MODEL SOLUTIONS TO IIT JEE 2009
 Paper I

PART I

Section I

1. Atomic mass of Fe

$$
\begin{gathered}
=\frac{(54 \times 5)+(56 \times 90)+(57 \times 5)}{100} \\
\quad=55.95
\end{gathered}
$$

2. $\frac{\mathrm{an}^{2}}{\mathrm{v}^{2}}$ is the term that corrects for the attractive
forces present in a real gas in the van der Waals equation.
3. $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ sol is negatively charged.
\therefore The most effective coagulating agent among the given is $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ due to the highest charge on the cation $\left(\mathrm{Al}^{3+}\right)$.
4. $\mathrm{P}_{2}=\mathrm{Kx}_{2}$
$5 \times 0.8 \mathrm{~atm}=1 \times 10^{5} \mathrm{~atm} \times \mathrm{x}_{2}$
$\mathrm{x}_{2}=4 \times 10^{-5}$
Mole fraction of N_{2} dissolved in 10 moles of water $=4 \times 10^{-5} \times 10$

$$
=4 \times 10^{-4}
$$

5. $\mathrm{P}_{4} \mathrm{O}_{6}$ is formed when P_{4} is burnt in a limited supply of air. O_{2} diluted with N_{2} produces that condition.
6. Carboxylic acids are more acidic than phenols. Presence of electron donating groups such as $-\mathrm{CH}_{3}$ group decreases the acid strength of carboxylic acids. Presence of electron withdrawing group such as -Cl increases the acid strength of phenol.
7. Natural rubber is an elastomer. The intermolecular force of attraction is the weakest for elastomers.
8. -CN group has higher priority over -OH and -Br which are given in alphabetical order.

Section II

9. Frenkel defect is favoured by a large difference in sizes of cation and anion. It is a dislocation

[^0]effect. Trapping of electrons in lattice sites leads to the formation of F-centres. Schottky defects have effect on the physical properties of solids.
10. $\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}_{2}$ and $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$ exhibit geometrical isomerism.
11. In excess of air $\mathrm{Na}_{2} \mathrm{O}$ is not formed only $\mathrm{Na}_{2} \mathrm{O}_{2}$ is formed. Small amounts of NaO_{2} is also formed which is responsible for the yellow colour of commercial $\mathrm{Na}_{2} \mathrm{O}_{2}$. Pure $\mathrm{Na}_{2} \mathrm{O}_{2}$ is colourless. Air always contains varying amounts of moisture which produces small amounts of NaOH .
12. (A) Total number of stereo isomers is 6 cis d, I and cis I, d (enantiomers), trans d, I and trans I, d (enantiomers), cis d, d (same as cis I, I) meso (plane of symmetry),trans d, d (same as trans । l) meso (centre of symmetry)
(D) Two enantiomers are possible cis d, I and its mirror image cis I, d

Section III

13. $\mathrm{Na}_{2} \mathrm{~S}$
$\mathrm{Na}_{2} \mathrm{~S}$ forms a sulphur bridge in two p -amino- N, N dimethyl aniline.
14. FeCl_{3}
FeCl_{3} oxidises the above compound to methylene blue
15. $\mathrm{Fe}^{3+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} \rightarrow \mathrm{Fe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
16.

(P)
17.

(Q)

(R)
18.

(S)

The complete reaction is

(P)

(Q)

(R)

(S)

Section IV

19. (A) (p) By MOT B_{2} is paramagnetic
(q) Boron can be burnt to $\mathrm{B}_{2} \mathrm{O}_{3}$
(r) Boron can be reduced with metals to form metal borides.
(t) In B_{2} molecule by MOT $2 s$ and $2 p$ orbitals mix to bring the energy of $\sigma 2 p_{z}$ above that of $\pi 2 p_{x}$ and $\pi 2 p_{y}$ (It is equivalent to say that $\sigma 2 p_{z}$ and $\sigma^{*} 2 s$ interact to bring $\sigma 2 p_{z}$ above the $\pi 2 p_{x}$ and $\pi 2 p_{y}$).
(B) (q) N_{2} can be oxidised to NO by air.
(r) N_{2} undergoes reduction to NH_{3}.
(s) Bond order in N_{2} is 3 .
(t) In N_{2} molecule also there is mixing of 2 s and $2 p$ as in the above case of B_{2}.
(C) (p) O_{2}^{-}is paramagnetic by MOT.
$\left.\begin{array}{l}(\mathrm{q}) \\ (\mathrm{r})\end{array}\right\}$ In hydrolysis of NaO_{2} with water it is oxidized to O_{2} and reduced to $\mathrm{H}_{2} \mathrm{O}_{2}$ simultaneously.
(D) (p) By MOT O_{2} is paramagnetic.
(q) O_{2} can be oxidized to OF_{2} by F_{2} and $\mathrm{O}_{2}{ }^{+} \mathrm{PtF}_{6}{ }^{-}$by PtF_{6}
(r) O_{2} can be reduced to CaO by Ca and CO_{2} by C
(s) Bond order in O_{2} is 2 .
20. (A) $\rightarrow \mathrm{p}, \mathrm{q}, \mathrm{s}, \mathrm{t}$
(B) $\rightarrow \mathrm{s}, \mathrm{t}$
(C) $\rightarrow p$
(D) $\rightarrow r$

Alkyl cyanides can be reduced to amines by $\mathrm{H}_{2} / \mathrm{Pd} / \mathrm{C}$. Reduction of cyanides with $\mathrm{SnCl}_{2} /$ HCl or DIBAL-H followed by hydrolysis gives corresponding aldehydes. Cyanides can undergo alkaline hydrolysis to form sodium salt of carboxylic acid and NH_{3}. DIBAL -H reduces esters to aldehydes.

Esters can be catalytically reduced to alcohols and they undergo alkaline hydrolysis.

Double bonds undergo catalytic reduction . Primary amines undergo Hofmann's carbylamine reaction with CHCl_{3} and alcoholic KOH .

PART II

21	22	23	24	25	26	27	28
A	\mathbf{B}	\mathbf{C}	\mathbf{A}	\mathbf{D}	\mathbf{C}	\mathbf{D}	\mathbf{C}
29		30		31		32	

B, C, D
A, C
B, C
B, A

33	34	35	36	37	38
\mathbf{A}	\mathbf{B}	\mathbf{B}	\mathbf{A}	\mathbf{B}	\mathbf{D}

39
A-p, q, s
$B-p, t$
$\mathbf{C - p}, \mathbf{q}, \mathbf{r}, \mathbf{t}$
D-s

Section I

21. $\frac{x-1}{-3}=\frac{y+1}{1}=\frac{z-2}{5}=\mu$

$$
\mathrm{Q}(-3 \mu+1, \mu-1,5 \mu+2)
$$

$\mathrm{P}(3,2,6)$
$\overrightarrow{\mathrm{PQ}}=[-3 \mu-2, \mu-3,5 \mu-4]$
$[1,-4,3]$
$-3 \mu-2-4 \mu+12+15 \mu-12=0$
$8 \mu-2=0 \Rightarrow \mu=\frac{1}{4}$
22.

$$
r=\sqrt{3^{2}+2^{2}+11}=\sqrt{24}
$$

Equation of $A B$ is
$x \times 1+y \times 8-3(x+1)-2(y+8)-11=0$
$x+8 y-3 x-3-2 y-16-11=0$
$-2 x+6 y-30=0$
$x-3 y+15=0$
Let the circle be
$x^{2}+y^{2}-6 x-4 y-11+\lambda(x-3 y+15)=0$
It passes through $(1,8)$
$1+64-6-32-11$

$$
+\lambda(1-24+15)=0
$$

$$
\begin{gathered}
16-8 \lambda=0 \\
\lambda=2 \\
x^{2}+y^{2}-6 x-4 y-11+2(x-3 y+15)=0 \\
x^{2}+y^{2}-4 x-10 y+19=0
\end{gathered}
$$

23. $\int_{0}^{x} \sqrt{1-\left(f^{\prime}(t)\right)^{2}} d t=\int_{0}^{x} f(t) d t$

Differentiating w.r.t. x :
$\sqrt{1-\left(\frac{d y}{d x}\right)^{2}}=f(x)$
$y^{2}=1-\left(\frac{d y}{d x}\right)^{2}$
$\left(\frac{d y}{d x}\right)^{2}=1-y^{2}$
$\frac{d y}{d x}= \pm \sqrt{1-y^{2}}$
$\pm \frac{\mathrm{dy}}{\sqrt{1-\mathrm{y}^{2}}}=\mathrm{dx}$
Integrating ,
(+) $\sin ^{-1} y=x+C$

$$
0=0+C \Rightarrow C=0
$$

$$
y=\sin x
$$

(-) $\cos ^{-1} y=x+C$
But $\frac{\pi}{2}=0+C$
$\therefore \cos ^{-1} y=x+\frac{\pi}{2}$

$$
y=\cos \left(x+\frac{\pi}{2}\right)
$$

$$
=-\sin x
$$

But $f(x)$ is non negative in $[0,1]$
$\therefore \mathrm{f}(\mathrm{x})=\sin \mathrm{x}$
$\left.\sin \frac{1}{2}<\frac{1}{2}\right\}$
$\left.\sin \frac{1}{3}<\frac{1}{3}\right\}$
24. $(z \bar{z})(\bar{z})^{2}+(\bar{z} z) z^{2}=350$
$|z|^{2}\left(z^{2}+\bar{z}^{2}\right)=350$
$\left(x^{2}+y^{2}\right)\left\{2\left(x^{2}-y^{2}\right)\right\}=350$
$x^{4}-y^{4}=175$
$\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)=175$
$x^{2}=16 \Rightarrow x= \pm 4$
$y^{2}=9 \quad \Rightarrow y= \pm 3$
\therefore Area of the rectangle $=8 \times 6=48$
25.

Auxiliary O is $\mathrm{x}^{2}+\mathrm{y}^{2}=9$
A(3, 0)
$B(0,1)$
Slope of $A B=-\frac{1}{3}$

$$
\begin{aligned}
& y=-\frac{1}{3}(x-3) \\
& 3 y=-x+3 \\
& y=\frac{-x}{3}+1 \\
& x^{2}+\left(\frac{-x}{3}+1\right)^{2}=9 \\
& x^{2}+\frac{x^{2}}{9}+1-\frac{2 x}{3}=9 \\
& 9 x^{2}+x^{2}+9-6 x=81 \\
& 10 x^{2}-6 x-72=0 \\
& 5 x^{2}-3 x-36=0 \\
& x=\frac{3 \pm \sqrt{9+720}}{10}=\frac{3 \pm 27}{10} \\
& =3,-\frac{12}{5} \\
& y=\frac{-12}{5 x-3}+1 \\
& =\frac{4}{5}+1=\frac{9}{5}
\end{aligned}
$$

Area $O A M=\frac{27}{5} \times \frac{1}{2}=\frac{27}{10}$
26. Given $(\bar{a} \times \bar{b}) \cdot(\bar{c} \times \bar{d})=1$
$|\overline{\mathrm{a}} \times \overline{\mathrm{b}}||\overline{\mathrm{c}} \times \overline{\mathrm{d}}| \cos \gamma=1$ where γ is the angle between $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $(\overline{\mathrm{c}} \times \overline{\mathrm{d}})$
$\Rightarrow \sin \alpha \sin \beta \cos \gamma=1$ (since $|\overline{\mathrm{a}}|=|\overline{\mathrm{b}}|=|\overline{\mathrm{c}}|=|\overline{\mathrm{d}}|=1$ and we assume that angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is α and that, the angle between \bar{c} and \bar{d} is β)
$\Rightarrow \sin \alpha=1, \sin \beta=1, \cos \gamma=1$
$\Rightarrow \alpha=\beta=\frac{\pi}{2}, \gamma=0$
$\Rightarrow \overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are orthogonal; $\overline{\mathrm{c}}$ and $\overline{\mathrm{b}}$ are orthogonal; $\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ is parallel to $\overline{\mathrm{c}} \times \overline{\mathrm{d}}$.
$\Rightarrow \overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{a}} \times \overline{\mathrm{b}}$ form a mutually orthogonal triad
$\bar{c}, \bar{d}, \bar{c} \times \bar{d}$ form a mutually orthogonal triad
Suppose $\overline{\mathrm{a}} \| \overline{\mathrm{d}}$ and $\overline{\mathrm{b}} \| \overline{\mathrm{c}}$
Let $\bar{b}=k \bar{c}$

$$
\overline{\mathrm{a}} \perp \overline{\mathrm{~b}} \Rightarrow \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}}=0
$$

$$
\Rightarrow \overline{\mathrm{a}} \cdot \mathrm{k} \overline{\mathrm{c}}=0,
$$

a contradiction
$\therefore \mathrm{D}$ is false.
As \bar{a} not parallel to \bar{c} we should have that \bar{b} parallel to \bar{c}
(C) is the choice
27. $\sum_{m=1}^{15} \operatorname{lm} z^{2 m-1}=\sin \theta+\sin 3 \theta+\sin 5 \theta+\ldots+\sin 29 \theta$

We have $\sin \alpha+\sin (\alpha+\beta)+\sin (\alpha+2 \beta)+\ldots+$ $\sin (\alpha+n-1 \beta)$

$$
=\frac{\sin \left(\frac{\alpha+\alpha+n-1 \beta}{2}\right) \sin \left(\frac{n \beta}{2}\right)}{\sin \frac{\beta}{2}}
$$

Here $\beta=2 \theta$
$\therefore \sin \theta+\sin 3 \theta+\ldots+\sin 29 \theta$

$$
\begin{aligned}
& =\frac{\sin \left(\frac{\theta+\theta+14 \times 2 \theta}{2}\right) \sin \left(\frac{15 \times 2 \theta}{2}\right)}{\sin \frac{2 \theta}{2}} \\
& =\frac{\sin ^{2} 15 \theta}{\sin \theta} \\
& =\frac{\sin ^{2} 30^{\circ}}{\sin ^{\circ}}=\frac{1}{4 \sin 2^{\circ}}
\end{aligned}
$$

28. $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}=10$
$\left(x+x^{2}+x^{3}\right)^{7}=x^{7}\left(1+x+x^{2}\right)^{7}$
Coefficient of x^{3} in $\left(1+x+x^{2}\right)^{7}$

$$
=\text { Coefficient of } x^{3} \text { in } \frac{\left(1-x^{3}\right)^{7}}{(1-x)^{7}}
$$

$$
\begin{aligned}
& =\text { Coefficient of } x^{3} \text { in }\left(1-x^{3}\right)^{7}(1-x)^{-7} \\
& =\frac{7.8 .9}{1.2 .3}-7 \times 1 \\
& =84-7=77
\end{aligned}
$$

Section II

29.

Required area $=$ area of the region ABC

$$
\begin{aligned}
& =\text { Area OCBD }- \text { Area OABD } \\
& =e \times 1-\int_{0}^{1} e^{x} d x \\
& =e-\int_{0}^{1} e^{x} d x \\
& =e-(e-1)=1
\end{aligned}
$$

$$
\int_{1}^{\mathrm{e}} \ell \mathrm{n} y d y=[y \log y-y]_{1}^{\mathrm{e}}
$$

$$
=(e-e)-(0-1)
$$

$$
=1
$$

$$
\int_{1}^{e} \ell n y d y=\int_{1}^{e} \ell n(1+e-y) d y
$$

30. $L=\lim _{x \rightarrow 0} \frac{a-\sqrt{a^{2}-x^{2}}-\frac{x^{2}}{4}}{x^{4}}(a>0)\left(\frac{0}{0}\right.$ form $)$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\left(-\frac{1}{2}\right) \frac{(-2 x)}{\sqrt{a^{2}-x^{2}}}-\frac{x}{2}}{4 x^{3}} \\
& =\lim _{x \rightarrow 0} \frac{\frac{1}{\sqrt{a^{2}-x^{2}}}-\frac{1}{2}}{4 x^{2}}
\end{aligned}
$$

It is given that L is finite $\Rightarrow \frac{1}{a}=\frac{1}{2}$

$$
\Rightarrow a=2
$$

When $\mathrm{a}=2$
$L=\lim _{x \rightarrow 0} \frac{2-\sqrt{4-x^{2}}-\frac{x^{2}}{4}}{x^{4}}$
$=\lim _{x \rightarrow 0} \frac{\left(2-\frac{x^{2}}{4}\right)^{2}-\left(4-x^{2}\right)}{x^{4}\left(2-\frac{x^{2}}{4}+\sqrt{4-x^{2}}\right)}=\lim _{x \rightarrow 0} \frac{1}{16} \frac{1}{4}=\frac{1}{64}$
31. $2 \cos \frac{B+C}{2} \cos \frac{B-C}{2}=4 \sin ^{2} \frac{A}{2}$
$2 \sin \frac{A}{2} \cdot \cos \frac{B-C}{2}=4 \sin ^{2} \frac{A}{2}$
$\cos \left(\frac{B-C}{2}\right)=2 \sin \frac{A}{2}$

$$
=2 \cos \frac{B+C}{2}
$$

$\cos \frac{B}{2} \cos \frac{C}{2}+\sin \frac{B}{2} \sin \frac{C}{2}$

$$
=2\left\{\cos \frac{B}{2} \cos \frac{C}{2}-\sin \frac{B}{2} \sin \frac{C}{2}\right\}
$$

$\cos \frac{B}{2} \cos \frac{C}{2}=3 \sin \frac{B}{2} \sin \frac{C}{2}$
$\tan \frac{B}{2} \tan \frac{C}{2}=\frac{1}{3}$
$\Rightarrow \sqrt{\frac{(s-c)(s-a)}{s(s-b)}} \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}=\frac{1}{3}$
$\Rightarrow \frac{s-a}{s}=\frac{1}{3}$
$3 s-3 a=s$
$2 s-3 a=0$
$a+b+c-3 a=0$
$b+c=2 a$
$b+c=2 a$ means
$C A+B A=2 a$, a constant
\Rightarrow Locus of A is an ellipse
32. Given $\frac{\sin ^{4} x}{2}+\frac{\cos ^{4} x}{3}=\frac{1}{5}-(1)$

Dividing by $\cos ^{4} x$
$\frac{\tan ^{4} x}{2}+\frac{1}{3}=\frac{\sec ^{4} x}{5}$

$$
=\frac{\left(1+\tan ^{2} x\right)^{2}}{5}
$$

$\Rightarrow \tan ^{4} x\left(\frac{1}{2}-\frac{1}{5}\right)-\frac{2}{5} \tan ^{2} x+\frac{1}{3}-\frac{1}{5}=0$
$\Rightarrow \frac{3}{10} \tan ^{4} x-\frac{2}{5} \tan ^{2} x+\frac{2}{15}=0$
$\Rightarrow 9 \tan ^{4} x-12 \tan ^{2} x+4=0$
$\Rightarrow\left(3 \tan ^{2} x-2\right)^{2}=0$
$\Rightarrow \tan ^{2} x=\frac{2}{3}-(2)$
$\therefore(\mathrm{A})$ is true

$$
\begin{aligned}
& \frac{\sin ^{8} x}{8}+\frac{\cos ^{8} x}{27} \\
& =\cos ^{8} x\left\{\frac{\tan ^{8} x}{8}+\frac{1}{27}\right\} \\
& =\left(\cos ^{2} x\right)^{4}\left\{\frac{\left(\frac{2}{3}\right)^{4}}{8}+\frac{1}{27}\right\} \\
& =\left(\frac{1}{1+\tan ^{2} x}\right)^{4}\left\{\frac{16}{81 \times 8}+\frac{1}{27}\right\} \\
& =\left(\frac{3}{5}\right)^{4}\left\{\frac{2}{81}+\frac{1}{27}\right\} \\
& =\frac{81}{625} \times \frac{5}{81}=\frac{1}{125} \\
& \text { Equation }(2) \Rightarrow \frac{\sin ^{2} x}{2}=\frac{\cos ^{2} x}{2}=k \\
& \therefore 2 k+3 k=1 \\
& \Rightarrow k=\frac{1}{5} \\
& \therefore \frac{\sin ^{8} x}{8}+\frac{\cos ^{8} x}{27}=\frac{(2 k)^{4}}{8}+\frac{(3 k)^{4}}{27} \\
& =k^{4}[2+3]=5 \cdot k^{4}=\frac{1}{125}
\end{aligned}
$$

Section III

33. A symmetric matrix can be written as $\left(\begin{array}{lll}a & d & e \\ d & b & f \\ e & f & c\end{array}\right)$ But we have five 1s and four 0s.
The three symmetrical pairs can be filled as per the following.
Case 1
2 pairs of 1 s and 1 pair of 0 s . This is done in 3 ways. The main diagonal is filled using the remaining $1,0,0$ in 3 ways.
$\therefore 9$ ways.
Case 2
1 pair of 1 s and 2 pairs of 0 s . This is done in 3 ways. The main diagonal is filled using the remaining $1,1,1$
\therefore Total 3 ways
$\therefore 9+3=12$ matrices
34. The matrices are

$$
\begin{align*}
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
\end{align*}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \tag{2}\\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), ~(3) \text { (1) } \begin{array}{ll}
(2) \\
\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
(4) & \left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)
\end{array}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

$$
\underset{(7)}{\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)} \underset{(8)}{\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)} \underset{(8)}{\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)}
$$

$$
\left(\begin{array}{lll}
0 & 1 & 1 \tag{10}\\
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Determinants of the matrices $1,2,3,6,9$ and 12 are zeros and all the other 6 matrices are non singular. Each of these six matrices provide a unique solution to the given system.
35. When we observe matrices 1 and 9 , since right hand side is $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, they vanish for all Δ_{i} and thus give infinite number of solutions. Matrices 2, 3, 6 and 12 give inconsistent systems.
36. $P(X=3)=\frac{5}{6} \cdot \frac{5}{6} \cdot \frac{1}{6}=\frac{25}{216}$
37. $P(X \geq 3)=1-P(X=1$ or $X=2)$

$$
=1-\left[\frac{1}{6}+\frac{5}{6} \cdot \frac{1}{6}\right]=1-\frac{11}{36}=\frac{25}{36}
$$

38. $P(X \geq 6 / X>3)=P\left(\frac{(X \geq 6) \cap(X>3)}{P(X>3)}\right)$

$$
=\frac{P(X \geq 6)}{P(X \geq 4)}
$$

$=\frac{\left(\frac{5}{6}\right)^{5} \cdot \frac{1}{6}+\left(\frac{5}{6}\right)^{6} \cdot \frac{1}{6}+\ldots \ldots}{\left(\frac{5}{6}\right)^{3} \cdot \frac{1}{6}+\left(\frac{5}{6}\right)^{4} \cdot \frac{1}{6}+\ldots . .}$

$$
=\frac{\left(\frac{5}{6}\right)^{5}}{\left(\frac{5}{6}\right)^{3}}=\frac{25}{36}
$$

Section IV

39. (A) $\frac{d y}{d x}=\frac{-y}{(x-3)^{2}}$
$\frac{d y}{y}=-\frac{d x}{(x-3)^{2}}$
ℓ ny $=\frac{1}{x-3}$
$y=e^{\frac{1}{x-3}}$
Domain of non zero solution is $D: R-\{3\}$ Intervals contained in the domain D are
$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right),\left(0, \frac{\pi}{2}\right),\left(0, \frac{\pi}{8}\right)$
$\therefore \mathrm{A} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{s}$
(B) $\mathrm{I}=\int_{1}^{5}(\mathrm{x}-1)(\mathrm{x}-2)(\mathrm{x}-3)(\mathrm{x}-4)(\mathrm{x}-5) \mathrm{dx}$
$=\int_{-2}^{2}(t+2)(t+1) t(t-1)(t-2) d t$
$=0$
$\left(\because \int_{-a}^{a} f(x) d x=0\right.$, if $\left.f(-x)=-f(x)\right)$
Intervals containing the value I = 0 are
$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right),(-\pi, \pi)$
$B \rightarrow(p, t)$
(C) $y=\cos ^{2} x+\sin x$
$y^{\prime}=-2 \cos x \sin x+\cos x$

$$
=\cos x(-2 \sin x+1)=-\sin 2 x+\cos x
$$

For extremum, $y^{\prime}=0$
$\Rightarrow \cos x=0$ or $\sin x=\frac{1}{2}$
$y^{\prime \prime}=-2 \cos 2 x-\sin x$
When $\cos x=0, y^{\prime \prime}=2(1)-1>0$
$\therefore \cos 2=0$ gives a local minimum
When $\sin x=\frac{1}{2}$,
$y^{\prime \prime}=-2\left(1-\frac{2}{4}\right)-\frac{1}{2}<0$
$\Rightarrow \sin x=\frac{1}{2}$ gives a local maximum
$\Rightarrow \mathrm{x}=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}$
$\therefore \mathrm{C} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{t}$
(D)

$y=\tan ^{-1}(\sin x+\cos x)$
$y^{\prime}=\frac{1}{(\sin x+\cos x)^{2}+1}(\cos x-\sin x)$
$y=f(x)$ is increasing if $y^{\prime}>0$
$\Rightarrow \cos x>\sin x$ since denominator >0
$\Rightarrow x \in\left(-\frac{3 \pi}{4}, \frac{\pi}{4}\right) \cup\left(\frac{5 \pi}{4}, \frac{9 \pi}{4}\right)$
Interval in which y is increasing is ($0, \frac{\pi}{8}$)
$\mathrm{D} \rightarrow \mathrm{s}$
40. (p) $m=\frac{-h}{k}, a=2, c=\frac{1}{k}$
$\frac{1}{k^{2}}=4\left(1+\frac{h^{2}}{k^{2}}\right)$
$\Rightarrow h^{2}+k^{2}=\frac{1}{4}$
\Rightarrow Locus of (h, k) is a circle
$\Rightarrow(A)$
(q) Difference = a constant 3.
\Rightarrow Locus of z is a hyperbola $\Rightarrow(D)$
(r) $x=\sqrt{3} \cos 2 \theta, y=\sin 2 \theta$
$\frac{x^{2}}{3}+\frac{y^{2}}{1}=1$
\Rightarrow Ellipse $\quad \Rightarrow(C)$
(s) Eccentricity $=1 \rightarrow$ Parabola

Eccentricity $>1 \rightarrow$ hyperbola
\Rightarrow (B), (D)
(t) $\operatorname{Re}\left\{(x+1+i y)^{2}\right\}=x^{2}+y^{2}+1$
$\Rightarrow(x+1)^{2}-y^{2}=x^{2}+y^{2}+1$
$\Rightarrow 2 y^{2}=2 x$
$\Rightarrow y^{2}=x$
\Rightarrow Parabola \Rightarrow (B)

PART III

Section I

41. $\frac{Q_{1}}{R_{1}^{2}}=\frac{Q_{1}+Q_{2}}{R_{2}^{2}}=\frac{Q_{1}+Q_{2}+Q_{3}}{R_{3}^{2}}$
$\Rightarrow \frac{Q_{2}}{Q_{1}}=3 ; \frac{Q_{3}}{Q_{1}}=5 ;$
42. At $60^{\circ}, m g \sin \theta \frac{\mathrm{~h}}{2}>m g \cos \theta \frac{\mathrm{a}}{2}$
\therefore it will topple at $\theta<60^{\circ}$
43. $\mathrm{v}^{2}=2 \mathrm{gs}=2 \times 10 \times(20-12.8) \Rightarrow$
$\mathrm{v}=12 \mathrm{~m} \mathrm{~s}^{-1}$
$v^{\prime}=\mu \times v=\frac{4}{3} \times 12=16 \mathrm{~m} \mathrm{~s}^{-1}$
44. $\mathrm{y}_{\mathrm{CM}}=\frac{\mathrm{ma}+\mathrm{ma}+\mathrm{m} \cdot 0+\mathrm{m}(-\mathrm{a})+6 \mathrm{~m} \cdot 0}{10 \mathrm{~m}}=\frac{\mathrm{a}}{10}$
45. $\phi=A B$, increases. By Lenz's law, induced current in direction dc and ab
46. Charged enclosed $=\frac{1}{2}$ that on disc $+\frac{1}{4}$ that on rod + point charge -7c
$\therefore \phi=-2 C / \varepsilon_{0}$
47. $T=8 \mathrm{~s}$, phase $=\frac{2 \pi}{\mathrm{~T}} \cdot \mathrm{t}=\frac{\pi}{3}$

$$
\begin{aligned}
\omega=\frac{2 \pi}{T} \therefore a & =-\omega^{2} A \cdot \sin \frac{\pi}{3} \quad(A=1 \mathrm{~cm}) \\
& =\frac{-\sqrt{3}}{32} \pi^{2} \cdot \mathrm{~cm} \mathrm{~s}^{-2}
\end{aligned}
$$

Section II

49. Internal forces can convert K.E to P.E (eg. Spring masses system). Since Newton's third law. A couple exerts no force but a torque.
50.

Reading	\mathbf{f}	Error	Calculation
$(42,56)$	24	0	$0.2 \times(24 / 56)^{2}$
$(48,48)$	24	0	$0.2 \times(24 / 48)^{2}$
$(60,40)$	24	0	$0.2 \times(24 / 40)^{2}$
$(66,33)$	22	-2	$0.2 \times(24 / 33)^{2}$
$(78,39)$	26	+2	$0.2 \times(24 / 39)^{2}$

51. $\mathrm{R}_{\mathrm{eq}}=3.2 \mathrm{~K} \Omega \Rightarrow \mathrm{I}=\frac{24 \mathrm{v}}{3.2 \mathrm{~K} \Omega}=7.5 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{RL}}=7.5 \mathrm{~mA} \times 1.2 \mathrm{~K} \Omega=9 \mathrm{~V}$
Effective emf formula $=\frac{E / R_{1}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}$ and
$\frac{E / R_{2}}{1 / R_{2}+1 / R_{1}} \Rightarrow$ ratio $=3$
\therefore Ratio of power $=9$
52. $C_{p}-C_{v}=R$ for all gases
$C_{v}=3 / 2 R$ for monoatomic $5 / 2 R$ for diatomic

Section III

53. High temperature ionizes the gas
54. Total $\mathrm{KE}=3 \mathrm{KT}=\mathrm{P} \cdot \mathrm{E}=\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0}} \cdot \frac{1}{\mathrm{r}}$

$$
\therefore \mathrm{T} \simeq 1.4 \times 10^{9} \mathrm{~K}
$$

55. Multiply and check nt with Lawson Number
56. $\mathrm{n} \frac{\lambda}{2}=\mathrm{a}$

$$
\begin{aligned}
& \mathrm{p}=\frac{\mathrm{h}}{\lambda} \\
& \mathrm{E}=\frac{\mathrm{p}^{2}}{2 m} \Rightarrow \mathrm{E} \propto \frac{1}{\lambda^{2}} \propto \frac{1}{\mathrm{a}^{2}}
\end{aligned}
$$

57. $E=\left.\frac{h^{2}}{8 \mathrm{ma}^{2}}\right|_{\text {for } \mathrm{n}=1}=8 \times 10^{-3} \mathrm{eV}$

$$
\left.E=\frac{p^{2}}{2 m}=\left(\frac{h}{\lambda}\right)^{2} / 2 m=\left(\frac{h}{2 a}\right)^{2} / 2 m=\frac{h^{2}}{8 m a^{2}}\right)
$$

58. $v \propto p, p=\frac{h}{\lambda} \Rightarrow \lambda \propto \frac{1}{n}$

$$
\Rightarrow \mathrm{p} \propto \mathrm{~h} \Rightarrow \mathrm{v} \propto \mathrm{n}
$$

Section IV

59. Unlike charges moving along a circle \Rightarrow no current (say reason 1)
(p),+ - charges are symmetric
$\therefore \mathrm{E}=0$
Same reason, $\mathrm{V}=0$
Due to reason 1, B $=0$ and $\mu=0$
(q) Unsymmetric distribution or charges about M. Hence $E \neq 0$ and $V=0$
Due to reason (1), B $=0$ and $\mu=0$
(r) Due to symmetry $\mathrm{E}=0, \mathrm{~V} \neq 0$ Clearly $B \neq 0, \mu \neq 0$
(s) By symmetry, $\mathrm{E}=0$, distances being not commensurate, $\mathrm{V} \neq 0$, negative currents reinforce B plus charges oppose but of different magnitude.
(t) Due to lack of symmetry $\mathrm{E} \neq 0$. But V can be zero. Due to reason (1) $B=0 \Rightarrow \mu=0$
60. (p) Y has constant velocity. Therefore, reaction force is equal to weight.
PE is continuously decreasing. Mechanical energy decreasing due to frictional loss. Torque is variable
(q) Magnetic force between Z and Y is Mg

Normal reaction is 2 Mg . Since it is moving up gravitational P.E is increasing and thus mechanical energy is increasing. By symmetry, torque is zero
(r) Pulley supports the mass M. So reaction force $=\left(m_{0}+\sqrt{2} M\right) g$. Since it is moving down gravitational P.E is decreasing and so the mechanical energy is decreasing. Torque is a non-zero constant
(s) Sphere moving down with uniform acceleration. Therefore force $<\mathrm{Mg}$. Gravitational P.E of x is increasing and Mechanical energy is conserved. Torque is a non-zero constant
(t) Terminal velocity \Rightarrow net force zero. Gravitational P.E of x is increasing, but mechanical energy is decreasing because of frictional forces. Torque is a non-zero constant.

[^0]: © Triumphant Institute of Management Education Pvt. Ltd. (T.I.M.E.), 95B, Siddamsetty Complex, Park Lane, Secunderabad - 500003. All rights reserved. No part of this material may be reproduced, in any form or by any means, without permission in writing.
 This course material is only for the use of bonafide students of Triumphant Institute of Management Education Pvt. Ltd. and its licensees/franchisees and is not for sale. (10 pages) ()

 SOLJEE2009/1

