

Preamble

The subject of Biophysics is one of the important interdisciplinary areas in teaching, training and learning which is considered to be important in terms of human resource development and National development.

Biophysics is the physics of life phenomenon studied at all level, from molecules and cell to the biosphere as whole. It may be defined: Biophysics is that branch of knowledge that applies the principles of physics and chemistry and the methods of mathematical analysis and computer modeling to understand how biological systems work.

The main emphasis of biophysics is on the quantitative analysis of the physical and chemical aspects of the functions of biological molecules, organisms and entities. The techniques and methodologies that biophysics relies on are closer to Physics and Chemistry, but areas of application are in the biological, medical and related sciences

Biophysicists use a variety of techniques such as UV visible spectroscopy, Gel electrophoresis, X-ray crystallography, microcalorimetry, Atomic Force Microscope, FTIR, Raman, SPR, NMR, fluorescence spectroscopy, Fluorescence Microscopy, Viscometry, G M Counter etc are used to study problem in exciting areas in biophysics ranging from structure aided drug design to cell signalling and transcriptional silencing etc.

Biophysicist works in Universities, R & D industry, Medical Centres/Colleges, Research Institutes, Government Organisation etc.

The two year programme of M.Sc. (Biophysics) is prescribed according to the credit system of University of Mumbai from the academic year 2012-13. The course has been divided in to four semesters. The programm has total 16 theory papers, and four in each semester.

The programme is designed to provide students a broad based training in Biophysics with strong background of basic concepts as well as exposing them to the advanced fields. In addition to theoretical knowledge, significant emphasis has been given to provide hands on experience to the students in the frontier areas of Biophysics. A multidisciplinary approach has been employed to provide best leverage to students to enable them move into advanced and frontier areas of biological research in the future. Hence, one paper is also introduced on soft skill as per the guideline given by University of Mumbai. This paper focusses on perception, comprehensive, presentation skills etc. This will enable to add new dimension in frontier research skills in students.

Revised syllabus of M.Sc. Biophysics Semester I & II (Based on Credit and grading system)

Semester 1	
------------	--

Paper	Paper nomenclature	Lectures	Credit	Practical	Hrs	Credit	Total
code				Paper No & Code			Credit
PSBP101	General Physico-chemical Principles	60	04	Paper I (PSBPP 101)	60	02	06
PSBP102	Biomathematics & Biostatistics	60	04	Paper II (PSBPP 102)	60	02	06
PSBP103	Cell Biophysics	60	04	Paper III (PSBPP 103)	60	02	06
PSBP104	Methods in Biophysics	60	04	Paper IV (PSBPP 104)	60	02	06
	Total						24
	Semester II						
PSBP 201	Molecular Biophysics	60	04	Paper V (PSBPP 201)	60	02	06
PSBP202	Biochemistry	60	04	Paper VI (PSBPP 202)	60	02	06
PSBP203	Molecular Biology & Protein Engineering	60	04	Paper VII (PSBPP 203)	60	02	06
PSBP204	Membrane Biophysics	60	04	Paper VIII (PSBPP 204)	60	02	06
	Total						24
	Grand Total (Sem I & II)						48

Total credits for M.Sc. Part I =(Sem I- 24 and sem II-24) =48

Evaluation: The students will be evaluated internally and externally. The internal evaluation is done by concern teacher and external evaluation done by the committee appointed by the University norms. Standard passing and scale as per the university norms.

M.Sc. BioPhysics Syllabus Semester I & II Credit Based and Grading System To be implemented from the Academic year 2012-2013

SEM: I

Paper I: General Physico-chemical Principles: PSBP101
Paper II: Biomathematics & Biostastics: PSBP102
Paper II: Cell Biophysics: PSBP103
Paper III: Methods in Biophysics: PSBP104
SEM: II
Paper IV: Molecular Biophysics: PSBP201
Paper V: Biochemistry: PSBP202
Paper VI: Molecular Biology & Protein Engineering: PSBP203
Paper VIII: Membrane Biophysics: PSBP204

SEMESTER I

General Physico-chemical Principles: **PSBP101**

Course Code	UNIT	TOPIC HEADINGS	Credits	L / Week
PSBP101	Ι	Laws of Physics and Chemistry		
	II	Energies Forces & Bonds	- 4	
	III	Principles of Kinetics of Molecules		
	IV	Proton Transfer equilibria		
	V	Electron Transport & Oxidative phosphorylation		

Biomathematics & Biostatistics **PSBP 102**

	Ι	Introduction to Biomathamatics		
DCDD102	II	General principals	4	
PSBP102	III	Introduction to statistics	4	
	IV	Hypothesis and Tests		

Cell Biophysics: **PSBP103**

DCDD102	Ι	General organisation of cell		
	II	Cell differentiation	4	
PSBP103	III	Cell growth & Division	4	
	IV	Cell cell communication		

Methods in Biophysics: PSBP 104

PSBP104	Ι	Spectroscopy	4	
	II	Microscopy	4	

III	Separation Techniques	

	Concred Biophysics		
PSBPP101	 General Biophysics PH Meter: Standardization of pH meter, Preparation of Buffers, pH titration curve of acid-base Determination values of Iso-electric point: Amino acids, proteins, phosphoric acids. Viscosity: Determination of viscosity of biofluids and chemicals Colorimeter: Verification of Beer's- Lambert law, determiantion of absorption maxima of color compounds, determination of molecular extinction coefficient. Estimation of percent purities of dyes and inorganic compound 	2	
PSBPP102	 Biomathematics & Stat Calculation of measures of dispersion: a) Mean deviation b) std deviation and coefficient variation c) Quartile deviation Test of significance: a) Chi-square test b) t-test To evaluate standard error and interpretation of results of accuracy and precision 	2	
PSBPP103	 Cell Biophysics Microscopy: Familiarizes with bright field , phase contrast, fluorescent, polarization microscopes. Classification of gram –ve & +ve ogananisms Observe cell growth/ survival by colony forming assay Estimation of cell viability by dye exclusion and colony techniques. Observe cell death by physical and chemical agents Observe cell division and determine mitotic index (Demonstration) Determination of cellular carbohydrates by Acid shifts (PAS) reaction. 	2	

	 Blood analysis: Total WBC count, PCV, MCV etc Differential Counts, Total RBC count, Blood grouping and coagulation. Hemoglobin estimation. 		
PSBPP104	 Methods in Biophysics (Practical) Fractionation of proteins using: PAGE, PAPER electrophoresis TLC: Amino acids/ sugars/ fruit juice/oil Column chromatography for protein /pigment To study of conformational changes in biomolecules using Ostwald viscometer Refractoemetry: study of sugars/proteins/amino acids 	2	

SEMESTER II

Molecular Biophysics: PSBP201

	Ι	Principles of protein structure & confirmation		
PSBP201	II	Proteins structure and stability	4	
	III	Structure of Nucleic Acids		
	IV	Molecular distribution & statistical thermodynamics		

Biochemistry: PSBP202

Course Code	UNIT	TOPIC HEADINGS	Credits	L / Week
	Ι	Hormones & its Actions		
	II	DNA structure, Replication & Repairs		
PSBP202	III	RNA synthesis & Translation	4	
	IV	Regulation of gene expression in prokaryotes		
	V	Ligand receptors & Interactions		

Course Code	UNIT	TOPIC HEADINGS	Credits	L / Week
	Ι	Preparation and analysis of DNA, Enzymatic manipulation of DNA & RNA		
	II	Construction of Recombinant DNA libraries & In vitro Mutagenesis	4	
PSBP203	III	Introduction of DNA into mammalian cell & system for study of cloned Genes		
	IV	Micro sequencing methods for proteins & Engineering proteins for purification		
	V	Chemical approach to protein engineering & Protein engineering for thermostability		

Membrane Biophysics: PSBP 204

PSBP204	Ι	Membrane structure & Models		
	II	Physical properties of membrane	4	
	III	Membrane transport		
	IV	Molecular dynamics of Membrane		
	V	Membrane potentials & Lipid membrane technology		

Molecular Biophysics (Practical) 1. Study of thermal denaturation of DNA and protein 2. Mutarotation of glucose and amino acids 3. Study of DNA-Protein interaction using fluorometry 4. Study of fluorescence sensitivity and quenching 5. Absorption spectra of Hb, DNA,RNA etc 6. Study of interaction of acridene orange with DNA 7. Identification of C-terminal and N-terminal amino acid

	Dischamistry (Drastical)		
PSBPP202	 Biochemistry (Practical) 1. Enzyme Assays (LKH, beta galacotsidase, acid phophotase, arginase, Succinic De –hydrogenase) : Time , Temp, Protein concentration, cofactors. LKH: Km & Vmax. 2. Estimation of Protein by Lowery/Biuret/ Bradford methods 3. Isolation of casein protein from milk, Hb from RBC 4. Assessment of antioxidants /Lipid peroxidation from given samples. 	2	
PSBPP203	 Molecular Biology & Protein Engineering (Practical) 1. Isolation of DNA (Nuclear & Mitochondrial) 2. Detection of DNA modifications. 3. Restriction endonuclease digestion and separation of fragments by gel electrophoresis. 4. Determination of base composition of Nucleic acids 5. Gel filtrations chromatography 6. To find out capacity & nature of the given ion exchange resin. 7. DEAE cellulose chromatography of DNA 8. PCR (Demonstration) 	2	
PSBPP204	 Membrane Biophysics (Practical) Preparation of liposome's / artificial membrane: Lipid mixture/ BSA / Ovalbumin (Demo) Fluorescence anisotropy and polarization measurement Protein tryptophan fluorescent measurement. Study of membrane fluidity. Effect of hypertonic/ hypotonic/isotonic on RBC membrane. Purification of substances by dialysis Study of volume regulation of erythrocyte and osmotic fragility. Ionophore effect on erythrocyte. Osmolarity: Determination of osmotic pressure of salts. 	2	

 10. Verification of fick's law of diffusion 11. Study of phase transition of membrane phospholipids 12. To study of membrane potential using 	
fluorescence spectroscopy	

Semester I Detail Syllabus

Course Code	Title	Credits
PSBP 101	General Physico-chemical Principles Total lectures:60	4
Ionization energy, secondary bonds.	re & Bonding: Quantum mechanics: Pauli Exclusion Principle, electron affinity and chemical binding, Electronegativity and strong bonds, The electronics structure of atoms, Molecular orbital and Covalent bonds. ion: strong and weak interactions. Stereochemistry and Chirality, 20L	
living organisms,	odynamics : Basics of Thermodynamics: Laws of thermodynamics and Entropy, Enthalpy, Efficiency and free energy of system, Concept o cal system, living body and thermodynamics, Carnot cycle, Chemical .)	
Osmosis, Osmotic	of Molecules & Reactions : 0 th , 1 st , 2 nd & 3 rd order reactions, Diffusion, pressure, osmoregulation, surface tension, dialysis, adsorption, viscosity, n, collides, sedimentation. (10L)	
buffers, amphiprot	Base equilibrium : Bronsted lowry theory, protonationa and deprotonation, tic system, protolysis of water, hydrogen ion concentration, pH, acid base on and Hasselbalch equation. (10L)	
References: 1. Physical Cl Press	hemistry for Life Sciences, Peter Atkins and Julio de Paula, 2006, Oxford	
3. Molecular	n to Biophysics by Cortell and Cellular Biophysics, Meyer B Jackson (2006), Cambridge) of Biophysics , R N Roy, New Central Agency (P) Ltd, Culcutta	
5. Physical Cl	hemistry for the Biosciences, Raymond Chang,(2004), University book blogical Thermodyanamics, Donald, T Hayine, (2007), Cambridge	

Course Code	Title	Credits
PSBP102	Biomathematics & Biostatistics Total lectures: 60	4
Unit I:Biomath		
Limits of function	ns, derivatives of functions. Probability Calculation, Differential and	
integral calculu	s, Derivative and its physical significance, basic rules for	
differentiation (Without derivation) Maximum and Minimum their application in	

chemis (15L)	stry, Geometric meaning of integration, application in biology and chemistry.	
Unit l	I: Biostatistics I	
	Introduction, scope, application and use of statistics, collection and	
	classification of data, census and sampling, graphs and diagrams, arithmetic	
	mean, median standard deviation.	
2.	Correlation and regression for ungrouped data, scatter diagram, calculation	
	and interpretation of correlation coefficient, linear regression coefficients and	
	equation of the Lines of regression, nonlinear relationship transformable to	
	liner form $(Y=Ab^x, Ya^xb)$	
3.	Probability, definition, addition and multiplicative laws (without proof).	
	Random variable and its distribution, binominal probability distribution,	
	examples and condition s means and Variances, continuous variable, normal	
	distribution, use of normal probability table for finding probabilities. (15L)	
Unit I	II: Biostatistics' II	
1.	Population parameter and sample statistics, sampling techniques, simple	
	random sampling stratified random sampling, systematic sampling standard	
	error of mean.	
2.	Estimation, Point & interval, confidence interval for proportion.	
3.	Hypothesis attesting, Type I and Type II errors levels of significance, one-	
	tailed and two tailed test, application to single proportion, equality of the	
	population means and two population proportions.	
4.	Chi-square test for independent attributes in r x c table, special case of 2 x 2	
	tables.	
5.	Students test for significance of correlation coefficient y fore p=0 (small	
	sample test (15L)	
Unit I	V: Biostatistics III	
1.	Fishers z transformation coefficient for getting yp-0 in large samples test of	
	significance For y (p=0)	
2.	Design of experiment: Principle and concepts of completely randomized	
	design, randomized block design and Latin square design,	
3.		
4.	Non-parametric test: Distribution-free method, sign test for method pairs,	
	Wilcoxon test for unpaired data Run test. (15L)	
Refere	nces:	
1.	Biostastistics: A foundation for analysis in the Health Sciences, 7 th Ed.(1998) Wayne	
	D, Wiley	
2.	DNA Microarrays, David Bowtell & J Sambrook (2002), CSHL Press Principles of Statistics, 2 nd Ed. M Pagano & K Gauvreau (2007), Thomson Publ	
3.	rinciples of Statistics, 2 Ed. Wi Pagano & K Gauvreau (2007), Inomson Publ	

Course Code	Title	Credits
PSBP 103	Cell Biophysics Total lectures:60	4
organization of prostructure functions	organization of cells : Discovery of Cell, Shape & Size of cell, General okaryotic and eukaryotic organisms' basic concepts and their detailed a prokaryotic cell Wall, Eukaryotic cell wall, functions of cell wall, ical properties of cytoplasm, (15L)	
determinants in o of extra cellula modulation of e	Differentiation : Cellular differentiation; localization of cytoplasm egg. Nucleocytoplasmic interaction and cell function, Development r matrix, mechanism of alpha adrenergic and related response, xtra cellular matrix by tumor cell- Fibroblast interactions, growth ed cell-early cytoplasm singles and Cytoskeleton responses. (15L)	
in cell growth, ce cell cycle, Role o	growth and Division : Kinetics of cell growth, Role of protein kinase ell cycle, cell cycle events: G S G2, Cell division, cytokines, control of f protein kinase c in cell growth, dividing and non-dividing cell, of cell growth, cell transformation, malignant tumor growth, GL)	
paracrine and syn transduction by nucleotides, ph involved in durin zone interaction,	Cell Communication : Strategies of chemical signaling: Endocrine, naptic. Signaling mediated by intracellular receptors: Mechanisms of cell surface receptor protein, role of calmodulin, Ca and cyclic nosphoinisitol cycle, sodium proton exchanger, molecular events ag sperm-egg interaction, implications and the mechanisms of sperm- Role of soluble factors produced by follicle somatic cell on gamete actors influencing sperm egg recognition and binding.	
Taylor 2. The C 3. Molec 4. Bioch 5. Introd 6. Molec	eular Biology of the Cell, Bruce Albert, Alexander Jhonson et al (2002), r & Francis Group. ell Molecular Approach, G Cooper & R Hausman (2007) ASM Press eular Biology , D Roberties, 8 th Ed. SAE emistry by Strayer uction to Biological Membrane, D Chapman eular Cell Biology, Lodish eular and Cellular Biophysics, Meyer B Jackson (2006), Cambridge)	

Course Code	Title	Credits
PSBP104	Methods in Biophysics Total Lectures:60	4
UV Visible: abs radiation detector Rotational and vil stokes and anti-sto Fluorescence: Fluo	(copy : Principle, instruments and application of spectroscopic instruments: orption of light, radiation sources, sample holders, monochroamtors, s, single and double beam instruments, Colorimeter. IR spectroscopy: pration spectra, Instrumental features, applications. Raman: Raman effect, okes lines, advantages, applications. CD ORD principles and applications. presces and phosphorescence phenomenon, quenching, energy transfer, and nic absorption spectroscopy: Principle and instrumentations. (15L)	
formation, magnif	scopy : Principle, instrumentation and application of Microscopy, image ication, resolving power. Different types of Micrscopy: Dark field ,Phase tion microscopy, Fluorescence, Electron microscopy: Electron guns, L)	
electrophoretic mo	ration techniques I: Electrokinetics methods: electrophoresis, obility (EPM), factors affecting EPM, Paper, PAGE, Capillary, Iso-Electric ons in biology and medicine. (15L)	
application,	ation technique II : HPLC: mobile phase systems, modes of operations, Hydrodynamics method: fundamental principles, Centrifugation, and their applications in molecular weight, size determination. Viscosity (15L)	
 3. DNA Clor 4. Advanced 	in Molecular Biophysics, Igor N S, N Zaccai & J Zaccai, (2007) e of Biochemistry, D Voet, J Voet and CW Pratt, 3rd Ed, ming, Grover Vol. I, II, III Methods in Protein Microsequencing, Witmann Biophysics, Narayanan, New Age Publ c of Molecular Biophysics (Methods & Application), 2009, HG Bohr,	

Semester II Detail Syllabus

Course Code	Title	Credits
PSBP 201	Molecular Biophysics Total lectures:60	4
structure, Polyper energy calculation solvent in biolog interactions, hydro	les of proteins structure and confirmations : Basics problems of protein otide chain geometrics, estimates of potential energy, results of potential ns, hydrogen bonding, hydrobhobic interactions and water as universal gical systems, Disruption of hydrophobic interactions by urea, ionic ophobic versus ionic interactions, Disulfide bond, Ways of pairing N-half of specific disulfide link, prediction of protein structure. (15L)	
	n structure & stability : Two state model of protein stability, chemical stabilization, surface denaturation.	
properties from an polypeptide, hem confirmation, col structure, structu consideration, An	cation equilibrium ionization of side chain, equilibria in proteins. Predicting nino acid composition, Usual amino acids. Primary structure sequencing of loglobin, homologies in proteins, Secondary structure alpha and beta lagen structure, stability of alpha helix, Ramchandran plot, Tertiary re of myoglobin and hemoglobin, Quaternary structure, symmetry alysis of subunits and chain arrangement of subunits, stability of globular re. Protein folding rules, pathways and kintetics. (15L)	
compositions of a structure, Covaler	cture of Nucleic Acids: Ionization equilibria of nuclosideand nucleotides: nucleic acid, Chargaff's rule in DNA, RNA base compositions, Primary nt chain structure, secondary structure inferences from RNA sequence uence information and analysis of structure function. Structure DNA & (15)L	
molecule by polyr weight, cooperativ	ecular distribution and statistical thermodynamics : Binding small ner, identical and independent site model, nearest interaction and statistical we binding, anticoperative binding and excluded site binding. The random ransition in protein. (15)	
Cantor and 2. Applied E (2007), W 3. Introducti 4. Molecular 5. Chemical	cal Chemistry, The Behaviour of biological macromolecules, Vol I,II, III, d Schimmel, (2008), W H Freeman & Co Biophysics, A Molecualr Approach for Physical Scientist, Tom A Weigh, <i>T</i> iley on to Protein Sciences, Arthur M Lesk (2004), Oxford Press e and Cellular Biophysics, Meyer B Jackson (2006), Cambridge) Biophysics, Daniel A Beard and Hong Q (2008), Cambridge Univ Press fructure & Function, David Whitford (2005), Wiley	
 7. Introducti NY 8. Essentials 9. Physical C 	on to Protein Structure, Carl Brenden & Jhon Tooze (1999), Garland Publ, of Biophysics, P Narayanan (2005), New Age Publ. Chemistry for Biomedical Sciences, S R Logan, (1998), Taylor & Francis. & of Molecular Biophysics (Methods & Application), 2009, HG Bohr,	

Course Code	Title	Credits
PSBP 202	Biochemistry Total Lectures: 60	4
Insulin, glucagar	 <i>nes and its action</i>: Adrenocortical hormones, Thyroid hormones, n. Action of cAMP/cGMP, G protein and G protein family receptor, G c-AMP and protein kinase, protein phosporylation, Inositol triphosphate (15L) 	
Protein DNA inter gyrase, eukaryotic Replication in vivo Discovery of DNA polymerase, role o	<i>tion and Repair:</i> A B & Z DNA structure, major & minor groves in DNA, ractions, supercoiling of DNA, Topoisomerase I and relaxed DNA, DNA gene. b, semi-conservative mechanism of replication. Direction of replication. A polymerase I and its function. DNA synthesis in vitro, other DNA of various proteins/enzymes in DNA synthesis. Model of DNA synthesis, mutations, DNA repair mechanism, reverse transcription. (15L)	
DNA template, s precursors-RNA,s in eukaryotic cells code-discovery an Recent advances, complex, tRNA su neutron diffraction	cription & <i>Translation</i> : RNA polymerase and its action, promoter sites of igma factor, elongation and termination of RNA chain, processing of n-RNA and tRNA, mRNA. RNA polymerase I and transcription of mRNA s. Transcription factors in eukaryotes. Ribozyme and self splicing, genetic d silent features. amino acid activation, fidelity of aminoacyl, tRNA synthesis, tyrosyl AMP tructure and function. Ribosomal RNA structure, Architecture of EM and n. Initiation of protein synthesis, translocation and peptide bond formation, op codon, protein synthesis in eukaryotes. (15L)	
operon concept, N and Arbinose ope termination, repres Eukaryotic RNA transcriptiona; fac Ligand receptors	, role of histone, nuclosome, bidirectional replication, repetitive DNA,	
DNA cloning by Genome analysis Protein engineer Advanced metho	ng by Maniatis Vol. I, II, III Glover vol. I, II, III s a practical approach by devis. ing practical approach by Reas. od in protein micro sequence by Witmannn. ochemistry, Leninger (2008(, Freeman Publ	

Course Code	Title	Credits
PSBP203	Molecular Biology & Protein Engineering Total Lectures: 60	4
Unit I: Prepara		
: Genomic DNA		
of large and sm	all fragments of DNAS using various Electromagnetic techniques	
chemical synthe	sis of oligonuleotides genes and their uses analysis of DNA'S	
sequences by blo	tting and hybridization.	
Restriction endo	nuclease and mapping Enzymes for modification and radioactive	
labeling of nucle	eic acids, construction of hybrid DNA molecules. Polymerase chain	
reaction. Prepara	tion and analysis of RNA (15L).	
Unit II: Const	truction of Recombinant DNA libraries: Genomic and c-DNA	
libraries prepara	tion of inserting DNA from genomic DNA and RNA production of	
library and amp	lification. Screening of Recombinant DNA Libraries: Screening by	
DNA hybridizati	on Immunological assay and protein activity.	
In vitro Mutage	nsis: Mutagenesiss with degenerate oligonuleotides region specific	
Mutagenesis link	er scanning Mutagenesis.	
Introduction of	DNA into Mammalian cell and System for study of cloned Genes:	
Transformation of	of DNA using calcium Phosphate DEAE Dextrin and Elecroporation	
and its optimization	tion and uses. Bacterial Yeast expression vectors gene transfer Into	
cultured cells. De		
Expression in p	rokaryotes, Heterogeneous protein production in eukaryotic cells	
(15L)		
Unit III:Micro		
	odern advancement such as Tar Sequencing Strategies. DABITC/	
	Solid phase mirosaequencing; Fast atom Bombardment (FAB) mass	
spectra in protein		
-	cation tag, Enzyme purification Tags. Affinity purification tag, ion	
exchange, hydro		
Purification tags		
Unit IV: Chemical Approach to protein Engineering; protein engineering for		
thermo stability	v: Functional group modification chimerical Protein, protein Ab, combing sites, Directed Mutagenesis and protein Engineering.	
0 0		
-	nesis procedure adding disulfide bonds changing asparaging to other ucing number of free sulphydryl residues increasing /modifying	
Enzyme activity		
catalytic Antiboo		
stability estimate		
properties of pr supercritical fluid		
Reference:		

1	. Molecular Clonning, Sambrook and Russell Vol 3, Cold Sprong Harbour lab press	
2	. Molecular and Cell biology, Lodish et al, (2004) Freeman	
3.	. Electrophoresis in Practice, Reiner Westermeirer, (2005) Wiley	
4	. Methods in Molecular Biophysics Igor N S et al (2007), Wiley	
5	. Molecular cloning by Maniatis Vol. I, II, III	
6	. DNA cloning by Glover vol. I, II, III	
7	. Genome analysis a practical approach by devis.	
8	. Protein engineering practical approach by Reas.	
9	. Advanced method in protein micro sequence by Witmannn.	
1	0. Principles of Biochemistry, Leninger (2008(, Freeman Publ	

Course Code	Title	Credits	
PSBP204	Membrane Biophysics Total lecture: 60	4	
Unit I:: Membr and planar Bila transmembrane h Functional recon viral fusion, cellu bilayer and early biomembranes. (
Unit II: <i>Physical Properties of membrane</i> : Elastic properties, Elastic constants, Charge-induced microstructures and domain. Hysteresis of domain formation. Lateral phase separation. Critical concentrations fluctuation, selective lipid protein interactions, Membrane melting. (15L)			
Unit III: <i>Membrane transport</i> : Transport system with non-electrolytes and electrolytes. Transport with chemical reaction system: Primary and secondary active transport. Transports of molecules by simple and facilitated diffusion Transport by flux coupling. Transport by phosphotransferase system, Transport by vesicle formation Electron Transport & Oxidative phosphorylation: Reduction potentials and free energy changes in redox reaction, organization of electron transport chain,			
chemiosmotic coupling, proton gradient drive and synthesis of ATP, P/O ratio for oxidative phosphorylation, Cytosolic NADH electron feeding into electron transfer (15L)			
Unit IV: Membrane potentials & Lipid Membrane Technology : Cell surface charge, Resting membrane potential, Action potential, properties of action potential, Nernst equation, Hodgkin-Huxely equation, Membrane impedance and capacitance, Transmembrane potential, Zeta, stern and total electrochemical potential, Historical perspective of lipid model systems lipid monolayer. Liposomes: small and			

large unilamellar and multilamellar vesicles, planner lipid bilayer, Application of		
liposo		
References:		
1.	Molecular & Cellular Biology, D Roberties,	
2.	Biophysical Aspects of Transmembrane signaling, Sandor D (2005), Springer	
3.	Biophysics, Vasant Pattabhi, Gautam (2002), Narosa	
4.	Biomembrane structure and Function, Chapman D.	
5.	Introduction to Biological Membrane, Jain R K	
6.	Biophysics, Hopp, Lohman, Mark and Ziegler	
7.	Advances in Biophysics, Vol 18, 15	
8.	Molecular and Cellular Biophysics, Meyer B Jackson (2006), Cambridge)	
9.	Text Book of Physiology, Guyton & Hall, 11 th Ed. 2006	

Annexure A

Additional Book for References

Access No.	Title of the Book	The Author's Name
1	Principal of biostatistics 2eld	Pagno
2	DNA Micro arrays : a molecular cloning manual	Browtell
3	Introduction to protein structure 2eld	Branden
4	Guidebook on molecular modeling in drug design	cohen
5	Electrophoresis	Desai
6	Radioactive releases in the environment	copper
7	An Intro. To biomechanics.	Humphrey
8	Biophysics : An Intro	cotterill
9	Principal of fluorescence spectroscopy 3 eld	lokowicz
10	Protein targeting transport and translocation	Dalbey
11	Practical protein crystallography 2eld	MC.Ree
12	Molecular genetics of bacteria 4eld	Dale
13	Biophysics	pattabhi
14	Biophysical aspects pf transmembrane	Damjanovich
15	Drug discovery and development	Rang
16	Textbook of Biophysics	Roy
17	A short intro to biomedical engineering	Sarbadhikari
18	Practical capillary electrophoresis 2 eld.	Weinberger
19	Essential pf genomics and bioinformatics	sensen
20	Biophysics	subramaniam
21	Protein structure & predication	Tramontano
22	Bioinformatics of Genome Regulation and structure	Kolchanov
23	Essential bioinformatics	Xing
24	Introduction to Bioinformatics	Lesk
25	Introduction to Bioinformatics	Attwood
26	Functional Genomics	hunt
27	Bioinformatics Technologies	Chen
28	Micro array Bioinformatics	Stekel
29	Basic Biostatistics and its App.	Datta
30	Quanti Protein by mass Sep.Euro	Sechi
31	Vides Gene.Reg. and Met	Collada
32	Essential of biophysics	Narayanan
33	Micro for an integrative genomics	Kohane
34	Physical chemistry for the Biomedical science	Logan
35	Structural biology	Teng/Springer
36	Water and the cell	Pollack/springer
37	NMR-MPI USR & moss Bauer spectroscopies in molecular	Lascialfari-Springer
	magnets	
38	Modeling in molecular biology	Cio banu-springer
39	Chemical Biophysics, Quantitative Analysis of cellular system	Beard