
Sony
Typewritten Text



For more study material Log on to http://www.ululu.in/

Unsigned in it Ot065535 2 '%u

Long signed init -214748J648to 4 %Id

-I-114741G647

Long unsigned illt Oto42949i172Q5 4 %rd

Float ·-3/te38 to-t-:Ae.'8 4 "'i>r
Double ··1.7e308 III ~1.7dOH 8 ~/;, !f

Dong double --1.7e4932 i.7e4932 10 "/"jf

Q. 1. (b) What do you mean by interpretatiouo Give its "dnmtages and disadvantages.

Ans. The Machine Interpretation: Mnnagcmcnt ofthe interprl'\'iItioll process isthe responsibility oflJJt'
decoder (a part of Ihe implementation mechallbrn). The process (If interpr':ling or executing on instruction
begin & with tl,e decoding oftile apcode field from the instruction_ The decoder activates stor.age and registers
for a series of state transition<; thill correspond to th':' 'll'\ion of the opcade. The irn~ge machine st(,f<lge
consists of registers and memol)', which 3rf" both e;o;plicitly slated in the instruction anc' impJic;oly defined by
the instruction.

Explicit Registers Ipelude:

(i) Geneml purpcse register (GPR)

(ii) Accumulators (ACC)

(iii) Address Registers.

R D
IR I--+---r---f--j"--i

or
Address

Adder

Regi~tl>r

fife

ALU

"~
MAR "T~

2R

R·- Registers
D-- -Address displacement

Fig S')/ne Processor RCc',:is:ers and Dala Paths

Implicit registers consist ofthe following tlig.)

(i) Program or instruction counter (PC) most instruction fonnates imply the next instruction in sequence



For more study material Log on to http://www.ululu.in/

as the current location plus the length of the current instruction.

(ii) Instruction Register (IR) : The register holds Ihe instruction being interpreted or executed. Decoding
is performed on the opcode held in the register

(iii) Memory Address Register (MAR): This is the register fora memory operation.

(iv) Storage Register (SR): This is sometimes referred to as lhe memory buffer register and contains the

dala used in the memory (to or from) operation.

(\) Special Use Registers: Usage depending on instructions.

Data paths connect the output of one register to the input of another and may include combinational

logic.

The opcode generally detines which ofthe many data paths are used in execution. The collection of all
opcodes defines the data paths required by a specific Architecture.

A register may be connected to mUltiple output destination registers and accept input from one of severa!
source registers in anyone cycle.

A register outrU! is gatcd to '"ariOl1s destinations with which it can communicate in a single cycle. The
Activation 01' a particular data path is done through a control point.

Q. 2. (a) Explain various instructionsofa microprocessor.

.\.ns. :\ microprocessOi instruction is similar TO the instruction given :0 a human being to perform a
specific task. It is the binary puttem con<;istingof' J' and 0 designed by manufacturerofthe particularmicropro­
cessor tc ...~rfonn a srecific task (function). The 8085 micprocessor indud.:s 311 in~tructions ofthe 8085 plus 2
additional instructions i.e., RIM and 31M, Thus, in all the 8085 has 74 instflH:tions called instruction sel.

The whole instructions of the microprDcessor can be divided into 3·general headings as depicted in fig.

Instructions

Process
control
HLT,
INTR,
enable.
Disable
etc.

[

Control
In:;tructiom

J-~

Program control
JNZ, JZ, JC, JNC

JPO etc.

Arithmcticllogic
ADD. AND. OR

XOR

~lforl11ali(;:~ modiikation
instruction:>

Inj(lrmation movement
instructions

MVI, IN!\., OCR
Lf)A, RAR, STA
~:TC. DAA. DAD
LDAX, SHLD, RIM
rNX etc.



For more study material Log on to http://www.ululu.in/

Both information movement instructions and
Informaiion movement instruction contain group 0
and 3(b). Thus, whole instruction set of 8085 is di
group 3.

Information Movement Instructkms :

Group (l: Group 0 covers the following fype

(i) Immediate data movement.

(ii) Incrementing and decrementing l)f rt'gis'

(iii) LOllding and storing ofregistcr.; and reg

(iv) Shifting (Rotate, and comp!emcntil1g of

Group I : Group I IS the largest group of instn
infonnation from one source to destination without
destination.

Information Modirlcation Instructions:

tructions are further sub·divided in tv,o groups.
whereas control instruction includes group 3(a)
four g.roup, namely group 0, group I, group::',

,;~cr pairs.

s of accumuJalOr.

is(all~d MOV group. Group 1only m:::vcs datal
source data i.e., :t copie" the S0urce data to the

ified by these instrl1\:tinn<;. Modification is the
)IlS on the contetl~ oflhe regb!er.

Group 2 : The (;ontents of Gertain registers n
<lccomplishcd by rerfonnmg .::ilhcr arithmetic or 10;

The arithmetic operation & for goss 3rt' :

(i) Addition

(ii) Subtraction

Control Inst"lIctions: Group 3(a) 01 progrJmCOnlrol oper:Jlkm.As per the heading, the program control
operation lransters the execution of:'l pcognun from il~ prt,~:(:nt ioea'-ion to some oth~'r !f)cF!lion in :JK mem·)i}.
Transfer may be conditional based j)'llhc cDnlr.r.t,; of the ~tatiJ~ registers or lm~Olldlti(\nal w!lhoul n::;tdct~ons.

FurthemlOre, each transft'r mil)' or In"'.\' 11\l[ req\lir~ rdurn transter. In return transfer th", pr",st'nt address of
execution b $<l\'ed with the help or~he stack pOinter (SP) so lhat the cO!Erol can return to the place \,here it left
the program. NOll-returning transfer docs nN requir,;, savjn~: irk present ajdress,

Group J (b) or Proce.~s(lfControl (loer"tiuns : The process control ill,;tnlctkms do 'lol require allY
operand, h perfOIlTi operations direnly on the microproce~sor and ..re a t~"' in numbers.

Typical in',tru~:ions in this group :lre proa~sor llau!t. Flrt~k!Di<,able. Intcll"'lpt" etc,

Q. 2, (bl Discuss the professtH'o [,'aluatiOIl Matri\.,

Ans. Multithreaded Von Neumann Architcct!;n.' can be tr<tctd back to the CD(~ 6(}00 manufactured in the
mmd 1960's.

Multiple funcfion units in the E600 CPU can t.~e~·llte_differentoperations Sil,."lltancously using a
sr.orboarding control.

The very first multithreaded multiprocessor was the dencleor HEP designtd by burton smith in 1978, The
HEP was built with 16 processors driven by a IO-MHz clock, and each proce,sor can HEP was built with 16
processors driven by iI IO-MHz clock, and each processor can execute 128 threads (called processes in HEP
tenninology) simultaneously.

We describe the tera architecture to understand processor e\':"Ih.!3tll-n matrix, its processors and thread
state and the tagged memorylregisters. I



For more study material Log on to http://www.ululu.in/

The unique fealures ofthe lera include not uIlly the high degree ofmultllhread.ing but also the explicit­
d.:pcnden..::y lookh<.:ad and tile high degree of super pipe lining in its processor-network memory operations.
"Ihe<;e advanced katurcs are mutually supportive. The tirst tera machine art: expected to appear in late 1993.

lei Ie bt' the number of instructions in a given program or the instruction count. Ine CPU time (T is

sewnd;'program) needed to execule the programs IS estimated by finding the product of three contributing
factor".

T~' Ie xC!'i~: t ...(1)

'I hE CPJ ~)f an imtruction type can be divided into two ..:omponent terms corresponding to the total
processor c)'..:k~ and memory cycles needed to complete lhe execution of the instruction depending on the
tnstmction type the complete instnlctioll cycle may involve one to for memory references (one for instruction
fetch. (wo for operand fetch and one for store results). Therefore we can rewrite eq. I as foHows,

T::o Ie xtp+m'<k)xt

Where P is the number of processor cycles needed for the instruction decode and execution, m is the

numbel of memory references needed, k is the ratio bet.....een memory, cycle and processor cycle. Ie is he

instruction count and "'[ is the processor cycle time.

Q. 3. (a) What do yOll mean byvinuat to real traosla1jofl.

Ans. Tht main memory is considered the physical memQry in whkh many programs want to reside.
Howe-'fer the limited <>lzc physical memory cannut load In all programs simultaneously. The virtual memory
.:onccpl was introdlKc to alleviate this prob!.::rn. Thc ldca is to expand the u~ofphysical memory among many
programs with the hclp ofan auxiliul)i (backup) memory such as disk arrays only active programs or portionsof
!han heeo;!,e residents oftlle physical memory at ow:- time The vast majority ofprograms or inactive programs
arc '>tor~d on dbk.

An pro~~ram<; can be loaded in and out \,ftbe physical memO!) dynamically under the coordination ofthe
\)pt:rating system, To the llsers vinual memory provides them ",ith almost unbounded memory space to work
W\thwlthot\l vinJua! memory, it would haw been impossible to develop the multiprogrammed or time sharing
computer systcm.~ that 3re in use loda).

Address Sr'lH'~~S ; Each word in the physic<ll memory is identified by a unique physical address. AU
Ill~mot)- words in tilt: main memor~y form a physical address space. Virtual addresses are generated by the
processor during compile tim~. in UNIX systems each process created is given a virtual address space which
contains ail virtual addresses generatd by the compiler.

The virtual addresses must be translated in 10 physical addresses at run time. A system oftranslatioo
tables and mapping functions are used in this process. The address translation and memory managemeot
policies <Ire atTected by the virtual mcmory mode1osed and by the organization of the disk arrays and of the
tll2in memory.

Address Mapping: Let V be the set ofvirtual address generated by a program (or by a software process)
running on a processor. Let M be the set of physical addre5s allocated to run this program. A virtual memory
sySfem demands an automatic mechanism to implement the following mapping:

f, ,V -> MU{$}

This mapping is a lime function which varies from time to time because the physical memory is dynami-



For more study material Log on to http://www.ululu.in/

VirtualVirtual
space of .

space ofPage rarnes
process 1 processor 2

(Pages)
Shared

.~
memory

cally allocated and deallocated consider any virtual address v E V .

Virtual to Rt'al Translation: 'j he process~s demands the translation of virtual address in to physical
addr~s$ various schemes for virtual address translation are sumcrised in figure (a). The translation demands
the use of translation maps which can be- implemcm in various ways.

Physical
menlorv

(a) Private Virtual M<'mu'Y Spaces in DifJe:'l?nt processors.

Virtual space
.

Shared
space

P, Space (

Physical
memorY

PI Space {

(b) Globally Shared Virtual Memory Space

Translation maps are stored in the cache, in associative memory. or in the main memory. To access th~e
maps a mapping function is applied to the virtual address.

Q.3.(b) Explain the organization oreacht'.

Ans. Acache memory may be inserted between the MMU (ifthere is one) and the physical main memory
to give the processor the appearance ofa faster main memory. The cache serves as the fastest. most expensive
level ofthe memory hierarchy; it is inserted to decrease the average main memory access time as seen from the
processor.

Sony
Typewritten Text



For more study material Log on to http://www.ululu.in/

rollowing fig. 3.1 show the location with main memory.

Memory modulus

I'ri\'llcge
~------: I ..... ·1 I
I I

Acce:'>s type I CACHE I

MMU
, I

Pro('<:~sor I ,
Address

Memory Addre!>s
I.incs I I

I I BUS(Virtual) -------
Physical
address
lines

(Locutivn of Cache)

Fig. 3.2 shows the cuche organization and the principal components ofcache memory words are slOred in
n cache data memory and are grouped in to small pages called cache blocks I1r lines.

Data

Hit
Cache, Data
Memory

Cache Ml

I Cache lag LI .~cmo,-y •
Lirectory) I

q=-,
Address C011tl'Ol

,-----------

(Fig. 3.2 Basic Sfrllclun: ofCache)

'I'he content.'> ofc3che's data memory are thus c.opies ofa set ofmain memory blocks. Each cache block is
marked with its block address. referred to as a tag. So the tache knows to what part ofmemory space the block
belongs.

The collection of tag addr~ss currently assigned to the cache, which can be non-continguious is stored
in a special memory. the cache lag memory or directOl)'.

Two general ways of introducing a cache into a computer appear in (Figure 3.3).

In the look-aside design offrgure 3.3 a the cache and main memory are directly connected (0 the system

bus. In this design the CPU initiates a memory access by placin£ a (real) Address A i on the memory address

bus at the start ofa read (load) or write (store) cycle. The cache M1 immediately compares Ai to the tag

address currently residing in its tag memory. If a match is found in M, thai is a cache hit occurs, the access is

completed by a read or WTite operation execute in the cache; main memory M 2 is not involved. Ifno match with

Ai is found in the cache that is a cache miss occurs, then the desired access is completed by a real or \\Tite



For more study material Log on to http://www.ululu.in/

operation directed to M2.

Cache I Main
CPU

M, -.J Memory

Cache t Block

access I replacement
, ,

ystem t
Main-memory

taccess
us

s
b

Fig. (a)

Cache
M,

~
t Block

I replaclCment ,

CPU Cache Main Main
controlle.. memory memor)'

-" M,

rMain
memory
access

System
bus

A faster. but more costly organization called a look through cache appears in figure 3.3 (b). The CPU
communicates with the cache via a separate (local) bus that is isolated from the main system bus. The system
bus is available for use by other units, such as 10 controllers. ro communicate with main memory.

Q. 4. (a) Discuss the processor memory modeling using queuing theory.

Ans. Processor Memory Modeling Using Queueing Theory: Simple processors are unbuffered; when a
response is delayed due to conflict this delay directly affects processor perfOlmance by the same amounts.

More sophisticated processors including cenainly almost pipelined processors-make buffered requests
to memory. unless a cache is used even with pipelined processors that use cache. Some of request (such as
writes) may be buffered. Whenever request are buffered. the effect of contention and the resulting delay are
reduced. The simple models fail to accurately represent the process-memory relationship. More powerful tools



For more study material Log on to http://www.ululu.in/

thai incorporate buffered requests are need~d.

for These Toob. We Turns to Queuing Tbeol)-' : Open and close queue models are frequently used in the
evalualkm of computer system dlesigns.

in t!lis we. review and present the main resuits for simple quelling system withoUT derivation of the
underlymg basic queue equation. While queuing models are useful in under:>tanding memory behaviour, they
abo provide a robust hasi5 to study various .;ornpi.ltcr sy~te!ll ir.temctions s(leh as a flluitipk proc!;;ss,,! and
input/output.

Suppo,;", requestors desire service from a common server. These r;;qu~storsare assumed to be indepen·
den! fr0m (,ac another, exe-cpt chat they make a request on the basis ofprobabjjity distribution function called
the request distribution function.

Similarly the server is able to processor requesl one at a time, each independently of the others. except
lhUllhe service time is distributed. According to server probability distril'outiun function. The lUean ofarrival or
request rate is measured in items per unit oftime and is called X and the mean ofservice rate (e) defines a vel)'
important pat-amct~r in queueing systems called th~ utilization or the occupancy.

The higher the occupancy ratio, the more likely it is th'it requestors will be waiting (in a buffer or queue)
for service and the longer the expected queue length of it(m" awaiting service.

In open queuing systems jfthe arrival rate equalr. or exceeds the service rate an infinitely long queue
develops infront of the server. as requesls are arriving fa~ter than or ill the same rate al which they can be
sened.

Queueing Theory: As processor have become increasingly complex, their performance can be predicted
only statistically.

Indeed, often times running the same job 01\ the same processor 011 \"'''0 different occasions may create
significantly different execulion times (based perhaps on initial state ofthe list ofavailable page~ maintained by
the operating system).

Queueing theory has been a powerful tool in evaluating Iheperfonnance ofnot only memory systems, but
aho inpuVourput systems, networks and multiprocessor system.

Q. 4. (b) Discuss the difference between various queUing models.

Ans. Open. Closed and Mixed Queue Models: Ope!l.queue models are the simplest queuing form. These
models (at least as used here) assume:

I. Arrival rate illdependel1t of service rate.

2. As a consequence of(I) a queue of unbounded length as well as (potentially) unbounded waiting time.

Many will be recognize the suitability of open queue models to contain highway congeslion or bridge
access situations, but will also recognize the unsuitability to computer system. In a processor memory interae-­
tion. the processors rate decreases as memory congestion increase'>. The arrival rate i') function of the total
service time (including waiting time). This lanertype ofsituation can be modeled by a queue with feedback. The

system is initially offered a request rate (Ao) , but certain requests cannot immediately enter the server and are

held in a queue. The requestor slows down to accommodate this and the arrival rate is now A.1I see in figure.



For more study material Log on to http://www.ululu.in/

L- i'O,---),,__-J
Fig (Capacity Queues)

We call such syslems closed quelle (or a capnelty queue) and designate them Qc. These queue usually

have a bounded size and wailing time.

It is also possible for systems to b.::have as open Queueing systems UplO a cenain queue size. than they
behave as closed queue.

We call such systems mixed queue systems. The assumptions in developing the open queue might make
i1 seem as unlike!) ca.ndidate for memory systems modeling. yet its simplicity is altraclive and it renlainsa lIseful
firs! appro\imation to rn~nlOry SySk!l1S behaviour.

Q. 5. (8) Explain vector and scalar balance point.

Ans. In a super computer, sep<.lr"le hardw:l!'t' resourc..'S with diflerenl speeds are dedicated to concurrent
\cctor and .'>calar oplOrmions. Scalar processing is indispensable for g~'neral~purposearchitecture wctor pro­
cessing is n~·t.'ded for reglllarly structured panHdism in scientitic and engineering computations. These two
lypcs or computo.tlon<; rl1Ust be b~lanced

The Vector Scalar Balance Point is Defined as tbe Pen::entage ofvectarcode in a program rt>quired to
achi~vc equal utilization ofvector and scalar hardware. fn other words. we expect equal time spent in vector and
~cal]r hardware so that no resource~ will be idle.

Ifa sysrem is >:apable ofq M tlaps in vector mode iftJlc code is 90~~o vector and 10% scalar. resulting in a
vector balance point 01'0.9.

lfv.u) flO! he optirn3! for 2 system 10 spend equal time in vector and scalar modes.

However the vector scalar balance point should be maintained sufficiently high. matching, the level of
vcctonzation in user programs.

Vector pcrfonnance can be enhanced with replicated functional unit pipelines in each processor. Another
approach is to apply superpipelining on vector units wilh a double or triple clock rate with respect to scalar
pipeline operations longer vectors are required to really achieve the target performance. Jt was projected that
by the year 2000. an 8 G tJops peak will beachievabJe with multiple functional units running simultaneously is
J processor.

Q. S. (b) What are multlpleissue machines.

ADS. Multiple Issue Machines: In a superpipelined archilecture a deeper instruction pipelinillg is em­
ployed where the basic pipeline cycle time is a fraction of the base mat:hine cycle time. During machine cycle
5everal instructions can be issued in to the pipeline. In a supelpipeHned machine ofdegree m. the instruction
parallelism capable of being exploits is m superpipelined and super scalar machines are considered the dual of
each other although they may have difterent design trade-offs.

Vel)' Long Instruction World (VLlW) architecture t'xploi[ parallelism by packaging several basic machine



For more study material Log on to http://www.ululu.in/

operations 1lI a single illstr\Jcti()n worci.

Thes~ basic operation consist of simple load/Slore memory operations and register to register ALU
operations.

Each op..-ration is simple in that it can be i"sut;>d in a sing.le clock cyde bUI may 'ake several cycles to
compkte.

VLIW architectur... make extcnsive use ofcompikr It:chniqllcs to defect paralielism and packa!,;c them in
to long instruction word.

Q. 6. (a) D~cuss partitioning if' multiprocessors.

Ans. Partitioning ill Mulliproccssors : The gO<l1 ofparalid pro.:essillg i~ to exploit parallelism as much as
p(\~siblc wilh ell,;.' 100\<:sf lHerltead.

"Program partition in ITIui[iprocessor is a le'-'hniqul: tor decomJXIsing a large program and data set IlllO
man) small pieces for parallel execution by nmhipk pro~·e5sors."

Program partitioning involves both programmers <tnd the compiler. Paf'lllelism detection by user is often
exrliciliy expressed wi:h parallel language con"truets. Progntm re~onstructjng techniques can be used to
tran,,!oml se,juential program in to a parallel form more suitablt;> for multiprocessors.

Ideally, this transformation should be calT!ed out aUlOma,knlly by a ~omrikr.

Program replication refers {() duplication of the sam.: program code fm parallel execution on multiple
proc~:;sors over different data set. Partitioning is often pra<;liccd on a shared memory multiprocess{)t' system,
whiif' replication is more suitable for distributed memory mes~age passing mutficomput<:-rs.

So, f<lr only sper:iaJ program constructs, such as independents loops m,d independent scalar operatiolls
have been ~uccessfully paralleliscd.

Clustering of independent scalar operatbns in to vectvr or VLlW instructions i, anOlher approach
to\\ard Ihis end. "Program partition detennines whether a giwn program can be partitioned or split intI' pieces
thai can execute in parallel ('f fvllow a certain pre~pccified ord~r ofexecution. Some program" are inheremty
sequential in nature and thus cannot be decomposed into parallel branches. The detection of parallelism in
programs requires (l check of the variou~ dependency relations.

Q. 6. (b) Explain memory coherence in.)h:1red mtmory mulJiprocessors.

Ans. Memory Coherence: The coherence property requires that copies of the same infoflll<ltion i!t'Ol at
successive memory level be consistent.lfa w(lrd is modified in the cache, copies ofthat word muSI be updated
immediately or eventually at all higher levels. The hierarchy should bt: maintained as such. Frequently used
inf;,lrmation is often found in the lower levels in order to minimize the effective access lime ofth.... memory
hieran:hy. In general there are rwo strategies for maintaining the coherence ir. a memory hierarchy.

The first method is called write through (\Vf), which demands immediate upda~e in M 1+1 if a word is

modified in Mi,fori"" 1,2, ...... 0-'1.

The second method is write back (WB), which ddays the Hpd;:]!e in Mi+1 until the word being modified

in Mj is replaced or removed from Mi' The perfonnance ofa memory hierarch) is delennined ily the effective

aCl;ess lime Teff to any level in the hierarchy. It depends on the hit ratio and frequencies of successive level.

(i) Hit Ratios: Hit ratio is a concept defined for any two adjacent levels ofa memory hierarchy.

Oi) Effective AecessTime: In practice, we wish toachk:ve as high a hil ratio as rossibleat MJ . Every time



For more study material Log on to http://www.ululu.in/

a mi% occurs. a penalty must b~ paid to access !h~ next higher level ot memorj.

Q. 7. (a) Discuss the evolution ofcomputer architecture.

Ans. The study of computer architccture involves both hardware organilation an': programming/soft­
'Nare requirement As seen by an assembly language programmer.

Computer architecture is abstracted by ig instruction sct, which includes opcodl's (operation code).
addres3ing Illode~, rcg;<;t,;-rr. virtualmcmory etc.

From the hardware implememation point oivic\'.', ihe :lbstract 013;;hine is organised with CPU's, caches.
buses, microcou{'. pipelint's, physic:::! memory ':h:.

~h;I

Seljuentia! )

liE owrlup func::on~1\
pa~airelislll~)

l\1l!ltiplc
rUTlI;.i~'n unit)

PiPcl:]

r lmPii~
vector

Mcmol)' 10
memory

Explicit
vector

Assc,ciative
preocessor

Multi­
processor

Fig. (Architeclllra! Evolution)

Over the past four decades, computer architecture has gone through evolution rather than revolution
changes.

Sustaining featu~es are those that were proven perfonnance deliverers.



For more study material Log on to http://www.ululu.in/

As depict in fig. we started with the Von Neumann architecture built 3'i a sequential machine execllting

S~;llar data.

The scquentiai computer was improved from bit-serial to word-parallel opera'ion~and from fixed poim Ii)

tl(miil:; point operations. The Von NcumannArchitectnre is slow due to se4u~ntialcxecuti(l\1 ofin<;truetions ill
programs.

Lwk, Parallelism and Pipelining : I.ookhe<!d techniques were introduced to prefetch instructions in
order 10 overlap I!E operations and to enable functional paral!elism Functional parallelism was supported by
two approaches. One is to use mUltiple fumtional unit.~. Simultaneously 3nd the olher i:; !,l practice pipelining
at various processing levels.

The latter il'lciudcs pipelines instruction execution, pipdined arithmetic computations and memory
Access operations. Pipetining has proven espp.dally attractive in perfonning identical operations repeatedly
over vector da'i\ "trings. V~'ClOr 0p'~~ations wert;' originally carTkd Olll implicitly by soft war.: controlled looping
~sing SC31dr pi:::elinc proces3o,.

Q. 7, (b) What ::Ire cache rcrenmces per instruction.

An~. When a each,: is indexed c[ tagg..:d with virtual addr{;~s it is called vir~ual addr~~" cache.

Thc physical1!.ddrcss generated by the MMV car, be saved in tags for iater \\'ritl l>ack but it is not used
dllfiJ'f; *.~ cache :ookup operaiinr,s

nlC viltual addrC3s cache is motivated with its er.h;:lllced efficiency to acces" the cache faster, overlap·
Illngwill, Inc MMV translations.

TIll' ,nJjor pmblcm assOCIated \'/ith d vhtual address (";Jcllc is aliasing. \Yllea different logically addressed
d":,, hhYC the ~,al:lC indc-:l\;J.g. i:1 th~ cache. Multiple proc('ss may ..:se the Si:lm~ range of virtual addresses.

Tbis <llia~i~g iJrobkm may create confi,skm c-f:wo 0; more processes access the ",orne physical cache
lrcafio'l. 0nl;: way to <;\l!ve the aliasmg. prvblclR is to f1usb th,; cntire c::lchc whenever aliasing occurs.

I argc amount offlushing may result in a roorcachc perfomlance. with a iow hit ratio and too much time
v,,<lsted il1 flushing. When a virtual address c<lche is used with UNIX, flushing is needed after ea.:h control
switching.

Bclore input output \Hit{'s or after input Qutpul read, lhe cache must be flushed further more nlia'iing
betwet.'ll the unix kemalilndadataisaseril.1usproblem.Al!ofthe~eproblems will introduce additional system
overhead.

fhe illslruction sl,:htduJer expjoits !he pipeline hardware by filling lhe instructions. The instruction set of
computer specifieo- the primitive corrunands or machine instructions that a programmer can use in programming
tile machin~. 1 he complexity of at" instruction set is attributed to the instruction formats, data formats. Ad­
dn-ssing modes general purpose regtsters, opcode specificatIOn and flow control mechanism us"d. Based on
paJt t.'xperience i:J. processor design, two schools of thought on in<;.truction set architectures have evolved
Mmely. CISC &. RISe.

Q. 8. Write short notes on :

(i) Waiting time

(ii) Multiple issue machines

(iii) Synchronization in multiprocessor.

Ans. ii) Waiting Time: It is the sum oftime intervals for which the process has to wait in the readyqueue.
T"e CPU scheduling algori!hm should try to makc lhis time as less as possible for a given process.



For more study material Log on to http://www.ululu.in/

For a given instruction set, we car. calculate an average CP & over all instruction types, provided we 11. ...."'"

Iheir frt:quencies ofappearance tn the program. An accurate estimate ofthe average CPI require~a large amount
of program code 10 be traced oYer a long period of time.

(ii) Multiple Issue Machines: In a superpipeHned architecture a deeper instruction pipelining is em­
rloycd where the basic pipeline cycle time is a fraction ofthe base machine cycle time, during machine cycle
~cvcrai instructions can be is:med inlo the pipe line. In a supcrpipeline machine of degree the instmction
par<llJdism capable of being explo;les is III ~lip\'rpjplinedand sllperscalar machines are considered the dual of
each other although they may have diiTcrent design trade offs.

(iii) Synchronization in Multiprocessor: Synchronization ofdata pnrallel operations is done at compile
lime rather than at run lime.

Hardware synchronization is enforced by the control unit to carry out the locked execution of SIMD
programs.

We addressed below Instruction/data broadcast masking, data routing operations & separately.
Languagf's. compiler arid the ccnvct$ion ofSIMD program to run on MIMD multicomputer are also discllssed.




