BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, ORISSA

{*Electronics and Communication Engineering (E&CE) and Electronics and Telecommunication Engineering (E&TCE)*}

	3 rd Semester	4 th Semester					
THEORY							
Code	Subject	L-T-P	Credit s	Code	Subject	L-T-P	Credits
BSCM1205	Mathematics – III	3-1-0	4	PCEC4205	Electromagnetic Field & Waves	3-0-0	3
HSSM3204	Engineering Economics & Costing or	3-0-0	3	HSSM3205	Organisational Behaviour or	3-0-0	3
HSSM3205	Organisational Behaviour	3-0-0		HSSM3204	Engineering Economics & Costing	3-0-0	
BSMS1213	Material Science & Engineering or	3-0-0	3	BSCP1207	Physics of Semiconductor Devices or	3-0-0	3
BSCP1207	Physics of Semiconductor Devices	3-0-0		BSMS1213	Material Science & Engineering	3-0-0	
BEES2211	Network Theory	3-1-0	4	BEEC2214	Energy Conversion Devices	3-1-0	4
PCEE4204	Electrical & Electronic Measurement	3-0-0	3	BECS2212	C ⁺⁺ & Object Oriented Programming	3-0-0	3
PCEC4201	Analog Electronics Circuit	3-1-0	4	PCEC4202	Digital Electronics Circuit	3-1-0	4
Credits (Theory)				Credits (Theory)			20
PRACTICALS/SESSIONALS				P	RACTICALS/SESSIONALS		
BEES7211	Network & Devices Laboratory	0-0-3	2	BEEC7214	Energy Conversion Devices Laboratory	0-0-3	2
PCEC7201	Analog Electronics Circuit Laboratory	0-0-3	2	PCEC7202	Digital Electronics Circuit Laboratory	0-0-3	2
PCEE7204	Electrical & Electronic Measurement Laboratory	0-0-3	2	BECS7212	C ⁺⁺ & Object Oriented Programming Laboratory	0-0-3	2
				HSSM7203	Communication & Interpersonal skills for Corporate Readiness Laboratory	0-0-3	2
	Credits (Practicals/Sessionals)		6		Credits (Practicals/Sessionals)		8
	TOTAL SEMESTER CREDITS		27		TOTAL SEMESTER CREDITS		28
TOTAL CUMULATIVE CREDITS					TOTAL CUMULATIVE CREDITS		111

BSCM1205 Mathematics - III

Module-I

(18 hours)

Partial differential equation of first order, Linear partial differential equation, Non-linear partial differential equation, Homogenous and non-homogeneous partial differential equation with constant co-efficient, Cauchy type, Monge's method, Second order partial differential equation The vibrating string, the wave equation and its solution, the heat equation and its solution, Two dimensional wave equation and its solution, Laplace equation in polar, cylindrical and spherical coordinates, potential.

Module-II

(12 hours)

Complex Analysis:

Analytic function, Cauchy-Riemann equations, Laplace equation, Conformal mapping, Complex integration: Line integral in the complex plane, Cauchy's integral theorem, Cauchy's integral formula, Derivatives of analytic functions

Module –III

(10 hours)

Power Series, Taylor's series, Laurent's series, Singularities and zeros, Residue integration method, evaluation of real integrals.

Text books:

- 1. E. Kreyszig," Advanced Engineering Mathematics:, Eighth Edition, Wiley India Reading Chapters: 11,12(except 12.10),13,14,15
- 2. B.V. Ramana, "Higher Engineering Mathematics", McGraw Hill Education, 2008 Reading chapter: 18

- 1. E.B. Saff, A.D.Snider, "Fundamental of Complex Analysis", Third Edition, Pearson Education, New Delhi
- 2. P. V. O'Neil, "Advanced Engineering Mathematics", CENGAGE Learning, New Delhi

HSSM3204 Engineering Economics & Costing

Module-I:

Engineering Economics – Nature and scope, General concepts on micro & macro economics. The Theory of demand, Demand function, Law of demand and its exceptions, Elasticity of demand, Law of supply and elasticity of supply. Determination of equilibrium price under perfect competition (Simple numerical problems to be solved). Theory of production, Law of variable proportion, Law of returns to scale.

Module-II:

(12 hours)

Time value of money – Simple and compound interest, Cash flow diagram, Principle of economic equivalence. Evaluation of engineering projects – Present worth method, Future worth method, Annual worth method, internal rate of return method, Cost-benefit analysis in public projects. Depreciation policy, Depreciation of capital assets, Causes of depreciation, Straight line method and declining balance method.

Module-III:

(12 hours)

Cost concepts, Elements of costs, Preparation of cost sheet, Segregation of costs into fixed and variable costs. Break-even analysis-Linear approach. (Simple numerical problems to be solved) Banking: Meaning and functions of commercial banks; functions of Reserve Bank of India. Overview of Indian Financial system.

Text Books:

- 1. Riggs, Bedworth and Randhwa, "Engineering Economics", McGraw Hill Education India.
- 2. D.M. Mithani, Principles of Economics. Himalaya Publishing House

Reference Books :

- 1. Sasmita Mishra, "Engineering Economics & Costing ", PHI
- 2. Sullivan and Wicks, "Engineering Economy", Pearson
- 3. R.Paneer Seelvan, "Engineering Economics", PHI
- 4. Gupta, "Managerial Economics", TMH
- 5. Lal and Srivastav, "Cost Accounting", TMH

(12 hours)

HSSM 3205 Organizational Behaviour

Module I :

The study of Organizational Behaviour : Definition and Meaning, Why Study OB

Learning - Nature of Learning, How Learning occurs, Learning and OB.

Foundations of Individual Behaviour : Personality – Meaning and Definition, Determinants of Personality, Personality Traits, Personality and OB.

Perception – Meaning and Definition, Perceptual Process, Importance of Perception in OB. Motivation – Nature and Importance, Herzberg's Two Factor Theory, Maslow's Need Hierarchy Theory, Alderfer's ERG Theory, Evaluations.

Module II :

Organizational Behaviour Process : Communication – Importance, Types, Gateways and Barriers to Communication, Communication as a tool for improving Interpersonal Effectiveness, Groups in Organizations – Nature, Types, Why do people join groups, Group Cohesiveness and Group Decision-making Managerial Implications, Effective Team Building. Leadership-Leadership & Management, Theories of Leadership-Trait theory, Leader Behaviour theory, Contingency Theory, Leadership and Follower ship, How to be an effective Leader, Conflict-Nature of Conflict and Conflict Resolution. An Introduction to Transactional Analysis (TA).

Module-III :

Organization : Organizational Culture – Meaning and Definition, Culture and Organizational Effectiveness. Introduction to Human Resource Management-Selection, Orientation, Training and Development, Performance Appraisal, Incentives Organizational Change – Importance of Change, Planned Change and OB techniques. International Organisational Behaviour – Trends in International Business, Cultural Differences and Similarities, Individual and Interpersonal Behaviour in Global Perspective.

Text Books :

- 1. Keith Davis, Organisational Behaviour, McGraw-Hill.
- 2. K.Aswathappa, Organisational Behaviour, Himalaya Publishing House.

- 1. Stephen P. Robbins, Organisational Behaviour, Prentice Hall of India
- 2. Pradip N. Khandelwal, Organizational Behaviour, McGraw-Hill, New Delhi.
- 3. Uma Sekaran, "Organizational Behaviour", TATA McGraw-Hill, New Delhi.
- 4. Steven L McShane, Mary Ann Von Glinow, Radha R Sharma" Organizational Behaviour", TATA McGraw- Hill.
- 5. D.K. Bhattachayya, "Organizational Behaviour", Oxford University Press
- 6. K.B.L.Srivastava & A.K.Samantaray, "Organizational Behaviour" India Tech
- 7. Kavita Singh, "Organizational Behaviour", Pearson

BSMS1213 Material Science and Engineering

MODULE-I

(11 Hours)

Introduction, Classification of Engineering Materials, Engineering properties of materials, Selection of Materials Mechanical Properties of Materials: Tensile strength, Stress–strain behaviour, Ductile and brittle material, Impact test, Toughness, Hardness test, Fatigue and fatigue test, Creep and Creep test, Fracture

MODULE-II

(13 Hours)

Electrical and Electronic materials: Electrical conductivity, Thermal conductivity, Free electron theory, Energy band concept of conductor, insulator & semiconductor.

Superconductor materials: Principles of superconductivity, zero resistivity, Critical magnetic field and critical current density, Type I & II superconductors, Applications of superconductors

Dielectric Materials: Microscopic displacement of atoms and molecules in an external DC electric field, Polarization and dielectric constant, Dielectric susceptibility, polarization mechanisms, Temperature and frequency dependence of dielectric constant, Dielectric breakdown, Ferroelectric materials, Piezoelectrics, pyroelectrics and ferroelectrics, Dielectric materials as electrical insulators

Magnetic Materials: Concept of magnetism – Diamagnetic, Paramagnetic, Ferromagnetic materials, Hysteresis, Soft & hard magnetic materials, Ferrite

MODULE-III

(11 Hours)

Optical materials: optical properties – scattering, refraction, reflection, transmission & absorption, Laser – principles and applications, Optical fibres – principles and applications

Polymeric materials: Types of polymers, Mechanism of polymerization, Mechanical behaviour of polymers, Fracture in polymers, Rubber types and applications, Thermosetting and thermoplastics, Conducting polymers

Composite Materials: Microcomposites & Macrocomposites, fibre reinforced composites, Continuous fibre composites, Short fibre composites, Polymer matrix composites, Metal-matrix composites, Ceramic-matrix composites, Carbon-carbon Composites, Hybrid composites.

Ceramics: Types, structure, properties and application of ceramic materials

Other materials: Brief description of other materials such as Corrosion resistant materials, Nano phase materials, Shape memory alloy, SMART materials

Text Books:

- 1. Material Science for Engineers, James F. Shackelford & Madanapalli K Muralidhara, Pearson Education
- 2. Materials Science and Engineering, W.D.Callister, Wiley and Sons Inc.

- 1. Materials Science by M.S. Vijaya , G.Rangarajan, Tata MacGraw Hill
- 2. Materials Science by V. Rajendra, A. Marikani, Tata MacGraw Hill
- 3. Materias Science for Electrical and Electronic Engineers, I.P.Jones, Oxford University Press
- 4. Elements of Material Science and Engineering, L.H.Van Vlack, Addison Wesley
- 5. The Science and Engineering of Materials, Donald R. Askeland and Pradeep P Phule, Thomson Learning (India Edition)
- 6. Materials Science and Engineering, V.Raghavan, Prentice Hall of India Pvt.Ltd.
- 7. Materials Science and Engineering in SI units, W.F.Smith, J.Hashemi and R.Prakash, Tata MacGraw Hill
- 8. Engineering Materials, Properties and Selection, Kenneth G. Budinski and Michael K. Budinski, Prentice Hall of India
- 9. Material Science & Engineering, Vijaya M. S., Rangarajan G, Tata McGraw Hill.
- 10. Material Science & Enginnering, S.K.Tripathy, A.K.Padhy & A. Panda, Scitech publication.

BSCP 1207 Physics of Semiconductor Devices

Module-I

(10 Hours)

- 1. Introduction to the quantum theory of solids: Formation of energy bands, The k-space diagram (two and three dimensional representation), conductors, semiconductors and insulators.
- 2. Electrons and Holes in semiconductors: Silicon crystal structure, Donors and acceptors in the band model, electron effective mass, Density of states, Thermal equilibrium, Fermi-Dirac distribution function for electrons and holes, Fermi energy. Equilibrium distribution of electrons & holes: derivation of n and p from D(E) and f(E), Fermi level and carrier concentrations, The np product and the intrinsic carrier concentration. General theory of *n* and *p*, Carrier concentrations at extremely high and low temperatures: complete ionization, partial ionization and freeze-out. Energy-band diagram and Fermi-level, Variation of E_F with doping concentration and temperature.
- 3. Motion and Recombination of Electrons and Holes: Carrier drift: Electron and hole mobilities, Mechanism of carrier scattering, Drift current and conductivity.

Module II

- (11 Hours) 4. Motion and Recombination of Electrons and Holes (continued): Carrier diffusion: diffusion current, Total current density, relation between the energy diagram and potential, electric field. Einstein
- relationship between diffusion coefficient and mobility. Electron-hole recombination, Thermal generation. 5. **PN Junction:** Building blocks of the pn junction theory: Energy band diagram and depletion layer of a pn
- junction, Built-in potential; Depletion layer model: Field and potential in the depletion layer, depletionlayer width; Reverse-biased PN junction; Capacitance-voltage characteristics; Junction breakdown: peak electric field. Tunneling breakdown and avalanche breakdown; Carrier injection under forward bias-Quasi-equilibrium boundary condition; current continuity equation; Excess carriers in forward-biased pn junction; PN diode I-V characteristic, Charge storage.
- 6. The Bipolar Transistor: Introduction, Modes of operation, Minority Carrier distribution, Collector current, Base current, current gain, Base width Modulation by collector current, Breakdown mechanism, Equivalent Circuit Models - Ebers - Moll Model.

Module III

(12 Hours)

- 7. Metal-Semiconductor Junction: Schottky Diodes: Built-in potential, Energy-band diagram, I-V characteristics, Comparison of the Schottky barrier diode and the pn-junction diode. Ohmic contacts: tunneling barrier, specific contact resistance.
- 8. MOS Capacitor: The MOS structure, Energy band diagrams, Flat-band condition and flat-band voltage, Surface accumulation, surface depletion, Threshold condition and threshold voltage, MOS C-V characteristics, Q_{inv} in MOSFET.
- 9. MOS Transistor: Introduction to the MOSFET, Complementary MOS (CMOS) technology, V-I Characteristics, Surface mobilities and high-mobility FETs, JFET, MOSFET V_t, Body effect and steep retrograde doping, pinch-off voltage,

Text Books:

- 1. Modern Semiconductor Devices for Integrated Circuits, Chenming Calvin Hu, Pearson Education/Prentice Hall, 2009.
- 2. Semiconductor Physics and Devices, 3rd Edition, Donald A. Neamen, Tata McGraw Hill Publishing Company Limited, New Delhi.

- 1. Fundamentals of Semiconductor Devices, M.K. Achuthan and K.N. Bhatt, Tata McGraw Hill Publishing Company Limited, New Delhi.
- 2. Solid State Electronics Devices, 6th Edition, Ben. G. Stretman and Sanjay Banarjee, Pearson Education, New Delhi.
- 3. Physics of Semiconductor Devices, 3rd Edition, S.M. Sze and Kwok K. Ng, Wiley India Pvt. Limited, New Delhi.
- 4. Physics of Semiconductor Devices, 2nd Edition, Dillip K. Roy, University Press (India) Pvt. Ltd., Hyderabad.
- 5. Solid State Electronics Devices, D.K. Bhattacharya and Rajnish Sharma, Oxford University Press, New Delhi.

BEES2211 Network Theory

MODULE-I

1. <u>NETWORK TOPOLOGY</u>: Graph of a network, Concept of tree, Incidence matrix, Tie-set matrix, Cut-set matrix, Formulation and solution of network equilibrium equations on loop and node basis.

2. <u>NETWORK THEOREMS & COUPLED CIRCUITS</u>: Substitution theorem, Reciprocity theorem, Maximum power transfer theorem, Tellegen's theorem, Millman's theorem, Compensation theorem, Coupled Circuits, Dot Convention for representing coupled circuits, Coefficient of coupling, Band Width and Q-factor for series and parallel resonant circuits.

MODULE- II

3. <u>LAPLACE TRANSFORM & ITS APPLICATION</u>: Introduction to Laplace Transform, Laplace transform of some basic functions, Laplace transform of periodic functions, Inverse Laplace transform, Application of Laplace transform: Circuit Analysis (Steady State and Transient).

4. <u>TWO PORT NETWORK FUNCTIONS & RESPONSES</u>: z, y, ABCD and **h**-parameters, Reciprocity and Symmetry, Interrelation of two-port parameters, Interconnection of two-port networks, Network Functions, Significance of Poles and Zeros, Restriction on location of Poles and Zeros, Time domain behaviour from Pole-Zero plots.

MODULE- III

5. <u>FOURIER SERIES & ITS APPLICATION</u>: Fourier series, Fourier analysis and evaluation of coefficients, Steady state response of network to periodic signals, Fourier transform and convergence, Fourier transform of some functions, Brief idea about network filters (Low pass, High pass, Band pass and Band elimination) and their frequency response.

6. <u>NETWORK SYNTHESIS</u>: Hurwitz polynomial, Properties of Hurwitz polynomial, Positive real functions and their properties, Concepts of network synthesis, Realization of simple R-L, R-C and L-C functions in Cauer-I, Cauer-II, Foster-I and Foster-II forms.

Text Book:

1. Network Theory – P K Satpathy, P Kabisatpathy, S P Ghosh and A K Chakraborty – Tata McGraw Hill, New Delhi.

Reference Book(s):

- 2. Network Analysis M E Van Valkenburg Pearson Education.
- 3. Network Synthesis M E Van Valkenburg Pearson Education.
- 4. Network Analysis and Synthesis Franklin F. Kuo Wiley Student Edition.
- 5. Fundamentals of Electric Circuits Alexander & Sadiku Tata McGraw Hill.
- 6. Linear Circuits Analysis and Synthesis A Ramakalyan Oxford University Press.
- 7. Problems & Solutions in Electric Circuit Analysis Sivananda & Deepa Jaico Book.
- 8. Network Theory, Smarajit Ghosh, PHI.

(13 Hrs)

(14 Hrs)

(13 Hrs)

PCEE4204 Electrical and Electronics Measurement

MODULE-I

(14 Hrs)

- <u>INTRODUCTION</u>: (a) *Measurement and Error*. Definition, Accuracy and Precision, Significant Figures, Types of Errors. (b) *Standards of Measurement*. Classification of Standards, Electrical Standards, IEEE Standards.
- 2. <u>MEASUREMENT OF RESISTANCE, INDUCTANCE and CAPACITANCE</u>: (a) Resistance: Measurement of Low Resistance by Kelvin's Double Bridge, Measurement of Medium Resistance, Measurement of High Resistance, Measurement of Resistance of Insulating Materials, Portable Resistance Testing set (Megohmmeter), Measurement of Insulation Resistance when Power is ON, Measurement of Resistance of Earth Connections. (b) *Inductance*: Measurement of Self Inductance by Ammeter and Voltmeter, and AC Bridges (Maxwell's, Hay's, & Anderson Bridge), Measurement of Mutual Inductance by Felici's Method, and as Self Inductance. (c) *Capacitance*: Measurement of Capacitance by Ammeter and Voltmeter, and AC Bridges (Owen's, Schering & Wien's Bridge), Screening of Bridge Components and Wagnor Earthing Device.

MODULE- II

(14 Hrs)

- 3. <u>GALVANOMETER</u>: Construction, Theory and Principle of operation of D'Arsonval, Vibration (Moving Magnet & Moving Coil types), and Ballistic Galvanometer, Influence of Resistance on Damping, Logarithmic decrement, Calibration of Galvanometers, Galvanometer Constants, Measurement of Flux and Magnetic Field by using Galvanometers.
- 4. <u>AMMETER and VOLTMETER</u>: Derivation for Deflecting Torque of; PMMC, MI (attraction and repulsion types), Electro Dynamometer and Induction type Ammeters and Voltmeters.
- 5. <u>POTENTIOMETER</u>: Construction, Theory and Principle of operation of DC Potentiometers (Crompton, Vernier, Constant Resistance, & Deflectional Potentiometer), and AC Potentiometers (Drysdale-Tinsley & Gall-Tinsley Potentiometer).
- MEASUREMENT OF POWER, ENERGY, FREQUENCY and POWER FACTOR: Measurement of single phase and three phase power by wattmeter, Construction, Theory and Principle of operation of (a) Electro-Dynamometer and Induction type Wattmeters, (b) Single Phase and Polyphase Induction type Watt-hour meters, (c) Frequency Meters, and (d) Power Factor Meters.

MODULE- III

(14 Hrs)

- 7. <u>CURRENT TRANSFPRMER and POTENTIAL TRANSFOMER</u>: Construction, Theory, Characteristics and Testing of CTs and PTs.
- 8. <u>ELECTRONIC INSTRUMENTS FOR MEASURING BASIC PARAAMETERS</u>: Amplified DC Meters, AC Voltmeters using Rectifiers, True RMS Voltmeter, Considerations for choosing an Analog Voltmeter, Digital Voltmeters (Block Diagrams only), Q-meter.
- 9. <u>OSCILLOSCOPE</u>: Block Diagrams, Delay Line, Multiple Trace, Oscilloscope Probes, Oscilloscope Techniques, Introduction to Analog and Digital Storage Oscilloscopes, Measurement of Frequency, Phase Angle, and Time Delay using Oscilloscope.
- 10. <u>COUNTERS and ANALYZERS</u>: Introduction to Wave, Harmonic Distortion and Spectrum Analyzers, Frequency Counters, Computer Controlled Test Systems: Testing an Audio Amplifier.

Text Book(s) :

- 1. Electrical Measurements and Measuring Instruments Golding & Widdis 5th Edition, Reem Publication (*For sections 2 to 6: Selected Portions from Ch.-VI, VII, IX, XIX, XX, XXI & XXII*).
- 2. Modern Electronic Instrumentation and Measurement Techniques Helfrick & Cooper Pearson Education (For sections 1, 7 to 9: Selected Portions from Ch.-1, 3, 6, 7, 9, 10, and 13).

- 3. A Course in Electrical and Electronic Measurements and Instrumentation A K Sawhney Dhanpat Rai & Co.
- 4. Elements of Electronic Instrumentation and Measurement Joshep Carr 3rd Edition, Pearson Education.
- 5. Electronic Instrumentation H C Kalsi 2nd Edition, Tata McGraw Hill.
- 6. Electronic Measurement and Instrumentation Oliver & Cage Tata McGraw Hill.

PCEC4201 Analog Electronics Circuit

MODULE – I

(12 Hours)

- 1. **MOS Field-Effect Transistor:** Principle and Physical Operation of FETs and MOSFETs. P-Channel and N-Channel MOSFET, Complimentary MOS, V-I Characteristics of E- MOSFETS and D-MOSFETS, MOSFETS as an Amplifier and a Switch (4 Hours)
- 2. **Biasing of BJTs:** Load lines (AC and DC), Operating Points, Fixed Bias and Self Bias, DC Bias with Voltage Feedback, Bias Stabilization, Design Operation. (4 Hours)
- 3. **Biasing of FETs and MOSFETs:** Fixed Bias Configuration and Self Bias Configuration, Voltage Divider Bias and Design (4 Hours)

MODULE – II

(17 Hours)

- Small Signal Analysis of BJTs: Small-Signal Equivalent-Circuit Model, Graphical Determination of h-parameters Small Signal Analysis of CE, CC, CB Amplifier with and without R_E. Effect of R_S and R_L on CE Amplifier, Emitter Follower, Analysis of Cascade, Darlington Connection and Current Mirror Circuits using BJTs. (6 Hours)
- Small Signal Analysis of FETs: Small-Signal Equivalent-Circuit Model, Small Signal Analysis of CS, CD, CG Amplifier with and without R_S. Effect of R_{SIG} and R_L on CS Amplifier, Analysis of Source Follower and Cascaded System using FETs. (6 Hours)
- 6. **High Frequency Response of FETs and BJTs:** Low and High Frequency Response of BJTs and FETs, The Unit gain frequency (f_t), Frequency Response of CS Amplifier, Frequency Response of CE Amplifier, Multistage Frequency Effects, Miller Effect Capacitance, Square Wave Testing. (5 Hours)

MODULE – III

(12 hours)

- 7. **Feedback and Oscillators:** Feedback Concepts, Four Basic Feedback Topologies, Practical Feedback Circuits, Feedback Amplifier Stability using Nyquist Plot, Basic Principle of Sinusoidal Oscillator, Wein-Bridge, Phase Shift and Crystal Oscillator Circuits. (4 Hours)
- Operational Amplifier: Ideal Op-Amp, Differential Amplifier, Op-Amp Parameters, Slew rate, Non-inverting Configurations, Effect of Finite Open-loop and Closed-loop Gain, Differentiator and Integrator, Instrumentation amplifier, μA 741-Op-Amp. (5 Hours)
- 9. **Power Amplifier:** Classifications, Class-A and Class-B Amplifier Circuits, Transfer Characteristics, Power Dissipation and Conversion Efficiency of Power Amplifiers. (3 Hours)

Text Books:

- 1. Electronic Devices and Circuits theory, 9th/10th Edition, R.L. Boylestad and L.Nashelsky (Selected portions of Chapter 4, 5, 6, 7, 8, 9, 10, 11, 12, and 14), Pearson Education, New Delhi.
- 2. Microelectronics Circuits, 5th Edition, International Student Edition Sedra and Smith (Selected portion of Chapter 2,4, 5, 6, 8, 13, and 14), Oxford University Press, New Delhi.
- 3. Electronic Devices and Circuits, 3rd Edition, Jimmie J. Cathey adapted by Ajay Kumar Singh, Tata McGraw Hill Publishing Company Ltd., New Delhi. (*For Problem Solving*)

- 1. Electronics Circuits Analysis and Design, 3rd Edition, Donald A. Neamen, Tata McGraw Hill Publishing Company Ltd., New Delhi.
- 2. Milliman's Electronics Devices and Circuits, 2nd Edition, J. Milliman, C. Halkias, S. Jit., Tata McGraw Hill Education Pvt. Ltd., New Delhi
- 3. Integrated Electronics: Analog and Digital Circuits and Systems, J. Milliman, C. Halkias, Tata McGraw Hill Publishing Company Ltd., New Delhi.

4. Microelectronic Circuits: Analysis and Design, India Edition, M.H. Rashid, PWS Publishing Company, a division of Thomson Learning Inc.

BEES7211 Network and Devices Lab

Select any 8 experiments from the list of 10 experiments

- 1. Verification of Network Theorems (Superposition, Thevenin, Norton, Maximum Power Transfer).
- 2. Study of DC and AC Transients.
- 3. Determination of circuit parameters: Open Circuit and Short Circuit parameters.
- 4. Determination of circuit parameters: Hybrid and Transmission parameters.
- 5. Frequency response of Low pass and High Pass Filters.
- 6. Frequency response of Band pass and Band Elimination Filters.
- 7. Determination of self inductance, mutual inductance and coupling coefficient of a single phase two winding transformer representing a coupled circuit.
- 8. Study of resonance in R-L-C series circuit.
- 9. Study of resonance in R-L-C parallel circuit.
- 10. Spectral analysis of a non-sinusoidal waveform.

PCEC7201 Analog Electronics Circuit Lab

<u>List of Experiments</u>

(At least 10 out of 13 experiments should be done)

- 1. BJT bias circuit Design, assemble and test.
- **2.** JEET/MOSFET bias circuits Design, assemble and test.
- **3.** Design, assemble and test of BJT common-emitter circuit D.C and A.C performance: Voltage gain, input impedance and output impedance with bypassed and un-bypassed emitter resistor.
- **4.** Design, assemble and test of BJT emitter-follower D.C and A.C performance: A.C. voltage gain, input impedance and output impedance.
- **5.** Design, assemble and Test of JFET/MOSFET common-source and common-drain amplifiers D.C and A.C performance: Voltage gain, input impedance and output impedance.
- **6.** Frequency response of a common-emitter amplifier: low frequency, high frequency and mid frequency response.
- 7. Differential amplifiers circuits: D.C bias and A.C operation without and with current source.
- 8. Study of Darlington connection and current mirror circuits.
- 9. OP-Amp Frequency Response and Compensation.
- **10.** Application of Op-Amp as differentiator, integrator, square wave generator.

- **11.** Square wave testing of an amplifier.
- **12.** R.C phase shift oscillator/Wien-Bridge Oscillator using OP-Amp/Crystal Oscillator.
- **13.** Class A and Class B Power Amplifier.

PCEE7204 Electrical and Electronics Measurement Lab

Select any 8 experiments from the list of 10 experiments

- 1. Measurement of Low Resistance by Kelvin's Double Bridge Method.
- 2. Measurement of Self Inductance and Capacitance using Bridges.
- 3. Study of Galvanometer and Determination of Sensitivity and Galvanometer Constants.
- 4. Calibration of Voltmeters and Ammeters using Potentiometers.
- 5. Testing of Energy meters (Single phase type).
- 6. Measurement of Iron Loss from B-H Curve by using CRO.
- 7. Measurement of R, L, and C using Q-meter.
- 8. Measurement of Power in a single phase circuit by using CTs and PTs.
- 9. Measurement of Power and Power Factor in a three phase AC circuit by two-wattmeter method.
- 10. Study of Spectrum Analyzers.

4th Semester

PCEC4205 Electromagnetic Fields and Waves

MODULE – I

(11 Hours)

- 1. **Vectors and Fields:** Vector Algebra, Cartesian Coordinate System, Scalar and Vector Fields, Sinusoidally Time-Varying Fields, Electric Field, Magnetic Field.
- 2. **Maxwell's Equations in Integral Form:** Line Integral, Surface Integral, Faradays Law, Ampere's Circuital Law, Gauss's Law for Electric Field, Gauss's Law for Magnetic Field.
- 3. **Maxwell's Equations in Differential Form:** Faradays Law, Ampere's Circuital Law, Curl and Stoke's Theorem, Gauss's Law for Electric Field, Gauss's Law for Magnetic Field, Divergence and Divergence Theorem.

MODULE – II

(11 Hours)

- 4. **Wave Propagation in Free Space:** Infinite Plane Current Sheet, Magnetic Field Adjacent to the Current Sheet, Successive Solution of Maxwells's Equations, Wave Equation and Solution, Uniform Plane Waves, Poynting Vector and Energy Storage.
- 5. **Wave Propagation in Material Media:** Conductors and Dielectrics, Magnetic Materials, Wave Equation and Solution, Uniform Plane Waves in Dielectrics and Conductors, Boundary Conditions, Reflection and Transmission of Uniform Plane Waves.

MODULE – III

(10 Hours)

- 6. **Transmission Line Analysis:** Gradient and Electric Potential, Poisson's and Laplace's Equations, Low Frequency Behavior via Quasistatics, Short Circuited Line and Frequency Behavior.
- 7. **Wave Guide Principles:** Uniform Plane Wave Propagation in an Arbitrary Direction, Transverse Electric Waves in a Parallel-Plate Waveguide, Dispersion and Group Velocity, Rectangular Waveguide and Cavity Resonator, Reflection and Refraction of Plane Waves, Dielectric Slab Guide.

Text Book(s):

- 1. Fundamentals of Electromagnetics for Engineering, First Impression 2009, N. N. Rao, Pearson Education, New Delhi.
- 2. Introduction to Electromagnetic Fields, 3rd Edition, Clayton R. Paul, Keith W. Whites and Syed A. Nasar, Tata McGraw Hill Publishing Company Ltd., New Delhi.
- 3. Electromagnetics, 2nd Edition, Joseph A. Edminister, adapted by Vishnu Priye, Tata McGraw Hill Publishing Company Ltd., New Delhi. (*For Problem Solving*)

- 1. Elements of Engineering Electromagnetics, 6th Edition, N. N. Rao, Pearson Education, New Delhi.
- 2. Electromagnetic Waves and Radiating Systems, 2nd Edition, E.C. Jordan and K.G. Balman, Pearson Education, New Delhi.
- 3. Engineering Electromagnetics, 7th Edition, William H. Hayt, Tata McGraw Hill Publishing Company Ltd., New Delhi.
- 4. Electromagnetic Field Theory Fundamentals, B.S. Guru and H.R. Hiziroglu, PWS Publishing Company, a division of Thomson Learning Inc.
- 5. Elements of Electromagnetics, Mathew N.O. Sadiku, Oxford University Press, New Delhi.

BEEC2214 Energy Conversion Devices

MODULE- I

- 1. <u>GENERAL PRINCIPLES OF DC MACHINES</u>: Constructional Features, Methods of Excitation, Expression for EMF Induced and Torque Developed in the Armature.
- 2. <u>DC GENERATORS</u>: No Load Characteristics for Separately Excited DC Generator and DC Shunt Generator, Conditions for Self Excitation, Critical Resistance and Critical Speed, Losses and Efficiency.
- 3. <u>DC MOTORS</u>: Speed~Armature Current, Torque~Armature Current and Speed~Torque Characteristic for (i) Separately Excited DC Motor, (ii) DC Shunt Motor, (iii) DC Series Motor, and (iv) DC Compound Motor, Speed control and Starting of DC shunt and DC series motors, Comparison Between Different types of DC Motors and their Application.

MODULE- II

- 4. <u>TRANSFORMERS</u>: Constructional Features, EMF Equation, Turns Ratio, Determination of Parameters From Tests (Open Circuit Test and Short Circuit Test), Equivalent Circuit, Losses and Efficiency, Introduction to Three Phase Transformers: Three Single Phase Transformers Connected as a Bank of Three Phase Transformer.
- 5. <u>THREE PHASE SYNCHRONOUS MACHINES</u>: Constructional Features, Principle of operation as Alternator and Synchronous Motor, Synchronous Impedance, Voltage Regulation by Synchronous Impedance Method, Power-Angle curve, Synchronization of Alternators, Torque Expression and Phasor Diagram for Synchronous Motor, Electrical Power and Mechanical Power, Starting of Synchronous Motor.

MODULE- III

(13 Hrs)

- <u>THREE PHASE INDUCTION MOTORS</u>: Constructional Features of Squirrel Cage Rotor type and Slip Ring/Wound Rotor type of Induction Motors, Principle of Operation, Concept of Slip, Slip~Torque Characteristics, Starting of Squirrel Cage Rotor type and Slip Ring/Wound Rotor type of Induction Motors, Speed Control of Induction Motors
- <u>SINGLE PHASE INDUCTION MOTORS and COMMUTATOR MOTORS</u>: Revolving Field Theory, Split Phase (capacitor start and run) and Shaded Pole Starting of Single Phase Induction Motors, Speed-Current, Torque-Current and Speed-Torque Characteristic for Single Phase AC Series Motor.

Text Book :

1. Electric Machines – D P Kothari & I J Nagrath – Tata McGraw Hill.

Reference Book(s):

- 2. The Performance and Design of DC Machines A E Clayton
- 3. Theory and Performance of AC Machines M G Say CBS Publication.
- 4. Electrical Machinery P S Bimbhra Khanna Publishers.
- 5. Electrical Machines P K Mukherjee and S Chakravorti Dhanpat Rai Publications.
- 6. Electric Machinery Fitzgerald, Charles Kingsley Jr., S. D. Umans Tata Mc Graw Hill.
- 7. Electric Machinery And Transformers –Guru & Hiziroglu –Oxford University Press.

(14 Hrs)

(13 Hrs)

BECS2212 C++ & Object Oriented Programming

Module I

(08 hrs)

Introduction to object oriented programming, user defined types, structures, unions, polymorphism, encapsulation. Getting started with C++ syntax, data-type, variables, strings, functions, default values in functions, recursion, namespaces, operators, flow control, arrays and pointers.

Module II

(16 hrs)

Abstraction mechanism: Classes, private, public, constructors, destructors, member data, member functions, inline function, friend functions, static members, and references.

Inheritance: Class hierarchy, derived classes, single inheritance, multiple, multilevel, hybrid inheritance, role of virtual base class, constructor and destructor execution, base initialization using derived class constructors.

Polymorphism: Binding, Static binding, Dynamic binding, Static polymorphism: Function Overloading, Ambiguity in function overloading, Dynamic polymorphism: Base class pointer, object slicing, late binding, method overriding with virtual functions, pure virtual functions, abstract classes.

Operator Overloading: This pointer, applications of this pointer, Operator function, member and non member operator function, operator overloading, I/O operators.

Exception handling: Try, throw, and catch, exceptions and derived classes, function exception declaration.

Module III

(08 hrs)

Dynamic memory management, new and delete operators, object copying, copy constructor, assignment operator, virtual destructor.

Template: template classes, template functions.

Namespaces: user defined namespaces, namespaces provided by library.

Text Books:

- 1. Object Oriented Programming with C++ E. Balagurusamy, McGraw-Hill Education (India)
- 2. ANSI and Turbo C++ Ashoke N. Kamthane, Pearson Education

- 1. Big C++ Wiley India
- 2. C++: The Complete Reference- Schildt, McGraw-Hill Education (India)
- 3. C++ and Object Oriented Programming Jana, PHI Learning.
- 4. Object Oriented Programming with C++ Rajiv Sahay, Oxford
- 5. Mastering C++ Venugopal, McGraw-Hill Education (India)

PCEC4202 Digital Electronics Circuit

MODULE – I

(11 Hours)

- 1. Number System: Introduction to Binary Numbers, Data Representation, Binary, Octal, Hexadecimal and Decimal Number System and their Conversion. (2 Hours)
- 2. Boolean Algebra and Logic Gates: Basic Logic Operation and Identities, Algebraic Laws, NOR and NAND Gates, Useful Boolean Identities, Algebraic Reduction, Complete Logic Sets, Arithmetic Operation using 1's and 2`s Compliments, Signed Binary and Floating Point Number Representation.
 - (4 Hours)
- **3. Combinational Logic Design:** Specifying the Problem, Canonical Logic Forms, Extracting Canonical Forms, EX-OR Equivalence Operations, Logic Array, K-Maps: Two, Three and Four variable K-maps, NAND and NOR Logic Implementations. (5 Hours)

MODULE – II

(15 Hours)

- **4. Concepts in VHDL:** Basic Concepts, Using a Hardware Description Language, Defining Module in VHDL, Structural and Combinational Modelling, Binary Words, Libraries, Learning VHDL. (4 Hours)
- 5. CMOS Logic Circuits: Voltages as Logic Variables, Logic Delay Times: Output Switching Times, Propagation Delay, Fan-In and Fan-out, Extension to other Logic Gate. C-MOS Electronics, MOSFETS, The NOT Function in C-MOS: Complimentary Pairs and the C-MOS Invertors, Logic Formation Using MOSFETS: the NAND and NOR Gate, C-MOS Logic Connection, Complex Logic Gates in C-MOS: 3-input Logic Gates, A general 4-input Logic Gate, Logic Cascades. (6 Hours)
- 6. Introduction to VLSI: Introduction, Lithography and Patterning, MOSFET Design Rules, Basic Circuit Layout, MOSFET Arrays and AOI Gates, Cells, Libraries, and Hierarchical Design, Floor Plans and Interconnect Wiring. (5 Hours)

MODULE – III

(16 hours)

- 7. **Logic Components:** Concept of Digital Components, An Equality Detector, Line Decoder, Multiplexers and De-multiplexers, Binary Adders, Subtraction and Multiplication. (5 Hours)
- 8. **Memory Elements and Arrays:** General Properties, Latches, Clock and Synchronization, Master-Slave and Edge-triggered Flip-flops, Registers, RAM and ROMs, C-MOS Memories. (6 Hours)
- Sequential Network: Concepts of Sequential Networks, Analysis of Sequential Networks: Single State and Multivariable Networks, Sequential Network Design, Binary Counters, Importance of state machine. (5 Hours)

<u>Text Books:</u>

- 1. A First Course in Digital System Design: An Integrated Approach, India Edition, John P. Uyemura, PWS Publishing Company, a division of Thomson Learning Inc.
- 2. Digital Systems Principles and Applications, 10th Edition, Ronald J. Tocci, Neal S. Widemer and Gregory L. Moss, Pearson Education.
- 3. Digital Design, Robert K. Dueck, CENGAGE Learning.

- 1. Digital Principles and Applications, 6th Edition, Donald P. Leach, Albert Paul Malvino and Goutam Saha, Tata McGraw Hill Publishing Company Ltd., New Delhi.
- 2. Digital Fundamentals, 5th Edition, T.L. Floyd and R.P. Jain, Pearson Education, New Delhi.
- 3. Digital Electronics, Principles and Integrated Circuit, Anil K. Jain, Wiley India Edition.
- 4. Digital Design, 3rd Edition, Moris M. Mano, Pearson Education.

BEEC7214 Energy Conversion Devices Lab

Select any 8 experiments from the list of 10 experiments

- 1. Determination of critical resistance and critical speed from no load test of a DC shunt generator.
- 2. Plotting of external and internal characteristics of a DC shunt generator.
- 3. Starting of DC shunt motors by 3-point/ 4-point starter.
- 4. Speed control of DC shunt motor by armature control and flux control method.
- 5. Determination of Efficiency by Open Circuit and Short Circuit test on single phase transformer.
- 6. Polarity test and Parallel operation of two single phase transformers.
- 7. Open circuit and Short circuit test of an alternator.
- 8. Load test of three phase induction motors.
- 9. Calculation of slip and efficiency of three phase squirrel cage induction motor at full load.
- 10. Starting of single phase induction motors

PCEC7202 Digital Electronics Circuit Lab

List of Experiments:

(Atleast 10 experiments should be done, Experiment No. 1 and 2 are compulsory and out of the balance 8 experiments atleast 3 experiments has to be implemented through both Verilog/VHDL and hardware implementation as per choice of the student totaling to 6 and the rest 2 can be either through Verilog/VHDL or hardware implementation.)

- 1. Digital Logic Gates: Investigate logic behavior of AND, OR, NAND, NOR, EX-OR, EX-NOR, Invert and Buffer gates, use of Universal NAND Gate.
- 2. Gate-level minimization: Two level and multi level implementation of Boolean functions.
- 3. Combinational Circuits: design, assemble and test: adders and subtractors, code converters, gray code to binary and 7 segment display.
- 4. Design, implement and test a given design example with (i) NAND Gates only (ii) NOR Gates only and (iii) using minimum number of Gates.
- 5. Design with multiplexers and de-multiplexers.
- 6. Flip-Flop: assemble, test and investigate operation of SR, D & J-K flip-flops.
- 7. Shift Registers: Design and investigate the operation of all types of shift registers with parallel load.
- 8. Counters: Design, assemble and test various ripple and synchronous counters decimal counter, Binary counter with parallel load.
- 9. Memory Unit: Investigate the behaviour of RAM unit and its storage capacity 16 X 4 RAM: testing, simulating and memory expansion.
- 10. Clock-pulse generator: design, implement and test.
- 11. Parallel adder and accumulator: design, implement and test.
- 12. Binary Multiplier: design and implement a circuit that multiplies 4-bit unsigned numbers to produce a 8-bit product.
- 13. Verilog/VHDL simulation and implementation of Experiments listed at SI. No. 3 to 12.

BECS7212 C++ & Object Oriented Programming Lab

- 1. Programs on concept of classes and objects.(1 class)
- 2. Programs using inheritance.(1 class)
- 3. Programs using static polymorphism.(1 class)
- 4. Programs on dynamic polymorphism.(1 class)
- 5. Programs on operator overloading.(1 class)
- 6. Programs on dynamic memory management using new, delete operators.(1 class)
- 7. Programs on copy constructor and usage of assignment operator.(1 class)
- 8. Programs on exception handling .(1 class)

10. Programs on file handling.(1 class)

HSSM7203 Communication & Interpersonal skills for Corporate Readiness Lab.

Lab

30 hours

This course will focus on communication in professional (work-related) situations of the kind that BPUT graduates may expect to encounter on entering the professional domain.

Some typical forms of work-related communication, oral or written, are listed below. Practice activities for all four skills can be designed around these or similar situations.

- 1. Gaining entry into an organization
- i. Preparing job-applications and CVs
- ii. Facing an interview
- iii. Participating in group discussion (as part of the recruitment process)
- 2 In-house communication
- a. Superior/Senior \rightarrow subordinate / junior (individual \rightarrow individual / group)
 - i. Welcoming new entrants to the organization, introducing the workplace culture etc.
 - ii. Briefing subordinates / juniors : explaining duties and responsibilities etc.
 - ii. Motivating subordinates / juniors ('pep talk')
 - iii. Instructing/ directing subordinates/ juniors
 - iv. Expressing / recording appreciation, praising / rewarding a subordinate or junior
- v Reprimanding / correcting / disciplining a subordinate/junior (for a lapse) ; asking for an explanation etc.
- b. Subordinate / Junior → Superior / Senior
- i. Responding to the above
- ii. Reporting problems / difficulties / deficiencies
- iii. Offering suggestions

BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, ORISSA

ELECTRONICS & COMMUNICATION ENGINEERING (E&CE) AND ELECTRONICS & TELECOMMUNICATION ENGINEERING (E&TCE).

<u>5th SEMESTER</u>					<u>6th_SEMESTER</u>			
	THEORY	Contact Hours			THEORY	Contact Hours		
Code	Subject	L-T-P	Credits	Code	Subject	L-T-P	Credit s	
HSSM3303	Environmental Engineering & Safety	3-0-0		HSSM3301	Principles of Management	3-0-0		
	or		3		or		3	
HSSM3301	Principles of Management	3-0-0		HSSM3303	Environmental Engineering & Safety	3-0-0		
PCEC4303	Control System Engineering	3-0-0	3	PCEC4304	Digital Signal Processing	3-0-0	3	
PCEC4301	Microprocessors	3-0-0	3	PCEC4305	Digital Communication Techniques	3-0-0	3	
PCEC4302	Analog Communication Techniques	3-1-0	4		Professional Elective – II (<i>Any One</i>) Antennas and Wave Propagation Radar and TV Engineering	3-0-0	3	
PEEC4301 PEEC4303	Professional Elective – I (<i>Any One</i>) Fiber Optics & Optoelectronics Devices Advanced Electronic Circuits Electronic Devices and Modelling Signals and Systems	3-0-0	3	PEEC5301	Professional Elective – III (<i>Any One</i>) Mobile Communication Information Theory and Coding Computer Network & Data Communication	3-0-0	3	
FEEC6301 PCBM4301	Free Elective – I (<i>Any One</i>) Optimization in Engineering Data Base Management Systems (DBMS) Elements of Biomedical Instrumentation Applied Physiology Java Programming	3-0-0	3	FESM6301 PEEI5302 PCBM4304	Free Elective – II (<i>Any One</i>) Operating System Numerical Methods Analog Signal Processing Biomedical Signal Processing Robotics & Robot Applications	3-0-0	3	
	Credits (Theory)				Credit	s (Theory)	18	
	PRACTICALS/SESSIONALS				PRACTICALS/SESSIONALS			
PCEC7303	Control & Instrumentation Lab.	0-0-3	2	PCEC7304	Digital Signal Processing Lab.	0-0-3	2	
PCEC7301	Microprocessor Lab.	0-0-3	2	PCEC7306	Communication Engineering Lab.	0-0-3	2	
PCEC7302	Analog Communication Lab.	0-0-3	2	PCEC7305	Digital Communication Lab.	0-0-3	2	
Credits (Practicals / Sessionals)			6	Credits (Practicals/Sessionals)			6	
TOTAL SEMESTER CREDITS			25	TOTAL SEMESTER CREDITS			24	
TOTAL CUMULATIVE CREDITS				TOTAL CUMULATIVE CREDITS			160	

HSSM3303 ENVIRONMENTAL ENGINEERING & SAFETY (3-0-0)

Module – I

Ecological Concepts: Biotic components, Ecosystem Process: Energy, Food Chain, Water cycle, Oxygen cycle, Nitrogen cycle etc., Environmental gradients, Tolerance levels of environment factor, EU, US and Indian Environmental Law. Chemistry in Environmental Engineering: Atmospheric chemistry, Soil chemistry. Noise pollution-Noise standards, measurement and control. Water Treatment: water quality standards and parameters, Ground water. Water treatment processes, Pre-treatment of water, Conventional process, Advanced water treatment process.

Module – II

(a)Waste Water Treatment: DO and BOD of Waste water treatment process, pretreatment, primary and secondary treatment of waste water, Activated sludge treatment: Anaerobic digestion, Reactor configurations and methane production.

(b)Air Pollution : Air pollution and pollutants, criteria pollutants, Acid deposition, Global climate change –greenhouse gases, non-criteria pollutants, air pollution meteorology, Atmospheric dispersion. Industrial Air Emission Control. Flue gas desulphurization, NOx removal, Fugitive emissions.

(c) Solid waste, Hazardous waste management, Solid Waste Management, Source classification and composition of MSW: Separation, storage and transportation, Reuse and recycling, Waste Minimization Techniques. Hazardous Waste Management, Hazardous waste and their generation, Transportation and treatment: Incinerators, Inorganic waste treatment. E.I.A., Environmental auditing,

Module – III

Occupational Safety and Health Acts, Safety procedures, Type of Accidents, Chemical and Heat Burns, Prevention of Accidents involving Hazardous substances, Human error and Hazard Analysis. Hazard Control Measures in integratednsteel industry, Petroleum Refinery, L.P.G. Bottling, Pharmaceutical industry. Fire Prevention – Detection, Extinguishing Fire, Electrical Safety, Product Safety. Safety Management- Safety Handling and Storage of Hazardous Materials, Corrosive Substances, Gas Cylinders, Hydro Carbons and Wastes. Personal Protective Equipments.

Text Book :

- 1. Environmental Engineering Irwin/ McGraw Hill International Edition, 1997, G. Kiely,
- 2. Environmental Engineering by Prof B.K. Mohapatra, Dhanpat Rai & Co Publication
- 3. Industrial Safety Management, L. M. Deshmukh, Tata McGraw Hill Publication.

- 1. Environmental Engineering by Arcadio P. Sincero & Gergoria A. Sincero PHI Publication
- 2. Principles of Environmental Engineering and Science, M. L. Davis and S. J. Masen, McGraw Hill International Edition, 2004
- 3. Environmental Science, Curringham & Saigo, TMH,
- 4. Man and Environment by Dash & Mishra
- 5. An Introduction to Environmental Engineering and Science by Gilbert M. Masters & Wendell P. Ela PHI Publication.
- 6. Industrial Safety Management and Technology, Colling. D A Prentice Hall, New Delhi.

HSSM3301 PRINCIPLES OF MANAGEMENT (3-0-0)

Module I: Functions of Management

Concept of Management, Management as an Art or Science, The Process of Management, Managerial Skills, Good Managers are Born, not Made, Management is concerned with Ideas, Things and People, How a Manager Induces Workers to Put in Their Best, Levels and Types of Management, **Evolution of Management Thought**: Managerial Environment, The process of Management-Planning, Organizing, Directing, Staffing, Controlling.

Module II: Marketing Function of Management.

Modern Concept of Marketing, The Functional Classification of Marketing, Functions of a Marketing Management, Marketing Mix, Fundamental Needs of Customers, The Role of Distribution channels in Marketing, Advertising, Marketing, Consumerism and Environmentalism.

Module III: Financial Function & HRM Functions.

Financial Functions, Concept of Financial Management, Project Appraisal, Tools of Financial decisions making, Overview of Working Capital.

HRM Function of Management: Human Resource Management, Human Resource Development, Importance of HRM, Overview of Job Analysis, Job Description, Job Specification, Labour Turnover. Manpower Planning, Recruitment, Selection, Induction, Training and Development, Placement, Wage and Salary Administration, Performance Appraisal, Grievance Handling, Welfare Aspects.

- 1. Business Organization & Management, CR Basu, TMH
- 2. Business Organization & Management, Tulsia, Pandey, Pearson
- 3. Marketing Management, Kotler, Keller, Koshi, Jha, Pearson
- 4. Financial Management, I.M. Pandey, Vikas
- 5. Human Resource Management, Aswasthapa, TMH.
- 6. Modern Business Organisation & Management by Sherlekar, Himalaya Publishing House.

PCEC4303 CONTROL SYSTEM ENGINEERING (3-0-0)

<u>Module-I</u> :

Introduction to Control Systems : Basic Concepts of Control Systems, Open loop and closed loop systems, Servo Mechanism/Tracking System, Regulators, Mathematical Models of Physical Systems: Differential Equations of Physical Systems: Mechanical Translational Systems, Mechanical Acceloroments, Retational systems, Gear Trains, Electrical Systems, Analogy between Mechanical and electrical quanties, Thermal systems, fluid systems, Derivation of Transfer functions, Block Diagram Algebra, Signal flow Graphs, Mason's Gain Formula. Feedback characteristics of Control Systems: Effect of negative feedback on sensitivity, bandwidth, Disturbance, linearizing effect of feedback, Regenerative feedback.

Control Components : D.C. Servomotors, A.C. Servomotors, A.C. Tachometer, Synchros, Stepper Motors.

<u>Module-II</u> :

(15 Hours)

Time response Analysis : Standard Test Signals : Time response of first order systems to unit step and unit ramp inputs. Time Response of Second order systems to unit step input, Time Response specifications, Steady State Errors and Static Error Constants of different types of systems. Generalised error series and Gensalised error coefficients, Stability and Algebraic Criteria, concept of stability, Necessary conditions of stability, Hurwitz stability criterion, Routh stability criterion, Application of the Routh stability criterion to linear feedback system, Releative stability by shifting the origin in s-plane. Root locus Technique: Root locus concepts, Rules of Construction of Root locus, Determination of Roots from Root locus for a specified open loop gain, Root contours, Systems with transportation lag. Effect of adding open loop poles and zeros on Root locus.

<u>Module-III</u> :

(13 Hours)

Frequency Response Analysis : Frequency domain specifications, correlation between Time and Frequency Response with respect to second order system, Polar plots, Bode plot. Determination of Gain Margin and Phase Margin from Bode plot.

Stability in frequency domain : Principle of argument, Nyquist stability criterion, Application of Nyquist stability criterion for linear feedback system.

Closed loop frequency response : Constant Mcircles, Constant N-Circles, Nichol's chart. Controllers : Concept of Proportional, Derivative and Integral Control actions, P, PD, PI, PID controllers. Zeigler-Nichols method of tuning PID controllers.

Text Books :

- 1. Modern Control Engineering by K. Ogata, 5th edition PHI.
- 2. Control Systems Engg. by I.J. Nagrath and M.Gopal, 5th Edition, New Age International Publishers (2010).
- 3. Modern Control Systems by Richard C.Dorf and Robert H. Bishop, 11th Ed (2009), Pearson *Reference Books :*
- 1. Design of Feedback Control Systems by R.T. Stefani, B. Shahian, C.J. Savator, G.H. Hostetter, Fourth Edition (2009), Oxford University Press.
- 2. Control Systems (Principles and Design) by M.Gopal 3rd edition (2008), TMH.
- 3. Analysis of Linear Control Systems by R.L. Narasimham, I.K. International Publications
- 4. Control Systems Engineering by S.P. Eugene Xavier and J. Josheph Cyril Babu, 1st Edition (2004), S. Chand Co. Ltd.
- 5. Problems and solutions in Control System Engineering by S.N. Sivanandam and S.N. Deepa, Jaico Publishing House.

(12 Hours)

PCEC4301 MICROPROCESSORS (3-0-0)

<u>Module-I</u> :

(10 Hours)

Organization of Microprocessor

Introduction to the general concept of microprocessor organization, I/O sub-systems, programming the system, ALU, instruction execution, instruction word format, addressing modes, address/data/control bus, tristate bus, interfacing I/O devices, data transfer schemes, architectural advancements of microprocessor, evolution of microprocessors.

Module-II :

(12 Hours)

Intel 8086- Hardware Architecture:

Introduction, Bus interface unit(BIU), Execution unit(EU), pin description, register organization, instruction pointer, data register, pointer and index registers, status register, stack, external memory addressing, bus cycle (minimum mode):memory or I/O read/write for minimum mode, clock generator Intel- 8284A, bidirectional bus trans-receiver 8286/8287, bus controller 8288, bus cycle memory read/write for minimum mode, 8086 system configuration (minimum mode as well as maximum mode), memory interfacing, interrupt processing; software interrupts, single step interrupt, non-maskable interrupt, maskable interrupt, interrupt priority, DMA, Halt State, Wait for Test state, comparison between 8086 an 8088.

<u>Module-III</u> :

(13 Hours)

Instruction set and programming:

Programmer's model of Intel 8086, operand type, addressing modes 8086 assembler directives, instruction set, programming examples on data transfer group, arithmetic-logical groups, control transfer groups (loop and loop handling instruction), conditional and unconditional group, procedures and stack operations, string instructions.,branch program structure like IF-THEN-ELSE REPEAT-UNTIL and WHILE-DO,

I/O Interfacing ;

8-bit input- output port 8255 PPI, memory mapped i/o ports,8254 programmable Interval Timer, 8273 Programmable Direct Memory Access Controller, 8251 USART, 8279 Programmable Keyboard/Display Controller.

Text Books:

1.The 8088 and 8086 Microprocessors Programming, Interfacing, Softw, Hardware and Application; by Walter A. Triebel & Avtar Singh; Pearson India.

2. Microprocessors and Interfacing; by Douglas V Hall ; McGraw Hill.

Reference Book:

1. Microprocessors and Micro controllers Architecture, programming and system Design 8085, 8086, 8051, 8096: by Krishna Kant; PHI.

2. The 8086 Microprocessor: Programming & Interfacing the PC- Kenneth J. Ayala, Delmar Cengage Learning, Indian Ed.

PCEC4302 ANALOG COMMUNICATION TECHNIQUES (3-1-0)

Module-I :

(12 Hours)

SIGNALS AND SPECTRA:An Overview of Electronic Communication Systems, Signal and its Properties, Fourier Series Expansion and its Use, The Fourier Transform, Orthogonal Representation of Signal.

RANDOM VARIABLES AND PROCESSES: Probability, Random variables, Useful Probability Density functions, Useful Properties and Certain Application Issues.

AMPLITUDE MODULATION SYSTEMS: Need for Frequency translation, Amplitude Modulation(*Double Side Band with Carrier DSB-C*), Single Sideband Modulation(SSB) Other AM Techniques and Frequency Division Multiplexing , Radio Transmitter and Receiver.

Module-II :

(12 Hours)

ANGLE MODULATION: Angle Modulation, Tone Modulated FM Signal, Arbitrary Modulated FM signal, FM Modulators and Demodulators, Approximately Compatible SSB Systems.

PULSE MODULATION AND DIGITAL TRANSMISSION OF ANALOG SIGNAL:

Analog to Digital (*Noisy Channel and Role of Repeater*), Pulse Amplitude Modulation and Concept of Time division multiplexing ,Pulse Width Modulation and Pulse Position Modulation, Digital Representation of Analog Signal.

Module-III :

(14 Hours)

MATHEMATICAL REPRESENTATION OF NOISE: Some Sources of Noise, Frequency-domain Representation of Noise, Superposition of Noises, Linear Filtering of Noise.

NOISE IN AMPLITUDE MODULATION SYSTEM : Framework for Amplitude Demodulation, Single Sideband Suppressed Carrier(SSB-SC), Double Sideband Suppressed Carrier(DSB-SC), Double Sideband With Carrier(DSB-C).

NOISE IN FREQUENCY MODULATION SYSTEM : An FM Receiving System, Calculation of Signal to Noise Ratio, Comparison of FM and AM, Preemphasis and Deemphasis and SNR Improvement, Noise in Phase Modulation and Multiplexing Issues, Threshold in Frequency Modulation, Calculation of Threshold in an FM Discriminator, The FM Demodulator using Feedback(FMFB).

Essential Reading:

 H. Taub, D. L Schilling, G. Saha; Principles of Communication System, 3rd Edition; 2008, Tata McGraw Hill, India; ISBN: 0070648115. (Selected portions from chapters: Chapter-1, Chapter-2, Chapter-3, Chapter-4, Chapter-5, Chapter-7, Chapter-8, Chapter-9)

Supplementary Reading:

- 1. Communication System Engineering, Second Edition by Masoud Salehi, John G. Proakis, ISBN: 0130950076 (paperback)
- 2. Analog Communication by Chandra Sekar, Oxford University Press.
- 3. Modern Digital and Analog Communication Systems, by B.P. Lathi, Oxford

PEEC4302 FIBER OPTICS AND OPTOELECTRONICS DEVICES

(3-0-0)

Unit 1 (10 hours)

Fundamental of fiber optics, Different generations of optical fiber communication systems. Optical fiber structure, Fiber types, step index fiber and graded index fiber, ray propagation, total internal reflection, Numerical Aperature, acceptance angle. Wave propagation in a cylindrical wave guides, modal concept, V-number, power flow in step index fiber and graded index fiber, attenuation (absorbtion, scattering and bending) and dispersion (inter and intramodal, chromatic, wave guide and polarization) in fiber, dispersion shifted and dispersion flattened fiber

Unit 2 (12 hours)

Fiber fabrication, Double crucible method, Fiber optic cables, Connector and splice. Losses during coupling between source to fiber, fiber to fiber. Schemes for coupling improvement.

Optoelectronic Sources, LED, ILD, light source materials, Radiation Pattern modulation capability.

Unit 3 (13 hours)

Optoelectronic Detector, PIN AND APD, Responsivity,Band width, Detector noise ,equivalent circuit and SNR calculation.

Optoelectronic Modulators, Basic principle, Electro optic and Acousto optic modulators, Optical Amplifier, Semiconductor optical Amplifier and Erbium Doped Fiber Amplifier, Solar cells, basic principle,heterojunction,cascadedsolar cell,Schottky Barrier cells,WDM components-couplers, isolators ,circulators, filters. Optical switching-self electro optic effect Device, switching speed and energy

Text Books

- **1.** Fiber optics and Optoelectronics, R.P.Khare, Oxford University Press(selected sections from chapters 1,2,3,4,5,6,7,8,9and10)
- 2. Semiconductor Optoelectronic Devices, Pallab Bhatttacharya, second edition, Pearson Education (selected sections from chapters 10 and 11)

- 1. Fiber optic communications, Joseph C Palais, fourth edition, Pearson Education.
- 2. Optical Fiber Communications, Keiser G, 4th Edition Tata McGraw Hill Education Private Limited.
- **3**. Optical Fiber Communication Principles and practice, Senior J, Prentice Hall of India.

PEEC4301 ADVANCED ELECTRONIC CIRCUITS

(3-0-0)

MODULE-I

(10 Hours)

1: <u>Active Filters</u> :Active Filters, Frequency response of Major Active filters, First order low-pass Butterworth filter: Filter Design, Frequency Scaling, Second-order low-pass Butterworth filter: First-order high-pass Butterworth filter, Second-order high-pass Butterworth filter, Band-pass filters: Wide band-pass Filter, Narrow Band-Pass Filter, Band-reject filters: Wide Band-Reject Filter, Narrow Band-Reject Filter, All-Pass filter.

2: <u>Oscillators</u>: Oscillators: Oscillator Principles, Oscillator Types, Quadrature Oscillator, Sawtooth wave generator, Voltage-controlled oscillator.

3: <u>Comparators</u>: Comparators: basic comparator, zero-crossing detector, Schmitt trigger, comparator characteristics, limitations of Op-Amp as comparators, voltage limiters.

MODULE-II

(14 Hours)

4: <u>Bistable Multivibrator</u>: Bistable Multivibrator, fixed-bias bistable multivibrator, Loading, self-biased transistor binary, commutating capacitors, Triggering the binary, Unsymmetrical Triggering of the bistable multivibrator, Triggering Unsymmetrically through a Unilateral Device, Symmetrical Triggering, Triggering of a Bistable Multi Symmetrically without the Use of Auxiliary Diodes, Schmitt Trigger Circuit (Emitter-coupled Bistable Multivibrator).

5: <u>Monostable and Astable Multivibrator</u>: Monostable Multivibrator, Gate Width of a Collector-Coupled Monostable Multivibrator, Waveforms of the Collector-Coupled Monostable Multivibrator, Emitter-Coupled Monostable Multivibrator, Triggering of the Monostable Multivibrator. Astable Collector-Coupled Multivibrator, Emitter-coupled Astable multivibrator.

6: <u>Wideband amplifiers</u>: Wideband amplifiers: The Hybrid-π, High-frequency, Smallsignal, Common-emitter Model, RC-Coupled Amplifier, Frequency Response of a Transistor Stage-The Short-Circuit Current Gain, Current Gain with Resistive Load, Transistor Amplifier Response taking Source Impedance into Account, Transient Response of a Transistor Stage, Cascaded CE Transistor Stages, Rise-time Response of Cascaded Stages, Shunt Compensation of a Transistor Stage in a Cascade, Rise Time of Cascaded Compensated Stages, Low frequency Compensation.

MODULE-III

(12 Hours)

7: <u>Negative Resistance Switching Devices:</u> Voltage Controllable Negative resistance devices, Tunnel Diode operation and characteristics, Monostable Astable, Bistable circuits using tunnel diode, Voltage controlled Negative Resistance Switching Circuits.

8: <u>Voltage and Current Time Base Generators</u>: Time-Base Generators, General features of a Time-base signal, Methods of generating a voltage time-base waveform, Exponential sweep circuit, Miller and bootstrap time base generators-Basic principles, Transistor miller time base generator, Transistor bootstrap time base generator, Current Time-Base Generators, A Simple Current sweep, Linearity Correction through adjustment of driving waveform, Transistor current time base generator.

9: <u>Specialized IC Applications:</u> IC 555 Timer: IC 555 Timer as a Monostable Multivibrator and its applications, IC 555 Timer as Astable Multivibrator and its applications. Phase Locked Loop: Operating principle of PLL, Phase detectors, Exclusive-OR phase detector, Monolithic phase detector, Instrumentation Amplifier and its applications.

Text Books:

1. Pulse, Digital and switching Waveforms, Second Edition - Jacob Millman, Herbert Taub and Mothiki S Prakash Rao (TMH Publication).

(Selected portion from Chapter 3, 8, 9, 10, 11, 12 and 13)

2. OP-Amps and Linear Integrated Circuits- Ramakant A. Gayakwad (PHI Publication). (Selected portion from Chapter 7, 8 and 9)

3. Pulse & Digital Circuits by K.Venkata Rao, K Rama Sudha & G Manmadha Rao, Pearson Education, 2010. (Selected portions)

Reference Books:

1. OP-Amps and Linear Integrated Circuits - Robert F. Coughlin, Frederick F. Driscoll (Pearson Education Publication).

2. Pulse and Digital Circuits by A. Anand Kumar, PHI.

PEEC4303 ELECTRONIC DEVICES AND MODELING

(3-0-0)

MODULE – I

PN-Junction Diode and Schottky Diode: DC Current-Voltage Characteristics, Static Model, Large-Signal Model, Small-Signal Model, Schottky Diode and its Implementation in SPICE2, Temperature and Area Effects on the Diode Model Parameters, SPICE3, HSPICE and PSPICE Models

Bipolar Junction Transistor (BJT): Transistor Conversions and Symbols, Ebers-Moll Static Model, Ebers-Moll Large-Signal Model, Ebers-Moll Small-Signal Model, Gummel-Poon Static Model, Gummel-Poon Large-Signal Model, Gummel-Poon Small-Signal Model, Temperature and Area Effects on the BJT Model Parameters, Power BJT Model, SPICE3, HSPICE and PSPICE Models

MODULE – II

(11 hours)

(13 hours)

Metal-Oxide-Semiconductor Transistor (MOST): Structure and Operating Regions of the MOST, LEVEL1 Static Model, LEVEL2 Static Model, LEVEL1 and LEVEL2 Large-Signal Model, LEVEL3 Static Model, LEVEL3 Large-Signal Model, The Effect of Series Resistances, Small-Signal Models, The Effect of Temperature, BSIM1, BSIM2, SPICE3, HSPICE and PSPICE Models (11 hours)

MODULE – III

BJT Parameter Measurements: Input and Model Parameters, Parameter Measurements MOST Parameter Measurements: LEVEL1 Model Parameters, LEVEL2 Model (Long-Channel) Parameters, LEVEL2 Model (Short-Channel) Parameters, LEVEL3 Model Parameters, Measurements of Capacitance, BSIM Model Parameter Extraction.

Noise and Distortions: Noise, Distortion.

Textbooks:

Semiconductor Device Modeling with SPICE, Giuseppe Massobrio and Paolo Antognetti, Tata 1. McGraw-Hill Education.

- 1. Device Electronics for Integrated Circuits, 3rd edn., Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003. ISBN: 0-471-59398-2. Listed as D
- Devices for Integrated Circuits: Silicon and III-V Compound Semiconductors, H. Craig Casev, 2. John Wiley, New York, 1999. Listed as DI
- 3. Semiconductor Material and Device Characterization, Dieter K. Schroder, John Wiley and Sons, New York, 1990. Listed as S.

PCBM4302 **SIGNALS & SYSTEMS** (3-0-0)

Module – I

Discrete-Time Signals and Systems:

Discrete-Time Signals: Some Elementary Discrete-Time signals, Classification of Discrete-Time Signals, Simple Manipulation; Discrete-Time Systems : Input-Output Description, Block Diagram Representation, Classification, Interconnection; Analysis of Discrete-Time LTI Systems: Techniques, Response of LTI Systems, Properties of Convolution, Causal LTI Systems, Stability of LTI Systems; Discrete-Time Systems Described by Difference Equations; Implementation of Discrete-Time Systems; Correlation of Discrete-Time Signals: Crosscorrelation and Autocorrelation Sequences, Properties.

Selected portions from Chapter 2 (2.1, 2.2, 2.3.1, 2.3.3, 2.3.4, 2.3.5, 2.3.6, 2.4, 2.5, 2.6.1, 2.6.2) of Textbook – I

Properties of Continuous-Time Systems:

Block Diagram and System Terminology, System Properties: Homogeneity, Time Invariance, Additivity, Linearity and Superposition, Stability, Causality.

Selected portions from Chapter 4 (4.2, 4.4) of Textbook - II

Module – II

The Continuous-Time Fourier Series:

Basic Concepts and Development of the Fourier Series, Calculation of the Fourier Series, Properties of the Fourier Series.

Selected portions from Chapter 8 (8.3, 8.4, 8.7) of Textbook - II

The Continuous-Time Fourier Transform:

Basic Concepts and Development of the Fourier Transform, Properties of the Continuous-Time Fourier Transform.

Selected portions from Chapter 10 (10.3, 10.6) of Textbook - II

Module- III

(13 hours)

(12 hours)

The Z-Transform and Its Application to the Analysis of LTI Systems:

The Z-Transform: The Direct Z-Transform, The Inverse Z-Transform; Properties of the Z-Transform; Rational Z-Transforms: Poles and Zeros, Pole Location and Time-Domain Behavior for Causal Signals, The System Function of a Linear Time-Invariant System; Inversion of the Z-Transforms: The Inversion of the Z-Transform by Power Series Expansion, The Inversion of the Z-Transform by Partial-Fraction Expansion; The One-sided Z-Transform: Definition and Properties, Solution of Difference Equations.

Selected portions from Chapter 3 (3.1, 3.2, 3.3, 3.4.2, 3.4.3, 3.6.1, 3.6.2) of Textbook– I The Discrete Fourier Transform: Its Properties and Applications:

Frequency Domain Sampling: The Discrete Fourier Transform; Properties of the DFT: Periodicity, Linearity, and Symmetry Properties, Multiplication of Two DFTs and Circular Convolution, Additional DFT Properties.

Selected portion from Chapter – 7 (7.1.2, 7.2.1, 7.2.2, 7.2.3) of Textbook – 1. Text Books:

- 1. Digital Signal Processing Principles, Algorithms and Applications by J. G. Proakis and D. G. Manolakis, 4th Edition, Pearson.
- 2. Fundamentals of Signals and Systems M. J. Roberts, TMH

Reference Book:

- 1. Signals and Systems P. R. Rao, TMH.
- 2. Signals and Systems A Nagoor Kani, TMH
- 3. Signals and Systems by Chi-Tsong Chen, Oxford
- 4. Principles of Signal Processing and Linear Systems, by B.P. Lathi, Oxford.
- 5. Principles of Linear Systems and Signals, by B.p. Lathi, Oxford

(10 hours)

HSSM3302 OPTIMIZATION IN ENGINEERING (3-0-0)

Unit-I

(10 Hours)

Idea of Engineering optimization problems, Classification of optimization algorithms, Modeling of problems and principle of modeling.

Linear programming: Formulation of LPP, Graphical solution, Simplex method, Big-M method, Revised simplex method, Duality theory and its application, Dual simplex method, Sensitivity analysis in linear programming

Unit-II

(10 Hours)

Transportation problems: Finding an initial basic feasible solution by Northwest Corner rule, Least Cost rule, Vogel's approximation method, Degeneracy, Optimality test, MODI method, Stepping stone method

Assignment problems: Hungarian method for solution of Assignment problems

Integer Programming: Branch and Bound algorithm for solution of integer Programming Problems

Queuing models: General characteristics, Markovian queuing model, M/M/1 model, Limited queue capacity, Multiple server, Finite sources, Queue discipline.

Unit-III

(10 Hours)

Non-linear programming: Introduction to non-linear programming.

Unconstraint optimization: Fibonacci and Golden Section Search method.

Constrained optimization with equality constraint: Lagrange multiplier, Projected gradient method

Constrained optimization with inequality constraint: Kuhn-Tucker condition, Quadratic programming

Introduction to Genetic Algorithm.

Recommended text books

- 1. A. Ravindran, D. T. Philips, J. Solberg, "*Operations Research- Principle and Practice*", Second edition, Wiley India Pvt Ltd
- 2. Kalyanmoy Deb, " Optimization for Engineering Design", PHI Learning Pvt Ltd

Recommended Reference books:

- 1. Stephen G. Nash, A. Sofer, "Linear and Non-linear Programming", McGraw Hill
- 2. A.Ravindran, K.M.Ragsdell, G.V.Reklaitis," *Engineering Optimization*", Second edition, Wiley India Pvt. Ltd
- 3. H.A.Taha,A.M.Natarajan, P.Balasubramanie, A.Tamilarasi, "*Operations Research*", Eighth Edition, Pearson Education
- 4. F.S.Hiller, G.J.Lieberman, "Operations Research", Eighth Edition, Tata McDraw Hill
- 5. P.K.Gupta, D.S.Hira, "Operations Research", S.Chand and Company Ltd.

FEEC6301 DATABASE MANAGEMENT SYSTEM (3-0-0)

Module I : (10 hours)

Database System Architecture - Data Abstraction, Data Independence, Data Definitions and Data Manipulation Languages. Data models - Entity Relationship(ER), Mapping ER Model to Relational Model, Network .Relational and Object Oriented Data Models, Integrity Constraints and Data Manipulation Operations.

Module II : (12 hours)

Relation Query Languages, Relational Algebra and Relational Calculus, SQL.

Relational Database Design: Domain and Data dependency, Armstrong's Axioms, Normal Forms, Dependency Preservation, Lossless design. Query Processing Strategy.

Module III: (10 hours)

Transaction processing: Recovery and Concurrency Control. Locking and Timestamp based Schedulers.

Database Recovery System: Types of Data Base failure & Types of Database Recovery, Recovery techniques

Text Books:

- 1. Database System Concepts by Sudarshan, Korth (McGraw-Hill Education)
- 2. Fundamentals of Database System By Elmasari & Navathe- Pearson Education

References Books:

- (1) An introduction to Database System Bipin Desai, Galgotia Publications
- (2) Database System: concept, Design & Application by S.K.Singh (Pearson Ed)
- (3) Database management system by leon &leon (Vikas publishing House).
- (4) Fundamentals of Database Management System Gillenson, Wiley India
- (5) Database Modeling and Design: Logical Design by Toby J. Teorey, Sam S. Lightstone,

and Tom Nadeau, 4th Ed., 2005, Elsevier India Publications, New Delhi

PCBM4301 ELEMENTS OF BIOMEDICAL INSTRUMENTATION (3-0-0)

Module I (13 Hours)

(i) What is bioengineering: Engineering versus Science, Bioengineering, Biochemical Engineering, Biomedical Engineering, and Career Opportunities.

(ii) Medical Instrumentation: Sources of Biomedical Signals, Basic medical Instrumentation system, Performance requirements of medical Instrumentation system, use of microprocessors in medical instruments, PC based medical Instruments, general constraints in design of medical Instrumentation system & Regulation of Medical devices.

(iii) Bioelectrical Signals & Electrodes: Origin of Bioelectric Signals, Electrocardiogram, Electroencephalogram, Electromyogram, Electrode-Tissue Interface, Polarization, Skin Contact Impedance, Motion Artifacts.

(Text Book-I-Chapter-0, Text Book-II — Chapter-1, Text book-II- Chapter-2)

Module -II (14 Hours)

(iv) Electrodes for ECG: Limb Electrode, Floating Electrodes, Prejelled disposable Electrodes, Electrodes for EEG, Electrodes for EMG.

(v) **Physiological Transducers:** Introduction to Transducers, Classification of Transducers, Performance characteristics of Transducers, Displacement, Position and Motion Transducers.

(Text book-II- Chapter-2, Text Book-II, Chapter-3)

Module –III (13 Hours)

(vi) **Physiological Transducers:** Strain gauge pressure transducers, Thermocouples, Electrical Resistance Thermometer, Thermister, Photovoltaic transducers, Photo emissive Cells & Biosensors or Biochemical sensor

(vii) Recording Systems: Basic Recording systems, General considerations for Signal conditioners, Preamplifiers, Differential Amplifier, Isolation Amplifier, Electrostatic and Electromagnetic Coupling to AC Signals, Proper Grounding (Common Impedance Coupling)

(Text Book-II, Chapter- 3, Text Book-II-Chapter-4)

Text Books:-

- 1. Introduction to Biomedical Engineering by Michael M. Domach, Pearson Education Inc,-2004
- 2. II-Hand Book of Biomedical Instrumentation-2nd Ed by R.S.Khandpur, Tata McGraw Hill, 2003.

- (1) Introduction to Biomedical equipment technology, 4e. By JOSEPH.J.CAAR & JOHN M.BROWN (Pearson education publication)
- (2) Medical Instrumentation-application & design. 3e By JOHN.G.WEBSTER John Wiley & sons publications
- (3) Leslie. Cromwell Biomedical instrumentation & measurements, 2e PHI
- (4) Dr. M. Arumugam Biomedical instrumentations, Anuradha Publishers.

FEEC6302 **APPLIED PHYSIOLOGY** (3-0-0)

Module-1 :

(12 HOURS)

Introductory Lecture :-(1 HOUR)

- 1. Basic functional concept of the body as whole & contribution of individual systems & their inter-dependence for achieving the goal.
- 2. Electrical properties of the Neurons. Electrical potentials, their nature, origin and propagation of AP and Non- propagatory potentials (Generator Potential, Receptor Potential).
- 3. Ionic currents, conductance and capacitance properties of excitable membranes. Basic idea on cable properties and core conductor theory. Velocity of conduction of Action Potential and factors influencing it. Compound Action Potentials. Equivalent electrical circuit diagram for neural membranes.
- 4. Muscle physiology in general. Functional difference between smooth, cardiac and skeletal muscle types. Muscles as energy transducer. Force-velocity and Load-Tension relationships. EPPs and EPSP, IPSP and MEPPs. Excitation, contraction

coupling mechanism, Role of Ca^{++.}

Module – 2: (12 Hours)

- 1. Respiratory pathways (upper and lower). Mechanism of respiration, feedback control mechanism of respiration.
- 2. Nephron structure and functions, counter current exchange mechanism. Voiding of urine, Reflex Control, Bladder Plasticity and Urine Volume relationship.
- 3. Body Temperature Regulation and role of Hypothalamic Thermostat. Responses to cold and warm environment. Thermo neutral range & Lethal Temperature concepts.
- 4. Blood as Newtonian fluid –Its physical properties. Haemodynamics, Blood pressure and its measuring techniques.
- 5. Feedback control of BP. Role of heart as pump. Regulation of cardiac pump Extrinsic, Intrinsic factors, Auto regulation. Starling's Law. Pacemaker potentials. ECG Its gross normal features. Means of recording.

Module -3:

(12 Hours)

- 1. Hormones: classification, second messenger hypothesis, sources, half life, effective concentration, feed back control, & molecular mechanism of peptide & steroids hormones.
- Receptors. The role of transducers. General and specific functional characteristics of Receptors Classification, Receptor Potential, Amplification and Propagation to CNS. Sound as stimulus. Quality of Sound.
- 3. Pitch, Loudness, SPL, Auditory receptor, genesis of potential change in the Internal ear. Mechanism of Hearing.
- 4. Optics of the EYE. Camera principles applied to the eye. Accommodation, Purkinje Shift, Electroretinogram (ERG), Electroocculogram (EOG).
- 5. Electroencephalography (EEG) its basic principles. Electro-corticogram (ECOG). Neuro- physiological and Bioelectrical basis of Learning and Memory.

- 1) Concise Medical Physiology By Chauduri
- 2) Anatomy and Physiology Ross & Wilson, Churchill Livigstone publications.
- 3) Principles of Anatomy & Physiology Tortora & Grabowski Harper Collins College Publisher – latest edition.
- 4) J Gibson, Modern Physiology & Anatomy for Nurses; Black-well Scientific Publishers, 1981

PCIT4303 JAVA PROGRAMMING (3-0-0)

Module – I

12 Hrs

Introduction to Java and Java programming Environment. Object Oriented Programming.

Fundamental Programming Structure: Data Types, variable, Typecasting Arrays, Operators and their precedence.

Control Flow: Java's Selection statements (if, switch, iteration, statement, while, dowhile, for, Nested loop).

Concept of Objects and Classes, Using Exiting Classes building your own classes, constructor overloading, static , final, this keyword .

Inheritance: Using Super to Call Super class constructor, Method overriding, Dynamic method Dispatch, Using Abstract Classes, Using final with inheritance. The Object Class.

Packages & Interfaces : Packages, Access Protection, Importing package, Interface, Implementing Interfaces, variables in Interfaces, Interfaces can be extended.

Exception Handling: Fundamentals, Types Checked, Unchecked exceptions, Using try & catch, Multiple catch, throw, throws, finally, Java's Built in exceptions, user defined exception.

Module - II

12 Hrs

Multi Threading: Java Thread Model, Thread Priorities, Synchronization, Creating a thread, Creating Multiple threads, Using isAlive () and join (), wait () & notify ().

String Handling: String constructors, String length, Character Extraction, String Comparison, Modifying a string.

Java I/O: Classes & Interfaces, Stream classes, Byte streams, Character streams, Serialization.

JDBC: Fundamentals, Type I, Type II, Type III, Type IV drivers.

Networking: Basics, Socket overview, Networking classes, & interfaces, TCP/IP client sockets, whois, URL format, URL connection, TCP/IP Server Sockets.

12 Hrs

Module - III

Applets: Basics, Architecture, Skeleton, The HTML APPLET Tag, Passing Parameters to Applets, Applet context and show documents ().

Event Handing: Delegation Event model, Event Classes, Event Listener Interfaces, Adapter classes.

AWT: AWT Classes window fundamentals, component, container, panel, Window, Frame, Canvas, Creating a frame window in an Applet, working with Graphics, Control Fundamentals, Layout managers, Handling Events by Extending AWT components.

Core java API package, reflection, Remote method Invocation (RMI)

Swing: J applet, Icons & Labels, Text fields, Buttons, Combo boxes, Tabbed panes, Scroll panes, Trees, Tables.

Exploring Java-lang: Simple type wrappers, Runtime memory management, object (using clone () and the cloneable Interface), Thread, Thread Group, Runnable. **Text Books**:

1. Introduction to Java Programming: Liang, Pearson Education, 7th Edition.

2. Java The complete reference: Herbert Schildt, TMH, 5th Edition.

Reference Books:

1. Balguruswamy, Programming with JAVA, TMH.

- 2. Programming with Java: Bhave &. Patekar, Pearson Education.
- 3. Big Java: Horstman, Willey India, 2nd Edition.
- 4. Java Programming Advanced Topics: Wigglesworth, Cengage Learning.
- 5. Java How to Program: H.M. Deitel & Paul J. Deitel, PHI, 8 Edition.

PCEC7303 CONTROL AND INSTRUMENTATION LABORATORY (0-0-3)

List of Experiment :

Control:

- 1. Study of a dc motor driven position control system
- 2. Study of speed torque characteristics of two phase ac servomotor and determination of its transfer function
- 3. Obtain the frequency response of a lag and lead compensator
- 4. To observe the time response of a second order process with P, PI and PID control and apply PID control to servomotor
- 5. To study the characteristics of a relay and analyse the relay control system (Phase Plane)
- 6. To study and validate the controllers for a temperature control system
- 7. To study the position control system using Synchros

Instrumentation:

- 1. Measurement of unknown resistance, inductance and capacitance using bridges
- 2. To plot the displacement-voltage characteristics of the given LVDT
- 3. Measurement of temperature-voltage characteristics of J-type thermocouple
- 4. Use a strain gauge to plot the curve between strain applied to a beam and the output voltage
- 5. Study of resistance-voltage characteristics of Thermistors
- 6. To study on the interface of PLC with PC for data acquisition applications.

PCEC7301 MICRO PROCESSOR LAB (0-0-3)

Equipment necessary:8086 training kit withWith minimum two line and 10 characters per line LCD displayOn-board single line/two pass assembler with all standard directives.ADC and DAC card.I/O port chipTimer Buffered standard portInterrupt controllerIBM PC Keyboard and Interface.Rs 232C Serial Interface.Standard MONITOR Program.PC based cross- assembler, editor, linker, binary code converter with up-load and down load facilities.50 MHZ DSO for measurement of timing diagram.Some interface cards like Stair case simulatorStepper motor control card with stepper motors.List of Experiments to be conducted.Part AStudy of 8086 kit and all the peripheral pin numbersDetail study of use of MONITOR program. Learn how to edit the program, assemble it and run it in all the different modes (GO, step and Break-point mode. (2 Periods)Simple Programs to understand operation of different set of instructions likePrograms related to data transfer groupRelated to different addressing modes.Flag manipulation.Simple programs related to Arithmetic, logical, and shift operation.Loop and Branch InstructionsString operations.Stack manipulation and subroutine program. (5 Periods)

At least seven of the following list of experiments.

- 1. Arranging a set of date in ascending and descending order.
- 2. Finding out the number of positive, negative and zeros from a data set. 3. transfer of data from one memory location to another memory location.
- 4. Searching the existence of a certain data in a given data set.

- 5. Gray to Binary and Binary to Gray conversion and BCD to –Binary and Binary to BCD Conversion
- 6. Design a Up/down Counter.
- 7. Multiply two 8 Bit numbers using Successive addition and shifting method.
- 8. Add a series of unsigned 8- Bit data. Extend the experiment to add signed number and multi byte numbers.
- 9. Generate a Square wave and rectangular wave of given frequency at the output pin of 8255 chip.
- 10. Finding out 10's complement of a 4- digit BCD number.
- 11. Add a series of Decimal numbers.
- 12. Division of 8 Bit unsigned numbers by two. Division of a unsigned numbers by two.
- 13. Disassembling of the given 2 digit decimal number into two nibbles.
- 14. Generation of different types of analog signal using DAC.
- 15. Sampling of analog signal using ADC.
- 16. A small project work for construction of a display system/ real time digital clock.

PCEC7302 ANALOG COMMUNICATION TECHNIQUES LAB (0-0-3)

1. Analyze and plot the spectrum of following signals with aid of spectrum analyzer: Sine wave, square wave, triangle wave, saw-tooth wave of frequencies 1KHz, 10Khz, 50Khz, 100KKz and 1 MHz.

Experiment objective: Analysis of spectrum of different signals. Measurement of power associated with different harmonics in signals.

Equipment Required:

- Signal/ function generator- frequency range upto 1MHz, signal types: square, triangle, sinusoidal, saw-tooth, DC offset signal.
- Spectrum analyzer Upto 100MHz atleast.
- 2. Analyze the process of frequency division multiplexing and frequency division demultiplexing.

Experiment objective: Demonstrate the process of multiplexing of signals in time and frequency domain.

Equipment Required:

- Frequency division multiplexing/ de-multiplexing experiment board.
- CRO
- Study and design of AM modulator and demodulator. (Full AM, SSB, DSBSC, SSBSC)
 Experiment objective: Demonstrate the process of modulation and demodulation using AM. Measure different parameters associated with modulated signals. Analyze the spectrum of modulated signals.
 Equipment Required:
 - AM modulator/ demodulator experimental board.
 - Function generator (sine, square, modulating signal), 1MHz maximum frequency
 - CRO 20MHz, dual trace
 - Spectrum analyzer.
- 4. Study of FM modulation and Demodulation Techniques.

Experiment objective: Demonstrate the process of modulation and demodulation using FM. Measure different parameters associated with modulated signals. Analyze the spectrum of FM modulated signals and compare with theoretical bandwidth.

Equipment Required:

- FM modulator/ demodulator experimental board.
- Function generator (sine, square, modulating signal), 1MHz maximum frequency
- CRO 20MHz, dual trace
- Spectrum analyzer.
- Observer the process of PAM, quantization and determination of quantization noise.
 Experiment objective: Demonstrate the process of PAM, PWM and PPM. Measure the spectrum of the PAM, PPM and PWM signals.
 Equipment Required:
 - Experiment board for PAM/ PPM/ PWM signal generation and detection
 - Multiplexing board
 - CRO
- 6. Multiplex 2-4 PAM/ PPM and PWM signals.

Experiment objective: Demonstrate the process of multiplexing in time domain. **Equipment Required:**

- Experiment board for PAM/ PPM/ PWM signal generation and detection
- Multiplexing board
- CRO
- 7. Using MATLAB/ SCILAB generate a carrier and a modulating signal. Modulate the carrier using AM. Show the waveform in time domain and analyze its frequency spectrum. Repeat the simulation for modulating signal being square, triangular and other forms waveform.
- 8. Using MATLAB/ SCILAB generate a carrier and a modulating signal. Modulate the carrier using FM. Show the waveform in time domain and analyze its frequency spectrum. Repeat the simulation for modulating signal being square, triangular and other forms waveform.
 - For experiment 7/8 MATLAB of current version/ scilab is required.
 - Computer of good configuration
- 9. Using Lab-View software simulate AM modulation and demodulation system.
- 10. Using Lab-View software simulate FM modulation and demodulation system.
 - For experiment 9/10 Lab-View of current version is required.
 - Computer of good configuration
- 11. Design a receiver to demodulate and receive the signal from am AM radio station.
- 12. Design a receiver to demodulate and receive the signal from the local FM radio station.
 - For experiment 11/12 following equipment is required
 - CRO
 - Components of assorted values.
 - AM and FM receiver ICs.

Experiment objective (for simulation exercises): Verify the process of modulation and demodulation in simulation environment. Analyze frequency spectrum of the signal after modulation and demodulation. Observe the modulated and demodulated signals for different forms of modulation signal

PCEC4304 **DIGITAL SIGNAL PROCESSING** (3-0-0)

Module – I

(10 hours)

The Z-Transform and Its Application to the Analysis of LTI Systems:

The Z-Transform: The Direct Z-Transform, The Inverse Z-Transform; Properties of the Z-Transform; Inversion of the Z-Transforms: The Inversion of the Z-Transform by Power Series Expansion, The Inversion of the Z-Transform by Partial-Fraction Expansion; Analysis of Linear Time-Invariant Systems in the z-Domain: Response of Systems with rational System Functions, Transient and Steady-State Responses, Causality and Stability, Pole-Zero Cancellations.

Selected portions from Chapter 3 (3.1.1, 3.1.2, 3.2, 3.4.2, 3.4.3, 3.5.1, 3.5.2, 3.5.3, 3.5.4) of Textbook – I

The Discrete Fourier Transform: Its Properties and Applications

Frequency Domain Sampling: Frequency-Domain Sampling and Reconstruction of Discrete-Time Signals, The Discrete Fourier Transform, The DFT as a Linear Transformation, Relationship of the DFT to other Transforms; Properties of the DFT: Periodicity, Linearity, and Symmetry Properties, Multiplication of Two DFTs and Circular Convolution, Additional DFT Properties; Linear Filtering Methods Based on the DFT: Use of the DFT in Linear Filtering, Filtering of Long Data Sequences; Frequency Analysis of Signals using the DFT; The Discrete Cosine Transform: Forward DCT, Inverse DCT, DCT as an Orthogonal Transform.

Chapter – 7 of Textbook – 1.

Module – II

Implementation of Discrete-Time Systems:

Structure for the Realization of Discrete-Time Systems, Structure for FIR Systems: Direct-Form Structure, Cascade-Form Structures, Frequency-Sampling Structures; Structure for IIR Systems: Direct-Form Structures, Signal Flow Graphs and Transposed Structures, Cascade-Form Structures, Parallel-Form Structures.

Selected portions from Chapter 9 (9.1, 9.2.1, 9.2.2, 9.2.3, 9.3.1, 9.3.2, 9.3.3, 9.3.4) of Textbook – I

Design of Digital Filters:

General Considerations: Causality and Its Implications, Characteristics of Practical Frequency-Selective Filters; Design of FIR Filters: Symmetric and Antisymmetric FIR Filters, Design of Linear-Phase FIR Filters by using Windows, Design of Linear-Phase FIR Filters by the Frequency-Sampling Method; Design of IIR Filters from Analog Filters: IIR Filter Design by Impulse Invariance, IIR Filter Design by the Bilinear Transformation.

Selected portions from Chapter 10 (10.1.1, 10.1.2, 10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.3.2, 10.3.3) of Textbook – I

(10 hours)

Module- III

(15 hours)

Efficient Computation of the DFT: Fast Fourier Transform Algorithms

Efficient Computation of the DFT: FFT Algorithms: Direct Computation of the DFT, Radix-2 FFT Algorithms: Decimation-In-Time (DIT), Decimation-In-Time (DIF); Applications of FFT Algorithms: Efficient Computation of the DFT of two Real Sequences, Efficient Computation of the DFT a 2N-Point Real Sequence, Use of the FFT Algorithm in Linear Filtering and Correlation.

Selected portions from Chapter 8 (8.1.1, 8.1.3, 8.2.1, 8.2.2, 8.2.3) of Textbook - I

Adaptive Filters:

Application of Adaptive Filters: System Identification or System Modeling, Adaptive Channel Equalization, Adaptive Line Enhancer, Adaptive Noise Cancelling; Adaptive Direct-Form FIR Filters-The LMS Algorithm: Minimum Mean Square Error Criterion, The LMS Algorithm.

Selected portions from chapter 13 (13.1.1, 13.1.2, 13.1.5, 13.1.6, 13.2.1, 13.2.2) of Text book –I

Text Books

1. Digital Signal Processing – Principles, Algorithms and Applications by J. G. Proakis and D. G. Manolakis, 4th Edition, Pearson.

Reference Book :

- 1. Digital Signal Processing: a Computer-Based Approach Sanjit K. Mitra, TMH
- 2. Digital Signal Processing S. Salivahan, A. Vallavraj and C. Gnanapriya, TMH.
- 3. Digital Signal Processing Manson H. Hayes (Schaum's Outlines) Adapted by Subrata Bhattacharya, TMH.
- 4. Digital Signal Processing: A Modern Introduction Ashok Ambardar, Cengage Learning.
- 5. Modern Digital Signal Processing Roberto Cristi, Cengage Learning.
- 6. Digital Signal Processing: Fundamentals and Applications Li Tan, Academic Press, Elsevier.
- 7. Digital Signal Processing: A MATLAB-Based Approach Vinay K. Ingle and John G. Proakis, Cengage Learning.
- 8. Fundamentals of Digital Signal Processing using MATLAB Robert J. Schilling and Sandra L. Harris, Cengage Learning.

PCEC4305 DIGITAL COMMUNICATION TECHNIQUES

(3-0-0)

MODULE-I. 12 Hrs

Digital Modulation Schemes:Representation of Digitally Modulated Signals, Memoryless Modulation Methods, Signaling Schemes with Memory, Power Spectrum of Digitally Modulated Signals

Optimum Receivers for AWGN Channels: Waveform and Vector Channel Models, Waveform and Vector AWGN Channels, Optimal Detection and Error Probability for Band-Limited Signaling, Optimal Detection and Error Probability for Power-Limited Signaling, A Comparison of Digital Signaling Methods, Detection of Signaling Schemes with Memory, Optimum receiver for CPM Signals

MODULE-II 12 Hrs

Introduction to Information Theory: Mathematical model for information sources, Logarithmic measure of information, lossless coding for information sources, channel model and channel capacity, Channel reliability function, channel cutoff rate. Digital Communication through Band-Limited Channels: Characterization of Band-Limited Channels, Signal design for Band-Limited Channels, Optimum Receiver for Channels with ISI and AWGN, Linear Equalization, Decision-feedback Equalization.

MODULE-III 12 Hrs

Spread Spectrum Signal for Digital Communication: Models of spread spectrum communication, Direct sequence spread spectrum signals, frequency hopping spread spectrum signals, other types of spread spectrum signals, synchronization of spread spectrum system.

Text Book:

1. John G.Proakis, M. Salehi, "Digital Communications",5th Edition 2008, McGraw Hill, 2008.(Selected portion form Chapter 3,4, 6, 9 and 12.)

Reference Book:

 B. Sklar and P K Ray; Digital Communications – Fundamentals and Applications; Pearson Education; 2009

PEEC5304 ANTENNAS & WAVE PROPAGATION (3-0-0)

Module – I

(10 hours)

Introduction, Wave equation in terms of potential functions; Vector potential A for an electric current source J & Vector potential F for a magnetic current source M Fundamental parameters of Antenna:

Principle of Radiation, Radiation Pattern – Isotropic, Directional and omni directional patterns; Principle Patterns and Secondary lobes: Field regions: radiation field and Steradian.

Radiation Power Density; Radiation Intensity, Directivity, Gain, Antenna Efficiency, HPBW, Beam efficiency, Bandwidth, Polarization – Linear, Circular and Elliptical Polarization. Noise Figure and Noise Temperature. Effects of antenna height and effect of ground on performance of antenna. Antenna effective length.

Module –II

(12 hours)

Short Dipole and half wavelength Dipole – Current distribution, Radiated Fields, Power density and Radiation resistance; radiating near field (Fresenel) and reactive near field region, intermediate field and far field (Fraunhofer) region, Ground effects – vertical and horizontal electric dipole, earth curvature.

Loop Antenna and Horn Antenna (basics). Frequency independent Antennas: Log periodic Dipole antenna and helical antenna (basics).

Antenna Arrays: Uniform linear arrays of isotropic elements, array factor and directivity. Broadside & Endfire array, principle of pattern multiplication. Binomial array.

Microstrip Antenna – Basic Characteristics, Rectangular Patch, Circular Patch, Quality factor bandwidth and efficiency, Feed to microstrip antenna: probe feed, microstrip line feed, aperture feed (basic ideas).

Module –III

(12 hours)

Ground Wave, Sky Wave, Space Wave & Scatter Propagation with general application: Propagation with general applications: Propagation Equations in Ground Waves: Attenuation Factor, Transmission Coverage, Receiving Antenna for ground wave. Sky Wave Propagation: Attenuation, Refractive Index, Conductivity and Permittivity, Electron Collision Frequency, D, E & F Layers, Critical Frequency & MUF, skip distance, Curved Ionosphere, Propagation Equation, Antennas for Sky Wave reception. Space Wave Propagation in the Troposphere: LOS Range, Flat Earth Reflection with variable wavelengths and heights, Inverse Distance Equation, Point of reflection on curved Earth, Curvature of space Waves in the Troposphere, Diffraction of space waves, Duct Propagation, Fading of Space Waves. Antennas for Space wave Propagations.

Text Books:

- 1. Antenna Theory Analysis and Design By C Balanis, 2nd Edition, John Willey & Sons.
- 2. Antenna by J.D. Kraus, 2nd Edition, TATA McGraw Hill.

3. Radio Wave Propagation and Antennas, An Introduction – John Griffiths, PHI International **Reference Books:**

1. Electromagnetic Wave and Radiating Systems by E.C. Jordan and K.G. Balmain,2nd Ed. PHI

- 2. Antenna Engineering by W. L. Weeks
- 3. Antennas and Wave Propagation by G.S.N. Raju, Person Education.
- 4. Antenna & Wave Propagation by R. E. Collins

PEEC5303 RADAR AND TV ENGINEERING (3-0-0)

MODULE – I (12 hours)

Basic Television System And Scanning Principles: Block diagram of TV transmitter & receiver, Sound and picture transmission, scanning process, transmission & reception of video signal, brightness perception & photometric quantities, aspect ratio & rectangular scanning, persistence of vision & flicker, Kell factor, vertical and horizontal resolution, interlaced scanning, Composite Video Signal, Horizontal and Vertical Synchronous and Blanking Standard Signal, TV pick up tubes, Vidicon, CCD.

Module – II (12 hours)

Color and Digital TV Technology: mixing of colors and colors perception, chromaticity diagram, color TV signals & transmission, NTSC & PAL system, color TV receiver & specification, Fully digital TV system, Digital TV signal & transmission, digitized video parameters, digital TV receiver, fundamentals of Flat panel displays, Plasma displays, Liquid crystal displays, and Large screen displays.

Module – III (14 hours)

Introduction to Radar: Basic radar, radar block diagram, radar frequencies & applications, Radar Indicators.

RADAR Equation: Detection of signal in noise, receiver noise and SNR, probability of detection and false alarm, integration of radar pulses, radar cross section of targets, PRF, system losses.

MTI, CW, FMCW RADAR: Introduction, delay line cancellers, Doppler filter banks, limitation of MTI, Staggered PRF, Pulse Doppler radar, Tacking by RADAR, mono pulse, sequential lobing, & conical scan of targets.

Text Books:

- 1. Television and video Engineering by A. M Dhake, 2nd edition, Tata McGraw Hill.
- 2. Introduction to RADAR systems by Merrill I. Skolnik, 3rd edition, Tata McGraw Hill.

Reference Books:

- 1. Modern Television Practice-Principles, Technology and Servicing, by R R Gulati.
- 2. Basic Television & Video systems, Bernard Grob, Charles E Hernfon, 6th edition, McGRAW HILL.
- 3. RADAR Principles, Technology, Application by Byron Edde, 1st edition, Pearson, 2004.
- 4. Understanding RADAR system by Simon Kingsley, Shaun Quegan, Standard publication.
- 5. Principles of RADAR by J. C. Toomay, PHI, 2nd edition, 2004.

PEEC5302 MOBILE COMMUNICATION (3-0-0)

MODULE-I

An Overview of Wireless Systems: Introduction, First- and Second-Generation Cellular Systems, Cellular Communications from 1G to 3G, Wireless 4G Systems, Future Wireless Networks

Radio Propagation and Propagation Path-Loss Models: Introduction, Free-space Attenuation, Attenuation over Reflecting Surfaces, Radio wave Propagation, Characteristics of Wireless Channel, Signal Fading Statistics, Propagation Path-loss Models, Cost 231 Model

MODULE-II

Fundamentals of Cellular Communications: Introduction, Cellular Systems, Hexagonal Cell Geometry, Co-channel Interference Ratio, Cellular System Design in Worst-Case Scenario with an Omni directional Antenna, Co-channel Interference Reduction, Directional Antennas in Seven-Cell Reuse Pattern, Cell Splitting, Adjacent Channel Interference (ACI), Segmentation,

Multiple Access Techniques: Introduction, Narrowband Channelized Systems, Comparisons of FDMA, TDMA and DS-CDMA, Comparison of DS-CDMA vs. TDMA System Capacity, Multicarrier DS-CDMA (MC-DS-CDMA)

MODULE-III

Modulation schemes: Introduction, Introduction to modulation, Phase Shift Keying, Quadrature Amplitude Modulation, M-ary Frequency Shift Keying, Synchronization, Equalization

Spread Spectrum(SS) and CDMA Systems: Introduction, Concept of Spread Spectrum, System Processing Gain, Requirements of Direct-Sequence Spread Spectrum, Frequency-Hopping Spread Spectrum Systems

Text Books:

1. Essential Reading: Selected portions from V K Garg, Wireless Communication and Netwrking; Morgan Kaufman Publishers India; 2008

Reference Book:

- 1. T S Rappaport, Wireless Communications, Pearson Education, India
- 2. W C Y Lee, Mobile Communation Engineering Theory and Applications; TMH
- 3. T L Singhal, Wireless Communications, Tata McGraw Hill 2010

PEEC5301 INFORMATION THEORY AND CODING (3-0-0)

Module-1

Information Theory

Introduction to information theory, uncertainty and information, average mutual information and entropy, cross entropy, information measures for continuous random variables, source coding theorem, Channel models, channel capacity, information capacity theorem, the Shannon limit. (12 Hours)

Module-2

Channel Coding

Waveform Coding and Structured Sequences, Types of Error Control, Structured Sequences, Linear Block Codes, Error Detecting and Correcting Capability, Usefulness of the Standard Array, Cyclic Code, Well Known Block Codes.

Convolutional Encoding, Convolutional Encoder Representation, Formulation of the Convolutional Decoding Problem, Properties of Convolutional Codes, Other **Convolutional Decoding Algorithms**

Reed Solomon Codes, Interleaving and Concatenated Codes, Coding and Interleaving Applied to the Compact Disc, Digital Audio Systems, Turbo Codes. Module-3 (12Hours)

Modulation and Coding Trade offs:

Goals of the Communications System Designer, Error Probability Plane, Nyquist Minimum Bandwidth, Shannon-Heartley Capacity Theorem, Bandwidth Efficiency Plane, Modulation and Coding Trade-offs, Defining, Designing, and Evaluating Digital Communication Systems, Bandwidth Efficient modulation, Modulation and Coding for Bandlimited Channels, Trellis-Coded Modulation.

Source Coding: Sources, Amplitude Quantizing, Differential Pulse-Code Modulation, Adaptive- Prediction, Transform Coding, Source Coding for Digital Data, Examples of Source Coding.

Text Books:

(1) Information Theory, Coding and Cryptography, by Ranjan Bose, 2nd Edition , TMH Publication, 2nd reprint, 2008.

(2) Digital Communications – Fundamentals and applications, by Bernard sklar, 2^{nd} Edition, Pearson education Publication, 2009.

References:

(3) Digital Communications, J. G. Proakis, 3rd edition, Mc Graw Hill Publication.

(4) Information Theory and coding, by Norman Abramson, Mc Graw Hill Publication.

(8 Hours)

PEEC4304 COMPUTER NETWORK & DATA COMMUNICATION (3-0-0)

Module – I

12 Hrs

Overview of Data Communications and Networking.

Physical Layer : Analog and Digital, Analog Signals, Digital Signals, Analog versus Digital, Data Rate Limits, Transmission Impairment, More about signals.

Digital Transmission: Line coding, Block coding, Sampling, Transmission mode.

Analog Transmission: Modulation of Digital Data; Telephone modems, modulation of Analog signals. Multiplexing : FDM , WDM , TDM ,

Transmission Media: Guided Media, Unguided media (wireless)

12 Hrs

Circuit switching and Telephone Network: Circuit switching, Telephone network.

Module –II

Data Link Layer

Error Detection and correction: Types of Errors, Detection, Error Correction

Data Link Control and Protocols:

Flow and Error Control, Stop-and-wait ARQ. Go-Back-N ARQ, Selective Repeat ARQ, HDLC.

Point-to -Point Access: PPP

Point -to- Point Protocol, PPP Stack,

Multiple Access

Random Access, Controlled Access, Channelization.

Local area Network: Ethernet.

Traditional Ethernet, Fast Ethernet, Gigabit Ethernet. Token bus, token ring

Wireless LANs: IEEE 802.11, Bluetooth virtual circuits: Frame Relay and ATM.

Module – III

Network Layer:

Host to Host Delivery: Internetworking, addressing and Routing

12 Hrs

Network Layer Protocols: ARP, IPV4, ICMP, IPV6 ad ICMPV6

Transport Layer: Process to Process Delivery: UDP; TCP congestion control and Quality of service.

Application Layer :

Client Server Model, Socket Interface, Domain Name System (DNS): Electronic Mail (SMTP) and file transfer (FTP) HTTP and WWW.

Text Books:

1. Data Communications and Networking: Behrouz A. Forouzan, Tata McGraw-Hill, 4th Ed

3. Computer Networks: A. S. Tannenbum, D. Wetherall, Prentice Hall, Imprint of Pearson 5th Ed **Reference Book** : .

1. Computer Networks: A system Approach: Larry L, Peterson and Bruce S. Davie, Elsevier, 4th Ed

2. Computer Networks: Natalia Olifer, Victor Olifer, Willey India

3. Data and Computer Communications: William Stallings, Prentice Hall, Imprint of Pearson, 9th Ed.

- 4. Data communication & Computer Networks: Gupta, Prentice Hall of India
- 5. Network for Computer Scientists & Engineers: Zheng, Oxford University Press
- 6. Data Communications and Networking: White, Cengage Learning

PCCS4304 **OPERATING SYSTEM** (3-0-0)

MODULE-I

12 Hours

INTRODUCTION TO OPERATING SYSTEM:

What is an Operating System? Simple Batch Systems, Multiprogramming and Time Sharing systems. Personal Computer Systems, Parallel Systems, Distributed Systems and Real time Systems.

Operating System Structures: Operating System Services, System components, Protection system, Operating System Services, system calls

PROCESS MANAGEMENT:

Process Concept, Process Scheduling, Operation on Processes, Interprocess communication, Examples of IPC Systems, Multithreading Models, Threading Issues, Process Scheduling Basic concepts, scheduling criteria, scheduling algorithms, Thread Scheduling.

MODULE-II

12 Hours

PROCESS COORDINATION: Synchronization: The Critical section problem, Peterson's solution, Synchronization hardware, Semaphores, Classical problems of synchronization, Monitors.

Deadlocks: System model, Deadlock Characterization Methods for Handling Deadlocks, Deadlock Prevention, Deadlock avoidance, Deadlock Detection, recovery from Deadlock.

MEMORY MANAGEMENT: Memory Management strategies, Logical versus Physical Address space, swapping, contiguous Allocation, Paging, Segmentation.

Virtual Memory: Background, Demand paging, performance of Demand paging, Page Replacement, Page Replacement Algorithms. Allocation of frames, Thrashing, Demand Segmentation.

MODULE-III

11 Hours

STORAGE MANAGEMENT:

File System Concept, Access Methods, File System Structure, File System Structure, File System Implementation, Directory implementation, Efficiency and Performance, Recovery, Overview of Mass Storage Structure, Disk Structure, Disk Scheduling, Disk Management, Swap-Space Management, I/O System Overview, I/O Hardware, Application I/O Interface, Kernel I/O Subsystem, Transforming I/O Request to Hardware Operation. CASE STUDIES: The LINUX System, Windows XP, Windows Vista

TEXT BOOK:

- 1. **Operating System Concepts** Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, 8th edition, Wiley-India, 2009.
- 2. Mordern Operating Systems Andrew S. Tanenbaum, 3rd Edition, PHI
- 3. **Operating Systems:** A Spiral Approach Elmasri, Carrick, Levine, TMH Edition **REFERENCE BOOK:**
- 1. **Operating Systems –** Flynn, McHoes, Cengage Learning
- 2. Operating Systems Pabitra Pal Choudhury, PHI
- 3. **Operating Systems –** William Stallings, Prentice Hall
- 4. **Operating Systems –** H.M. Deitel, P. J. Deitel, D. R. Choffnes, 3rd Edition, Pearson

FESM6301 NUMERICAL METHODS (3-0-0)

Unit –I (10 hors)

Approximation of numbers, Significant figures, Accuracy and precision, Error definition, Round off errors, Error propagation, Total numerical error

Roots of equation: Bisection ethos, False-position method, Fixed point iteration,

Newton-Raphson method, Secant method, Convergence and error analysis, System of non-linear equations

Linear algebraic equation: LU decomposition, The matrix inversion, Error analysis and system conditions, Gauss-Siedel method

Unit-II (10 hours)

Interpolation: Newton's divided difference interpolating polynomial, Lagrange interpolating polynomial, Spline interpolation.

Numerical integration: The Trapezoidal rule, Simpson's rule, Newton-Cotes algorithm for equations, Romberg integration, Gauss quadrature

Unit-III (10 Hours)

Ordinary differential equation: Euler method, Improvement of Euler's method, Runge-Kutta methods, System of equations, Multi step methods, General methods for boundary value problems, Eigen value problems

(Algorithm and error analysis of all methods are included)

Text Book:

1. S.C. Chapra, R.P.Canale," *Numerical methods for Engineers*", Fifth edition, THM Publication.

Reference Books

- 1. S. Kalavathy, "Numerica methods", Thomson/ Cengage India
- 2. K.E. Atkinson," *Numerical analysis,*" Second edition, John Wiley & Sons.

PEEI5302 ANALOG SIGNAL PROCESSING (3-0-0)

Module – I

Introduction: Review of Operational Amplifier Fundamentals, Current-to-Voltage Converters, Voltage-to-Current Converter, Current Amplifiers, Difference Amplifiers, Instrumentation Amplifiers, Instrumentation Applications, Transducer Bridge Amplifiers. (Selected Portions of Chapters 1 and 2 of Textbook 1).

Module – II

Liner Analog Functions: Addition, Subtraction, Differentiation, Integration, Impedance Transformation and Conversion (Selected Portions of Chapter 4 of Text book 2) AC/DC Signal Conversion: Signal Rectification, Peak and Valley Detection, rms to dc Conversion, Amplitude Demodulation (Selected Portions of Chapter 5 of Text book 2) Other Nonlinear Analog Functions: Voltage Comparison, Voltage Limiting (Clipping), Logarithmic Amplifiers, Analog Multipliers, Analog Dividers (Selected Portions of Chapter 6 of Text book 2)

Module- III

13 lectures

Analog Filters: Introduction to filtering and filter design, components for filter implementation, active low-pass, high-pass, band-pass, band-reject and all-pass filters – design and realization, Switch capacitance filter. (Selected Portions of Chapter 3 and 4 of Text book 1 and Chapter 7 of Text book 2)

Interference and Noise: Sources of signal coupling, Grounding and shielding techniques, Isolation amplifiers, Noise fundamentals, Noise modelling for electronic components and circuits.. (Selected Portions of Chapter 10 and 11 of Text book 2)

Text Books:

- Sergio Franco, *Design with Operational Amplifiers and Analog Integrated Circuits*, 3rd Edn., Tata McGraw Hill Education Pvt. LTd., New Delhi, 2002, ISBN: 0-07-232084-2.
- Ramon Pallas-Areny, John G. Webster, *Analog Signal Processing*, John Wiley& Sons, 1999, ISBN: 9814-12-696-9.

Reference Books:

- 1. R. Schaumann and M. E. Valkenberg, *Design of Analog Filters*, Oxford University Press, 2001, ISBN: 0-19-568087-1.
- 2. Don Meador, *Analog Signal Processing With Laplace Transform and Active Filter Design*, Thomson Learning.
- 3. Ashok Ambardar, *Analog and Digital Signal Processing*, 2nd Edn., Michigan Technological University Published by Nelson Engineering, 1999.
- 4. A.S. Sedra and K.C. Smith, *Microelectronic Circuits*, Oxford University Press, New Delhi
- 5. J.N. Jacob, *Application & Design with Analog Integrated Circuits*, PHI Pub, New Delhi.
- 6. D. Patranabis, *Electronic Instrumentation*, PHI Pub, New Delhi

10 lectures

12 lectures

PCBM4304 BIOMEDICAL SIGNAL PROCESSING (3-0-0)

Module I (15 Hours)

Bio-Medical signals: The nature of bio-medical signals, Examples of biomedical signals: Action potential, Electroneurogram (ENG), Electromyogram (EMG), Electrocardiogram (ECG), Electroencephalogram (EEG), Event related potentials (ERPs), Electrogastrogram

(EGG), Phonocardiogram (PCG), Carotid pulse (CP), Vibromyogram (VMG), Vibroarthrogram (VAG), Speech signals,

Objectives of biomedical signal analysis, Difficulties in biomedical signal analysis, Computer –aided Diagnosis.

Sources of Artifacts: Physiological Interference, Stationary Verses Non-Stationary Processes, High Frequency Noise in ECG, Motion Artifacts in ECG, Power Line Interference in ECG, Maternal Interference in fetal ECG, Muscle Contraction Interference in VAG Signals.

(Text Book – I – Chapter 1& 3)

Module II (12 Hours)

Concurrent Couples & Correlated Processes:

Problem Statement, Illustration of the problem with case studies: The ECG & PCG, The PCG & Carotid Pulse, The ECG & Atrial Electrogram, Cardio-Respiratory Interaction, The EMG & Vibromayogram, The Knee Joint and muscle vibration signals, Applications: Segmentation of the PCG.

Removal of Artifacts: Adaptive Noise Canceller, Cancellation of 60 Hz (power line) interference in ECG, Canceling Donor-Heart Interference in Heart Transplant ECG, Cancellation of ECG signal from the electrical activity of chest muscle.

(Text Book – I – Chapter 2 & Text Book – II – Chapter 6)

Module III (13 Hours)

Removal of Artifacts: Canceling of Maternal ECG in fetal ECG, Cancellation of High Frequency noise in Electro-surgery.

Event Detection:

Problem Statement, The PQRS & T waves in ECG, First & Second Heart Sounds, EEG Rhythms, waves and transients. Derivative Methods for QRS Detection, The Pan-Tompkins Algorithm for QRS detection, Detection of the Dicortic Notch, Detection of P wave. Applications: ECG rhythm Analysis, Identification of heart sounds, Detection of Aortic components of second heart sounds

(Text Book – II – Chapter 6 & Text Book – I : Chapter 4)

Text Books:

- 1) Biomedical Signal Analysis A case Study Approach- Rangaraj M. Rangayyan John Willey & Sons Inc-2002.
- 2) Biomedical Signal processing Principles & Techniques D.C Reddy Tata McGraw Hill Companies – 2005

PEME5305 Robotics & Robot Applications (3-0-0)

Module – I

- 1. Fundamentals of Robotics: Evolution of robots and robotics, Definition of industrial robot, Laws of Robotics, Classification, Robot Anatomy, Work volume and work envelope, Human arm characteristics, Design and control issues, Manipulation and control, Resolution; accuracy and repeatability, Robot configuration, Economic and social issues, Present and future application.
- Mathematical modeling of a robot: Mapping between frames, Description of objects in space, Transformation of vectors.
 Direct Kinematic model: Mechanical Structure and notations, Description of links and joints, Kinematic modeling of the manipulator, Denavit-Hartenberg Notation, Kinematic relationship between adjacent links, Manipulator Transformation matrix.

Module – II

- 3. Inverse Kinematics: Manipulator workspace, Solvable of inverse kinematic model, Manipulator Jacobian, Jacobian inverse, Jacobian singularity, Static analysis.
- 4. Dynamic modeling: Lagrangian mechanics, 2D- Dynamic model, Lagrange-Euler formulation, Newton-Euler formulation.
- 5. Robot Sensors: Internal and external sensors, force sensors, Thermocouples, Performance characteristic of a robot.

Module – III

- 6. Robot Actuators: Hydraulic and pneumatic actuators, Electrical actuators, Brushless permanent magnet DC motor, Servomotor, Stepper motor, Micro actuator, Micro gripper, Micro motor, Drive selection.
- 7. Trajectory Planning: Definition and planning tasks, Joint space planning, Cartesian space planning.
- 8. Applications of Robotics: Capabilities of robots, Material handling, Machine loading and unloading, Robot assembly, Inspection, Welding, Obstacle avoidance.

Text Books:

- 1. Robotics and Control, R.K. Mittal and I.J. Nagrath, Tata McGraw Hill
- 2. Introduction to Robotics: Mechanics and control, John J Craig, PHI
- 3. Robotics Technology and Flexible Automation, S.R.Deb and S. Deb, Tata McGraw Hill

Reference Books:

- 1. Introduction to Robotics, S. K. Saha, Tata McGraw Hill
- 2. Robotics: Control, Sensing, Vision and Intelligence, K.S.Fu, R.C.Gonzalez and C.S.G.Lee, McGraw Hill
- 3. Robotics, Appuu Kuttan K.K., I.K. international
- 4. Robot Dynamics and Control, M.W.Spong and M. Vidyasagar, Wiley India.
- 5. Industrial Robotics Technology, programming and application, M.P. Groover, McGraw Hill
- 6. Introduction to Robotics: Analysis, Systems, Applications, S.B.Niku, PHI
- 7. Robotics: Fundamental Concepts and Analysis, A. Ghosal, Oxford University Press
- 8. Fundamentals of Robotics: Analysis and Control, R. J. Schilling, PHI
- 9. Robotic Engineering: An Integrated Approach, R.D. KLAFTER, T. A. Chmielewski, and M. Negin, PHI
- 10. Robot Technology: Fundamentals: J. G. Keramas, Cengage Learning

PCEC7304 Digital Signal Processing Lab

- 1. Familiarization with the architecture of a standard DSP kit (Preferably TMS 320C6XXX DSP kit of Texas Instruments)
- 2. Generation of various types of waveforms (sine, cosine, square, triangular etc.) using MATLAB and DSP kit.
- 3. Linear convolution of sequences (without using the inbuilt conv. function in MATLAB) and verification of linear convolution using DSP kit.
- 4. Circular convolution of two sequences and comparison of the result with the result obtained from linear convolution using MATLAB and DSP kit.
- 5. (i) Computation of autocorrelation of a sequence, cross correlation of two sequences using MATLAB.
 - (ii) Computation of the power spectral density of a sequence using MATLAB also implementing the same in a DSP kit.
- 6. Finding the convolution of a periodic sequence using DFT and IDFT in MATLAB.
- 7. (i) Implementation of FFT algorithm by decimation in time and decimation in frequency using MATLAB.
 - (ii) Finding the FFT of a given 1-D signal using DSP kit and plotting the same.
- 8. Design and implementation of FIR (lowpass and highpass) Filters using windowing techniques (rectangular window, triangular window and Kaiser window) in MATLAB and DSP kit.
- 9. Design and implementation of IIR (lowpass and highpass) Filters (Butterworth and Chebyshev) in MATLAB and DSP kit.
- 10. (i) Convolution of long duration sequences using overlap add, overlap XXXXX using MATLAB.
 - (ii) Implementation of noise cancellation using adaptive filters on a DSP kit.

Reference Books:

- 1. Digital Signal Processing: A MATLAB-Based Approach Vinay K. Ingle and John G. Proakis, Cengage Learning.
- Fundamentals of Digital Signal Processing using MATLAB Robert J. Schilling and Sandra L. Harris, Cengage Learning.

PCEC 7306 COMMUNICATION ENGINEERING LAB L. T. P.: 0-0-3

List of Experiment

Any 10 experiment have to perform in the lab of around 40 hours.

1.	Radiation pattern of Dipole, Yagi, Helical and Slot Antenna	(3 hours)
2.	Velocity Measurement using Doppler RADAR.	(3 hours)
3.	Study of different blocks of colour TV receiver such as RF a amplifier, sync separator, vertical oscillator, colour picture t measurement of various voltage signal waveform.	-
4.	Polarization Detection of Dipole, Yagi, Helical and Slot Antenna	(3 hours)
5.	Measurement of Rafractive Index profile, Numerical attenuation and bending loss/dispersion in a multimode optic	-
		(6 hours)
6.	Study the laser diode and determination of its characteristics	(3 hours)
7.	Measurement of Gain of a fiber communication link using (a) optical fiber, (b) free space (3 hours)	
8.	Establishing and testing an optical Fiber Communication Link	(6 hours)
9.	Simulation of a pn sequence generator using MATLAB.	(3 hours)
10.	Simulation of direct sequence spread spectrum technique using MATLAB.	
		(3 hours)
11.	Simulation of TDM and WDM using MATLAB	(3 hours)

PCEC7305 Digital Communication Techniques Lab

1. Study the functioning of PCM and Delta modulator

Experiment objective: Demonstrate the process of PCM modulation and Delta modulation.
 Equipment Required:
 Experiment board for PCM/ Delta Modulation/ Adaptive Delta Modulation generation and detection
 Signal generator
 CRO

- 2. To study Time division multiplexing.
- 3. To study PCM.
- 4. To study the different channel coding and decoding technique.
- 5. Generation and reception of different types of signals like ASK, PSK, FSK.
- 6. To transmit and receive three separate signal audio, video, tone simultaneously through satellite link.
- 7. To transmit PC data through satellite link using a satellite communication demonstration unit.
- 8. Experimentally compare different forms of BPSK, QPSK, OQPSK and analyze their spectrum with spectrum analyzer.
- 9. Spreading and dispreading using additive white Gaussian noise generation/ Gold code and other forms of spreading techniques.
- 10. Transmit different types of signals suing a ISDN system.
- 11. Analyze the process of data communication in LAN using LAN trainer and compare the performance different media access techniques.
