAMS:



In addition to systems programs, most operating systems
are supplied with programs that are useful in solving common
problems or performing common operations. Such applications
include web browsers, word processors and text formatters,
spreadsheets, database systems, compilers, plotting and statistical
analysis packages, and games.

3.6 OS DESIGN AND IMPLEMENTATION

We face problems in designing and implementing an
operating system. There are few approaches that have proved
successful.

Design Goals
Specifying and designing an operating system is a highly

creative task. The first problem in designing a system is to define
goals and specifications. At the highest level, the design of the
system will be affected by the choice of hardware and the type of
system: batch, time shared, single user, multiuser, distributed, real
time, or general purpose. Beyond this highest design level, the
requirements may be much harder to specify. The requirements
can, however, be divided into two basic groups: user goals and
system goals.

Users desire certain properties in a system. The system
should be convenient to use, easy to learn and to use, reliable,
safe, and fast. These specifications are not particularly useful in the
system design, since there is no general agreement to achieve
them.

A similar set of requirements can be defined by people who
must design, create, maintain, and operate the system. The system
should be easy to design, implement, and maintain; and it should
be flexible, reliable, error free, and efficient. Again, these
requirements are vague and may be interpreted in various ways.
There is, in short, no unique solution to the problem of defining the
requirements for an operating system. The wide range of systems
in existence shows that different requirements can result in a large
variety of solutions for different environments. For example, the
requirements for VxWorks, a real-time operating system for
embedded systems, must have been substantially different from
those for MVS, a large multiuser, multi-access operating system for
IBM mainframes.

Implementation
Once an operating system is designed, it must be

implemented. Traditionally, operating systems have been written in
assembly language. Now, however, they are most commonly
written in higher-level languages such as C or C++. The first
system that was not written in assembly language was probably the



Master Control Program (MCP) for Burroughs computers and it was
written in a variant of ALGOL. MULTICS, developed at MIT, was
written mainly in PL/1. The Linux and Windows XP operating
systems are written mostly in C, although there are some small
sections of assembly code for device drivers and for saving and
restoring the state of registers.

The advantages of using a higher-level language, or at least a
systems implementation language, for implementing operating
systems are the same as those accrued when the language is used
for application programs: the code can be written faster, is more
compact, and is easier to understand and debug.

In addition, improvements in compiler technology will improve
the generated code for the entire operating system by simple
recompilation. Finally, an operating system is far easier to port-to
move to some other hardware-if it is written in a higher-level
language. For example, MS-DOS was written in Intel 8088
assembly language. Consequently, it runs natively only on the Intel
X86 family of CPUs. (Although MS-DOS runs natively only on Intel
X86, emulators of the X86 instruction set allow the operating
system to run non-natively slower, with more resource use-on other
CPUs are programs that duplicate the functionality of one system
with another system.) The Linux operating system, in contrast, is
written mostly in C and is available natively on a number of different
CPUs, including Intel X86, Sun SPARC, and IBMPowerPC.

The only possible disadvantages of implementing an
operating system in a higher-level language are reduced speed and
increased storage requirements. Although an expert assembly-
language programmer can produce efficient small routines, for
large programs a modern compiler can perform complex analysis
and apply sophisticated optimizations that produce excellent code.
Modern processors have deep pipelining and multiple functional
units that can handle the details of complex dependencies much
more easily than can the human mind. Major performance
improvements in operating systems are more likely to be the result
of better data structures and algorithms than of excellent assembly-
language code.

In addition, although operating systems are large, only a small
amount of the code is critical to high performance; the memory
manager and the CPU scheduler are probably the most critical
routines. After the system is written and is working correctly,
bottleneck routines can be identified and can be replaced with
assembly-language equivalents.



3.7 LET US SUM UP

• Almost all operating systems have a user interface (UI) varying
between Command-Line Interface (CLI) and Graphical User
Interface (GUI).

• Microsoft Windows is GUI with CLI “command” shell.

• Apple Mac OS X as “LION” GUI interface with UNIX kernel
underneath and shells available.

• Solaris is CLI with optional GUI interfaces (Java Desktop, KDE).

• A system call is a request that a program makes to the kernel
through a software interrupt.

• System Calls can be categorized in six groups, which are:
Process Control, File Management, Device Management,
Information Maintenance, Communications and Protection.

• System programs provide a convenient environment for
program development and execution.

• The first system that was not written in assembly language was
probably the Master Control Program (MCP) for Burroughs
computers and it was written in a variant of ALGOL.

• Modern processors have deep pipelining and multiple functional
units that can handle the details of complex dependencies much
more easily than can the human mind.

3.8 UNIT END QUESTIONS

1. State different operating system services.
2. Describe different system calls.
3. Describe Command interpreter in brief.
4. Write a short note on Design and implementation of an

Operating System.





4
OPERATING SYSTEM STRUCTURES

Unit Structure
4.0 Objectives
4.1 Introduction
4.2 Operating system structures

4.2.1   Simple structure
4.2.2 Layered approach
4.2.3   Microkernel approach
4.2.4   Modules

4.3 Operating system generation
4.4 System boot
4.5 Let us sum up
4.6 Unit end questions

4.0 OBJECTIVES

After going through this unit, you will be able to:
• Study how components of OS are interconnected and melded

into a kernel.
• Study different Virtual Machines
• Distinguish between different levels of Computer

4.1 INTRODUCTION

For efficient performance and implementation an OS should
be partitioned into separate subsystems, each with carefully
defined tasks, inputs, outputs, and performance characteristics.
These subsystems can then be arranged in various architectural
configurations discussed in brief in this unit.

4.2 OPERATING SYSTEM STRUCTURES

A modern operating system must be engineered carefully if it
is to function properly and be modified easily. A common approach
is to partition the task into small components rather than have one
monolithic system. Each of these modules should be a well-defined
portion of the system, with carefully defined inputs, outputs, and
functions.



4.2.1 SIMPLE STRUCTURE:

Microsoft Disk Operating System [MS-DOS]:  In MS-DOS,
application programs are able to access the basic I/O routines to
write directly to the display and disk drives. Such freedom leaves
MS-DOS vulnerable to errant (or malicious) programs, causing
entire system to crash when user programs fail.

Because the Intel 8088 for which it was written provides no
dual mode and no hardware protection, the designers of MS-DOS
had no choice but to leave the base hardware accessible. Another
example of limited structuring is the original UNIX operating
system. It consists of two separable parts, the kernel and the
system programs. The kernel is further separated into a series of
interfaces and device drivers. We can view the traditional UNIX
operating system as being layered. Everything below the system-
call interface and above the physical hardware is the kernel.

The kernel provides the file system, CPU scheduling, memory
management, and other operating system functions through system
calls. Taken in sum that is an enormous amount of functionality to
be combined into one level. This monolithic structure was difficult to
implement and maintain.

4.2.2 LAYERED APPROACH:

In layered approach, the operating system is broken into a
number of layers (levels). The bottom layer (layer 0) is the
hardware, the highest (layer N) is the user interface. An operating
system layer is an implementation of an abstract object made up of
data and the operations that can manipulate those data. A typical
operating system layer say, layer M consists of data structures and
a set of routines that can be invoked by higher level layers. Layer
M, in turn, can invoke operations on lower level layers.

The main advantage of the layered approach is simplicity of
construction and debugging. The layers are selected so that each
uses functions (operations) and services of only lower-level layers.
This approach simplifies debugging and system verification. The
first layer can be debugged without any concern for the rest of the
system, because, by definition, it uses only the basic hardware to
implement its functions.

Once the first layer is debugged, its correct functioning can be
assumed while the second layer is debugged, and so on. If an error
is found during the debugging of a particular layer, the error must
be on that layer, because the layers below it are already debugged.
Each layer is implemented with only those operations provided by
lower level layers. Each layer hides the existence of certain data
structures, operations, and hardware from higher-level layers.



The major difficulty with the layered approach involves
appropriately defining the various layers as a layer can use only
lower-level layers. Another problem with layered implementations is
they tend to be less efficient than other types. For instance, when a
user program executes an I/0 operation, it executes a system call
that is trapped to the I/0 layer, which calls the memory
management layer which in turn calls the CPU-scheduling layer,
which is then passed to the hardware. At each layer, the
parameters may be modified, data may need to be passed, and so
on. Each layer adds overhead to the system call; the net result is a
system call that takes longer than a non-layered system.

Fig 4.1 MS-DOS LAYER STRUCTURE



Fig 4.2 Traditional UNIX Kernel

4.2.3 MICROKERNEL APPROACH:

In the mid-1980s, researchers at Carnegie Mellon University
developed an operating system called Mach that modularized the
kernel using the microkernel approach. This method structures the
operating system by removing all dispensable components from the
kernel and implementing them as system and user level programs.
Typically, microkernels provide minimal process and memory
management, in addition to a communication facility.

The main function of the micro kernel is to provide a
communication facility between the client program and the various
services running in user space. One benefit of the microkernel
approach is ease of extending the operating system. All new
services are added to user space and consequently do not require
modification of the kernel. The microkernel also provides more
security and reliability, since most services are running as user,
rather than kernel-processes.  If a service fails, the rest of the
operating system remains untouched.

Tru64 UNIX (formerly Digital UNIX) provides a UNIX interface
to the user, but it is implemented with a Mach kernel. The Mach



kernel maps UNIX system calls into messages to the appropriate
user-level services. The Mac OS X kernel (also known as Darwin)
is also based on the Mach micro kernel. Another example is QNX,
a real-time operating system. The QNX microkernel provides
services for message passing and process scheduling. It also
handles low-level network communication and hardware interrupts.
All other services in QNX are provided by standard processes that
run outside the kernel in user mode.

Microkernels can suffer from decreased performance due to
increased system function overhead.

Fig 4.3  Modern UNIX Kernel

4.2.4 MODULES:

The current methodology for operating-system design involves
using object-oriented programming techniques to create a modular
kernel. Here, the kernel has a set of core components and links in
additional services either during boot time or during run time. Such
a strategy uses dynamically loadable modules. Most current UNIX-
like systems, and Microsoft Windows, support loadable kernel
modules, although they might use a different name for them, such
as kernel loadable module (kld) in FreeBSD and kernel
extension (kext) in OS X. They are also known as Kernel Loadable
Modules (or KLM), and simply as Kernel Modules (KMOD). For
example, the Solaris operating system structure, shown in figure



below, is organized around a core kernel with seven types of
loadable kernel modules.

Fig 4.4  Solaris Loadable Modules

Such a design allows the kernel to provide core services yet
also allows certain features to be implemented dynamically. For
example, device and bus drivers for specific hardware can be
added to the kernel, and support for different file systems can be
added as loadable modules. The overall result resembles a layered
system where each kernel section has defined, protected
interfaces; but it is more flexible than a layered system where any
module can call any other module.

Furthermore, the approach is like the microkernel approach
where the primary module has only core functions and knowledge
of how to load and communicate with other modules; but it is more
efficient, because modules do not need to invoke message passing
in order to communicate. The Apple Mac OS X operating system
uses a hybrid structure. It is a layered system in which one layer
consists of the Mach microkernel.

The top layers include application environments and a set of
services providing a graphical interface to applications. Below these
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layers is the kernel environment, which consists primarily of the
Mach microkernel and the BSD kernel. Mach provides memory
management; support for remote procedure calls (RPCs) and inter-
process communication (IPC) facilities, including message passing;
and thread scheduling.

The BSD component provides a BSD command line interface,
support for networking and file systems, and an implementation of
POSIX APIs, including Pthreads. In addition to Mach and BSD, the
kernel environment provides an i/o kit for development of device
drivers and dynamically loadable modules (which Mac OS X refers
to as kernel extensions). Applications and common services can
make use of either the Mach or BSD facilities directly.

4.3 OPERATING SYSTEM GENERATION

Operating Systems may be designed and built for a specific
hardware configuration at a specific site, but more commonly they
are designed with a number of variable parameters and
components, which are then configured for a particular operating
environment.

Systems sometime need to be re-configured after the initial
installation, to add additional resources, capabilities, or to tune
performance, logging, or security.

Information that is needed to configure an OS include:

• What CPU(s) are installed on the system, and what optional
characteristics does each have?

• How much RAM is installed? (This may be determined
automatically, either at install or boot time.)

• What devices are present? The OS needs to determine which
device drivers to include, as well as some device-specific
characteristics and parameters.

• What OS options are desired, and what values to set for
particular OS parameters. The latter may include the size of the
open file table, the number of buffers to use, process scheduling
(priority) parameters, disk scheduling algorithms, number of
slots in the process table, etc.

At one extreme the OS source code can be edited, re-compiled,
and linked into a new kernel.

More commonly configuration tables determine which
modules to link into the new kernel, and what values to set for
some key important parameters. This approach may require the
configuration of complicated make files, which can be done either
automatically or through interactive configuration programs; then



make is used to actually generate the new kernel specified by the
new parameters.

At the other extreme a system configuration may be entirely
defined by table data, in which case the "rebuilding" of the system
merely requires editing data tables.

Once a system has been regenerated, it is usually required to
reboot the system to activate the new kernel. Because there are
possibilities for errors, most systems provide some mechanism for
booting to older or alternate kernels.

4.4 SYSTEM BOOT

The general approach when most computers boot up goes
something like this:

When the system powers up, an interrupt is generated which
loads a memory address into the program counter, and the system
begins executing instructions found at that address. This address
points to the "bootstrap" program located in ROM chips (or EPROM
chips) on the motherboard.

The ROM bootstrap program first runs hardware checks,
determining what physical resources are present and doing power-
on self tests (POST) of all HW for which this is applicable. Some
devices, such as controller cards may have their own on-board
diagnostics, which are called by the ROM bootstrap program.

The user generally has the option of pressing a special key
during the POST process, which will launch the ROM BIOS
configuration utility if pressed. This utility allows the user to specify
and configure certain hardware parameters as where to look for an
OS and whether or not to restrict access to the utility with a
password.

Some hardware may also provide access to additional
configuration setup programs, such as for a RAID disk controller or
some special graphics or networking cards.

Assuming the utility has not been invoked, the bootstrap
program then looks for a non-volatile storage device containing an
OS. Depending on configuration, it may look for a floppy drive, CD
ROM drive, or primary or secondary hard drives, in the order
specified by the HW configuration utility.

Assuming it goes to a hard drive, it will find the first sector on
the hard drive and load up the fdisk table, which contains
information about how the physical hard drive is divided up into



logical partitions, where each partition starts and ends, and which
partition is the "active" partition used for booting the system.

There is also a very small amount of system code in the
portion of the first disk block not occupied by the fdisk table. This
bootstrap code is the first step that is not built into the hardware, i.e.
the first part which might be in any way OS-specific. Generally this
code knows just enough to access the hard drive, and to load and
execute a (slightly) larger boot program.

For a single-boot system, the boot program loaded off of the
hard disk will then proceed to locate the kernel on the hard drive,
load the kernel into memory, and then transfer control over to the
kernel. There may be some opportunity to specify a particular
kernel to be loaded at this stage, which may be useful if a new
kernel has just been generated and doesn't work, or if the system
has multiple kernels available with different configurations for
different purposes. (Some systems may boot different
configurations automatically, depending on what hardware has
been found in earlier steps. )

For dual-boot or multiple-boot systems, the boot program will
give the user an opportunity to specify a particular OS to load, with
a default choice if the user does not pick a particular OS within a
given time frame. The boot program then finds the boot loader for
the chosen single-boot OS, and runs that program as described in
the previous bullet point.

Once the kernel is running, it may give the user the
opportunity to enter into single-user mode, also known as
maintenance mode. This mode launches very few if any system
services, and does not enable any logins other than the primary log
in on the console. This mode is used primarily for system
maintenance and diagnostics.

When the system enters full multi-user multi-tasking mode, it
examines configuration files to determine which system services
are to be started, and launches each of them in turn. It then spawns
login programs ( gettys ) on each of the login devices which have
been configured to enable user logins.

(The getty program initializes terminal I/O, issues the login
prompt, accepts login names and passwords, and authenticates the
user. If the user's password is authenticated, then the getty looks in
system files to determine what shell is assigned to the user, and
then "execs" (becomes) the user's shell. The shell program will look
in system and user configuration files to initialize itself, and then
issue prompts for user commands. Whenever the shell dies, either
through logout or other means, then the system will issue a new
getty for that terminal device.)



4.5 LET US SUM UP

• In MS-DOS, application programs are able to access the basic
I/O routines to write directly to the display and disk drives.

• In layered approach, the operating system is broken into a
number of layers (levels). The bottom layer (layer 0) is the
hardware, the highest (layer N) is the user interface.

• The main advantage of the layered approach is simplicity of
construction and debugging

• In the mid-1980s, researchers at Carnegie Mellon University
developed an operating system called Mach that modularized
the kernel using the microkernel approach

• The main function of the micro kernel is to provide a
communication facility between the client program and the
various services running in user space

• Tru64 UNIX (formerly Digital UNIX) provides a UNIX interface to
the user, but it is implemented with a Mach kernel

• Most current UNIX-like systems, and Microsoft Windows,
support loadable kernel modules, although they might use a
different name for them, such as kernel loadable module (kld)
in FreeBSD and kernel extension (kext) in OS X

• In addition to Mach and BSD, the kernel environment provides
an i/o kit for development of device drivers and dynamically
loadable modules (which Mac OS X refers to as kernel
extensions).

• Once a system has been regenerated, it is usually required to
reboot the system to activate the new kernel

• For dual-boot or multiple-boot systems, the boot program will
give the user an opportunity to specify a particular OS to load,
with a default choice if the user does not pick a particular OS
within a given time frame.

4.6 UNIT END QUESTIONS

5. What are the differences between layered approach and
microkernel approach?

6. What information is needed to configure an OS?

7. What do you mean by System Boot?

8. Define:
a. Kernel loadable modules
b. Maintenance mode
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5.0 OBJECTIVES

After going through this unit, you will be able to:
• Study evolution of Virtual Machines.
• Distinguish between different Virtual Machines.

5.1 INTRODUCTION

The fundamental idea behind a virtual machine is to abstract
the hardware of a single computer (the CPU, memory, disk drives,
network interface cards, and so forth) into several different
execution environments, thereby creating the illusion that each
separate execution environment is running its own private
computer. By using CPU scheduling and virtual-memory
techniques, an operating system can create the illusion that a
process has its own processor with its own (virtual) memory.

5.2 VIRTUAL MACHINES



The virtual machine provides an interface that is identical to
the underlying bare hardware. Each process is provided with a
(virtual) copy of the underlying computer. Usually, the guest
process is in fact an operating system, and that is how a single
physical machine can run multiple operating systems concurrently,
each in its own virtual machine.

(a)                                                    (b)

Fig 5.1  System models
(a) Non virtual machine (b) Virtual Machine

5.2.1 History
Virtual machines first appeared as the VM Operating System

for IBM mainframes in 1972.

5.2.2 Benefits

Each OS runs independently of all the others, offering
protection and security benefits. (Sharing of physical resources is
not commonly implemented, but may be done as if the virtual
machines were networked together.)

Virtual machines are a very useful tool for OS development,
as they allow a user full access to and control over a virtual
machine, without affecting other users operating the real machine.

As mentioned before, this approach can also be useful for
product development and testing of SOFTWARE that must run on
multiple Operating Systems / Hardware platforms.
5.2.3 Simulation

An alternative to creating an entire virtual machine is to simply
run an emulator, which allows a program written for one OS to run



on a different OS. For example, a UNIX machine may run a DOS
emulator in order to run DOS programs, or vice-versa. Emulators
tend to run considerably slower than the native OS, and are also
generally less than perfect.

5.2.4 Para-virtualization

Para-virtualization is another variation on the theme, in which
an environment is provided for the guest program that is similar
to its native OS, without trying to completely mimic it.

Guest programs must also be modified to run on the para-
virtual OS.
Solaris 10 uses a zone system, in which the low-level hardware is
not virtualized, but the OS and its devices (device drivers) are.

Within a zone, processes have the view of an isolated system,
in which only the processes and resources within that zone are
seen to exist. Figure 5.2 shows a Solaris system with the normal
"global" operating space as well as two additional zones running on
a small virtualization layer.

Fig 5.2 Solaris 10 with two containers
5.2.5 Implementation

Implementation may be challenging, partially due to the
consequences of user versus kernel mode. Each of the



simultaneously running kernels needs to operate in kernel mode at
some point, but the virtual machine actually runs in user mode.

So the kernel mode has to be simulated for each of the loaded
Operating Systems, and kernel system calls passed through the
virtual machine into a true kernel mode for eventual hardware
access.

The virtual machines may run slower, due to the increased
levels of code between applications and the hardware, or they may
run faster, due to the benefits of caching. (And virtual devices may
also be faster than real devices, such as RAM disks which are
faster than physical disks).

5.2.6 Examples
5.2.6.1 VMware

VMware Workstation runs as an application on a host
operating system such as Windows or Linux and allows this host
system to concurrently run several different guest operating
systems as independent virtual machines. In this scenario, Linux is
running as the host operating system; and FreeBSD, Windows NT,
and Windows XP are running as guest operating systems. The
virtualization layer is the heart of VMware, as it abstracts the
physical hardware into isolated virtual machines running as guest
operating systems.

Each virtual machine has its own virtual CPU, memory, disk
drives, network interfaces, and so forth. The physical disk the guest
owns and manages is a file within the file system of the host
operating system. To create an identical guest instance, we can
simply copy the file. Copying the file to another location protects the
guest instance against a disaster at the original site. Moving the file
to another location moves the guest system. These scenarios show
how virtualization can improve the efficiency of system
administration as well as system resource use.



Fig 5.2  VMware Architecture

5.2.6.2  THE JAVA VIRTUAL MACHINE

Java is a popular object-oriented programming language
introduced by Sun Microsystems in 1995. In addition to a language
specification and a large API library, Java also provides a
specification for a Java virtual machine (JVM). Java objects are
specified with the class construct; a Java program consists of one
or more classes. For each Java class, the compiler produces an
architecture-neutral bytecode output (.class) file that will run on any
implementation of the JVM.

The JVM is a specification for an abstract computer. It
consists of a class loader and a Java interpreter that executes the
architecture-neutral bytecodes. The class loader loads the compiled
class files from both the Java program and the Java API for
execution by the Java interpreter. After a class is loaded, the
verifier checks that the class file is valid Java bytecode and does
not overflow or underflow the stack. It also ensures the bytecode
does not perform pointer arithmetic, which could provide illegal
memory access. If the class passes verification, it is run by the
Java interpreter.

The JVM also automatically manages memory by performing
garbage collection (the practice of reclaiming memory from objects
no longer in use and returning it to the system). Much research
focuses on garbage collection algorithms for increasing the
performance of Java programs in the virtual machine.

The JVM may be implemented in software on top of a host
operating system, such as Windows, Linux, or Mac OS X, or as part



of a Web browser. Alternatively, the JVM may be implemented in
hardware on a chip specifically designed to run Java programs. If
the JVM is implemented in software, the Java interpreter interprets
the bytecode operations one at a time.

A faster software technique is to use a just-in-time (JIT)
compiler. Here, the first time a Java method is invoked, the
bytecodes for the method are turned into native machine language
for the host system. These operations are then cached so that
subsequent invocations of a method are performed using the native
machine instructions and the bytecode operations need not be
interpreted all over again.

A technique that is potentially even faster is to run the JVM in
hardware on a special Java chip that executes the Java bytecode
operations as native code, thus bypassing the need for either a
software interpreter or a just-in-time compiler.

Fig 5.2  The JAVA Virtual Machine

5.2.6.2  THE .NET FRAMEWORK

The .NET Framework is a collection of technologies, including
a set of class libraries, and an execution environment that come
together to provide a platform for developing software. This
platform allows programs to be written to target the .NET
Framework instead of a specific architecture. A program written for
the .NET Framework need not worry about the specifics of the
hardware or the operating system on which it will run. Thus, any
architecture implementing .NET will be able to successfully execute
the program. This is because the execution environment abstracts
these details and provides a virtual machine as an intermediary
between the executing program and the underlying architecture.

At the core of the .NET Framework is the Common Language
Runtime (CLR). The CLR is the implementation of the .NET virtual
machine providing an environment for execution of programs
written in any of the languages targeted at the .NET Framework.



Programs written in languages such as C# and VB.NET are
compiled into an intermediate, architecture-independent language
called Microsoft Intermediate Language (MS-IL). These compiled
files, called assemblies, include MS-IL instructions and metadata.
They have file extensions of either .EXE or .DLL. Upon execution of
a program, the CLR loads assemblies into what is known as the
Application Domain. As instructions are requested by the executing
program, the CLR converts the MS-IL instructions inside the
assemblies into native code that is specific to the underlying
architecture using just-in-time compilation.

Once instructions have been converted to native code, they
are kept and will continue to run as native code for the CPU. The
architecture of the CLR for the .NET framework is shown in
Figure 5.3.

Fig 5.3 Architecture of the CLR for the .NET Framework

5.3 LET US SUM UP

• Virtual machines first appeared as the VM Operating System for
IBM mainframes in 1972.



• Para-virtualization is another variation on the theme, in which an
environment is provided for the guest program that is similar
to its native OS, without trying to completely mimic it.

• Solaris 10 uses a zone system, in which the low-level hardware
is not virtualized, but the OS and its devices (device drivers)
are.

• The virtualization layer is the heart of VMware, as it abstracts
the physical hardware into isolated virtual machines running as
guest operating systems.

• It consists of a class loader and a Java interpreter that executes
the architecture-neutral bytecodes.

• A faster software technique is to use a just-in-time (JIT)
compiler. Here, the first time a Java method is invoked, the
bytecodes for the method are turned into native machine
language for the host system.

• The .NET Framework is a collection of technologies, including a
set of class libraries, and an execution environment that come
together to provide a platform for developing software.

5.4 UNIT END QUESTIONS

9. Write a short note on Virtual Machines.

10.Define : (a) Para-virtualization (b) JVM

11.Describe the architecture of :
(a) The JAVA Virtual Machine
(b) CLR for the .NET Framework
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6.0 OBJECTIVES

After reading this unit you will be able to:
• Define a process
• Study various process scheduling criteria

6.1 INTRODUCTION

The design of an operating system must be done in such a
way that all requirement should be fulfilled.

• The operating system must interleave the execution of multiple
processes, to maximize processor utilization while providing
reasonable response time.

• The operating system must allocate resources to processes in
conformance with a specific policy.

• The operating system may be required to support interprocess
communication and user creation of processes.

6.2 PROCESS CONCEPTS



Process can be defined as:
• A program in execution.
• An instance of a program running on a computer.
• The entity that can be assigned to and executed on a processor.
• A unit of activity characterized by the execution of a sequence

of instructions, a current state, and an associated set of system
resources

A process is an entity that consists of a number of elements.
Two essential elements of a process are program code, and a set
of data associated with that code.

A process is more than the program code, which is sometimes
known as the text section. It also includes the current activity, as
represented by the value of the program counter and the contents
of the processor's registers. A process generally also includes the
process stack, which contains temporary data (such as function
parameters, return addresses, and local variables), and a data
section, which contains global variables. A process may also
include a heap, which is memory that is dynamically allocated
during process run time.

Fig 6.1 Process in Memory

6.2.1  PROCESS STATES

As a process executes, it changes state
• New: The process is being created
• Running: Instructions are being executed
• Waiting: The process is waiting for some event to occur
• Ready: The process is waiting to be assigned to a

processor
• Terminated: The process has finished execution



Fig 6.2 Block diagram of Process States

6.2.2  PROCESS CONTROL BLOCK

Identifier
State

Priority
Program Counter
Memory Pointers

Context data
I/O status information

Accounting
information

•
•
•

Fig 6.3 Process Control Block (PCB)

Each process is described in the operating system by
a process control block (PCB) also called a task control block. A
PCB contains much of the information related to a specific process,
including these:

Process state:
The state may be new, ready running, waiting, halted, and so on.

Program counter:
The counter indicates the address of the next instruction to be
executed for this process.

CPU registers:
The registers vary in number and type, depending on the computer
architecture. They include accumulators, index registers, stack
pointers, and general-purpose registers, plus any condition-code
information. Along with the program counter, this state information
must be saved when an interrupt occurs, to allow the process to be
continued correctly afterward.



CPU-scheduling information:
This information includes a process priority, pointers to scheduling
queues, and any other scheduling parameters.

Memory-management information:
This information may include such information as the value of the
base and limit registers, the page tables, or the segment tables,
depending on the memory system used by the operating system.

Accounting information:
This information includes the amount of CPU and real time used,
time limits, account numbers, job or process numbers, and so on.

I/O status information:
This information includes the list of I/O devices allocated to the
process, a list of open files, and so on.

6.2.3 THREADS

A single thread of control allows the process to perform only
one task at one time. The user cannot simultaneously type in
characters and run the spell checker within the same process, for
example. Many modern operating systems have extended the
process concept to allow a process to have multiple threads of
execution and thus to perform more than one task at a time.

On a system that supports threads, the PCB is expanded to
include information for each thread. Other changes throughout the
system are also needed to support threads.

Fig 6.4  CPU switch from process to process



6.3 PROCESS SCHEDULING

When a computer is multiprogrammed, it frequently has
multiple processes or threads competing for the CPU at the same
time. This situation occurs whenever two or more of them are
simultaneously in the ready state. If only one CPU is available, a
choice has to be made which process to run next. The part of the
operating system that makes the choice is called the scheduler,
and the algorithm it uses is called the scheduling algorithm.

6.4 SCHEDULING CRITERIA

In order to design a scheduling algorithm, it is necessary to
have some idea of what a good algorithm should do. Some goals
depend on the environment (batch, interactive, or real time), but
there are also some that are desirable in all cases. Some goals
(scheduling criteria) are listed below.

All systems
Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Turnaround time - minimize time between submission and
termination
CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly
Proportionality - meet users' expectations

Real-time systems
Meeting deadlines - avoid losing data
Predictability - avoid quality degradation in multimedia systems

6.5 LET US SUM UP

Process can be defined as:
• A program in execution.
• An instance of a program running on a computer.
• The entity that can be assigned to and executed on a processor.
• A unit of activity characterized by the execution of a sequence

of instructions, a current state, and an associated set of system
resources



A process generally also includes the process stack, which
contains temporary data (such as function parameters, return
addresses, and local variables), and a data section, which
contains global variables.

As a process executes, it changes state
• New: The process is being created
• Running: Instructions are being executed
• Waiting: The process is waiting for some event to occur
• Ready: The process is waiting to be assigned to a

processor
• Terminated: The process has finished execution

The part of the operating system that makes the choice is called the
scheduler, and the algorithm it uses is called the scheduling
algorithm.

6.6 UNIT END QUESTIONS

1.   Define a process.
2.   Describe various scheduling criteria.
3.   What are threads?
4.   What are the components of a Process Control Block?
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7.0 OBJECTIVES

After reading this unit you will be able to:
• Discuss various scheduling algorithms

7.1 INTRODUCTION

Scheduling algorithms in Modern Operating Systems are used to:
• Maximize CPU utilization
• Maximize throughput
• Minimize turnaround time
• Minimize waiting time
• Minimize response time

7.2 SCHEDULING ALGORITHMS

7.2.1 FIRST-COME, FIRST-SERVED (FCFS) SCHEDULING

Requests are scheduled in the order in which they arrive in
the system. The list of pending requests is organized as a queue.
The scheduler always schedules the first request in the list. An



example of FCFS scheduling is a batch processing system in which
jobs are ordered according to their arrival times (or arbitrarily, if
they arrive at exactly the same time) and results of a job are
released to the user immediately on completion of the job. The
following example illustrates operation of an FCFS scheduler.

Table 7.1 Processes for scheduling

Process P1 P2 P3 P4 P5
Admission
time

0 2 3 4 8

Service time 3 3 5 2 3

Completed
ProcessTime

id ta w

Processes in
system (in FCFS

order)

Scheduled
process

0 - - - P1 P1
3 P1 3 1.00 P2, P3 P2
6 P2 4 1.33 P3, P4 P3

11 P3 8 1.60 P4, P5 P4
13 P4 9 4.50 P5 P5
16 P5 8 2.67 - -

ta = 7.40 seconds
w = 2.22

Fig 7.1 Scheduling using FCFS policy

Figure 7.1 illustrates the scheduling decisions made by the
FCFS scheduling policy for the processes of Table 7.1. Process P1
is scheduled at time 0. The pending list contains P2 and P3 when
P1 completes at 3 seconds, so P2 is scheduled. The Completed
column shows the id of the completed process and its turnaround
time (ta) and weighted turnaround (w). The mean values of ta and
w (i.e., ta and w) are shown below the table. The timing chart of
Figure 7.1 shows how the processes operated.

From the above example, it is seen that considerable variation
exists in the weighted turnarounds provided by FCFS scheduling.
This variation would have been larger if processes subject to large



turnaround times were short -e.g., the weighted turnaround of P4
would have been larger if its execution requirement had been 1
second or 0.5 second.

7.2.2 SHORTEST JOB FIRST SCHEDULING

Shortest Job First scheduling assumes the run times are
known in advance. In an insurance company, for example, people
can predict quite accurately how long it will take to run a batch of
1000 claims, since similar work is done every day. When several
equally important jobs are sitting in the input queue waiting to be
started, the scheduler picks the shortest job first. Look at Fig. 7.7.
Here we find four jobs A, B, C, and D with run times of 8, 4, 4, and
4 minutes, respectively. By running them in that order, the
turnaround time for A is 8 minutes, for B is 12 minutes, for C is 16
minutes, and for D is 20 minutes for an average of 14 minutes.

8    4     4     4       4     4       4
8

B C D A

    (a)    (b)

Fig 7.2 (a) Running four jobs in the original order
     (b) Running them in shortest job first order

Now let us consider running these four jobs using shortest job
first, as shown in Fig. 7.2 (b). The turnaround times are now 4, 8,
12, and 20 minutes for an average of 11 minutes. Shortest job first
is probably optimal. Consider the case of four jobs, with run times
of A, B, C, and D, respectively. The first job finishes at time a, the
second finishes at time a + b, and so on. The mean turnaround time
is (4a + 3b + 2c + d)/4. It is clear that A contributes more to the
average than the other times, so it should be the shortest job, with
b next, then C, and finally D as the longest as it affects only its own
turnaround time. The same argument applies equally well to any
number of jobs.

It is worth pointing out that shortest job first is only optimal
when all the jobs are available simultaneously. As a
counterexample, consider five jobs, A through E, with run times of
2, 4, 1, 1, and 1, respectively. Their arrival times are 0, 0, 3, 3, and
3. Initially, only A or B can be chosen, since the other three jobs
have not arrived yet. Using shortest job first we will run the jobs in
the order A, B, C, D, E, for an average wait of 4.7. However,
running them in the order B, C, D, E, A has an average wait of 4.4.

7.2.3  PRIORITY SCHEDULING
The basic idea is straightforward: each process is assigned a

priority, and priority is allowed to run. Equal-Priority processes are

A B C D



scheduled in FCFS order. The shortest-Job-First (SJF) algorithm is
a special case of general priority scheduling algorithm.

A SJF algorithm is simply a priority algorithm where the
priority is the inverse of the (predicted) next CPU burst. That is, the
longer the CPU burst, the lower the priority and vice versa.

Priority can be defined either internally or externally. Internally
defined priorities use some measurable quantities or qualities to
compute priority of a process.

Examples of Internal priorities are
• Time limits.
• Memory requirements.
• File requirements, for example, number of open files.
• CPU v/s I/O requirements.

Externally defined priorities are set by criteria that are external to
operating system such as

• The importance of process.
• Type or amount of funds being paid for computer use.
• The department sponsoring the work.
• Politics.

As an example, consider the following set of processes,
assumed to have arrived at time 0 in the order P1, P2, · · ·, P5, with
the length of the CPU burst given in milliseconds:

Process Burst Time Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

Table 7.2 Processes for Priority scheduling

Using priority scheduling, we would schedule these processes
according to the following Gantt chart:

P
2

P5 P1 P3 P
4

0    1    6
16  18  19

The average waiting time is 8.2 milliseconds.
Priority scheduling can be either preemptive or non-preemptive



• A preemptive priority algorithm will preemptive the CPU if the
priority of the newly arrival process is higher than the priority
of the currently running process.

• A non-preemptive priority algorithm will simply put the new
process at the head of the ready queue.

A major problem with priority scheduling is indefinite blocking or
starvation. A solution to the problem of indefinite blockage of the
low-priority process is aging. Aging is a technique of gradually
increasing the priority of processes that wait in the system for a
long period of time.

7.2.4  ROUND ROBIN SCHEDULING
One of the oldest, simplest, fairest and most widely used

algorithm is round robin (RR). In the round robin scheduling,
processes are dispatched in a FIFO (First-In-First-Out) manner but
are given a limited amount of CPU time called a time-slice or a
quantum.

If a process does not complete before its CPU-time expires,
the CPU is preempted and given to the next process waiting in a
queue. The preempted process is then placed at the back of the
ready list.

Figure 7.3 summarizes operation of the RR scheduler with δ =
1 second for the five processes shown in Table 7.3. The scheduler
makes scheduling decisions every second. The time when a
decision is made is shown in the first row of the table in the top half
of Figure 7.3. The next five rows show positions of the five
processes in the ready queue. A blank entry indicates that the
process is not in the system at the designated time. The last row
shows the process selected by the scheduler; it is the process
occupying the first position in the ready queue.

Table 7.3 Processes for RR scheduling

ta = 7.4 seconds, w = 2.32,
c: completion time of a process



Consider the situation at 2 seconds. The scheduling queue
contains P2 followed by P1. Hence P2 is scheduled. Process P3
arrives at 3 seconds, and is entered in the queue. P2 is also
preempted at 3 seconds and it is entered in the queue. Hence the
queue has process P1 followed by P3 and P2, so P1 is scheduled.

Fig 7.3 Scheduling using Round-robin policy with time-
slicing

The turnaround times and weighted turnarounds of the
processes are as shown in the right part of the table. The c column
shows completion times. The turnaround times and weighted
turnarounds are inferior to those given by the non-preemptive
policies because the CPU time is shared among many processes
because of time-slicing.

It can be seen that processes P2, P3, and P4, which arrive at
around the same time, receive approximately equal weighted
turnarounds. P4 receives the worst weighted turnaround because
through most of its life it is one of three processes present in the
system. P1 receives the best weighted turnaround because no other
process exists in the system during the early part of its execution.
Thus weighted turnarounds depend on the load in the system.

Round Robin Scheduling is preemptive (at the end of time-
slice) therefore it is effective in time-sharing environments in which
the system needs to guarantee reasonable response times for
interactive users.

The only interesting issue with round robin scheme is the
length of the quantum. Setting the quantum too short causes too
many context switches and lower the CPU efficiency. On the other
hand, setting the quantum too long may cause poor response time
and appoximates FCFS.

In any event, the average waiting time under round robin
scheduling is often quite long.

7.2.5  MULTILEVEL QUEUE SCHEDULING



A multilevel queue scheduling algorithm partitions the Ready
queue is partitioned into separate queues:

• foreground (interactive)
• background (batch)

Fig 7.4 Multilevel queue scheduling

In a multilevel queue scheduling processes are permanently
assigned to one queues. The processes are permanently assigned
to one another, based on some property of the process, such as

• Memory size
• Process priority
• Process type

Algorithm choose the process from the occupied queue that has
the highest priority, and run that process either

• Preemptive or
• Non-preemptive
Each queue has its own scheduling algorithm
• foreground – RR
• background – FCFS

Possibility I
If each queue has absolute priority over lower-priority queues

then no process in the queue could run unless the queue for the
highest-priority processes were all empty.

For example, in the above figure no process in the batch
queue could run unless the queues for system processes,
interactive processes, and interactive editing processes will all
empty.

Possibility II



If there is a time slice between the queues then each queue
gets a certain amount of CPU times, which it can then schedule
among the processes in its queue. For instance;

• 80% of the CPU time to foreground queue using RR.
• 20% of the CPU time to background queue using FCFS.

Since processes do not move between queues so, this policy
has the advantage of low scheduling overhead, but it is inflexible.

7.2.6  MULTILEVEL FEEDBACK QUEUE SCHEDULING

Here, processes are not permanently assigned to a queue on
entry to the system. Instead, they are allowed to move between
queues. The idea is to separate processes with different CPU burst
characteristics. If a process uses too much CPU time, it will be
moved to a lower priority queue. Similarly, a process that waits too
long in a low priority queue will be moved to a higher priority queue.
This form of aging prevents starvation.

Fig 7.5 Multilevel Feedback Queue Scheduling

Fig 7.6 MFQ Scheduling architecture

Multilevel feedback queue scheduler is characterized by
the following parameters:



 1. Number of queues
 2. Scheduling g algorithms for each queue
 3. Method used to determine when to upgrade a process
4. Method used to determine when to demote a process
5. Method used to determine which queue a process will

enter when that process needs service

Example:
Three queues:

 1. Q0 – time quantum 8 milliseconds
 2. Q1 – time quantum 16 milliseconds
 3. Q2 – FCFS

Fig 7.8 MFQ scheduling example

Scheduling:
1. A new job enters queue Q0 which is served FCFS. When

it gains CPU, job receives 8 milliseconds. If it does not finish in
8 milliseconds, job is moved to queue Q1.

2. At Q1 job is again served FCFS and receives 16
additional milliseconds. If it still does not complete, it is
preempted and moved to queue Q2.

7.3 LET US SUM UP

• The scheduler always schedules the first request in the list.

• Shortest Job First scheduling assumes the run times are known
in advance.

• It is worth pointing out that shortest job first is only optimal when
all the jobs are available simultaneously.

• The shortest-Job-First (SJF) algorithm is a special case of
general priority scheduling algorithm.

• Priority can be defined either internally or externally.



• A major problem with priority scheduling is indefinite blocking or
starvation.

• In the round robin scheduling, processes are dispatched in a
FIFO (First-In-First-Out) manner but are given a limited amount
of CPU time called a time-slice or a quantum.

• Round Robin Scheduling is preemptive (at the end of time-
slice).

• A multilevel queue scheduling algorithm partitions the Ready
queue is partitioned into separate queues

• In MFQ scheduling, processes are not permanently assigned to
a queue on entry to the system.

7.4 UNIT END QUESTIONS

1. Define
a. Quantum
b. Aging

2. Give an example of First-Come, First-Served Scheduling.
3. What is the difference between Multilevel Queue

Scheduling and Multilevel Feedback Queue Scheduling?
4. Describe the architecture of MFQ scheduling with the help

of diagrams.
5. State the criteria for internal and external priorities.
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8.0 OBJECTIVES



root
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…… …

A tree of processes on a typical UNIX system

After reading this unit you will be able to:
• Describe the creation & termination of a process
• Study various interprocess communications
• Introduce the notion of a thread- a fundamental unit of CPU

utilization that forms the basis of multithreaded computer
systems.

• Examine issues related to multithreaded programming.

8.1 INTRODUCTION

Generally, when a thread finishes performing a task, thread is
suspended or destroyed. Writing a program where a process
creates multiple threads is called multithread programming. It is the
ability by which an OS is able to run different parts of the same
program simultaneously. It offers better utilization of processors
and other system resources. For example, word processor makes
use of multi-threading – in the foreground it can check spelling as
well as save document in the background.

8.2 OPERATIONS ON PROCESS

8.2.1  PROCESS CREATION

A process may create several new processes, via a create-
process system call, during the course of execution.  The creating
process is called a parent process, whereas the new processes
are called the children of that process. Each of these new
processes may in turn create other processes, forming a tree of
processes as shown below.



Fig 8.1

In general, a process will need certain resources (such as
CPU time, memory, files, I/O devices) to accomplish its task. When
the process creates a sub process, that sub process may be able to
obtain its resources directly from the OS, or it may be controlled to
a subset of the resources of the parent process.  The parent may
have to partition its resources among its children, or it may be able
to share some resources (such as memory or files) among several
of its children.  Restricting a child process to a subset of the
parent’s resources prevent any process from overloading the
system by creating too many sub processes.

When a process is created it obtains along with the resources,
initialization data (or input from the file, say F1) that may be passed
along from the parent process to the child process. It may also get
the name of the output device. New process may get two open
files, F1 and the terminal device, and may just need to transfer the
datum between the two.

When a process creates a new process, two possibilities exist in
terms of execution:

1. The parent continues to execute concurrently with its
children.

2. The parent waits until some or all of its children have
terminated.

There are also two possibilities in terms of the address space of the
new process:

1. The child process is a duplicate of the parent process.



2. The child process has a program loaded into it.

Following are some reasons for creation of a process:
• User logs on.
• User starts a program.
• Operating systems creates process to provide service, e.g.,

to manage printer.
• Some program starts another process, e.g., Netscape

calls xv to display a picture.

In UNIX, each process is identified by its process identifier
(PID), which is a unique integer. A new process is created by the
fork system call. The new process consists of a copy of the address
space of the original process which helps the parent process to
communicate easily with its child process. Both processes (the
parent & the child) continue execution at the instruction after the
fork system call, with one difference: The return code for the fork
system call is zero for the new (child) process, whereas the
(nonzero) process identifier of the child is returned to the parent.

Fig 8.2 UNIX Process Creation

To understand the above possibilities, consider the following C
program:

int main() {
Pid_t  pid;

/* fork another process */



pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
exit(-1);

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child to complete */
wait (NULL);
printf ("Child Complete");
exit(0);

}
}

The parent creates a child process using the fork system call.
We now have two different processes running a copy of the same
program. The value of the pid for the child process is zero; that for
the parent is an integer value greater than zero. The child process
overlays its address space with the UNIX command /bin/ls (used to
get a directory listing) using the execlp system call. The parent
waits for the child process to complete with the wait system call.
When the child process completes, the parent process resumes the
call to wait where it completes using the exit system call.

8.2.2  PROCESS TERMINATION
A process terminates when it finishes executing its final

statement and asks the OS to delete it by using the exit system
call.  At that point, the process may return data (output) to its parent
process (via the wait system all). All the resources of the process,
including physical and virtual memory, open files, and I/O buffers
are deallocated by the OS.

A process can cause the termination of another process via an
appropriate system call such as abort.  Usually, only the parent of
the process that is to be terminated can invoke such a system call
otherwise you can arbitrarily kill each other’s jobs.

A parent may terminate the execution of one of its children for
the following reasons:

• The child has exceeded its usage of some of the resources
that it has been allocated. This requires the parent to have a
mechanism to inspect the state of its children.

• The task assigned to the child is no longer required.



• The parent is exiting, and the OS does not allow a child to
continue if its parent terminates. On such systems, if a
process terminates (either normally or abnormally), then all
its children must also be terminated. This is referred to as
Cascading Termination, and is normally initiated by the
OS. In the case of UNIX, if the parent terminates, however,
all its children have assigned as the new parent the init
process. Thus, the children still have a parent to collect their
status and execution statistics.

The new process terminates the existing process, usually due to
following reasons:

• Normal Exit
Most processes terminates because they have done

their job. This call is exist in UNIX.

• Error Exit
When process discovers a fatal error. For example, a

user tries to compile a program that does not exist.

• Fatal Error
An error caused by process due to a bug in program for

example, executing an illegal instruction, referring non-
existing memory or dividing by zero.

• Killed by another Process
A process executes a system call telling the Operating

Systems to terminate some other process. In UNIX, this call
is kill. In some systems when a process kills all processes it
created are killed as well (UNIX does not work this way).

8.2.2  COOPERATING PROCESSES

A process is independent if it cannot affect or be affected by
the other processes executing in the system. On the other hand, a
process is cooperating if it can affect or be affected by the other
processes executing in the system. Process cooperation is required
for the following reasons:

• Information sharing:
Several users may be interested in the same piece of

information (for instance, a shared file), we must provide an
environment to allow concurrent access to these types of
resources.

• Computation speedup:
If we want a particular task to run faster, we must break

it into subtasks, each of which will be executing in parallel
with the others.  Such a speedup can be achieved only if the



computer has multiple processing elements (such as CPUs
or I/O channels).

• Modularity:
To construct the system in a modular fashion, dividing

the system functions into separate processes or threads.

• Convenience:
Individual user may have many tasks to work at one

time. For instance, a user may be editing, printing, and
compiling in parallel.

Concurrent execution of cooperating processes requires
mechanism that allow processes to communicate with one another
and to synchronize their actions.

8.3 INTERPROCESS COMMUNICATION

The OS provides the means for cooperating processes to
communicate with each other via an interprocess communication
(IPC) facility. IPC provides a mechanism to allow processes to
communicate and to synchronize their actions without sharing the
same address space. IPC is particularly useful in a distributed
environment where the communicating processes may reside on
different computers connected with a network e.g. chat program
used on the world wide web. IPC is best provided by a message-
passing system, and the message systems can be defined in
many ways.

8.3.1  MESSAGE PASSING SYSTEM

Message system allows processes to communicate with one
another without the need to resort to shared data. Services are
provided as ordinary user processes operate outside the kernel.
Communication among the user processes is accomplished
through the passing of messages. An IPC facility provides at least
two operations: send (message) and receive (message). Messages
sent by a process can be of either fixed or variable size.

If processes P and Q want to communicate, they must send
messages to send and receive from each other; a
communication link must exist between them. There are several
methods for logical implementation of a link as follows:

• Direct or indirect communication.
• Symmetric or asymmetric communication.
• Automatic or explicit buffering.
• Send by copy or send by reference.
• Fixed-sized or variable-sized message.

8.3.1.1   DIRECT COMMUNICATION



Each process that wants to communicate must explicitly name
the recipient or sender of the communication. The send and
receive primitives are defied as:

• send (P,  message) – Send a message to process P.
• receive (Q,  message)–Receive a message from process

Q.

A communication link in this scheme has the following properties:
• A link is established automatically between every pair of

processes that want to communicate.  The processes need
to know only each other’s identity to communicate.

• A link is associated with exactly two processes.
• Exactly one link exists between each pair of processes.

This scheme exhibits symmetry in addressing; that is, both
the sender and the receiver processes must name the other to
communicate.

A variant of this scheme employs asymmetry in addressing.
Only the sender names the recipient; the recipient is not required to
name the sender. In this scheme, the send and receive primitives
are as follows:

• send (P,  message) – Send a message to process P.
• receive (id,  message) – Receive a message from any

process; the variable id is set to the name of the process
with which communication has taken place.

The disadvantage in both schemes:

Changing the name of a process may necessitate examining
all other process definitions. All references to the old name must be
found, so that they can be modified to the new name. This situation
is not desirable from the viewpoint of separate compilation.

8.3.1.2   INDIRECT COMMUNICATION
The messages are sent to and received from mailboxes, or

ports. Each mailbox has a unique identification. Two processes
can communicate only if they share a mailbox.  The send and
receive primitives are defined as follows:

• send (A,  message) - Send a message to mailbox A.
• receive (A,message) – Receive a message from mailbox A.

In this scheme, a communication link has the following properties:

• A link is established between a pair of processes only if both
members of the pair have a shared mailbox.

• A link may be associated with more than two processes.



• A number of different links may exist between each pair of
communicating processes, with each link corresponding to
one mailbox.

If processes P1, P2 and P3 all share mailbox A. Process P1 sends a
message to A, while P2 and P3 each execute and receive from A.
The process to receive the message depends on one of the
scheme that:

• Allows a link to be associated with at most two processes.
• Allows utmost one process at a time to execute a receive

operation.
• Allows the system to select arbitrarily which process will

receive the message (that is either P2 or P3, but not both, will
receive the message).  The system may identify the receiver
to the sender.

If the mailbox is owned by process (that is, the mailbox is part of
the address space of the process), then we distinguish between the
owner (who can only receive messages through this mailbox) and
the user (who can only send messages to the mailbox).

When a process that owns a mailbox terminates, the mailbox
disappears. Any process that subsequently sends a message to
this mailbox must be notified that the mailbox no longer exists. On
the other hand, a mailbox owned by the OS is independent and is
not attached to any particular process. The OS then must provide a
mechanism that allows a process to do the following:

• Create a new mailbox.
• Send and receive messages through the mailbox.
• Delete a mailbox.
• Process who create a mailbox is the owner by default and

receives messages through this mail box.  Ownership can be
changed by OS through appropriate system calls to provide
multiple receivers for each mailbox.

8.3.1.3  SYNCHRONIZATION
The send and receive system calls are used to communicate

between processes but there are different design options for
implementing these calls. Message passing may be either
blocking or non-blocking - also known as synchronous and
asynchronous.

• Blocking send:
The sending process is blocked until the message is received
by the receiving process or by the mailbox.

• Non-blocking send:



The sending process sends the message and resumes
operation.

• Blocking receive:
The receiver blocks until a message is available.

• Non-blocking receive:
The receiver retrieves either a valid message or a null.

Different combinations of send and receive are possible.  When
both the send and receive are blocking, we have a rendezvous (to
meet) between the sender and receiver.

8.3.1.4  BUFFERING
During direct or indirect communication, messages exchanged

between communicating processes reside in a temporary queue
which are implemented in the following three ways:

• Zero capacity:

The queue has maximum length 0; thus, the link cannot
have any message waiting in it. In this case, the sender must
block until the recipient receives the message. This is referred
to as no buffering.

• Bounded capacity:

The queue has finite length n; thus, at most n messages can
reside in it. If the queue is not full when a new message is sent,
the latter is placed in the queue (either the message is copied or
a pointer to the message is kept), and the sender can continue
execution without waiting. If the link is full, the sender must
block until space is available in the queue. This is referred to as
auto buffering

• Unbounded capacity:

The queue has potentially infinite length; thus, any number
of messages can wait in it.  The sender never blocks. This also
referred to as auto buffering.

8.4 MULTITHREADING MODELS



Fig 8.3 Single threaded and multithreaded processes

Support for threads may be provided either at the user level,
for or by the kernel, for threads. User threads are supported above
the kernel and are managed without kernel support, whereas kernel
threads are supported and managed directly by the operating
system. A relationship exists between user threads and kernel
threads.

There are mainly three types of multithreading models available
for user and kernel threads.

8.4.1 Many-to-One Model:



Fig 8.4  Many-to-One model

The many-to-one model maps many user-level threads to one
kernel thread. Thread management is done in user space, so it is
efficient, but the entire process will block if a thread makes a
blocking system call. Because only one thread can access the
kernel at a time, multiple threads are unable to run in parallel on
multiprocessors. Green threads- a thread library available for
Solaris uses this model. OS that do not support the kernel threads
use this model for user level threads.

8.4.2 One-to-One Model:

Fig 8.5  One-to-One model

Maps each user thread to a kernel thread. Allows another
thread to run when a thread makes a blocking system call. Also
allows multiple threads to run in parallel on multiprocessors.
Drawback is that creating a user thread requires creating the
corresponding kernel thread. Because the overhead of creating
kernel threads can burden the performance of an application, and
therefore, restriction has to be made on creation of number of
threads. Window NT, Windows 2000, and OS/2 implement this
model.



8.4.3 Many-to-Many Model:

Fig 8.6  Many-to-Many model

Multiplexes many user-level threads to smaller or equal
number of kernel threads. The number of kernel threads may be
specific to either a particular application or a particular machine (an
application may be allocated more kernel threads on a
multiprocessor than on a uniprocessor). Model allows the developer
to create as many user threads as he wishes, true concurrency is
not gained because the kernel can schedule only one thread at a
time, but the corresponding kernel threads can run in parallel on a
multiprocessor. Also, when a thread performs a blocking system
call, the kernel can schedule another thread for execution. Solaris
2, IRIX, HP-UX, and TRU64 UNIX support this model.

8.5 THREADING ISSUES

Generally six issues are considered for threading:
1. Semantics of fork() and exec() system calls
2. Thread cancellation
3. Signal handling
4. Thread pools
5. Thread specific data
6. Scheduler activations

8.5.1 The fork and exec System Calls:
Fork system call is used to create a separate, duplicate

process. In a multithreaded program, the semantics of the fork and
exec system calls change. If one thread in a program calls fork,
does the new process duplicate all threads or is the new process
single-threaded? Some UNIX systems have chosen to have two
versions of fork, one that duplicates all threads and another that
duplicates only the thread that invoked the fork system call. If a



thread invokes the exec system call, the program specified in the
parameter to exec will replace the entire process-including all
threads and LWPs.

8.5.2 Thread cancellation:
It is the task of terminating thread before it has completed.

E.g., if multiple threads are concurrently searching through a
database and one thread returns the result, the remaining threads
might be cancelled. A thread that is to be cancelled is often referred
to as the target thread.

Cancellation of threads may be one of the following types:

1) Asynchronous cancellation: One thread immediately
terminates the target thread. The OS will often reclaim system
resources from a cancellation thread, but often will not reclaim
all resources.

2) Deferred cancellation: The target thread can periodically check
if it should terminate, allowing the target thread an opportunity to
terminate itself in an orderly fashion. This allows a thread to
check if it should be canceled at a point when it can safely be
cancelled. Pthread refers to such points as cancellation
points.

8.5.3 Signal Handling:
A signal is used in UNIX systems to notify a process that a

particular event has occurred.  A signal may be received either
synchronously or asynchronously depending upon the source and
the reason for the event being signaled.

All signals follow the same pattern:
1. A signal is generated by the occurrence of a particular event.
2. A generated signal is delivered to a process.
3. Once delivered, the signal must be handled.

Every signal may be handled by one of two possible handlers:
1. A default signal handler that is run by the kernel.
2. A user-defined signal handler.

The following options exist in delivering the signals in a
multithreaded programs:

1. Deliver the signal to the thread to which the signal applies.
2. Deliver the signal to every thread in the process.
3. Deliver the signal to certain threads in the process
4. Assign a specific thread to receive all signals for the

process.

8.5.4 Thread pools:



The general idea behind a thread pool is to create a number
of threads at process startup and place them into a pool, where
they sit and wait for work. When a server receives a request, it
awakens a thread from this pool- if one is available-passing it the
request to service.  Once the thread completes its service, it returns
to the pool awaiting more work.  If the pool contains no available
thread, the server waits until one becomes free. The number of
threads in the pool depends upon the number of CPUs, the amount
of physical memory, and the expected number of concurrent client
requests.

In particular, the benefits of thread pools are:
1. It is usually faster to service a request with an existing thread

than waiting to create a thread.

2. A thread pool limits the number of threads that exist at any one
point. This is particularly important on systems that cannot
support a large number of concurrent threads.

8.5.5 Thread specific data:
Threads belonging to a process share the data of the process.

This sharing of data provides one of the benefits of multithreaded
programming. However, each thread might need its own copy of
certain data in some circumstances, called as thread-specific
data. Most thread libraries- including Win32 and Pthreads-provide
some form of support for thread specific data.

8.5.6 Scheduler Activations:

Communication between the kernel and the thread library may
be required by the many-to-many and two-level models. Such
coordination allows the number of kernel threads to be dynamically
adjusted to help ensure the best performance. Many systems
implementing either the many-to-many or the two-level model place
an intermediate data structure between the user and kernel
threads. This data structure-typically known as a lightweight
process, or LWP-is shown in Figure 8.7.



Fig 8.7 Lightweight Process (LWP)

To the user-thread library, the LWP appears to be a virtual
processor on which the application can schedule a user thread to
run. Each LWP is attached to a kernel thread, and it is kernel
threads that the operating system schedules to run on physical
processors. If a kernel thread blocks (such as while waiting for an
i/o operation to complete), the LWP blocks as well. Up the chain,
the user-level thread attached to the LWP also blocks. An
application may require any number of LWPs to run efficiently.

8.6 THREAD SCHEDULING

User-level threads are managed by a thread library, and the
kernel is unaware of them. To run on a CPU, user-level threads
must ultimately be mapped to an associated kernel-level thread,
although this mapping may be indirect and may use a lightweight
process (LWP).

8.6.1  CONTENTION SCOPE
Systems implementing many-to-one and many-to-many

models, the thread library schedules user-level threads to run on an
available LWP, a scheme known as process-contention scope
(PCS), since competition for the CPU takes place among threads
belonging to the same process.

To decide which kernel thread to schedule onto a CPU, the
kernel uses system-contention scope (SCS). Competition for the
CPU with SCS scheduling takes place among all threads in the
system. Systems using the one-to-one model, such as Windows
XP, Solaris, and Linux, schedule threads using only SCS.

Typically, PCS is done according to priority-the scheduler
selects the runnable thread with the highest priority to run. User-
level thread priorities are set by the programmer and are not



adjusted by the thread library, although some thread libraries may
allow the programmer to change the priority of a thread. It is
important to note that PCS will typically prompt the thread currently
running in favor of a higher-priority thread; however, there is no
guarantee of time slicing among threads of equal priority.

8.6.2 PTHREAD SCHEDULING
Pthread API allows specifying either PCS or SCS during

thread creation. Pthreads identifies the following contention scope
values:

PTHREAD_SCOPE_PROCESS schedules threads using PCS
scheduling.
PTHREAD_SCOPE_SYSTEM schedules threads using SCS
scheduling.

On systems implementing the many-to-many model, the
PTHREAD_SCOPE_PROCESS policy schedules user-level
threads onto available LWPs. The number of LWPs is maintained
by the thread library, perhaps using scheduler activations. The
PTHREAD_SCOPE_SYSTEM scheduling policy will create and
bind an LWP for each user-level thread on many-to-many systems,
effectively mapping threads using the one-to-one policy. The
Pthread IPC provides two functions for getting-and setting-the
contention scope policy:

pthread_attr_setscope(pthread_attr_t *attr, int scope)
pthread_attr_getscope(pthread_attr_t *attr, int *scope)

The first parameter for both functions contains a pointer to the
attribute set for the thread. The second parameter for the
pthread_attr_setscope() function is passed either the
PTHREAD_SCOPE_SYSTEM or the
PTHREAD_SCOPE_PROCESS value, indicating how the
contention scope is to be set. In the case of
pthread_attr_getscope(), this second parameter contains a pointer
to an int value that is set to the current value of the contention
scope. If an error occurs, each of these functions returns a non-
zero value.

8.7 LET US SUM UP

• The creating process is called a parent process, whereas the
new processes are called the children of that process.

• A process terminates when it finishes executing its final
statement and asks the OS to delete it by using the exit system
call.



• IPC provides a mechanism to allow processes to communicate
and to synchronize their actions without sharing the same
address space.

• If processes P and Q want to communicate, they must send
messages to send and receive from each other; a
communication link must exist between them.

• Message passing may be either blocking or non-blocking - also
known as synchronous and asynchronous.

• There are mainly three types of multithreading models available
for user and kernel threads.

• Generally six issues are considered for threading.

8.8 UNIT END QUESTIONS

1. Define :
(a) Thread-specific Data
(b) Multithread programming
(c) Parent Process

2.   Discuss different threading issues.
3.   What is meant by cooperating processes?
4.   Write a short note on Message Passing System.
5.   How is a process created?
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9.0 OBJECTIVES

After reading this unit you will be able to:
• Describe the communication between Client-Server

systems.
• Distinguish between various pipes.
• Learn Peterson’s solution for achieving mutual exclusion
• Study the concept of Semaphores

9.1 INTRODUCTION

The message passing paradigm realizes exchange of
information among processes without using shared memory. This
feature makes it useful in diverse situations such as in
communication between OS functionalities in a microkernel-based
OS, in client–server computing, in higher-level protocols for
communication, and in communication between tasks in a parallel
or distributed program.

Amoeba is a distributed operating system developed at the
Vrije Universiteit in the Netherlands during the 1980s. The primary
goal of the Amoeba project is to build a transparent distributed
operating system that would have the look and feel of a standard



time-sharing OS like UNIX. Another goal is to provide a test-bed for
distributed and parallel programming.

Amoeba provides kernel-level threads and two communication
protocols. One protocol supports the client–server communication
model through remote procedure calls (RPCs), while the other
protocol provides group communication. For actual message
transmission, both these protocols use an underlying Internet
protocol called the fast local Internet protocol (FLIP).

9.2 COMMUNICATION IN CLIENT-SERVER SYSTEM

Three strategies for communication in client-server systems are:
1. Sockets,
2. Remote procedure calls (RPCs), and
3. Pipes.

9.2.1 SOCKETS
A socket is defined as an endpoint for communication. A pair

of processes communicating over a network employ a pair of
sockets-one for each process. A socket is identified by an IP
address concatenated with a port number.

In general, sockets use a client-server architecture. The
server waits for incoming client requests by listening to a specified
port. Once a request is received, the server accepts a connection
from the client socket to complete the com1ection. Servers
implementing specific services (such as telnet, FTP, and I-HTP)
listen to well-known ports (a telnet server listens to port 23; an FTP
server listens to port 21; and a Web, or HTTP, server listens to port
80). All ports below 1024 are considered ·well known; we can use
them to implement standard services. When a client process
initiates a request for a connection, it is assigned a port by its host
computer. This port is some arbitrary number greater than 1024.

For example, if a client on host X with IP address 146.86.5.20
wishes to establish a connection with a Web server (which is
listening on port 80) at address 161.25.19.8, host X may be
assigned port 1625. The connection will consist of a pair of sockets:
(146.86.5.20:1625) on host X and (161.25.19.8:80) on the Web
server. This situation is illustrated in Figure 9.1. The packets
traveling between the hosts are delivered to the appropriate
process based on the destination port number.



Fig 9.1 Communication using sockets

If another process also on host X wished to establish another
connection with the same Web server, it would be assigned a port
number greater than 1024 and not equal to 1625. This ensures all
connections consist of a unique pair of sockets.

Let us illustrate sockets using Java, as it provides a much
easier interface to sockets and has a rich library for networking
utilities. Java provides three different types of sockets. Connection-
oriented are implemented with the Socket class. Connectionless
(UDP) use the DatagramSocket class. Finally, the MulticastSocket
class is a subclass of the DatagramSocket class. A multicast socket
allows data to be sent to multiple recipients.

Following example describes a date server that uses
connection-oriented TCP sockets. The operation allows clients to
request the current date and time from the server. The server
listens to port 6013, although the port could have any arbitrary
number greater than 1024. When a cmmection is received, the
server returns the date and time to the client. The date server is
shown in Program Figure 9.2.

The server creates a ServerSocket that specifies it will listen
to port 6013 and begins listening to the port with the accept()
method. The server blocks on the accept() method waiting for a
client to request a connection. When a connection request is
received, accept() returns a socket that the server can use to
communicate with the client.

The details of how the server communicates with the socket
are as follows:

The server first establishes a PrintWriter object that it will use
to communicate with the client allowing the server to write to the
socket using the routine print() and println() methods for output. The



server process then sends the date to the client, calling the method
println(). Once it has written the date to the socket, the server
closes the socket to the client and resumes listening for more
requests.

A client communicates with the server by creating a socket
and connecting to the port on which the server is listening. We
implement such a client in the Java program shown in Program
Figure 9.3. The client creates a Socket and requests a connection
with the server at IP address 127.0.0.1 on port 6013. Once the
connection is made, the client can read from the socket using
normal stream I/0 statements. After it has received the date from
the server, the client closes the socket and exits. The IP address
127.0.0.1 is a special IP address known as the loopback. When a
computer refers to IP address 127.0.0.1 it is referring to itself.

This mechanism allows a client and server on the same host
to communicate using the TCP /IP protocol. The IP address
127.0.0.1 could be replaced with the IP address of another host
running the date server. In addition to an IP address an actual host
name, such as www.mu.ac.in can be used as well.

import java.net.*;
import java.io.*;
public class DateServer{}
public static void main(String[] args) {

try {}
}
ServerSocket sock= new ServerSocket(6013);

//now listen for connections
while (true) {}
Socket client= sock.accept();
PrintWriter pout = new
PrintWriter(client.getOutputStream(), true);

//write the Date to the socket
pout.println(new java.util.Date().toString());

//close the socket and resume
//listening for connections

client. close() ;
catch (IOException ioe) {
System.err.println(ioe);
}

Program Figure 9.2 Date server.

import java.net.*;
import java.io.*;

www.mu.ac.in


public class DateClient{}
public static void main(String[] args) {

try {}
}

//make connection to server socket
Socket sock= new Socket("127.0.0.1",6013);
InputStream in= sock.getinputStream();
BufferedReader bin = new
BufferedReader(new InputStreamReader(in));

// read the date from the socket
String line;
while ( (line = bin.readLine()) !=null)
System.out.println(line);

// close the socket connection
sock. close() ;
catch (IDException ioe) {
System.err.println(ioe);
}

Program Figure 9.3 Date client.

9.2.2 Remote Procedure Calls

One of the most common forms of remote service is the RPC
paradigm. The RPC was designed as a way to abstract the
procedure-call mechanism for use between systems with network
connections. The messages exchanged in RPC communication are
well structured and no longer just packets of data. Each message is
addressed to an RPC daemon listening to a port on the remote
system, and each contains an identifier of the function to execute
and the parameters to pass to that function. The function is then
executed as requested, and any output is sent back to the
requester in a separate message.

A port is simply a number included at the start of a message
packet. Whereas a system normally has one network address, it
can have many ports within that address to differentiate the many
network services it supports. If a remote process needs a service, it
addresses a message to the proper port. The semantics of RPCs
allow a client to invoke a procedure on a remote host as it would
invoke a procedure locally. The RPC system hides the details that
allow communication to take place by providing a on the client side.



Client node Server node

Fig 9.4 Overview of Remote Procedure Call (RPC)

Typically, a separate stub exists for each separate remote
procedure. When the client invokes a remote procedure, the RPC
system calls the appropriate stub, passing it the parameters
provided to the remote procedure. This stub locates the port on the
server and marshals the parameters. Parameter marshalling
involves packaging the parameters into a form that can be
transmitted over a network. The stub then transmits a message to
the server using message passing. A similar stub on the server side
receives this message and invokes the procedure on the server. If
necessary, return values are passed back to the client using the
same technique.

One issue that must be dealt with concerns differences in data
representation on the client and server machines. Consider the
representation of 32-bit integers. Some systems (known as big-
endian) store the most significant byte first, while other systems
(known as little-endian) store the least significant byte first. Neither
order is "better" per se; rather, the choice is arbitrary within a
computer architecture. To resolve differences like this, many RPC
systems define a machine-independent representation of data. One
such representation is known as external data representation
(XDR). On the client side, parameter marshalling involves
converting the machine-dependent data into XDR before they are
sent to the server. On the server side, the XDR data are
unmarshalled and converted to the machine-dependent
representation for the server.

The RPC scheme is useful in implementing a distributed file
system. Such a system can be implemented as a set of RPC
daemons and clients. The messages are addressed to the
distributed file system port on a server on which a file operation is
to take place. The message contains the disk operation to be
performed. The disk operation might be read, write, rename, delete,
or status, corresponding to the usual file-related system calls. The
return message contains any data resulting from that call, which is
executed by the DFS daemon on behalf of the client.

9.2.3 Pipes



A pipe acts as a conduit allowing two processes to
communicate. Pipes were one of the first IPC mechanisms in early
UNIX systems and typically provide one of the simpler ways for
processes to communicate with one another. Two common types of
pipes used on both UNIX and Windows systems are ordinary pipes
and named pipes.

Ordinary pipes allow two processes to communicate in
standard producer-consumer fashion; the producer writes to one
end of the (the write-end) and the consumer reads from the other
end (the read-end).

In Named pipes, communication can be bidirectional, and no
parent-child relationship is required. Once a named pipe is
established, several processes can use it for communication. In
fact, in a typical scenario, a named pipe has several writers.
Additionally, named pipes continue to exist after communicating
processes have finished. Both UNIX and Windows systems support
named pipes, although the details of implementation vary greatly.
Named pipes are referred to as FIFOs in UNIX systems. On a
Windows systems full-duplex communication is allowed, and the
communicating processes may reside on either the same or
different machines. Windows systems allow either byte- or
message-oriented data.

9.3 THE CRITICAL SELECTION PROBLEM

Consider a system consisting n processes {P0, P1,…..Pn-1}.
Each process has a segment of code, called a critical section, in
which the process may be changing common variables, updating a
table, writing a file, and so on. The important feature of the system
is that, when one process is executing in its critical section, no
other process is to be allowed to execute in its critical section.

Thus, the execution of the critical section by the processes is
mutually exclusive in time. The critical-section problem is to design
a protocol that the processes can use to cooperate. Each process
must request permission to enter its critical section.  The section of
code implementing this request is the entry section. The critical
section may be followed by an exit section. The remaining code is
the remainder section.

do {

entry section



critical section

remainder section
} while(1);

Program Fig 9.5 General structure of a typical process Pi
The entry section and exit section are enclosed in boxes to

highlight these important segments of code.

A solution to the critical-section problem must satisfy the
following three requirements:

Mutual Exclusion:
If process Pi is executing in its critical section, then no other

process can be executed in their critical sections.

Progress:
If no process is executing in its critical section and some

processes wish to enter their critical sections, then only those
processes that are  not executing in their remainder section can
participate in the  decision on which will enter its critical section
next, and this selection cannot be postponed indefinitely.

Bounded Waiting:
There exists a bound on the number of times that other

processes are allowed to enter their critical sections after a process
has made a request to enter its critical section and before that
request is granted.

We assume each process to be executing at a nonzero
speed. However, we can make no assumption concerning the
relative speed of the n processes.

The solutions do not rely on any assumption concerning the
hardware instructions such as load, store, and test etc. or the
number of processes that hardware supports.

9.4 PETERSON’S SOLUTION

In 1965, T. Dekker was the first one to device a software
solution to mutual exclusion problem. Dekker’s algorithm solves the

exit section



mutual exclusion problem but with a rather complex program. In
1981, Peterson discovered a much simpler algorithm for providing
mutual exclusion. Thus rendering Dekker’s solution obsolete.

Peterson’s algorithm is shown below. This algorithm consists
of two procedures written in ANSI C.

#include “prototype.h”

#define FALSE 0
# define TRUE 1
#define N 2 /* Number of processes */

int turn; /* whose turn is it? */
int interested [N]; /* all values initially 0 (FALSE) */

void enter_region(int process) /* process: who is entering (0 or
1) */
{
int other; /* number of other process
*/

other = 1 – process; /* the opposite of process*/
interested [process] = TRUE /* show that you are
interested */
turn = process; /* set flag */
while (turn==process && interested[other]==TRUE) /* null
statement */ ;
}

void leave_region(int process) /* process: who is leaving (0 or 1)
*/
{
interested process = FALSE; /*indicate departure from
critical region */

Peterson’s solution for achieving mutual exclusion
Before using the shared variables (i.e., before entering its

critical region), each process calls enter_region with its own
process number, 0 and 1, as parameter. This call will cause it to
wait, if need be, until it is safe to enter. After it has finished with the
variables, the process calls leave_region to indicate that it is done
and to allow the other process to enter, if it so desires.

Initially neither process is in its critical region. Now process 0
calls enter_region. It indicates its interest by setting its array
element, and sets turn to 0. Since process1 is not interested,
enter_region returns immediately. If process1 now calls
enter_region, it will hang there until interested [0] goes to FALSE,
an event that only happens when process 0 calls leave_region.



Now consider the case that both processes call enter_region
almost simultaneously. Both will store their process number in turn.
Whichever store is done last is the one that counts; the first one is
lost. Suppose process 1 stores last, so turn is 1. When both
processes come to the while statement, process 1 executes its zero
times, and enters its critical region. Process 0 loops and does not
enter its critical region.

9.5 SEMAPHORES

Definition:

Semaphore is a variable that has an integer value upon which
the following three operations are defined:

1) A semaphore may be initialized to a non-negative value.
2) The wait operation decrements the semaphore value. If the

value becomes negative, then the process executing the wait is
blocked.

3) The signal operation increments the semaphore value. If the
value is not positive, then a process blocked by a-wait operation
is unblocked.

Concept of operation:

Two or more processes can cooperate by means of simple
signals, such that the process can be forced to stop at a specified
place until it has received a specific signal. For signaling, special
variables called semaphores, a process executes the primitive
wait(s); if the corresponding signal has not yet been transmitted,
the process is suspended until the transmission takes place.

The wait and signal primitives are assumed to be atomic; that
is, they cannot be interrupted and each routine can be treated as
an indivisible step.

Type semaphore =record
Count : integer;
Queue : list of process
End;

var s : semaphore;
wait (s) :

s.count := s.count – 1;



if s.count < 0
then begin

place this process in s . queue;
block this process
end;

signal (s) :
s.count: = s.count + 1;
if s.count ≤ 0

then begin
remove a process P from S.queue;

place process P on ready list
end;

Program Figure 9.6 Definition code for semaphores

Implementing mutual Exclusion semaphores:
program mutualexclusion;
const n = …; (*number of processes*);
var s:semaphore (:=1);
procedure P (I : integer);
begin

repeat
wait (s);
<critical section>;
signal (s);
<remainder>
forever

end
begin (*main program*)

parbegin
P(1);
P(2);
…
P(n)

parend
end.
Program Figure 9.7 Mutual Exclusion Using Semaphores

Figure shows a straightforward solution to the mutual
exclusion problem by semaphores.

The semaphore is initialized to 1. Thus, the first process that
executes a signal will be able to immediately enter the critical
section, setting the value of s to 0. Another process attempting to
enter the critical section will find it busy and will be blocked setting
the value of s to – 1. Any number of processes may attempt to
enter the section will find it busy and will be blocked. Any number of
processes may attempt entry; each such unsuccessful attempt



results in a further decrement of the value of s. When the process
that initially entered its critical section leaves, s is incremented and
one of the blocked processes associated with the semaphore is put
in a ready state. When it is next scheduled by the operating system,
it may enter the critical section.

Instead of using an ordinary semaphores we can use a binary
semaphores which is defined as in figure below:

A Binary semaphore may take on only value 0 and 1.

type semaphore = record
value: (0, 1);
queue:list of process
end;

var s : semaphore;
wait B(s) :

if s.value = 1
then
s.value = 0

else begin
place this process in s.queue;
block this process

end;
signal B (s) :

if s. count ≤ 0
then

if s. value : = 1
else begin

remove a process P from s.queue;
place process P on ready list

end;
Program Figure 9.8  Definition of Binary Semaphore
Primitives

9.6 LET US SUM UP

• A socket is defined as an endpoint for communication

• The RPC was designed as a way to abstract the procedure-call
mechanism for use between systems with network connections.

• A port is simply a number included at the start of a message
packet.



• When the client invokes a remote procedure, the RPC system
calls the appropriate stub, passing it the parameters provided to
the remote procedure

• A pipe acts as a conduit allowing two processes to
communicate.

• Two common types of pipes used on both UNIX and Windows
systems are ordinary pipes and named pipes

• The critical-section problem is to design a protocol that the
processes can use to cooperate

• In 1965, T. Dekker was the first one to device a software
solution to mutual exclusion problem

• In 1981, Peterson discovered a much simpler algorithm for
providing mutual exclusion

• Semaphore is a variable that has an integer value upon which
the following three operations are defined:

1. A semaphore may be initialized to a non-negative value.
2. The wait operation decrements the semaphore value. If the

value becomes negative, then the process executing the wait
is blocked.

3. The signal operation increments the semaphore value. If the
value is not positive, then a process blocked by a-wait
operation is unblocked.

9.7 UNIT END QUESTIONS

1.  Define : (a) Socket (b) Pipe (c) Semaphore
2. What is RPC?
3. Discuss in detail the Critical-Section Problem.
4. Write a brief note on Peterson’s solution.
5. Describe the architecture of semaphore with the help of

program figures.
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10.0 OBJECTIVES

After reading this unit you will be able to:
• Manage memory with/without swapping and paging
• Study various memory allocation techniques
• Define paging
• Define Segmentation

10.1 INTRODUCTION

Memory is central to the operation of a modern computer
system. Memory is a large array of words or bytes, each with its
own address.

A program resides on a disk as a binary executable file. The
program must be brought into memory and placed within a process
for it to be executed Depending on the memory management in use



the process may be moved between disk and memory during its
execution. The collection of processes on the disk that are waiting
to be brought into memory for execution forms the input queue. i.e.
selected one of the process in the input queue and to load that
process into memory.

The binding of instructions and data to memory addresses can
be done at any step along the way:
• Compile time: If it is known at compile time where the process will
reside in memory, then absolute code can be generated.
• Load time: If it is not known at compile time where the process will
reside in memory, then the compiler must generate re-locatable
code.
• Execution time: If the process can be moved during its execution
from one memory segment to another, then binding must be
delayed until run time.

Fig 10.1 BINDING OF INSTRUCTIONS
10.2 MEMORY MANAGEMENT WITHOUT SWAPPING

OR  PAGING



10.2.1 DYNAMIC LOADING
Better memory-space utilization can be done by dynamic

loading. With dynamic loading, a routine is not loaded until it is
called. All routines are kept on disk in a re-locatable load format.
The main program is loaded into memory and is executed. The
advantage of dynamic loading is that an unused routine is never
loaded.

10.2.2 DYNAMIC LINKING
Most operating systems support only static linking, in which

system language libraries are treated like any other object module
and are combined by the leader into the binary program image. The
concept of dynamic linking is similar to that of dynamic loading.
Rather than loading being postponed until execution time, linking is
postponed. This feature is usually used with system libraries, such
as language subroutine libraries. With dynamic linking, a stub is
included in the image for each library-routine reference. This stub is
a small piece of code that indicates how to locate the appropriate
memory-resident library routing.

10.2.3 OVERLAYS
The entire program and data of a process must be in physical

memory for the process to execute. The size of a process is limited
to the size of physical memory. So that a process can be larger
than the amount of memory allocated to it, a technique called
overlays is sometimes used. The idea of overlays is to keep in
memory only those instructions and data that are needed at any
given time. When other instructions are needed, they are loaded
into space that was occupied previously by instructions that are no
longer needed.

Example, consider a two-pass assembler. During pass 1, it
constructs a symbol table; then, during pass 2, it generates
machine-language code. We may be able to partition such an
assembler into pass 1 code, pass 2 code, the symbol table, and
common support routines used by both pass 1 and pass 2.

Let us consider
Pass1  70K
Pass 2  80K
Symbol table  20K
Common routines 30K



FIG 10.2  OVERLAYS

To load everything at once, we would require 200K of
memory. If only 150K is available, we cannot run our process. But
pass 1 and pass 2 do not need to be in memory at the same time.
We thus define two overlays: Overlay A is the symbol table,
common routines, and pass 1, and overlay B is the symbol table,
common routines, and pass 2.

We add an overlay driver (10K) and start with overlay A in
memory. When we finish pass 1, we jump to the overlay driver,
which reads overlay B into memory, overwriting overlay A, and then
transfers control to pass 2. Overlay A needs only 120K, whereas
overlay B needs 130K.

As in dynamic loading, overlays do not require any special
support from the operating system.

10.2.4 LOGICAL VERSUS PHYSICAL ADDRESS SPACE
An address generated by the CPU is commonly referred to as

a logical address, whereas an address seen by the memory unit is
commonly referred to as a physical address.

The compile-time and load-time address-binding schemes
result in an environment where the logical and physical addresses
are the same. The execution-time address-binding scheme results
in an environment where the logical and physical addresses differ,
in this case, we usually refer to the logical address as a virtual
address. The set of all logical addresses generated by a program is
referred to as a logical address space; the set of all physical
addresses corresponding to these logical addresses is referred to
as a physical address space.



FIG 10.3 DYNAMIC RELOCATION USING RELOCATION
REGISTER

The run-time mapping from virtual to physical addresses is
done by the memory-management unit (MMU), which is a hardware
device.

The base register is called a relocation register. The value in
the relocation register is added to every address generated by a
user process at the time it is sent to memory. For example, if the
base is at 13000, then an attempt by the user to address location 0
dynamically relocated to location 13,000; an access to location 347
is mapped to location 13347. The MS-DOS operating system
running on the Intel 80x86 family of processors uses four relocation
registers when loading and running processes.

The user program never sees the real physical addresses.
The program can create a pointer to location 347 store it memory,
manipulate it, compare it to other addresses — all as the number
347.

The user program deals with logical addresses. The memory-
mapping hardware converts logical addresses into physical
addresses.

Logical addresses (in the range 0 to max) and physical
addresses (in the range R + 0 to R + max for a base value R). The
user generates only logical addresses.

The concept of a logical address space that is bound to a
separate physical address space is central to proper memory
management.
10.3 SWAPPING



A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for continued
execution. Assume a multiprogramming environment with a round
robin CPU-scheduling algorithm. When a quantum expires, the
memory manager will start to swap out the process that just
finished, and to swap in another process to the memory space that
has been freed. When each process finishes its quantum, it will be
swapped with another process.

FIG 10.4  SWAPPING OF TWO PROCESSES USING A
DISK AND A BACKING STORE

A variant of this swapping policy is used for priority-based
scheduling algorithms. If a higher-priority process arrives and wants
service, the memory manager can swap out the lower-priority
process so that it can load and execute the higher-priority process.
When the higher priority process finishes, the lower-priority process
can be swapped back in and continued. This variant of swapping is
sometimes called rollout, roll in.

A process swapped out will be swapped back into the same
memory space that it occupies previously. If binding is done at
assembly or load time, then the process cannot be moved to
different location. If execution-time binding is being used, then it is
possible to swap a process into a different memory space.

Swapping requires a backing store. The backing store is
commonly a fast disk. It is large enough to accommodate copies of
all memory images for all users. The system maintains a ready
queue consisting of all processes whose memory images are on
the backing store or in memory and are ready to run.



The context-switch time in such a swapping system is fairly
high. Let us assume that the user process is of size 100K and the
backing store is a standard hard disk with transfer rate of 1
megabyte per second. The actual transfer of the 100K process to or
from memory takes

100K/ 1000K per second =1/10 second
     = 100 milliseconds

10.4 CONTIGUOUS MEMORY ALLOCATION

The main memory must accommodate both the operating
system and the various user processes. The memory is usually
divided into two partitions, one for the resident operating system,
and one for the user processes. To place the operating system in
low memory, we shall discuss only me situation where the
operating system resides in low memory. The development of the
other situation is similar. Common Operating System is placed in
low memory.

10.4.1 SINGLE-PARTITION ALLOCATION

If the operating system is residing in low memory, and the
user processes are executing in high memory. And operating-
system code and data are protected from changes by the user
processes. We also need protect the user processes from one
another. We can provide this 2 protection by using a relocation
registers.

The relocation register contains the value of the smallest
physical address; the limit register contains the range of logical
addresses (for example, relocation = 100,040 and limit =74,600).
With relocation and limit registers, each logical address must be
less than the limit register; the MMU maps the logical address
dynamically by adding the value in the relocation register. This
mapped address is sent to memory.

The relocation-register scheme provides an effective way to
allow the operating-system size to change dynamically.



Fig 10.5 HARDWARE SUPPORT FOR RELOCATION AND
LIMIT REGISTERS

10.4.2 MULTIPLE-PARTITION ALLOCATION

One of the simplest schemes for memory allocation is to
divide memory into a number of fixed-sized partitions. Each
partition may contain exactly one process. Thus, the degree of
multiprogramming is bound of partitions. When a partition is free, a
process is selected from the input queue and is loaded into the free
partition. When the process terminates, the partition becomes
available for another process.

The operating system keeps a table indicating which parts of
memory are available and which are occupied. Initially, all memory
is available for user processes, and is considered as one large
block, of available memory, a hole. When a process arrives and
needs memory, operating system forms a hole large enough for this
process.

When a process arrives and needs memory, we search this
set for a hole that is large enough for this process. If the hole is too
large, it is split into two: One part is allocated to the arriving
process; the other is returned to the set of holes. When a process
terminates, it releases its block of memory, which is then placed
back in the set of holes. If the new hole is adjacent to other holes,
we merge these adjacent holes to form one larger hole.

This procedure is a particular instance of the general dynamic
storage-allocation problem, which is how to satisfy a request of size
n from a list of free holes. There are many solutions to this problem.
The set of holes is searched to determine which hole is best to
allocate, first-fit, best-fit, and worst-fit are the most common
strategies used to select a free hole from the set of available holes.

First-fit:
Allocate the first hole that is big enough. Searching can start

either at the beginning of the set of holes or where the previous
first-fit search ended. We can stop searching as soon as we find a
free hole that is large enough.



Best-fit:
Allocate the smallest hole that is big enough. We must search

the entire list, unless the list is kept ordered by size. This strategy-
produces the smallest leftover hole.

Worst-fit:
Allocate the largest hole. Again, we must search the entire list

unless it is sorted by size. This strategy produces the largest
leftover hole which may be more useful than the smaller leftover
hole from a best-t approach.

10.4.3 EXTERNAL AND INTERNAL FRAGMENTATION
As processes are loaded and removed from memory, the free

memory space is broken into little pieces. External fragmentation
exists when enough to the memory space exists to satisfy a
request, but it is not contiguous; storage is fragmented into a large
number of small holes. Depending on the total amount of memory
storage and the average process size, external fragmentation may
be either a minor or a major problem. Given N allocated blocks,
another 0.5N blocks will be lost due to fragmentation. That is, one-
third of memory may be unusable. This property is known as the
50-percent rule.

Internal fragmentation – memory that is internal to partition,
but is not being used.

10.5 PAGING

External fragmentation is avoided by using paging. Physical
memory is broken into blocks of the same size called pages. When
a process is to be executed, its pages are loaded into any available
memory frames. Every address generated by the CPU is divided
into any two parts: a page number (p) and a page offset (d). The
page number is used as an index into a page table. The page table
contains the base address of each page in physical memory. This
base address is combined with the gage offset to define the
physical memory address that is sent to the memory unit.



Fig 10.6  Paging Hardware

The page size like is defined by the hardware. The size of a
page is typically a power of 2 varying between 512 bytes and 8192
bytes per page, depending on the computer architecture. The
selection of a power of 2 as a page size makes the translation of a
logical address space is 2m, and a page size is 2n addressing units
(bytes or words), then the high order m-n bits of a logical address
designate the page number, and the n low-order bits designate the
page offset. Thus, the logical address is as follows:

page number page offset
p d
m-n n

where p is an index into the page table and d is the
displacement within page.



Fig 10.7 Paging model of logical and physical memory

Paging is a form of dynamic relocation. Every logical address
is bound by the paging hardware to some physical address. Any
free frame can be allocated to a process that needs it. If process
size is independent of page size, we can have internal
fragmentation to average one-half page per process.

When a process arrives in the system to be executed pages,
its size, expressed in pages, is examined. Each page of the
process needs one frame. Thus, if the process requires n pages,
there must be at least n frames available in memory. If there are n
frames available, they are allocated to this arriving process. The
first page of the process is loaded into one of the allocated frames
and the frame number is put in the page table for this process. The
next page is loaded into another frame, and its frame number is put
into the page table, and so on.



FIG 10.8  FREE FRAMES
(a) BEFORE ALLOCATION  (b) AFTER ALLOCATION

The user program views that memory as one single
contiguous space, containing only this one program. But the user
program is scattered throughout physical memory and logical
addresses are translated into physical addresses.

The operating system is managing physical memory, it must
be aware of the allocation details of physical memory: which frames
are allocated, which frames are available, how many total frames
there are, and so on. This information is generally kept in a data
structure called a frame table. The frame table has one entry for
each physical page frame, indicating whether the latter is free
allocated and, if it is allocated, to which page of which process or
processes. The operating system maintains a copy of the page
table for each process. Paging therefore increases the context-
switch time.

10.6 SEGMENTATION

A user program can be subdivided using segmentation, in
which the program and its associated data are divided into a
number of segments. It is not required that all segments of all
programs be of the same length, although there is a maximum
segment length. As with paging, a logical address using
segmentation consists of two parts, in this case a segment number
and an offset.



Fig 10.9 USER’S VIEW OF A PROGRAM

Because of the use of unequal-size segments, segmentation
is similar to dynamic partitioning. In segmentation, a program may
occupy more than one partition, and these partitions need not be
contiguous. Segmentation eliminates internal fragmentation but,
like dynamic partitioning, it suffers from external fragmentation.
However, because a process is broken into a number of smaller
pieces, the external fragmentation should less. Whereas paging is
invisible to the programmer, segmentation usually visible and is
provided as a convenience for organizing programs and data.

Another consequence of unequal-size segments is that there
is no simple relationship between logical addresses and physical
addresses. Segmentation scheme would make use of a segment
table for each process and a list of free blocks of main memory.
Each segment table entry would have to, as in paging, give the
starting address in main memory of the corresponding segment.
The entry should also provide the length the segment, to assure
that invalid addresses are not used. When a process enters the
Running state, the address of its segment table is loaded into a
special register used by the memory-management hardware.

Consider an address of n + m bits, where the leftmost n bits
are the segment number and the rightmost m bits are the offset.
The following steps are needed for address translation:

• Extract the segment number as the leftmost n bits of the logical
address.



• Use the segment number as an index into the process segment
table to find the starting physical address of the segment.

• Compare the offset, expressed in the rightmost m bits, to the
length of the segment. If the offset is greater than or equal to the
length, the address is invalid.

• The desired physical address is the sum of the starting physical
address of the segment plus the offset.

Segmentation and paging can be combined to have a good result.

10.7 LET US SUM UP

• This stub is a small piece of code that indicates how to locate
the appropriate memory-resident library routing

• The execution-time address-binding scheme results in an
environment where the logical and physical addresses differ

• The base register is called a relocation register.

• Every address generated by the CPU is divided into any two
parts: a page number (p) and a page offset (d)

• The operating system maintains a copy of the page table for
each process

• A user program can be subdivided using segmentation, in which
the program and its associated data are divided into a number
of segments

10.8 UNIT END QUESTIONS

1. What is dynamic linking?
2. Describe overlays in brief.
3. What is the difference between single-partition allocation and

multiple-partition allocation?
4. Write short notes on :

a. Paging
b. Segmentation
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11.0 OBJECTIVES

After reading this unit you will be able to:
• To describe the benefits of a virtual memory system
• To explain the concepts of demand paging & page-replacement

algorithms, and allocation of page frames.
• To discuss the principle of the working-set model

11.1 INTRODUCTION

Virtual memory is a technique that allows the execution of
process that may not be completely in memory. The main visible
advantage of this scheme is that programs can be larger than
physical memory. Virtual memory is the separation of user logical
memory from physical memory. This separation allows an



extremely large virtual memory to be provided for programmers
when only a smaller physical memory is available.

Fig 11.1 Virtual memory is larger than physical
memory

Virtual memory is commonly implemented by demand paging.
It can also be implemented in a segmentation system. Demand
segmentation can also be used to provide virtual memory.

11.2 DEMAND PAGING

A demand paging is similar to a paging system with swapping.
When we want to execute a process, we swap it into memory.
Rather than swapping the entire process into memory. When a
process is to be swapped in, the pager guesses which pages will
be used before the process is swapped out again Instead of
swapping in a whole process, the pager brings only those
necessary pages into memory. Thus, it avoids reading into memory
pages that will not be used in anyway, decreasing the swap time
and the amount of physical memory needed.



Fig 11.2 Transfer of a paged memory to contiguous
disk space

Hardware support is required to distinguish between those
pages that are in memory and those pages that are on the disk
using the valid-invalid bit scheme. Where valid and invalid pages
can be checked checking the bit and marking a page will have no
effect if the process never attempts to access the pages. While the
process executes and accesses pages that are memory resident,
execution proceeds normally. Access to a page marked invalid
causes a page-fault trap. This trap is the result of the operating
system's failure to bring the desired page into memory. But page
fault can be handled as following:



Fig 11.3 Steps in handling a page fault

1. Check an internal table for this process to determine whether the
reference was a valid or invalid memory access.

2, If the reference was invalid, terminate the process. If it was valid,
but not yet brought in that page, we now page in the latter

3. Find a free frame
4. Schedule a disk operation to read the desired page into the

newly allocated frame.
5. When the disk read is complete, modify the internal table kept

with the process and the page table to indicate that the page is
now in memory.

6. Restart the instruction that was interrupted by the illegal address
trap. The process can now access the page as though it had
always been memory.

Therefore, the operating system reads the desired page into
memory and restarts the process as though the page had always
been in memory. The page replacement is used to make the frame
free if they are not in used. If no frame is free then other process is
called in.

11.3 PAGE REPLACEMENT ALGORITHMS



There are many different page replacement algorithms. We
evaluate an algorithm by running it on a particular string of memory
reference and computing the number of page faults. The string of
memory references is called reference string. Reference strings are
generated artificially or by tracing a given system and recording the
address of each memory reference. The latter choice produces a
large number of data.

1. For a given page size we need to consider only the page
number, not the entire address.

2. If we have a reference to a page p, then any immediately
following references to page p will never cause a page fault.
Page p will be in memory after the first reference; the
immediately following references will not fault.

Eg:- Consider the address sequence 0100, 0432, 0101, 0612,
0102, 0103, 0104, 0101, 0611, 0102, 0103, 0104, 0101, 0610,
0102, 0103, 0104, 0104, 0101, 0609, 0102, 0105 and reduce to 1,
4, 1,6,1, 6, 1, 6, 1,6, 1

To determine the number of page faults for a particular
reference string and page replacement algorithm, we also need to
know the number of page frames available. As the number of
frames available increase, the number of page faults will decrease.

11.3.1  FIFO Algorithm

The simplest page-replacement algorithm is a FIFO algorithm.
A FIFO replacement algorithm associates with each page the time
when that page was brought into memory. When a page must be
replaced, the oldest page is chosen. We can create a FIFO queue
to hold all pages in memory.

The first three references (7, 0, 1) cause page faults, and are
brought into these empty eg. 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2,
0, 1 and consider 3 frames. This replacement means that the next
reference to 0 will fault. Page 1 is then replaced by page 0.
Reference string

Page frames
Fig 11.4  FIFO Page-replacement algorithm

11.3.2  Optimal Algorithm



An optimal page-replacement algorithm has the lowest page-
fault rate of all algorithms. An optimal page-replacement algorithm
exists, and has been called OPT or MIN. It will simply replace the
page that will not be used for the longest period of time.
Reference String

Page frames
Fig 11.5 Optimal Algorithm

Now consider the same string with 3 empty frames.
The reference to page 2 replaces page 7, because 7 will not

be used until reference 18, whereas page 0 will be used at 5, and
page 1 at 14. The reference to page 3 replaces page 1, as page 1
will be the last of the three pages in memory to be referenced
again. Optimal replacement is much better than a FIFO.

The optimal page-replacement algorithm is difficult to
implement, because it requires future knowledge of the reference
string.

11.3.3  LRU Algorithm
The FIFO algorithm uses the time when a page was brought

into memory; the OPT algorithm uses the time when a page is to be
used. In LRU replace the page that has not been used for the
longest period of time.

LRU replacement associates with each page the time of that
page's last use. When a page must be replaced, LRU chooses that
page that has not been used for the longest period of time.

Reference String

Page frames

Fig 11.6 LRU Algorithm
Let SR be the reverse of a reference string S, then the page-

fault rate for the OPT algorithm on S is the same as the page-fault
rate for the OPT algorithm on SR.

11.3.4  LRU Approximation Algorithms



Some systems provide no hardware support, and other page-
replacement algorithm. Many systems provide some help, however,
in the form of a reference bit. The reference bit for a page is set, by
the hardware, whenever that page is referenced. Reference bits are
associated with each entry in the page table. Initially, all bits are
cleared (to 0) by the operating system. As a user process executes,
the bit associated with each page referenced is set (to 1) by the
hardware.

(i) Additional-Reference-Bits Algorithm
The operating system shifts the reference bit for each page

into the high-order or of its 8-bit byte, shifting the other bits right 1
bit, discarding the lower order bit. These 8-bit shift registers contain
the history of page use for the last eight, time periods. If the shift
register contains 00000000, then the page has not been used for
eight time periods; a page that is used at least once each period
would have a shift register value 11111111.

(ii) Second-Chance Algorithm
The basic algorithm of second-chance replacement is a FIFO

replacement algorithm. When a page gets a second chance, its
reference bit is cleared and its arrival e is reset to the current time.

(iii)Enhanced Second-Chance Algorithm
The second-chance algorithm described above can be

enhanced by considering troth the reference bit and the modify bit
as an ordered pair.

1. (0,0) neither recently used nor modified — best page to replace
2. (0,1) not recently used but modified — not quite as good,

because the page will need to be written out before replacement
3. (1,0) recently used but clean — probably will be used again soon
4. (1,1) recently used and codified - probably will be'iTsed aaain,

and write out will be needed before replacing it

 (iv) Counting Algorithms
There are many other algorithms that can be used for page

replacement.

• LFO Algorithm: The least frequently used (LFU) page-
replacement algorithm requires that the page with the smallest
count be replaced. This algorithm suffers from the situation in which
a page is used heavily during the initial phase of a process, but
then is never used again.

• MFU Algorithm: The most frequently used (MFU) page-
replacement algorithm is based on the argument that the page with
the smallest count was probably just brought in and has yet to be
used.



11.3.5  Page Buffering Algorithm
When a page fault occurs, a victim frame is chosen as before.

However, the desired page is read into a free frame from the pool
before the victim is written out. This procedure allows the process
to restart as soon as possible, without waiting for the victim page to
be written out. When the victim is later written out, its frame is
added to the free-frame pool. When the FIFO replacement
algorithm mistakenly replaces a page mistakenly replaces a page
that is still in active use, that page is quickly retrieved from the free-
frame buffer, and no I/O is necessary. The free-frame buffer
provides protection against the relatively poor, but simple, FIFO
replacement algorithm.

11.4 MODELING PAGING ALGORITHM

11.4.1 WORKING-SET MODEL

The working-set model is based on the assumption of
locality.
• Δ defines the working-set window: some # of memory

references
• Examine the most recent Δ page references.
• The set of pages in the most recent Δ is the working set or an

approximation of the program's locality.

PAGE REFERENCE TABLE

Fig 11.7 Working-set model

• The accuracy of the working set depends on the selection of Δ.
• If Δ is too small, it will not encompass the entire locality
• If Δ is too large, it may overlap several localities.
• If Δ is &infinity; the working set is the set of all pages touched

during process execution
• WSSi is working set size for process pi

• D = Σ WSSi, where D is the total Demand from frames
• If D > m, then thrashing will occur, because some processes will

not have enough frames
Using the working-set strategy is simple:



• The OS monitors the working set of each process and allocates
to that working set enough frames to provide it with its working-
set size.

• If there are enough extra frames, a new process can be
initiated.

• If the sum of the working set sizes increases, exceeding the
total number of available frames, the OS selects a process to
suspend.

• The working set strategy prevents thrashing while keeping the
degree of multiprogramming as high as possible and optimizes
CPU utilization.

11.5 DESIGN ISSUES FOR PAGING SYSTEMS

11.5.1  Prepaging
Prepaging is an attempt to prevent high level of initial

paging. In other words, prepaging is done to reduce the large
number of page faults that occurs at process startup.
Note: Prepage all or some of the pages a process will need, before
they are referenced.

11.5.2  Page Size
Page size selection must take into consideration:

· fragmentation
· table size
· I/O overhead
· locality

11.5.3  Program structure

int [128,128] data;
Each row is stored in one page

Program 1:
for (j = 0; j <128; j++)
for (i = 0; i < 128; i++)

data[i,j] = 0;

128 x 128 = 16,384 page faults

Program 2:
for (i = 0; i < 128; i++)

for (j = 0; j < 128; j++)
data[i,j] = 0;

128 page faults

11.5.4  I/O Interlock



Pages must sometimes be locked into memory. Consider I/O -
Pages that are used for copying a file from a device must be locked
from being selected for eviction by a page replacement algorithm.

Fig 11.8 The reason why frames used for 1/0 must be in
memory

11.6 LET US SUM UP

• Virtual memory is the separation of user logical memory from
physical memory.

• Virtual memory is commonly implemented by demand paging.

• A demand paging is similar to a paging system with swapping.

• The page replacement is used to make the frame free if they are
not in used.

• A FIFO replacement algorithm associates with each page the
time when that page was brought into memory.

• An optimal page-replacement algorithm exists, and has been
called OPT or MIN.

• LRU replacement associates with each page the time of that
page's last use.

• When the FIFO replacement algorithm mistakenly replaces a
page mistakenly replaces a page that is still in active use, that
page is quickly retrieved from the free-frame buffer, and no I/O
is necessary.



• The working set strategy prevents thrashing while keeping the
degree of multiprogramming as high as possible and optimizes
CPU utilization.

11.7 UNIT END QUESTIONS

1. What is Virtual Memory?
2. Describe FIFO Algorithm in detail.
3. Write a short note on working-set model.
4. Briefly discuss various design issues for paging system.
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12.0 OBJECTIVES

After reading this unit you will be able to:
• Describe various allocation methods
• Manage free space
• Study various File sharing systems

12.1 INTRODUCTION



The most important parts of an operating system is the file
system. The file system provides the resource abstractions typically
associated with secondary storage. The file system permits users
to create data collections, called files, with desirable properties,
such as the following:

• Long-term existence: Files are stored on disk or other
secondary storage and do not disappear when a user logs
off.

• Sharable between processes: Files have names and
can have associated access permissions that permit
controlled sharing.

• Structure: Depending on the file system, a file can have an
internal structure that is convenient for particular
applications. In addition, files can be organized into
hierarchical or more complex structure to reflect the
relationships among files.

Any file system provides not only a means to store data
organized as files, but a collection of functions that can be
performed on files. Typical operations include the following:

• Create: A new file is defined and positioned within the
structure of files.

• Delete: A file is removed from the file structure and
destroyed.

• Open: An existing file is declared to be "opened" by a
process, allowing the process to perform functions on the
file.

• Close: The file is closed with respect to a process, so that
the process no longer may perform functions on the file, until
the process opens the file again.

• Read: A process reads all or a portion of the data in a file.

• Write: A process updates a file, either by adding new data
that expands the size of the file or by changing the values of
existing data items in the file.

Typically, a file system maintains a set of attributes associated
with the file.

12.2  FILE CONCEPTS

12.2.1 FILE STRUCTURE
Three terms are used for files

• Field
• Record



• Database
A field is the basic element of data. An individual field contains a

single value.

A record is a collection of related fields that can be treated as a
unit by some application program.

A file is a collection of similar records. The file is treated as a
single entity by users and applications and may be referenced by
name. Files have file names and may be created and deleted.
Access control restrictions usually apply at the file level.

A database is a collection of related data. Database is designed
for use by a number of different applications. A database may
contain all of the information related to an organization or project,
such as a business or a scientific study. The database itself
consists of one or more types of files. Usually, there is a separate
database management system that is independent of the operating
system.

12.2.2 FILE MANAGEMENT SYSTEMS
A file management system is that set of system software that
provides services to users and applications in the use of files.
Following are the objectives for a file management system.

• To meet the data management needs and requirements of
the user which include storage of data and the ability to
perform the aforementioned operations.

• To guarantee, to the extent possible, that the data in the file
are valid.

• To optimize performance, both from the system point of view
in terms of overall throughput.

• To provide I/O support for a variety of storage device types.

• To minimize or eliminate the potential for lost or destroyed
data.

• To provide a standardized set of I/O interface routines to use
processes.

• To provide I/O support for multiple users, in the case of
multiple-user systems.

File System Architecture
At the lowest level, device drivers communicate directly with

peripheral devices or their controllers or channels. A device driver
is responsible for starting I/O operations on a device and
processing the completion of an I/O request. For file operations, the
typical devices controlled are disk and tape drives. Device drivers
are usually considered to be part of the operating system.



The next level is referred to as the basic file system or the
physical I/O level. This is the primary interface with the environment
outside of the computer system. It deals with blocks of data that are
exchanged with disk or tape system.

The basic I/O supervisor is responsible for all file I/O initiation
and termination. At this level control structures are maintained that
deal with device I/O scheduling and file status. The basic 1.0
supervisor selects the device on which file I/O is to be performed,
based on the particular file selected.

Logical I/O enables users and applications to access records.
The level on the file system closest to the user is often termed the
access method. It provides a standard interface between
applications and the file systems device that hold the data. Different
access methods reflect different file structures and different ways of
accessing and processing the data.

The I/O control, consists of device drivers and interrupt
handlers to transfer information between the memory and the disk
system. A device driver can be thought of as a translator.

The basic file system needs only to issue generic commands
to the appropriate device driver to read and write physical blocks on
the disk.

File organization and access:
The term file organization to refer to the logical structuring of the

records as determined by the way in which they are accessed. The
physical organization of the file on secondary storage depends on
the blocking strategy and the file allocation strategy. In choosing a
file organization.

1. Short access time
2. Ease of update
3. Economy of storage
4. Simple maintenance
5. Reliability.

The relative priority of these criteria will depend on the
applications that will use the file.

The file-organization module knows about files and their logical
blocks, as well as physical blocks. By knowing the type of file
allocation used and the location of the file, the file-organization
module can translate logical block addresses to physical block
addresses for the basic file system to transfer. Each file's logical
blocks are numbered from 0 (or 1) through N, whereas the physical
blocks containing the data usually do not match the logical
numbers, so a translation is needed to locate each block. The file-
organization module also includes the free-space manager, which



tracks unallocated and provides these blocks to the file organization
module when requested.

The logical file system uses the directory structure to provide
the file-organization module with the information the latter needs,
given a symbolic file name. The logical file system is also
responsible for protection and security.

To create a new file, an application program calls the logical file
system. The logical file system knows the format of the directory
structures. To create new file, it reads the appropriate directory into
memory, updates it with the new entry, and writes it back to the
disk.

Once, the file is found, the associated information such as size,
owner, and data block locations are generally copied into a table in
memory, referred to as the open-file table; consisting of information
about all the currently opened files.

The first reference to a file (normally an open) causes the
directory structure to be searched and the directory entry for this file
to be copied into the table of opened files. The index into this table
is returned to the user program, and all further references are made
through the index rather than with a symbolic name. The name
given to the index varies. UNIX systems refer to it as a file
descriptor, Windows/NT as a file handle, and other systems as a
file control block. Consequently, as long as the file is not closed, all
file operations are done on the open-file table. When the file is
closed by all users that have opened it, the updated file information
is copied back to the disk-based directory structure.

12.3 FILE SYSTEM MOUNTING

As a file must be opened before it is used, a file system must
be mounted before it can be available to processes on the system.
The mount procedure is straight forward. The stem is given the
name of the device, and the location within the file structure at
which to attach the file system (called the mount point).

The operating system verifies that the device contains a valid
file system. It does so by asking the device driver to read the device
directory and verifying that the directory has the expected format.
Finally, the operating system notes in its directory structure that a
file system is mounted at the specified mount point. This scheme
enables the operating system to traverse its directory structure,
switching among file systems as appropriate.

12.3.1  Allocation Methods



The direct-access nature of disks allows us flexibility in the
implementation of files. Three major methods of allocating disk
space are in wide use: contiguous, linked and indexed. Each
method has its advantages and disadvantages.

12.3.1.1  Contiguous Allocation
The contiguous allocation method requires each file to occupy

a set of contiguous blocks on the disk. Disk addresses define a
linear ordering on the disk. Notice that with this ordering assuming
that only one job is accessing the disk, accessing block b+1 after
block b normally requires no head movement. When head
movement is needed, it is only one track. Thus, the number of disk
seeks required for accessing contiguous allocated files is minimal.

Fig 12.1 Contiguous allocation of disk space

Contiguous allocation of a tile is defined by the disk address
and length (in block units) of the first block. If the file is n blocks
long, and starts at a specific location then it occupies blocks b, b +
1, b +2,..,b+n-1. The directory entry for each file indicates the
address of the starting block and the length of the area allocate for
this file.

Accessing a file that has been allocated contiguously is easy.
For sequential access, the file system remembers the disk address
of the last block referenced and, when necessary, reads the next
block. For direct access to block i of a file that starts at block b, we
can immediately access block b+i.

The contiguous disk-space-allocation problem can be seen to
be a particular application of the general dynamic storage-allocation
First Fit and Best Fit are the most common strategies used to select
a free hole from the set of available holes. Simulations have shown



that both first-fit and best-fit are more efficient than worst-fit in terms
of both time and storage utilization. Neither first-fit nor best-fit is
clearly best in terms of storage utilization, but first-fit is generally
faster.

These algorithms suffer from the problem of external
fragmentation. As files are allocated and deleted, the free disk
space is broken into little pieces. External fragmentation exists
whenever free space is broken into chunks. It becomes a problem
when the largest contiguous chunks is insufficient for a request;
storage is fragmented into a number of holes, no one of which is
large enough to store the data. Depending on the total amount of
disk storage and the average file size, external fragmentation may
be either a minor or a major problem.

To prevent loss of significant amounts of disk space to
external fragmentation, the user had to run repacking routine that
copied the entire file system onto another floppy disk or onto a
tape. The original floppy disk was then freed completely, creating
one large contiguous free space. The routine then copied the files
back onto the floppy disk by allocating contiguous space from this
one large hole. This scheme effectively compacts all free space into
one contiguous space, solving the fragmentation problem. The cost
of this compaction is time. The time cost is particularly severe for
large hard disks that use contiguous allocation, where compacting
all the space may take hours and may be necessary on a weekly
basis. During this down time, normal system operation generally
cannot be permitted, so such compaction is avoided at all costs on
production machines.

A major problem is determining how much space is needed
for a file. When the file is created, the total amount of space it will
need must be found and allocated. The user will normally over
estimate the amount of space needed, resulting in considerable
wasted space.

12.3.1.2  Linked Allocation
Linked allocation solves all problems of contiguous allocation.

With link allocation, each file is a linked list disk blocks; the disk
blocks may be scattered anywhere on the disk. This pointer is
initialized to nil (the end-of-list pointer value) to signify an empty file.
The size field is also set to 0. A write to the file causes a'free bio to
be found via the free-space management system, and this new
block is the written to, and is linked to the end of the file.



Fig 12.2 Linked allocation of disk space

There is no external fragmentation with linked allocation, and
any free! block on the free-space list can be used to satisfy a
request. Notice also that there is no need to declare the size of a
file when that file is created. A file can continue to grow as long as
there are free blocks. Consequently, it is never necessary to
compact disk space.

The major problem is that it can be used effectively for only
sequential access files. To find the ith block of a file we must start
at the beginning of that file, and follow the pointers until we get to
the ith block. Each access to a pointer requires a disk read and
sometimes a disk seek. Consequently, it is inefficient to support a
direct-access capability for linked allocation files.

Linked allocation is the space required for the pointers If a
pointer requires 4 bytes out of a 512 Byte block then 0.78 percent
of the disk is being used for pointer, rather than for information.

The usual solution to this problem is to collect blocks into
multiples, called clusters, and to allocate the clusters rather than
blocks. For instance, the file system define a cluster as 4 blocks
and operate on the disk in only cluster units. Pointers then use a
much smaller percentage of the file's disk space. This method
allows the logical-to-physical block mapping to remain simple, but
improves disk throughput (fewer disk head seeks) and decreases
the space needed for block allocation and free-list management.
The cost of this approach an increase in internal fragmentation.

Yet another problem is reliability. Since the files are linked
together by pointers scattered all over the disk consider what would
happen it a pointer— were lost or damaged. Partial solutions are to
use doubly linked iists or to store the file name and relative block



number in each block; however, these schemes require even more
overhead for each file.

An important variation, on the linked allocation method is the
use of a file allocation table (FAT). This simple but efficient method
of disk-space allocation is used by the MS-DOS and OS/2
operating systems. A section of disk at the beginning of each-
partition is set aside to contain the table. The table has one entry
for each disk block, and is indexed by block number. The FAT is
used much as is a linked list. The directory entry contains the block
number of the first block of the file. The table entry indexed by that
block number then contains the block number of the next block in
the file. This chain continues until the last block, which has a
special end-of-file value -as the table entry. Unused blocks are
indicated by a 0 table value. Allocating a new block to a file is a
simple matter of finding the first 0-valued table entry, and replacing
the previous end-of-file value with the address of the new block.
The 0 is then replaced with the end-of-file value. An illustrative
example is the FAT structure of for a file consisting of disk blocks
217, 618, and 339.

12.3.1.3 Indexed Allocation
Linked allocation solves the external-fragmentation and size-

declaration problems of contiguous allocation. The absence of a
FAT, linked allocation cannot support efficient direct access, since
the pointers to the blocks are scattered with the blocks themselves
all over the disk and need to be retrieved in order Indexed
allocation solves this problem by bringing all the pointers together
into one location: the index block.

Each file has its own index block, which is an array of disk-
block addresses. The ith entry in the index block points to the ith
block of the file. The directory contains the address of the index
block.

When the file is created, all pointers in the index block are set
to nil. When the ith block is first written, a block is obtained: from
the free space manager, and its address- is put in the ith index-
block entry.



Fig 12.3  Indexed allocation of disk space

Allocation supports direct access, without suffering from
external fragmentation because any free block on he disk may
satisfy a request for more space. Indexed allocation does suffer
from wasted space. The pointer overhead of the index block is
generally greater than the pointer overhead of linked allocation.

• Linked scheme. An index block is normally one disk block.
Thus, it can be read and written directly by itself.

• Multilevel index. A variant of the linked representation is to
use a first-level index block to point to a set of second-level
index blocks, which in turn point to the file blocks. To access a
block, the operating system uses the first-level index to find a
second-level index block, and that block to find the desired data
block.

12.4 FREE SPACE MANAGEMENT

Since there is only a limited amount of disk space, it is
necessary to reuse the space from deleted files for new files, if
possible.

12.4.1 BIT VECTOR
Free-space list is implemented as a bit map or bit vector. Each

block is represented by 1 bit. If the block is free, the bit is 1; if the
block is allocated, the bit is 0. For example consider a disk where
blocks 2, 3, 4, 5, 8,9,10,11,12,13,17, 18, 25, 26, and 27 are free,
and the rest of the blocks are allocated. The free-space bit map
would be

001111001111110001100000011100000 .....
The main advantage of this approach is that it is relatively

simple and efficient to find the first free block or n consecutive free



blocks on the disk. The calculation of the block number is (number
of bits per word) x (number of 0-value words) + offset of first 1 bit

12.4.2 LINKED LIST

Another approach is to link together all the free disk blocks,
keeping a pointer to the first free block in a special location on the
disk and caching in memory. This first block contains a pointer to
the next free disk block, and so on. Block 2 would contain a pointer
to block 3, which would point to block 4, which would point to block
5, which would point to block 8, and so on. Usually, the operating
system simply needs a free block so that it can allocate that block
to a file, so the first block in the free list is used.

Fig 12.4  Linked free-space list on disk

12.4.3 GROUPING

A modification of the free-list approach is to store the
addresses of n free blocks in the first free block. The first n-1 of
these blocks are actually free. The importance of this
implementation is that the addresses of a large number of free
blocks can be found quickly, unlike in the standard linked-list
approach.

12.4.4 COUNTING

Several contiguous blocks may be allocated or freed
simultaneously, particularly when space is allocated with the
contiguous allocation algorithm or through clustering. A list of n free
disk addresses, we can keep the address of the first free block and
the number n of free contiguous blocks that follow the first block A.
Each entry in the free-space list then consists of a disk address and
a count. Although each entry requires more space than would a



simple disk address, the overall list will be shorter, as long as the
count is generally greater than 1.

12.5 FILE SHARING

Once multiple users are allowed to share files, the challenge
is to extend sharing to multiple file systems, including remote file
systems.

12.5.1  MULTIPLE USERS

To implement sharing and protection, the system must
maintain more file and directory attributes than are needed on a
single-user system. Although many approaches have been taken to
meet this requirement, most system have evolved to use the
concepts of file (or directory) owner (or user) and group. The owner
is the user who can change attributes and grant access and who
has the most control over the file. The group attribute defines a
subset of users who can share access to the file. For example, the
owner of a file on a UNIX system can issue all operations on a file,
while members of the file's group can execute one subset of those
operations, and all other users can execute another subset of
operations. Exactly which operations can be executed by group
members and other users is definable by the file's owner.

12.5.2  REMOTE FILE SYSTEMS

Remote File system uses networking to allow file system
access between systems:
• Manually via programs like FTP
• Automatically, seamlessly using distributed file systems
• Semi automatically via the world wide web

12.5.3  CONSISTENCY SEMANTICS

Consistency semantics represent an important criterion for
evaluating any file system that supports file sharing. These
semantics specify how multiple users of a system are to access a
shared file simultaneously. In particular, they specify when
modifications of data by one user will be observable by other users.
These semantics are typically implemented as code with the file
system.

12.6 NFS

Network File Systems [NFS] are standard UNIX client-server
file sharing protocol. Interconnected workstations are viewed as a



set of independent machines with independent file systems, which
allows sharing among these file systems in a transparent manner

A remote directory is mounted over a local file system
directory. The mounted directory looks like an integral subtree of
the local file system, replacing the subtree descending from the
local directory. Files in the remote directory can then be accessed
in a transparent manner.

Subject to access-rights accreditation, potentially any file
system (or directory within a file system), can be mounted remotely
on top of any local directory.

NFS is designed to operate in a heterogeneous
environment of different machines, operating systems, and network
architectures; the NFS specifications independent of these media.
This independence is achieved through the use of RPC primitives
built on top of an External Data Representation (XDR) protocol
used between two implementation-independent interfaces.

Fig 12.5  Three Independent File Systems

Fig 12.6 Mounting in NFS
(a) Mounts (b) Cascading Mounts

NFS Protocol
NFS protocol provides a set of remote procedure calls

for remote file operations. The procedures support the following
operations:
• searching for a file within a directory



• reading a set of directory entries
• manipulating links and directories
• accessing file attributes
• reading and writing files

NFS servers are stateless; each request has to provide a full set of
arguments. Modified data must be committed to the server’s disk
before results are returned to the client. The NFS protocol does not
provide concurrency-control mechanisms

Fig 12.7  Schematic View of NFS Architecture

12.7 LET US SUM UP

• Long-term existence: Files are stored on disk or other
secondary storage and do not disappear when a user logs off.

• Sharable between processes: Files have names and can have
associated access permissions that permit controlled sharing.

• A field is the basic element of data. An individual field contains a
single value.

• A record is a collection of related fields that can be treated as a
unit by some application program.

• A file is a collection of similar records.

• A database is a collection of related data.

• The first reference to a file (normally an open) causes the
directory structure to be searched and the directory entry for this
file to be copied into the table of opened files



• The contiguous allocation method requires each file to occupy a
set of contiguous blocks on the disk

• First Fit and Best Fit are the most common strategies used to
select a free hole from the set of available holes.

• External fragmentation exists whenever free space is broken
into chunks.

• The owner is the user who can change attributes and grant
access and who has the most control over the file. The group
attribute defines a subset of users who can share access to the
file.

• Network File Systems [NFS] are standard UNIX client-server
file sharing protocol.

• NFS servers are stateless; each request has to provide a full set
of arguments.

12.8 UNIT END QUESTIONS

1. Define the terms :
a. Field
b. Record
c. Database

2. What are the objectives for a file management system?
3. What is File System Mounting? Explain Contiguous Allocation

method in detail.
4. What is the difference between Linked Allocation and Indexed

Allocation methods?
5. Write a short note Bit Vector.
6. What is NFS? What are its protocols?
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13.0 OBJECTIVES



After reading this unit you will be able to:
• Describe boot blocks and bad blocks
• Distinguish between various levels of RAID
• Define deadlock
• Detect, recover, avoid and prevent deadlocks

13.1 INTRODUCTION

In order to get vast amount of storage capacity of several
bytes (trillions and more) in a computer system, a different kind of
storage system is used. In such type of system, multiple units of
similar kinds of storage media are associated together to form a
chain of mass storage devices. These storage media may include
multiple magnetic tape reels or cartridges, multiple arrays of
magnetic disks or multiple CD-ROMs as a storage device. We can
categorize mass storage devices into three types:

1. Redundant Array of Inexpensive Disks (RAID)
2. Automated Tape Library
3. CD-ROM Jukebox

13.2 DISK STRUCTURE

The size of a logical block is usually 512 bytes, although some
disks can be low-level formatted to have a different logical block
size. The one-dimensional array of logical blocks is mapped onto
the sectors of the disk sequentially. Sector 0 is the first sector of the
first track on the outermost cylinder.

In practice, it is difficult to perform this translation, for two
reasons. First, most disks have some defective sectors, but the
mapping hides this by substituting spare sectors from elsewhere on
the disk. Second, the number of sectors per track is not a constant
on some drives.

On media that uses constant linear velocity (CLV), the density
of bits per track is uniform. The farther a track is from the center of
the disk, the greater its length, so the more sectors it can hold. As
we move from outer zones to inner zones, the number of sectors
per track decreases. Tracks in the outermost zone typically hold 40
percent more sectors than do tracks in the innermost zone. The
drive increases its rotation speed as the head moves from the outer
to the inner tracks to keep the same rate of data moving under the
head. This method is used in CD-ROM and DVD-ROM drives.
Alternatively, the disk rotation speed can stay constant; in this case,
the density of bits decreases from inner tracks to outer tracks to
keep the data rate constant. This method is used in hard disks and
is known as constant angular velocity (CAV).



The number of sectors per track has been increasing now-a-
days and the outer zone of a disk usually has several hundred
sectors per track. Similarly, the number of cylinders per disk has
been increasing; large disks have tens of thousands of cylinders.

13.3 DISK MANAGEMENT

13.3.1 DISK FORMATTING
Before a disk can store data, it must be divided into sectors

that the disk controller can read and write. This process is called
low-level formatting or physical formatting. Low-level formatting fills
the disk with a special data structure for each sector. The data
structure for a sector typically consists of a header, a data area
(usually 512 bytes in size), and a trailer. The header and trailer
contain information used by the disk controller, such as a sector
number and an error-correcting code (ECC).

The ECC contains enough information, if only a few bits of
data have been corrupted, to enable the controller to identify which
bits have changed and calculate what their correct values should
be. It then reports a recoverable soft error. This formatting enables
the manufacturer to test the disk and to initialize the mapping from
logical block numbers to defect-free sectors on the disk.

The second step is logical formatting, or creation of a file
system. In this step, the operating system stores the initial file-
system data structures onto the disk. These data structures may
include maps of free and allocated space (a FAT or inodes) and an
initial empty directory.

13.3.1 BOOT BLOCK

The initial bootstrap (stored in ROM for most computers)
program initializes all aspects of the system, from CPU registers to
device controllers and the contents of main memory, and then
starts the operating system by finding the OS Kernel on disk,
loading it in memory and jumping to an initial address to begin the
OS execution.

The full bootstrap program is stored in the "boot blocks" at a
fixed location on the disk. A disk that has a boot partition is called a
boot disk or system disk. Several major kinds of boot sectors could
be encountered on IBM PC compatible hard disks, floppy disks and
similar storage devices:
• A Master Boot Record (MBR) is the first sector of a data

storage device that has been partitioned. The MBR sector may
contain code to locate the active partition and invoke its Volume
Boot Record.



• A Volume Boot Record (VBR) is the first sector of a data
storage device that has not been partitioned, or the first sector
of an individual partition on a data storage device that has been
partitioned. It may contain code to load and invoke an operating
system (or other standalone program) installed on that device or
within that partition.

13.3.1 BAD BLOCKS

A bad sector is a sector on a computer's disk drive or flash
memory that cannot be used due to permanent damage (or an OS
inability to successfully access it), such as physical damage to the
disk surface (or sometimes sectors being stuck in a magnetic or
digital state that cannot be reversed) or failed flash memory
transistors. It is usually detected by a disk utility software such
as CHKDSK or SCANDISK on Microsoft systems, or badblocks on
Unix-like systems. When found, these programs may mark the
sectors unusable (all file systems contain provisions for bad-sector
marks) and the operating system skips them in the future.

More sophisticated disks, such as the SCSI disks used in
high-end PCs and most workstations and servers, are smarter
about bad-block recovery. The controller maintains a list of bad
blocks on the disk. The list is initialized during the low-level
formatting at the factory and is updated over the life of the disk.
Low-level formatting also sets aside spare sectors not visible to the
operating system. The controller can be told to replace each bad
sector logically with one of the spare sectors. This scheme is
known as sector-sparing or forwarding.

As an alternative to sector sparing, some controllers can be
instructed to replace a bad block by sector slipping. During a low-
level format, defect lists are populated which store which sectors
are bad. The bad sectors are then mapped and a sector slipping
algorithm is utilized. When using sector slipping for bad sectors,
disk access time is not largely affected. The drive will just skip over
the sectors and takes the same time as it would have to read the
sector. Spare sectors are located on the disk to aid in having
sectors to “slip” other sectors down to, allowing for the preservation
of sequential ordering of the data. Accuracy of programs reliant on
static knowledge of cylinders and block positions will be
compromised though.

13.4 SWAP SPACE MANAGEMENT

Swap-space management refers to the process where OS
breaks the physical RAM that is structured with random access
memory into some pitches of memory called pages. This is the
method in which a single page of memory can be copied to the



preconfigured space on a hard disk. This is called swap space. This
process helps to free up that page of memory. An assessment
help can say that these sizes when considered altogether of the
physical memory as well as the swap space can be recognized in
terms of total virtual memory that is available for the whole system.

13.4.1  SWAP SPACE USE

Systems that implement swapping may use swap space to
hold an entire process image including the code and data
segments. Paging systems may simply store pages that have been
pushed out of main memory. The amount of swap space needed on
a system can therefore vary from a few megabytes of disk space to
gigabytes depending on the amow1.t of physical memory the
amount of virtual memory it is backing and the way in which the
virtual memory is used.

13.4.2  SWAP SPACE LOCATION

A swap space can reside in one of two places: it can be
carved out of the normal file system, or it can be in a separate disk
partition. If the swap space is simply a large file within the file
system, normal file-system routines can be used to create it, name
it and allocate its space. Alternatively, swap space can be created
in a separate partition. No file system or directory structure is
placed in this space. Rather, a separate swap-space storage
manager is used to allocate and de-allocate the blocks from the raw
partition. This manager uses algorithms optimized for speed rather
than for storage efficiency, because swap space is accessed much
more frequently than file systems.

13.5 RAID STRUCTURE

A variety of disk-organization techniques, collectively
called redundant arrays of inexpensive disks (RAIDs) are
commonly used to address the performance and reliability issues.
In the past, RAIDs composed of small, cheap disks were viewed as
a cost-effective alternative to large, expensive disks. Today, RAIDs
are used for their higher reliability and higher data-transfer rate,
rather than for economic reasons. Hence, the I in RAID now stands
for ``independent'' instead of “inexpensive”.

13.5.1  Improvement of Reliability via Redundancy
Suppose that the mean time to failure of a single disk is 100000

hours. Then the mean time to failure of some disk in an array of
100 disks will be 100000/100 = 1000 hours, or 41.66 days, which is
not long at all. If we store only one copy of the data, then each disk
failure will result in loss of a significant amount of data-and such a
high rate of data loss is unacceptable.



The solution to the problem of reliability is to introduce
redundancy; we store extra information that is not normally needed
but that can be used in the event of failure of a disk to rebuild the
lost information. Thus, even if a disk fails, data are not lost. The
simplest (but most expensive) approach to introducing redundancy
is to duplicate every disk. This technique is called mirroring.

13.5.2  Improvement in Performance via Parallelism
With multiple disks, we can improve the transfer rate as well (or

instead) by striping data across the disks. In its simplest form, data
striping consists of splitting the bits of each byte across multiple
disks; such striping is called bit-level striping. For example, if we
have an array of eight disks, we write bit of each byte to disk .
The array of eight disks can be treated as a single disk with sectors
that are eight times the normal size and, more important that have
eight times the access rate. Parallelism in a disk system, as
achieved through striping, has two main goals:

1. Increase the throughput of multiple small accesses (that is,
page accesses) by load balancing.

2. Reduce the response time of large accesses.

13.5.3  RAID Levels
• Mirroring provides high reliability, but it is expensive.
• Striping provides high data-transfer rates, but it does not

improve reliability.
• Numerous schemes to provide redundancy at lower cost by

using the idea of disk striping combined with ``parity'' bits have
been proposed.

• These schemes have different cost-performance trade-offs and
are classified according to levels called RAID levels

• (in the figure, indicates error-correcting bits, and indicates
a second copy of the data).

• In all cases depicted in the figure, four disks' worth of data are
stored, and the extra disks are used to store redundant
information for failure recovery.



Fig 13.1 RAID Levels

• RAID Level 0. RAID level 0 refers to disk arrays with striping at
the level of blocks but without any redundancy (such as
mirroring or parity bits).

• RAID Level 1. RAID level 1 refers to disk mirroring.
• RAID Level 2. RAID level 2 is also known as memory-style

error-correcting-code (ECC) organization. Memory systems
have long detected certain errors by using parity bits.

• RAID Level 3. RAID level 3, or bit-interleaved parity
organization, improves on level 2 by taking into account the
fact that, unlike memory systems, disk controllers can detect
whether a sector has been read correctly, so a single parity bit
can be used for error correction as well as for detection.

• RAID Level 4. RAID level 4, or block-interleaved parity
organization, uses block-level striping, as in RAID 0, and in



addition keeps a parity block on a separate disk for
corresponding blocks from other disks.

• RAID Level 5. RAID level 5, or block-interleaved distributed
parity, differs from level 4 by spreading data and parity among
all N+1 disks, rather than storing data in disks and parity in
one disk. For each block, one of the disks stores the parity, and
the others store data.

• RAID Level 6. RAID level 6, also called the P+Q redundancy
scheme, is much like RAID level 5 but stores extra redundant
information to guard against multiple disk failures.

• RAID Level 0 + 1. RAID level 0 + 1 refers to a combination of
RAID levels 0 and 1. RAID 0 provides the performance, while
RAID 1 provides the reliability. Generally, this level provides
better performance than RAID 5. It is common in environments
where both performance and reliability are important.
Unfortunately, it doubles the number of disks needed for
storage, as does RAID I, so it is also more expensive.

13.5.4  Selecting a RAID Level
Trade-offs in selecting the optimal RAID level for a particular

application include cost, volume of data, need for reliability, need
for performance, and rebuild time, the latter of which can affect the
likelihood that a second disk will fail while the first failed disk is
being rebuilt.

Other decisions include how many disks are involved in a
RAID set and how many disks to protect with a single parity bit.
More disks in the set increases performance but increases cost.
Protecting more disks per parity bit saves cost, but increases the
likelihood that a second disk will fail before the first bad disk is
repaired.

13.5.5  Extensions
RAID concepts have been extended to tape drives (e.g.

striping tapes for faster backups or parity checking tapes for
reliability), and for broadcasting of data.

13.5.6  Problems with RAID
RAID protects against physical errors, but not against any

number of bugs or other errors that could write erroneous data.
ZFS (Z file system, developed by Sun™, is a new technology
designed to use a pooled storage method) adds an extra level of
protection by including data block checksums in all inodes along
with the pointers to the data blocks. If data are mirrored and one
copy has the correct checksum and the other does not, then the
data with the bad checksum will be replaced with a copy of the data
with the good checksum. This increases reliability greatly over



RAID alone, at a cost of a performance hit that is acceptable
because ZFS is so fast to begin with.

Fig 13.2 ZFS checksums all metadata and data

Another problem with traditional file systems is that the sizes
are fixed, and relatively difficult to change. Where RAID sets are
involved it becomes even harder to adjust file system sizes,
because a file system cannot span across multiple file systems.

ZFS solves these problems by pooling RAID sets, and by
dynamically allocating space to file systems as needed. File system
sizes can be limited by quotas, and space can also be reserved to
guarantee that a file system will be able to grow later, but these
parameters can be changed at any time by the file system's owner.
Otherwise file systems grow and shrink dynamically as needed.



Fig 13.3 Traditional volumes and ZFS storage

13.6 STABLE STORAGE IMPLEMENTATION

The concept of stable storage involves a storage medium in
which data is never lost, even in the face of equipment failure in the
middle of a write operation. To implement this requires two (or
more) copies of the data, with separate failure modes. An
attempted disk write results in one of three possible outcomes:

• The data is successfully and completely written.

• The data is partially written, but not completely. The last block
written may be garbled.

• No writing takes place at all.

Whenever an equipment failure occurs during a write, the
system must detect it, and return the system back to a consistent
state. To do this requires two physical blocks for every logical
block, and the following procedure:

• Write the data to the first physical block.

• After step 1 had completed, then write the data to the second
physical block.

• Declare the operation complete only after both physical writes
have completed successfully.

During recovery the pair of blocks is examined.



• If both blocks are identical and there is no sign of damage, then
no further action is necessary.

• If one block contains a detectable error but the other does not,
then the damaged block is replaced with the good copy. (This
will either undo the operation or complete the operation,
depending on which block is damaged and which is
undamaged)

• If neither block shows damage but the data in the blocks differ,
then replace the data in the first block with the data in the
second block. (Undo the operation)

Because the sequence of operations described above is slow,
stable storage usually includes NVRAM as a cache, and declares a
write operation complete once it has been written to the NVRAM.

13.7 DEADLOCKS

In a multiprogramming environment, several processes may
compete for a finite number of resources. A process requests
resources; if the resources are not available at that time, the
process enters a wait state. It may happen that waiting processes
will never again change state, because the resources they have
requested are held by other waiting processes.

If a process requests an instance of a resource type, the
allocation of any instance of the type will satisfy the request. If it will
not, then the instances are not identical, and the resource type
classes have not been defined properly. A process must request a
resource before using it, and must release the resource after using
it. A process may request as many resources as it requires to carry
out its designated task.

Under the normal mode of operation, a process may utilize a
resource in only the following sequence:
1. Request: If the request cannot be granted immediately, then the

requesting process must wait until it can acquire the resource.
2.  Use: The process can operate on the resource.
3.  Release: The process releases the resource

Deadlock Characterization
In deadlock, processes never finish executing and system

resources are tied up, preventing other jobs from ever starting.

Necessary Conditions
A deadlock situation can arise if the following four conditions

hold simultaneously in a system:
1. Mutual exclusion: At least one resource must be held in a non-
sharable mode; that is, only one process at a time can use the



resource. If another process requests that resource, the requesting
process must be delayed until the resource has been released.

2. Hold and wait: There must exist a process that is holding at
least one resource and is waiting to acquire additional resources
that are currently being held by other processes.

3. No pre-emption: Resources cannot be preempted; that is, a
resource can be released only voluntarily by the process holding it,
after that process, has completed its task.

4. Circular wait: There must exist a set {P0, P1, ..., Pn} of waiting
processes such that P0 is waiting for a resource that is held by P1,
P1 is waiting for a resource that is held by P2, —, Pn-1 is waiting for
a resource that is held by Pn, and Pn is waiting for a resource that is
held by P0.

Resource-Allocation Graph
Deadlocks can be described more precisely in terms of a

directed graph called a system resource-allocation graph. The set
of vertices V is partitioned into two different types of nodes P = {P0,
P1, ..., Pn} the set consisting of all the active processes in the
system; and R = {R0, R1, ..., Rn}, the set consisting of all resource
types in the system.

(a) (b)
Fig 13.4 (a) Example of Resource allocation graph

 (b) Resource allocation graph with a deadlock
A directed edge from process Pi to resource type Rj, is

denoted by PiRj, it signifies that process Pi requested an instance
of resource type Rj and is currently waiting for that resource. A
directed edge from resource type Rj to process Pi is denoted by



RjPi. It signifies that an instance of resource type Rj has been
allocated to process Pi. A directed edge PiRj is called a request
edge; a directed edge RjPi is called an assignment edge.

When process Pi, requests an instance of resource type Rj, a
request edge is inserted in the resource-allocation graph. When this
request can be fulfilled the request edge is instantaneously
transformed to an assignment edge. When the process no longer
needs access to the, resource it releases the resource, and as a
result the assignment edge is deleted.

Definition of a resource-allocation graph, it can be shown that,
if the graph contains no cycles, then no process in the system is
deadlocked. If, on the other hand, the graph contains the cycle,
then a deadlock must exist.

If each resource type has several instances, then a cycle
implies that a deadlock has occurred. If the cycle involves only a
set of resources types, each of which has only a single instance,
then a deadlock has occurred. Each process involved in the cycle is
deadlocked. In this case, a cycle in the graph is both a necessary
and a sufficient condition for the existence of deadlock.

Methods for Handling Deadlocks
There are three different methods for dealing with the

deadlock problem:
• We can use a protocol to ensure that the system will never enter

a deadlock state.
• We can allow the system to enter a deadlock state and then

recover.
• We can ignore the problem all together, and pretend that

deadlocks never occur in the system. This solution is the one
used by most operating systems, including UNIX.

Deadlock prevention is a set of methods for ensuring that at
least one of the necessary cannot hold. These methods prevent
deadlocks by constraining how requests for resources can be
made.

Deadlock avoidance requires the operating system to have, in
advance, additional information concerning which resources a
process will request and use during its lifetime. With this additional
knowledge, we can decide for each request whether or not the
process should wait. Each request requires that the system
considers the resources currently available, the resources currently
allocated to each process, and the future requests and releases of
each process, to decide whether the current request can be
satisfied or must be delayed.

13.1 Deadlock Prevention



For a deadlock to occur, each of the four necessary-conditions
must hold.

1. Mutual Exclusion
The mutual-exclusion condition must hold for non-sharable

resources. For example, a printer cannot be simultaneously shared
by several processes. Sharable resources, on the other hand, do
not require mutually exclusive access, and thus cannot be involved
in a deadlock.

2. Hold and Wait
1. When a process requests a resource, it does not hold any other

resources. One protocol that be used requires each process to
request and be allocated all its resources before it begins
execution.

2. An alternative protocol allows a process to request resources
only when the process has none. A process may request some
resources and use them. Before it can request any additional
resources, however it must release all the resources that it is
currently allocated.

There are two main disadvantages to these protocols. First,
resource utilization may be low, since many of the resources may
be allocated but unused for a long period. In the example given, for
instance, we can release the tape drive and disk file, and then
again request the disk file and printer, only if we can be sure that
our data will remain on the disk file.

If we cannot be assured that they will, then we must request all
resources at the beginning for both protocols. Second, starvation is
possible.

3. No Preemption
If a process that is holding some resources requests another

resource that cannot be immediately allocated to it, then all
resources currently being held are preempted. That is this
resources are implicitly released. The preempted resources are
added to the list of resources for which the process is waiting
process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting.

4. Circular Wait
Circular-wait condition never holds is to impose a total

ordering of all resource types, and to require that each process
requests resources in an increasing order of enumeration.

Let R = {R1, R2, ..., Rn} be the set of resource types. We
assign to each resource type a unique integer number, which
allows to compare two resources and to determine whether one



precedes another in ordering. Formally, we define a one-to-one
function F: RN, where N is the set of natural numbers.

13.2  Deadlock Avoidance
Prevent deadlocks requests can be made. The restraints

ensure that at least one of the necessary conditions for deadlock to
not occur, and, hence, those deadlocks cannot hold. Possible side
effects of preventing deadlocks by this, melted, however, are Tow
device utilization and reduced system throughput.

An alternative method for avoiding deadlocks is to require
additional information about how resources are to be requested.
For example, in a system with one tape drive and one printer, we
might be told that process P will request the tape drive first and
later the printer, before releasing both resources. Process Q on the
other hand, will request the printer first and then the tape drive.
With this knowledge of the complete sequence of requests and
releases for each process we can decide for each request whether
or not the process should wait.

A deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure there can never be a circular
wait condition. The resource-allocation state is defined by the
number of available and allocated resources, and the maximum
demands of the processes.

1. Safe State
A state is safe if the system allocates resources to each

process (up to its maximum) in some order and still avoid a
deadlock. More formally, a system is in a safe state only if there of
processes < P1, P2, ..., Pn > is in a safe sequence for the current
allocation state if, for each Pi the resources that Pj can still request
can be satisfied by the currently available resources plus the
resources held by all the Pj, with j<i. In this situation, if the
resources that process Pi needs are not immediately available, then
Pi can wait until all Pj have finished. When they have finished, Pi
can obtain all of its needed resources, complete its designated
task, return its allocated resources, and terminate. When Pi
terminates, Pi+1 can obtain its needed resources, and so on. If no
such sequence exists, then the system state is said to be unsafe.



Fig 13.5 Safe, Unsafe deadlock state

2. Resource-Allocation Graph Algorithm
Suppose process Pi requests resource Rj. The request can be

granted only if converting the request edge PiRj to an assignment
edge RjPi does not result in the formation of a cycle in the
resource-allocation graph.

(a)      (b)
      Fig 13.6  (a) Resource-Allocation Graph

             (b) Unsafe state in Resource-Allocation
Graph

3. Banker's Algorithm
The resource-allocation graph algorithm is not applicable to a

resource-allocation system with multiple instances of each resource
type. The deadlock-avoidance algorithm that we describe next is
applicable to such a system, but is less efficient than the resource-
allocation graph scheme. This algorithm is commonly known as the
banker's algorithm.

13.7.3 Deadlock Detection
If a system does not employ either a deadlock-prevention or a

deadlock-avoidance algorithm, then a deadlock situation may
occur.
• An algorithm that examines the state of the system to determine

whether a deadlock has occurred
• An algorithm to recover from the deadlock

13.7.3.1  Single Instance of Each Resource Type
If all resources have only a single instance, then we can

define a deadlock detection algorithm that uses a variant of the
resource-allocation graph, called a wait-for graph. We obtain this
graph from the resource-allocation graph by removing the nodes of
type resource and collapsing the appropriate edges.



13.7.3.2  Several Instances of a Resource Type
The wait-for graph scheme is not applicable to a resource-

allocation system with multiple instances of each resource type.
The algorithm used are:

• Available: A vector of length m indicates the number of
available resources of each type.

• Allocation: An n x m matrix defines the number of resources of
each type currently allocated to each process.

• Request: An nxm matrix indicates the current request of each
process. If Request[i,j] = k, then process P, is requesting k more
instances of resource.

13.7.3.3  Detection-Algorithm Usage
If deadlocks occur frequently, then the detection algorithm

should be invoked frequently. Resources allocated to deadlocked
processes will be idle until the deadlock can be broken.

13.7.4 Recovery from Deadlock
When a detection algorithm determines that a deadlock exists,

several alternatives exist. One possibility is to inform the operator
that a deadlock has spurred, and to let the operator deal with the
deadlock manually. The other possibility is to let the system recover
from the deadlock automatically.

There are two options for breaking a deadlock. One solution is
simply to abort one or more processes to break the circular wait.
The second option is to preempt some resources from one or more
of the deadlocked processes.

13.7.4.1  Process Termination
To eliminate deadlocks by aborting a process, we use one of

two methods. In both methods, the system reclaims all resources
allocated to the terminated processes.

• Abort all deadlocked processes: This method clearly will
break the dead - lock cycle, but at a great expense, since these
processes may have computed for a long time, and the results
of these partial computations must be discarded, and probably
must be recomputed

• Abort one process at a time until the deadlock cycle is
eliminated: This method incurs considerable overhead, since
after each process is aborted a deadlock-detection algorithm
must be invoked to determine whether a processes are still
deadlocked.

13.7.4.2  Resource Preemption
To eliminate deadlocks using resource preemption, we

successively preempt some resources from processes and give



these resources to other processes until he deadlock cycle is
broken. The three issues are considered to recover from deadlock

1.  Selecting a victim (to minimize cost)
2.  Rollback (return to some safe state, restart process for that

state)
3. Starvation (same process may always be picked as victim,

include     number of rollback in cost factor)

13.8 LET US SUM UP

• On media that uses constant linear velocity (CLV), the density of
bits per track is uniform

• The ECC contains enough information, if only a few bits of data
have been corrupted, to enable the controller to identify which
bits have changed and calculate what their correct values
should b

• A Master Boot Record (MBR) is the first sector of a data
storage device that has been partitioned.

• A Volume Boot Record (VBR) is the first sector of a data
storage device that has not been partitioned, or the first sector
of an individual partition on a data storage device that has been
partitioned.

• A bad sector is a sector on a computer's disk drive or flash
memory that cannot be used due to permanent damage (or an
OS inability to successfully access it), such as physical damage
to the disk surface (or sometimes sectors being stuck in a
magnetic or digital state that cannot be reversed) or failed flash
memory transistors.

• Swap-space management refers to the process where OS
breaks the physical RAM that is structured with random access
memory into some pitches of memory called pages.

• A variety of disk-organization techniques, collectively
called redundant arrays of inexpensive disks (RAIDs) are
commonly used to address the performance and reliability
issues.

• The solution to the problem of reliability is to introduce
redundancy; we store extra information that is not normally
needed but that can be used in the event of failure of a disk to
rebuild the lost information

• Whenever an equipment failure occurs during a write, the
system must detect it, and return the system back to a
consistent state

• In deadlock, processes never finish executing and system
resources are tied up, preventing other jobs from ever starting



• If each resource type has several instances, then a cycle
implies that a deadlock has occurred.

• Deadlock prevention is a set of methods for ensuring that at
least one of the necessary cannot hold

• Deadlock avoidance requires the operating system to have, in
advance, additional information concerning which resources a
process will request and use during its lifetime

13.9 UNIT END QUESTIONS

1.  Define boot block and bad blocks.
2.  Describe various RAID levels with the help of diagrams.
3. What are deadlocks? What are the necessary conditions arised

in a deadlock situation?
4. How to:

a) Detect a deadlock
b)   Recover from a deadlock

5.  Define
a.  Low-level formatting
b.  Swap Space
c.  RAID
d.  Mirroring
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14.0 OBJECTIVES

After reading this unit you will be able to:
• Discuss structuring techniques and interfaces for the operating

system that enable I/0 devices to be treated in a standard,
uniform way.

• Explain how an application can open a file on a disk without
knowing what kind of disk it is and how new disks and other
devices can be added to a computer without disruption of the
operating system

14.1 INTRODUCTION

Management of I/O devices is a very important part of the
operating system - so important and so varied that entire I/O
subsystems are devoted to its operation. (Consider the range of
devices on a modern computer, from mice, keyboards, disk drives,
display adapters, USB devices, network connections, audio I/O,
printers, special devices for the handicapped, and many special-
purpose peripherals)



I/O Subsystems must contend with two trends:
(1) The gravitation towards standard interfaces for a wide

range of devices, making it easier to add newly developed devices
to existing systems, and

(2) The development of entirely new types of devices, for
which the existing standard interfaces are not always easy to apply.

Device drivers are modules that can be plugged into an OS to
handle a particular device or category of similar devices.

14.2 APPLICATION I/O INTERFACE

I/O system calls encapsulate device behaviors in generic
classes. Device-driver layer hides differences among I/O controllers
from kernel. Devices vary in many dimensions:
• Character-stream or block
• Sequential or random-access
• Sharable or dedicated
• Speed of operation
• Read-write, read only, or write only

Fig 14.1 A Kernel I/O Structure



Fig 14.2 Characteristics of I/O devices

14.2.1  BLOCK AND CHARACTER DEVICES
Block devices are accessed a block at a time, and are

indicated by a "b" as the first character in a long listing on UNIX
systems. Operations supported include read(), write(), and seek().

Accessing blocks on a hard drive directly (without going
through the filesystem structure) is called raw I/O, and can speed
up certain operations by bypassing the buffering and locking
normally conducted by the OS. (It then becomes the application's
responsibility to manage those issues)

A new alternative is direct I/O, which uses the normal
filesystem access, but which disables buffering and locking
operations.

Memory-mapped file I/O can be layered on top of block-device
drivers. Rather than reading in the entire file, it is mapped to a
range of memory addresses, and then paged into memory as
needed using the virtual memory system.

Access to the file is then accomplished through normal
memory accesses, rather than through read() and write() system
calls. This approach is commonly used for executable program
code.

Character devices are accessed one byte at a time, and are
indicated by a "c" in UNIX long listings. Supported operations
include get() and put(), with more advanced functionality such as
reading an entire line supported by higher-level library routines.
14.2.2  NETWORK DEVICES



Because network access is inherently different from local disk
access, most systems provide a separate interface for network
devices. One common and popular interface is the socket interface,
which acts like a cable or pipeline connecting two networked
entities. Data can be put into the socket at one end, and read out
sequentially at the other end. Sockets are normally full-duplex,
allowing for bi-directional data transfer. The select() system call
allows servers (or other applications) to identify sockets which have
data waiting, without having to poll all available sockets.

14.2.3  CLOCKS AND TIMERS
Three types of time services are commonly needed in modern
systems:

• Get the current time of day.
• Get the elapsed time (system or wall clock) since a previous

event.
• Set a timer to trigger event X at time T.

Unfortunately time operations are not standard across all
systems. A programmable interrupt timer, PIT can be used to
trigger operations and to measure elapsed time. It can be set to
trigger an interrupt at a specific future time, or to trigger interrupts
periodically on a regular basis.

• The scheduler uses a PIT to trigger interrupts for ending time
slices.

• The disk system may use a PIT to schedule periodic
maintenance cleanup, such as flushing buffers to disk.

• Networks use PIT to abort or repeat operations that are taking
too long to complete i.e. resending packets if an
acknowledgement is not received before the timer goes off.

• More timers than actually exist can be simulated by maintaining
an ordered list of timer events, and setting the physical timer to
go off when the next scheduled event should occur.

On most systems the system clock is implemented by counting
interrupts generated by the PIT. Unfortunately this is limited in its
resolution to the interrupt frequency of the PIT, and may be subject
to some drift over time. An alternate approach is to provide direct
access to a high frequency hardware counter, which provides much
higher resolution and accuracy, but which does not support
interrupts.

14.2.4  BLOCKING AND NON-BLOCKING I/O



With blocking I/O a process is moved to the wait queue when
an I/O request is made, and moved back to the ready queue when
the request completes, allowing other processes to run in the
meantime.

With non-blocking I/O the I/O request returns immediately,
whether the requested I/O operation has (completely) occurred or
not. This allows the process to check for available data without
getting hung completely if it is not there.

One approach for programmers to implement non-blocking I/O
is to have a multi-threaded application, in which one thread makes
blocking I/O calls (say to read a keyboard or mouse), while other
threads continue to update the screen or perform other tasks.

A subtle variation of the non-blocking I/O is the asynchronous
I/O, in which the I/O request returns immediately allowing the
process to continue on with other tasks, and then the process is
notified (via changing a process variable, or a software interrupt, or
a callback function) when the I/O operation has completed and the
data is available for use. (The regular non-blocking I/O returns
immediately with whatever results are available, but does not
complete the operation and notify the process later)

(a) (b)
Fig14.3 Two I/O methods: (a) synchronous and
(b) asynchronous

14.3 TRANSFORMING I/O REQUESTS TO
HARDWARE OPERATIONS

Users request data using file names, which must ultimately
be mapped to specific blocks of data from a specific device
managed by a specific device driver.

DOS uses the colon separator to specify a particular device
(e.g. C:, LPT:, etc.). UNIX uses a mount table to map filename
prefixes (e.g. /usr) to specific mounted devices. Where multiple
entries in the mount table match different prefixes of the filename



the one that matches the longest prefix is chosen. (e.g. /usr/home
instead of /usr where both exist in the mount table and both match
the desired file)

UNIX uses special device files, usually located in /dev, to
represent and access physical devices directly.

Each device file has a major and minor number associated
with it, stored and displayed where the file size would normally go.
The major number is an index into a table of device drivers, and
indicates which device driver handles this device. (E.g. the disk
drive handler).

The minor number is a parameter passed to the device driver,
and indicates which specific device is to be accessed, out of the
many which may be handled by a particular device driver. (e.g. a
particular disk drive or partition).

A series of lookup tables and mappings makes the access of
different devices flexible, and somewhat transparent to users.
Figure 14.4 illustrates the steps taken to process a (blocking) read
request:



Fig 14.4 The life cycle of an I/O request

14.4 STREAMS



The streams mechanism in UNIX provides a bi-directional
pipeline between a user process and a device driver, onto which
additional modules can be added.

The user process interacts with the stream head. The device
driver interacts with the device end. Zero or more stream
modules can be pushed onto the stream, using ioctl(). These
modules may filter and/or modify the data as it passes through the
stream.

Each module has a read queue and a write queue. Flow
control can be optionally supported, in which case each module will
buffer data until the adjacent module is ready to receive it. Without
flow control, data is passed along as soon as it is ready.

User processes communicate with the stream head using
either read() and write() [or putmsg() and getmsg() for message
passing]. Streams I/O is asynchronous (non-blocking), except for
the interface between the user process and the stream head.

The device driver must respond to interrupts from its device -
If the adjacent module is not prepared to accept data and the
device driver's buffers are all full, then data is typically dropped.

Streams are widely used in UNIX, and are the preferred
approach for device drivers. For example, UNIX implements
sockets using streams.



Fig 14.5 The STREAMS architecture

14.5 PERFORMANCE

The I/O system is a major factor in overall system
performance, and can place heavy loads on other major
components of the system (interrupt handling, process switching,
memory access, bus contention, and CPU load for device drivers
just to name a few)

Interrupt handling can be relatively expensive (slow), which
causes programmed I/O to be faster than interrupt-driven I/O when
the time spent busy waiting is not excessive.

Network traffic can also put a heavy load on the system.
Consider for example the sequence of events that occur when a
single character is typed in a telnet session, as shown in figure
14.6. (And the fact that a similar set of events must happen in
reverse to echo back the character that was typed) Sun uses in-
kernel threads for the telnet daemon, increasing the supportable
number of simultaneous telnet sessions from the hundreds to the
thousands.



Fig 14.6 Intercomputer Communications

Other systems use front-end processors to off-load some of
the work of I/O processing from the CPU. For example a terminal
concentrator can multiplex with hundreds of terminals on a single
port on a large computer.

Several principles can be employed to increase the overall
efficiency of I/O processing:

• Reduce the number of context switches.

• Reduce the number of times data must be copied.

• Reduce interrupt frequency, using large transfers, buffering, and
polling where appropriate.

• Increase concurrency using DMA.

• Move processing primitives into hardware, allowing their
operation to be concurrent with CPU and bus operations.



• Balance CPU, memory, bus, and I/O operations, so a bottleneck
in one does not idle all the others.

The development of new I/O algorithms often follows a
progression from application level code to on-board hardware
implementation, as shown in Figure 14.7. Lower-level
implementations are faster and more efficient, but higher-level ones
are more flexible and easier to modify. Hardware-level functionality
may also be harder for higher-level authorities (e.g. the kernel) to
control.

Fig 14.7 Device Functionality Progression

14.6 LET US SUM UP

• Devices vary in many dimensions:
o Character-stream or block
o Sequential or random-access
o Sharable or dedicated
o Speed of operation
o Read-write, read only, or write only

• Block devices are accessed a block at a time, and are indicated
by a "b" as the first character in a long listing on UNIX systems

• The select() system call allows servers (or other applications) to
identify sockets which have data waiting, without having to poll
all available sockets.

• One approach for programmers to implement non-blocking I/O
is to have a multi-threaded application, in which one thread
makes blocking I/O calls (say to read a keyboard or mouse),



while other threads continue to update the screen or perform
other tasks.

• Each device file has a major and minor number associated with
it, stored and displayed where the file size would normally go.

• A series of lookup tables and mappings makes the access of
different devices flexible, and somewhat transparent to users.

• The streams mechanism in UNIX provides a bi-directional
pipeline between a user process and a device driver, onto which
additional modules can be added.

• Streams I/O is asynchronous (non-blocking), except for the
interface between the user process and the stream head.

• The development of new I/O algorithms often follows a
progression from application level code to on-board hardware
implementation.

14.7 UNIT END QUESTIONS

7. State some characteristics of I/O devices.
8. Write a short note on Blocking and non-blocking I/O
9. Describe the life cycle of an I/O request with the help of a

diagram.
10.What are STREAMS?
11.State various principles employed to increase the overall

efficiency of I/O processing.
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15.0 OBJECTIVES



After studying this unit, you will be able:

• To ensure that each shared resource is used only in accordance
with system policies, which may be set either by system
designers or by system administrators.

• To ensure that errant programs cause the minimal amount of
damage possible.

• Note that protection systems only provide the mechanisms for
enforcing policies and ensuring reliable systems. It is up to
administrators and users to implement those mechanisms
effectively.

15.1 INTRODUCTION

The role of protection in a computer system is to provide a
mechanism for the enforcement of the policies governing resource
use. These policies can be established in a variety of ways. Some
are fixed in the design of the system, while others are formulated by
the management of a system. Still others are defined by the
individual users to protect their own files and programs. A
protection system must have the flexibility to enforce a variety of
policies.

15.2 PRINCIPLES OF PROTECTION

The principle of least privilege dictates that programs, users,
and systems be given just enough privileges to perform their tasks.
This ensures that failures do the least amount of harm and allow
the least of harm to be done.

For example, if a program needs special privileges to perform
a task, it is better to make it a SGID program with group ownership
of "network" or "backup" or some other pseudo group, rather than
SUID with root ownership. This limits the amount of damage that
can occur if something goes wrong.

Typically each user is given their own account, and has only
enough privilege to modify their own files. The root account should
not be used for normal day to day activities - The System
Administrator should also have an ordinary account, and reserve
use of the root account for only those tasks which need the root
privileges

15.3 DOMAIN OF PROTECTION

A computer can be viewed as a collection of processes and
objects (both hardware and software).



The need to know principle states that a process should only
have access to those objects it needs to accomplish its task, and
furthermore only in the modes for which it needs access and only
during the time frame when it needs access. The modes available
for a particular object may depend upon its type.

15.3.1 Domain Structure
A protection domain specifies the resources that a process

may access. Each domain defines a set of objects and the types of
operations that may be invoked on each object. An access right is
the ability to execute an operation on an object.

A domain is defined as a set of < object, { access right set } >
pairs, as shown below. Note that some domains may be disjoint
while others overlap.

Fig 15.1 System with three protection domains

The association between a process and a domain may
be static or dynamic. If the association is static, then the need-to-
know principle requires a way of changing the contents of the
domain dynamically. If the association is dynamic, then there needs
to be a mechanism for domain switching.

Domains may be realized in different fashions - as users, or
as processes, or as procedures. E.g. if each user corresponds to a
domain, then that domain defines the access of that user, and
changing domains involves changing user ID.

15.3.2 An Example: UNIX
UNIX associates domains with users. Certain programs

operate with the SUID bit set, which effectively changes the user
ID, and therefore the access domain, while the program is running
(and similarly for the SGID bit). Unfortunately this has some
potential for abuse.

An alternative used on some systems is to place privileged
programs in special directories, so that they attain the identity of the
directory owner when they run. This prevents crackers from placing
SUID programs in random directories around the system.

Yet another alternative is to not allow the changing of ID at all.
Instead, special privileged daemons are launched at boot time, and



user processes send messages to these daemons when they need
special tasks performed.

15.4 ACCESS MATRIX

The model of protection that we have been discussing can be
viewed as an access matrix, in which columns represent different
system resources and rows represent different protection domains.
Entries within the matrix indicate what access that domain has to
that resource.

Fig 15.2 Access Matrix
Domain switching can be easily supported under this model, simply
by providing "switch" access to other domains:

Fig 15.3 Access matrix of fig.15.2 with domains as objects
The ability to copy rights is denoted by an asterisk, indicating

that processes in that domain have the right to copy that access
within the same column, i.e. for the same object. There are two
important variations:

If the asterisk is removed from the original access right, then
the right is transferred, rather than being copied. This may be
termed a transfer right as opposed to a copy right.



If only the right and not the asterisk is copied, then the access
right is added to the new domain, but it may not be propagated
further. That is the new domain does not also receive the right to
copy the access. This may be termed a limited copy right, as shown
in Figure 15.4 below:

Fig 15.4 Access matrix with copyrights

The owner right adds the privilege of adding new rights or
removing existing ones:



(b)
Fig 15.5 Access matrix with owner rights

Copy and owner rights only allow the modification of rights
within a column. The addition of control rights, which only apply to
domain objects, allow a process operating in one domain to affect
the rights available in other domains. For example in the table
below, a process operating in domain D2 has the right to control
any of the rights in domain D4.



Fig 15.6 Modified access matrix of fig. 15.3

15.5 ACCESS CONTROL

Role-Based Access Control, RBAC, assigns privileges to
users, programs, or roles as appropriate, where "privileges" refer to
the right to call certain system calls, or to use certain parameters
with those calls. RBAC supports the principle of least privilege, and
reduces the susceptibility to abuse as opposed to SUID or SGID
programs.

Fig 15.7 Role-based access control in Solaris 10

15.6 CAPABILITY-BASED SYSTEMS

15.6.1 An Example: Hydra
Hydra is a capability-based system that includes both system-

defined rights and user-defined rights. The interpretation of user-
defined rights is up to the specific user programs, but the OS
provides support for protecting access to those rights, whatever
they may be

Operations on objects are defined procedurally, and those
procedures are themselves protected objects, accessed indirectly
through capabilities. The names of user-defined procedures must



be identified to the protection system if it is to deal with user-
defined rights.

When an object is created, the names of operations defined
on that object become auxiliary rights, described in a capability for
an instance of the type. For a process to act on an object, the
capabilities it holds for that object must contain the name of the
operation being invoked. This allows access to be controlled on an
instance-by-instance and process-by-process basis.

Hydra also allows rights amplification, in which a process is
deemed to be trustworthy, and thereby allowed to act on any object
corresponding to its parameters.

Programmers can make direct use of the Hydra protection
system, using suitable libraries which are documented in
appropriate reference manuals.

15.6.2 An Example: Cambridge CAP System

The CAP system has two kinds of capabilities:
• Data capability, used to provide read, write, and execute access

to objects. These capabilities are interpreted by microcode in
the CAP machine.

• Software capability, is protected but not interpreted by the CAP
microcode.

Software capabilities are interpreted by protected (privileged)
procedures, possibly written by application programmers.

When a process executes a protected procedure, it
temporarily gains the ability to read or write the contents of a
software capability. This leaves the interpretation of the software
capabilities up to the individual subsystems, and limits the potential
damage that could be caused by a faulty privileged procedure.

Note, however, that protected procedures only get access to
software capabilities for the subsystem of which they are a part.
Checks are made when passing software capabilities to protected
procedures that they are of the correct type.

Unfortunately the CAP system does not provide libraries,
making it harder for an individual programmer to use than the
Hydra system.

15.7 LANGUAGE-BASED PROTECTION

As systems have developed, protection systems have become
more powerful, and also more specific and specialized. To refine



protection even further requires putting protection capabilities into
the hands of individual programmers, so that protection policies can
be implemented on the application level, i.e. to protect resources in
ways that are known to the specific applications but not to the more
general operating system.

15.7.1 Compiler-Based Enforcement
In a compiler-based approach to protection enforcement,

programmers directly specify the protection needed for different
resources at the time the resources are declared.

This approach has several advantages:
1. Protection needs are simply declared, as opposed to a complex

series of procedure calls.
2. Protection requirements can be stated independently of the

support provided by a particular OS.
3. The means of enforcement need not be provided directly by the

developer.
4. Declarative notation is natural, because access privileges are

closely related to the concept of data types.

Regardless of the means of implementation, compiler-based
protection relies upon the underlying protection mechanisms
provided by the underlying OS, such as the Cambridge CAP or
Hydra systems.

Even if the underlying OS does not provide advanced protection
mechanisms, the compiler can still offer some protection, such as
treating memory accesses differently in code versus data
segments. (E.g. code segments cant be modified, data segments
can't be executed)

There are several areas in which compiler-based protection can
be compared to kernel-enforced protection:

Security
Security provided by the kernel offers better protection than

that provided by a compiler. The security of the compiler-based
enforcement is dependent upon the integrity of the compiler itself,
as well as requiring that files not be modified after they are
compiled. The kernel is in a better position to protect itself from
modification, as well as protecting access to specific files. Where
hardware support of individual memory accesses is available, the
protection is stronger still.

Flexibility
A kernel-based protection system is not as flexible to provide

the specific protection needed by an individual programmer, though



it may provide support which the programmer may make use of.
Compilers are more easily changed and updated when necessary
to change the protection services offered or their implementation.

Efficiency
The most efficient protection mechanism is one supported by

hardware and microcode. Insofar as software based protection is
concerned, compiler-based systems have the advantage that many
checks can be made off-line, at compile time, rather that during
execution.

The concept of incorporating protection mechanisms into
programming languages is in its infancy, and still remains to be fully
developed. However the general goal is to provide mechanisms for
three functions:

1. Distributing capabilities safely and efficiently among customer
processes. In particular a user process should only be able to
access resources for which it was issued capabilities.

2. Specifying the type of operations a process may execute on a
resource, such as reading or writing.

3. Specifying the order in which operations are performed on the
resource, such as opening before reading.

15.7.2 Protection in Java
Java was designed from the very beginning to operate in a

distributed environment, where code would be executed from a
variety of trusted and untrusted sources. As a result the Java
Virtual Machine, JVM incorporates many protection mechanisms

When a Java program runs, it load up classes dynamically, in
response to requests to instantiates objects of particular types.
These classes may come from a variety of different sources, some
trusted and some not, which requires that the protection
mechanism be implemented at the resolution of individual classes,
something not supported by the basic operating system.

As each class is loaded, it is placed into a separate protection
domain. The capabilities of each domain depend upon whether the
source URL is trusted or not, the presence or absence of any digital
signatures on the class, and a configurable policy file indicating
which servers a particular user trusts, etc.

When a request is made to access a restricted resource in
Java, (e.g. open a local file), some process on the current call
stack must specifically assert a privilege to perform the operation.
In essence this method assumes responsibility for the restricted
access. Naturally the method must be part of a class which resides
in a protection domain that includes the capability for the requested



operation. This approach is termed stack inspection, and works like
this:

1. When a caller may not be trusted, a method executes an access
request within a doPrivileged() block, which is noted on the
calling stack.

2. When access to a protected resource is requested, check
Permissions() inspects the call stack to see if a method has
asserted the privilege to access the protected resource.

• If a suitable doPriveleged block is encountered on the stack
before a domain in which the privilege is disallowed, then the
request is granted.

• If a domain in which the request is disallowed is encountered
first, then the access is denied and an
AccessControlException is thrown.

• If neither is encountered, then the response is implementation
dependent.

In the example below the untrusted applet's call
to get() succeeds, because the trusted URL loader asserts the
privilege of opening the specific URL lucent.com. However when
the applet tries to make a direct call to open() it fails, because it
does not have privilege to access any sockets.

Fig 15.8 Stack Inspection

15.8 THE SECURITY PROBLEM

Some of the most common types of violations include:
Breach of Confidentiality - Theft of private or confidential
information, such as credit-card numbers, trade secrets, patents,
secret formulas, manufacturing procedures, medical information,
financial information, etc.

Breach of Integrity - Unauthorized modification of data, which
may have serious indirect consequences. For example a popular
game or other program's source code could be modified to open up



security holes on users systems before being released to the
public.

Breach of Availability - Unauthorized destruction of data, often
just for the "fun" of causing havoc and for bragging rites. Vandalism
of web sites is a common form of this violation.

Theft of Service - Unauthorized use of resources, such as theft of
CPU cycles, installation of daemons running an unauthorized file
server, or tapping into the target's telephone or networking
services.

Denial of Service, DOS - Preventing legitimate users from using
the system, often by overloading and overwhelming the system with
an excess of requests for service.

One common attack is masquerading, in which the attacker
pretends to be a trusted third party. A variation of this is the man-in-
the-middle, in which the attacker masquerades as both ends of the
conversation to two targets.

A replay attack involves repeating a valid transmission.
Sometimes this can be the entire attack, (such as repeating a
request for a money transfer), or other times the content of the
original message is replaced with malicious content.



Fig 15.9 Standard Security Attacks

There are four levels at which a system must be protected:
1. Physical - The easiest way to steal data is to pocket the

backup tapes. Also, access to the root console will often give
the user special privileges, such as rebooting the system as root
from removable media. Even general access to terminals in a
computer room offers some opportunities for an attacker,
although today's modern high-speed networking environment
provides more and more opportunities for remote attacks.

2. Human - There is some concern that the humans who are
allowed access to a system be trustworthy, and that they cannot
be coerced into breaching security. However more and more
attacks today are made via social engineering, which basically



means fooling trustworthy people into accidentally breaching
security.

• Phishing involves sending an innocent-looking e-mail or web
site designed to fool people into revealing confidential
information. E.g. spam e-mails pretending to be from e-Bay,
PayPal, or any of a number of banks or credit-card companies.

• Dumpster Diving involves searching the trash or other
locations for passwords that are written down. (Note: Passwords
that are too hard to remember, or which must be changed
frequently are more likely to be written down somewhere close
to the user's station.)

• Password Cracking involves divining users passwords, either
by watching them type in their passwords, knowing something
about them like their pet's names, or simply trying all words in
common dictionaries. (Note: "Good" passwords should involve a
minimum number of characters, include non-alphabetical
characters, and not appear in any dictionary (in any language),
and should be changed frequently. Also note that it is proper
etiquette to look away from the keyboard while someone else is
entering their password.)

3. Operating System - The OS must protect itself from security
breaches, such as runaway processes (denial of service),
memory-access violations, stack overflow violations, the
launching of programs with excessive privileges, and many
others.

4. Network - As network communications become ever more
important and pervasive in modern computing environments, it
becomes ever more important to protect this area of the system.
(Both protecting the network itself from attack, and protecting
the local system from attacks coming in through the network.)
This is a growing area of concern as wireless communications
and portable devices become more and more prevalent.

15.9 SYSTEM AND NETWORK THREATS

Most of the threats described above are termed program
threats, because they attack specific programs or are carried and
distributed in programs. The threats in this section attack the
operating system or the network itself, or leverage those systems to
launch their attacks.

15.9.1 Worms
A worm is a process that uses the fork / spawn process to

make copies of itself in order to wreak havoc on a system. Worms



consume system resources, often blocking out other, legitimate
processes. Worms that propagate over networks can be especially
problematic, as they can tie up vast amounts of network resources
and bring down large-scale systems.

One of the most well-known worms was launched by Robert
Morris, a graduate student at Cornell, in November 1988. Targeting
Sun and VAX computers running BSD UNIX version 4, the worm
spanned the Internet in a matter of a few hours, and consumed
enough resources to bring down many systems.

This worm consisted of two parts: A small program called
a grappling hook, which was deposited on the target system
through one of three vulnerabilities, and the main worm program,
which was transferred onto the target system and launched by the
grappling hook program.

Fig 15.10 The Morris Internet WORM

The three vulnerabilities exploited by the Morris Internet worm were
as follows:

1. rsh (remote shell) is a utility that was in common use at that
time for accessing remote systems without having to provide a
password. If a user had an account on two different computers
(with the same account name on both systems), then the
system could be configured to allow that user to remotely
connect from one system to the other without having to provide
a password. Many systems were configured so that any user
(except root) on system A could access the same account on
system B without providing a password.

2. finger is a utility that allows one to remotely query a user
database, to find the true name and other information for a
given account name on a given system. For example "finger
joeUser@somemachine.edu" would access the finger daemon
at somemachine.edu and return information regarding joeUser.

mailto:joeUser@somemachine.edu


Unfortunately the finger daemon (which ran with system
privileges) had the buffer overflow problem, so by sending a
special 536-character user name the worm was able to fork a
shell on the remote system running with root privileges.

3. sendmail is a routine for sending and forwarding mail that also
included a debugging option for verifying and testing the
system. The debug feature was convenient for administrators,
and was often left turned on. The Morris worm exploited the
debugger to mail and execute a copy of the grappling hook
program on the remote system.

Once in place, the worm undertook systematic attacks to discover
user passwords:

1. First it would check for accounts for which the account name
and the password were the same, such as "guest", "guest".

2. Then it would try an internal dictionary of 432 favorite password
choices. (I'm sure "password", "pass", and blank passwords
were all on the list.)

3. Finally it would try every word in the standard UNIX on-line
dictionary to try and break into user accounts.

Once it has access to one or more user accounts, then it would
attempt to use those accounts to rsh to other systems, and
continue the process.

With each new access the worm would check for already
running copies of itself, and 6 out of 7 times if it found one it would
stop. (The seventh was to prevent the worm from being stopped by
fake copies.)

Fortunately the same rapid network connectivity that allowed
the worm to propagate so quickly also quickly led to its demise -
Within 24 hours remedies for stopping the worm propagated
through the Internet from administrator to administrator, and the
worm was quickly shut down.

There is some debate about whether Mr. Morris's actions
were a harmless prank or research project that got out of hand or a
deliberate and malicious attack on the Internet. However the court
system convicted him, and penalized him heavy fines and court
costs.

There have since been many other worm attacks, including
the W32.Sobig.F@mm attack which infected hundreds of
thousands of computers and an estimated 1 in 17 e-mails in August
2003. This worm made detection difficult by varying the subject line



of the infection-carrying mail message, including "Thank You!",
"Your details", and "Re: Approved".

15.9.2 Port Scanning
Port Scanning is technically not an attack, but rather a search

for vulnerabilities to attack. The basic idea is to systematically
attempt to connect to every known (or common or possible)
network port on some remote machine, and to attempt to make
contact. Once it is determined that a particular computer is listening
to a particular port, then the next step is to determine what daemon
is listening, and whether or not it is a version containing a known
security flaw that can be exploited.

Because port scanning is easily detected and traced, it is
usually launched from zombie systems, i.e. previously hacked
systems that are being used without the knowledge or permission
of their rightful owner. For this reason it is important to protect
"innocuous" systems and accounts as well as those that contain
sensitive information or special privileges.

There are also port scanners available that administrators can
use to check their own systems, which report any weaknesses
found but which do not exploit the weaknesses or cause any
problems. Two such systems are nmap
(http://www.insecure.org/nmap )
and nessus (http://www.nessus.org ). The former identifies what OS
is found, what firewalls are in place, and what services are listening
to what ports. The latter also contains a database of known security
holes, and identifies any that it finds.

15.9.3 Denial of Service
Denial of Service (DOS) attacks do not attempt to actually

access or damage systems, but merely to clog them up so badly
that they cannot be used for any useful work. Tight loops that
repeatedly request system services are an obvious form of this
attack.

DOS attacks can also involve social engineering, such as the
Internet chain letters that say "send this immediately to 10 of your
friends, and then go to a certain URL", which clogs up not only the
Internet mail system but also the web server to which everyone is
directed. (Note: Sending a "reply all" to such a message notifying
everyone that it was just a hoax also clogs up the Internet mail
service, just as effectively as if you had forwarded the thing.)

Security systems that lock accounts after a certain number of
failed login attempts are subject to DOS attacks which repeatedly
attempt logins to all accounts with invalid passwords strictly in order
to lock up all accounts.

http://www.insecure.org/nmap
http://www.nessus.org


15.10 IMPLEMENTING SECURITY DEFENSES

15.10.1 SECURITY POLICY
A security policy should be well thought-out, agreed upon, and

contained in a living document that everyone adheres to and is
updated as needed. Examples of contents include how often port
scans are run, password requirements, virus detectors, etc.

15.10.2 VULNERABILITY ASSESSMENT

Periodically examine the system to detect vulnerabilities.
oPort scanning.
oCheck for bad passwords.
oLook for suid programs.
oUnauthorized programs in system directories.
oIncorrect permission bits set.
oProgram checksums / digital signatures which have

changed.
oUnexpected or hidden network daemons.
oNew entries in startup scripts, shutdown scripts, cron tables,

or other system scripts or configuration files.
oNew unauthorized accounts.

The government considers a system to be only as secure as
its most far-reaching component. Any system connected to the
Internet is inherently less secure than one that is in a sealed room
with no external communications.

Some administrators advocate "security through obscurity",
aiming to keep as much information about their systems hidden as
possible, and not announcing any security concerns they come
across. Others announce security concerns from the rooftops,
under the theory that the hackers are going to find out anyway, and
the only one kept in the dark by obscurity are honest administrators
who need to get the word.

15.10.3 INTRUSION DETECTION
Intrusion detection attempts to detect attacks, both successful

and unsuccessful attempts. Different techniques vary along several
axes:

• The time that detection occurs, either during the attack or after
the fact.

• The types of information examined to detect the attack(s). Some
attacks can only be detected by analyzing multiple sources of
information.



• The response to the attack, which may range from alerting an
administrator to automatically stopping the attack (e.g. killing an
offending process), to tracing back the attack in order to identify
the attacker.

Intrusion Detection Systems, IDSs, raise the alarm when they
detect an intrusion. Intrusion Detection and Prevention Systems,
IDPs, act as filtering routers, shutting down suspicious traffic when
it is detected.

There are two major approaches to detecting problems:
1. Signature-Based Detection scans network packets, system

files, etc. looking for recognizable characteristics of known
attacks, such as text strings for messages or the binary code for
"exec /bin/sh". The problem with this is that it can only detect
previously encountered problems for which the signature is
known, requiring the frequent update of signature lists.

2. Anomaly Detection looks for "unusual" patterns of traffic or
operation, such as unusually heavy load or an unusual number
of logins late at night.

The benefit of this approach is it can detect previously
unknown attacks, so called zero-day attacks. To be effective,
anomaly detectors must have a very low false alarm (false
positive) rate, lest the warnings get ignored, as well as a low false
negative rate in which attacks are missed.

15.10.4 VIRUS PROTECTION
Modern anti-virus programs are basically signature-based

detection systems, which also have the ability (in some cases)
of disinfecting the affected files and returning them back to their
original condition.

Both viruses and anti-virus programs are rapidly evolving. For
example viruses now commonly mutate every time they propagate,
and so anti-virus programs look for families of related signatures
rather than specific ones. Some antivirus programs look for
anomalies, such as an executable program being opened for
writing (other than by a compiler.)

Avoiding bootleg, free, and shared software can help reduce
the chance of catching a virus, but even shrink-wrapped official
software has on occasion been infected by disgruntled factory
workers. Some virus detectors will run suspicious programs in
a sandbox, an isolated and secure area of the system which mimics
the real system.

Rich Text Format, RTF, files cannot carry macros, and hence
cannot carry Word macro viruses. Known safe programs (e.g. right
after a fresh install or after a thorough examination) can be digitally



signed, and periodically the files can be re-verified against the
stored digital signatures. (Which should be kept secure, such as on
off-line write-only medium)

15.10.5 AUDITING, ACCOUNTING, AND LOGGING
Auditing, accounting, and logging records can also be used to

detect anomalous behavior.

Some of the kinds of things that can be logged include
authentication failures and successes, logins, running of suid or
sgid programs, network accesses, system calls, etc. In extreme
cases almost every keystroke and electron that moves can be
logged for future analysis. (Note that on the flip side, all this
detailed logging can also be used to analyze system performance.
The down side is that the logging also affects system performance
(negatively), and so a Heisenberg effect applies).

"The Cuckoo's Egg" tells the story of how Cliff Stoll detected
one of the early UNIX break-ins when he noticed anomalies in the
accounting records on a computer system being used by physics
researchers.

15.11 LET US SUM UP

• A computer can be viewed as a collection of processes and
objects (both hardware and software).

• A protection domain specifies the resources that a process may
access.

• A domain is defined as a set of < object, { access right set } >
pairs.

• Domains may be realized in different fashions - as users, or as
processes, or as procedures.

• Certain programs operate with the SUID bit set, which
effectively changes the user ID, and therefore the access
domain, while the program is running.

• The ability to copy rights is denoted by an asterisk, indicating
that processes in that domain have the right to copy that access
within the same column, i.e. for the same object.

• Role-Based Access Control, RBAC, assigns privileges to users,
programs, or roles as appropriate, where "privileges" refer to the
right to call certain system calls, or to use certain parameters
with those calls.

• Hydra is a capability-based system that includes both system-
defined rights and user-defined rights.



• In a compiler-based approach to protection enforcement,
programmers directly specify the protection needed for different
resources at the time the resources are declared.

• Even if the underlying OS does not provide advanced protection
mechanisms, the compiler can still offer some protection, such
as treating memory accesses differently in code versus data
segments.

• The security of the compiler-based enforcement is dependent
upon the integrity of the compiler itself, as well as requiring that
files not be modified after they are compiled.

• Java was designed from the very beginning to operate in a
distributed environment, where code would be executed from a
variety of trusted and untrusted sources.

• When a Java program runs, it load up classes dynamically, in
response to requests to instantiates objects of particular types.

• A worm is a process that uses the fork / spawn process to
make copies of itself in order to wreak havoc on a system

• One of the most well-known worms was launched by Robert
Morris, a graduate student at Cornell, in November 1988

• Port Scanning is technically not an attack, but rather a search
for vulnerabilities to attack

• Because port scanning is easily detected and traced, it is
usually launched from zombie systems, i.e. previously hacked
systems that are being used without the knowledge or
permission of their rightful owner.

• Security systems that lock accounts after a certain number of
failed login attempts are subject to DOS attacks which
repeatedly attempt logins to all accounts with invalid passwords
strictly in order to lock up all accounts

• Any system connected to the Internet is inherently less secure
than one that is in a sealed room with no external
communications.

• Avoiding bootleg, free, and shared software can help reduce
the chance of catching a virus, but even shrink-wrapped official
software has on occasion been infected by disgruntled factory
workers.

15.12 UNIT END QUESTIONS

12.Write short notes on : (a) Access Matrix (b) Hydra
13.What are the most common types of violations?
14.Describe in brief about protection in JAVA.
15.State and explain the levels at which a system must be

protected.



16.What is Port Scanning.
17.Define :

a. Grappling
b. Zero-day attacks

18.How are security defenses implemented?




