

MATHS

S.NO	Question	Answer	DETTAIL SOLUTIO N
1	If Sin A + Sin B = a and	$\frac{b^2 - a^2}{a^2 + b^2}$	
2	The value of tan 15°	4	
3	The general value of θ	$n\pi - (-1)^n \frac{\pi}{6}, n \in I$	
4	In a triangle ABC if	$\sqrt{3}$ unit	
5	The value of tan $\left(\frac{1}{2}\cos^{-1}\frac{\sqrt{5}}{3}\right)$	$\frac{3-\sqrt{5}}{2}$	n J
6	An aeroplane is hori.	$2\left(\frac{\sqrt{3}-1}{\sqrt{3}}\right) \text{km}$ ERTS GUIDE YOU TO WIN	1
7	Equation of a line which passes through	$X \sec \theta + y \cos ec \theta = a$	
8	The equation of pair of straight lines	$bx^2 - 2hxy + ay^2 = 0$	
9	The value of 'a' for which the lines	-3	
10	For two circle, if the distance between their	3	
11	If Y= x+a is tangent to the parabola	2	
12	If the line ax +4y = 36 is tangent to the	$\pm 2\sqrt{5}$	

CONTACT US: RANKERS POINT PALASIA SQUARE INDORE

13	Angle between tangents drawn	$\frac{\pi}{2}$	
14	The angle between the asymptotes of the	$2\tan^{-1}\left(\frac{b}{a}\right)$	
15	If the foci the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1 \dots$	7	
16	The locus of the middle point	$x^2 + y^2 = 8$	
17	Centre of the conic	(1,2)	
18	Direction ratio's of the line	$b_1c_2 - c_1b_2, c_1a_2, a_1b_1 - b_1a_2$	
19	The co-ordinates of a point in the	(0,0,0)	
20	The yz plane divides the line segment	2:3	
21	If the plane x + ay + z = 5 has	1	
22	If the sum of squares of distance of a point from	$x^2 + y^2 + z^2 = p^2$	
23	Distance of the plane	4/3	
24	Angle between the lines	$\cos^{-1}\left(\frac{8}{9}\right)$	
25	If a and b are unit	$\sin\frac{\theta}{2} = \frac{1}{2} a-b $	
26	The unit vector which is	$\frac{-3i+5j+11k}{\sqrt{155}}$	
27	If op = $x_1i + y_1j + z_1k$	$\frac{x_2 - x_1}{PQ}, \frac{y_2 - y_1}{PQ}, \frac{z_2 - z_1}{PQ}$	

CONTACT US: RANKERS POINT PALASIA SQUARE INDORE

28	Direction of a reciprocal vector	None of these	
29	The moment of force	$\hat{i}-2\hat{j}+\hat{k}$	
30	If $\vec{a} = \vec{b} + \vec{c}$, then	0	
31	A force $\vec{F} = 2\hat{i} - 3\hat{j} + \hat{k}$ is acting at a point	4 units	
32	If a and b are the position vector	2	
33		$x \in (1,2)$	
34	Domain and Range are	Identity function	
35	If $f(x) = \frac{1+x}{1-x}$, then the value	$-\frac{1}{x}$	
36	The value of	e^2	
37	If the function f (x) =	a = 1, b = 3	
38	For what value of m, the function	m>1	
39	If $x^2 + y^2 = t = \frac{1}{t}, x^4 + y^4 =$	$\frac{1}{x^3y}$	
40	If $(\cos x)^y = (\sin y)^x$, then	$\frac{\log_{e}(\sin y) + \tan x}{\log_{e}(\cos x) - x \cot y}$	
41	If a particle is moving in a straight	2 < t < 5	
42	The function 3 sin x-4 sin/	$=\frac{\pi}{6} < x < \frac{\pi}{6}$	

CONTACT US: RANKERS POINT PALASIA SQUARE INDORE

43	The height of a cylinder of maximum	$\frac{2a}{\sqrt{3}}$ units	
44	For the function	$2 \pm \frac{1}{\sqrt{3}}$	
45	$\int \sqrt{e^x - 1} dx \text{is equal}$ to	$2[e^{x} - 1 + \cot^{-1} \sqrt{e^{x} - 1}] + c \text{ or}$ $2[e^{x} - 1 - \tan^{-1} \sqrt{e^{x} - 1}] + c$	
46	$\int \frac{1}{5 + 4\cos x} dx \text{ is equal}$ to	$\frac{2}{3}\tan^{-1}\left(\frac{\tan(x/2)}{3}\right) + C$	
47	$\int \frac{x^2 + 1}{x^4 + x^2 + 1} dx \text{ is equal to}$	$\frac{1}{\sqrt{3}}\tan^{-1}\left(\frac{x^2-1}{\sqrt{3}x}\right)+c$	
48	The value of	$\frac{4}{e}$	
49	Value of $\int_{-1}^{1} e^{ x } dx$ is	2(e-1)	
50	The value of $\int_0^{2\pi} \frac{x \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x}$	π^2	
51	If $\int \frac{x \tan^{-1} x}{\sqrt{1+x^2}} dx = \dots$	A= 1, b= -1	
52	$ \int \!\! \left[\frac{e^{5\log_e x} - e^{4\log_e x}}{e^{3\log_e x} - e^{2\log_e x}} \right] \ dx \ is $ equal to .	$\frac{x^3}{3}$ +c	
53	The area bounded by the curve y= 4x(x-1) (x-2)	2sq. units	
54	The area bounded by the curve $y = x - 1$ and $- x + 1$ is	2 sq. units	

55	The differential equation of rectangular hyperbola		
56	The differential equation of family of circles	$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = a^2 \left[\frac{d^2y}{dx^2}\right]^2$	
57	Degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^{3/2} + x^2 \left(\frac{dy}{dx}\right) = e^x$ is	3	
58	The order of the differential equation $\frac{d^2y}{dx^2} - 5\left(\frac{dy}{dx}\right)^{7/2} = \sin x,$	2	
59	Solution of the differential equation $\frac{dy}{dx} = (4x + y + 1)^2$	$\frac{1}{2} \tan^{-1} \left(\frac{4x + y + 1}{2} \right) = x + c$	
60	Solution of the differential equation $e^{-x+y} \frac{dy}{dx} = 1$	$e^{y} = e^{x} + c$	
61	Solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \sin\left(\frac{y}{x}\right) \text{is }$		
62	Solution of the differential equation $\frac{dy}{dx} = \frac{x+y+1}{2x+2y+3}$	$6y - 3x + \log(3x + 3y + 4) = c$	
63	Integrating factor of the differential equation x	log x	

CONTACT US: RANKERS POINT PALASIA SQUARE INDORE

64	A bag contain 3 white	5:9	
65	A, B and C are parti	257/320	
66	In a single throw of two	5/9	
67	A and B are independent event	1/3	
68	The number of minimum series	2	
69	The standard deviation of th		No option is correct
70	If the correlation coefficient is zero	Perpendicular	
71	The order of convergence of.	2	
72	First approximate solution of	2.05	
73	Using false position method, the	(2, 3)	
74	Using Bisection method the	[0,1]	
75	In Simpson's 1/3 rule the	Even	
76	For the following data:	5.05	
77	In Trapezoidal rule the	Straight line	
78	Which one of the following represent the Simpson's	$\int_{x_0}^{x_0+nh} y dx \Box$ $h \left[\frac{1}{3} (y_0 + y_n) + \frac{4}{3} (y_1 + y_3 + \dots + y_{n-1}) + \frac{2}{3} (y_2 + y_4 + \dots + y_{n-2}) \right]$	
79	The objective function of a Linear	A polynomial	

CONTACT US: RANKERS POINT PALASIA SQUARE INDORE

	Programming		
80	The main parts of linear	2	
81	The optimal solution of the linear	X = 20, y = 30	
82	In solving the linear programming problem	Convex set of feasible solution	
83	The smallest positive integer	4	
84	If $\frac{2z_1}{3z_2}$ is purely number	1	
85	If complex number z_1, z_2 and o are	mber 0	
86	The amplitude of	$\frac{\pi}{6}$	
87	$\log_3 2$, $\log_6 2$	HP	
88	If a,b,c are Harmonic	$\frac{3}{b^2} - \frac{2}{ab}$	
89	If x be real, then the maximum value	41	
90	If α , β are the roots	1	
91	⁴⁷ C ₄ +	$^{52}\mathrm{C}_4$	
92	Total number of ways in which	35	
93	The middle term in the	252	
94	If $\log_5(3x-1) < 1$, then	$\left(\frac{1}{3},2\right)$	
95	If $ax^3 + bx^2 + cx + d =$	-1	

96	If the system of equation	2	
97	For a square matrix A =	Skew symmetric matrix	
98	If the value of a third order determinant	256	
99	The range of the trigonometric function sec x	R – (–1,1)	
100	The valye of $\frac{\cos(90^{\circ} + \theta)}{\sec(360^{\circ} - \theta)}$	-1	

PHYSICS

S.NO.	Question	Answer	DETTAIL SOLUTION
101	A piece of ice	Will not change	
102	Difference between the internal and external	2T r	$P_2 - P_1 = \frac{2T}{R}$
103	Two identical solid spheres	$\rho^2 r^4$	$F = \frac{GM_{1}M_{2}}{(R)^{2}} = \frac{G(\rho \frac{4}{3}\pi r^{3})(\rho \frac{4}{3}\pi r^{3})}{(2\pi)^{2}}$

CONTACT US: RANKERS POINT PALASIA SQUARE INDORE

104	An ideal gas has pressure	$P = \frac{2}{3}E$	$PV = \frac{1}{3} \eta m v_{rms}^{2}$ $pv = \frac{2}{3} \left(\frac{1}{2} \eta m v_{rms}^{2} \right)$
105	An iron needle floats on the	Surface tension	
106	Work done in an isothermal	On both the temperature and volume expansaion ratio	$W = nRT \ln \left(\frac{v_2}{v_1} \right)$
107	The ratio of the coefficient of thermal	5:3	$R = \frac{L}{KA}$ $R = same ; L = same :: \frac{l_1}{l_2} = \frac{k_1}{k_2} = \frac{5}{3}$
108	The refractive index of the material of a con	24 cm	(c) $\frac{1}{f} = \left(\frac{\mu - l}{l}\right) \left(\frac{l}{R_1} - \frac{l}{R_2}\right)$ $= \frac{1.5 - l}{l} \cdot \left(\frac{l}{20} + \frac{l}{30}\right)$ $= \frac{0.5 \cdot \left(\frac{30 + 20}{600}\right)}{89 \times 0.5}$ $f = \frac{669}{89 \times 0.5} = \frac{120}{5}$ $f = 24 \text{ cm}$
109	Two thin lenses are kept in conduct	30 cm	
110	A convex and a concave lens of	erect and of same size as the object	$\frac{1}{f_{eff}} = \frac{1}{f_1} + \frac{1}{f_2}$ $= \frac{1}{(+10)} + \frac{1}{(-10)} = 0$ $\Rightarrow \text{ Combination will behave as a glam slab image will be chart and of the same size as the object}$

CONTACT US: RANKERS POINT PALASIA SQUARE INDORE

			And $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$ $\frac{1}{(nu)} - \frac{1}{u} = \frac{1}{f}$ $\left(\frac{n-1}{n}\right)f$ $u = \frac{f(n-1)}{n}$
112	the magnifying power of com	4	$m = m_0 m_e$ $m_e = \frac{m}{m_0} = \frac{32}{8} = 4$
113	in young's experiment the	I = 4 I ₀	$I = I_1 + I_2 + \sqrt{I_1 I_2} \cos \varphi$ At central fringe $I_{max} = 4I$ In problem $I = I_0$
114	in an experiment of diffraction	increase	$\beta = \frac{2\lambda D}{d}$ $B\alpha \frac{1}{d}$ If d decreased β increase
115	in the diffaction of light of	$\frac{\lambda}{d}$	$d \sin \theta = nd$ $d \sin \theta = \lambda \text{ (for 1}^{st} \text{ min }$ $\Rightarrow \theta = \frac{\lambda}{d}$ Angular width of central

CONTACT US: RANKERS POINT PALASIA SQUARE INDORE

	WITTET 2010 ANOWER RET & OCCOTIONS			
			$Maxima = \frac{2\lambda}{d}$	
			So half of angular width = $\frac{\lambda}{d}$	
116	electrical resistance of a piece	semi-conductor	$\rho = \rho_0 \left(1 + \alpha \Delta \theta \right)$ $\alpha = \text{is +ve for conductors}$ $\alpha = \text{is -ve for semi conductors}$	
117	depletion layer at	both positive and negative immobile charges	P N hhh G G e e e hhh G G e e e hhh G G e e e be be e e e Depletion layers contains both positive and negative immobile charges	
118	electric field strength due to a	$E = \frac{1}{2\pi\varepsilon_0} \frac{p}{r^3}$	$E = \frac{2 + P}{h^3} = \frac{1}{2\pi \epsilon_0} \cdot \frac{P}{h^3}$	
119	stored electrostatic energy in	$u = \frac{Q^2}{2C}$	$u = \frac{Q^2}{2C}$	
120	A parallal plate capacitor	44 pF;211.2pF		
121	each resistance in the given	R	For balanced wheatstone bridge $R_{AB} = R$	

CONTACT US: RANKERS POINT PALASIA SQUARE INDORE

122 a galvanor of resiste		$R = 480\Omega$	$V = i_g (R_g + R)$ $\Rightarrow 3 = 6 \times 10^{-3} (20 + R)$ $\Rightarrow R + 20 = 0.5 k\Omega = 500 \Omega$ $\Rightarrow R = 480 \Omega$	
123 open potentia	circuit I	elctromotive force	Open terminal voltage is called electro motive force	
124 when capacito	a r of	$Q(t) = Q_{max} \left(1 - e^{-t/RC} \right)$	$Q(t) = Q_{\text{max}} \left(1 - e^{-t/RC} \right)$	
125 a hea marked !	iter is 500w	30 paisa	Consumed = P X t = $500 \times 4 \times 3600$ = 72×10^5 Joule Unit consumed = 2 kwh Cost = $2 \times 15 = 30$ paisa	
the ma	agnetic	$\frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{r}}{r^3}$	$\frac{\mu_0}{4\pi} \frac{Id\overrightarrow{1} \times \overrightarrow{r}}{r^3}$ Biot savarat law	
in a volta		electro –chemical equivalent	m=z.q z= electro -chemical equivalent	
force experien by charg	ced	$\overrightarrow{\mathbf{F}} = q[\overrightarrow{\mathbf{E}} + (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}})]$	$\overrightarrow{\mathbf{F}} = q[\overrightarrow{\mathbf{E}} + (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}})]$	
129 the mar of electri		Charge of the particle		
130 Pick state that is for a semicone	correct p-type	Density of minority carriers depends on temperature		
131 Pick isobars the follow	mirror from wing :	${}_{7}N^{15}, {}_{8}O^{15}$	$_{7}N^{15},_{8}O^{15}$	

CONTACT US: RANKERS POINT PALASIA SQUARE INDORE

	sound in air is 332 m/s		
133	Dimensional formula for boltzman	$[ML^2T^{-2}\theta^{-1}]$	$[ML^2T^{-2}\theta^{-1}]$
134	Select the pairs which have same	Torque and wok	
135	Frequency f of oscillations of a mass	$x = -\frac{1}{2}, y = \frac{1}{2}$	$x = -\frac{1}{2}, y = \frac{1}{2}$
136	A Force $\overrightarrow{F} = (5 \overrightarrow{i} + 3 \overrightarrow{j})$ newton	7 Joules	
137	A simple pendulum is hanging from the	$\theta = \tan^{-1} \left(\frac{a}{g} \right)$	
138	A motor car is moving on a straight horizontal road	50 m	50 m
139	A cylinder rolls up an inclined plane, reaches some	Up the incline while ascending and descending	
140	A assuming that the coefficient of friction	20 m/s	$v = \sqrt{\mu rg} = 20 \text{m/s}$
141	For a body moving in a horizontal	Kinetic energy	
142	For a geostationary	π/12	$\omega = \frac{2\pi}{T} = \frac{2\pi}{24}$

CONTACT US: RANKERS POINT PALASIA SQUARE INDORE

143	A body is moving in a circular,	16 a	$a = \frac{v^2}{r}$ If velocity becomes 4 times than a will be 16 times
144	The circular motion if a particle	Periodic but not simple harmonic	For SHM F∞-x
145	The moment of linear momentum	Angular momentum	Angular momentum is momentum of linear momentum
146	The moment of inertia of a uniform	$\frac{3}{2}MR^2$	$I = I_{cm} + MR^2$ $= \frac{1}{2}MR^2 + MR^2$
147	The equation of motion of a particle is	$\frac{2\pi}{\sqrt{b}}$	$a = -bx = -\omega^{2}x$ $\omega = \sqrt{b} = 2\pi/T$
148	The Young's modulus of steal is	60.0	$Y = 2.0 \times 10^{11} \frac{N}{M^2}, r_0 = 3 \stackrel{0}{A}$ $K = yr_0$
149	A wire is stretched by 5 mm when it is	2.5 mm	
150	A liquid rises in a capillary tube	Acute	

CONTACT US: RANKERS POINT PALASIA SQUARE INDORE

CHEMISTRY

S.N O.	Question	Answer	DETTAIL SOLUTION
151	Which of the following is formed when	Orange solution of Na ₂ Cr ₂ O ₇ is formed	
152	A compound contains		According to English CH ₃ NH ₂ and no answer in hindi
153	A compound containing only carbon	An aldehyde	
154	The IUPAC name of the	3,3-dimethyl $-1-$ bute	
155	Which of the isomerism is	Metamerism	
156	That which is not	Gasoline	
157	The petrol of octane	20% n – hep tan e + $80%$	
158	Structure of diethyl ether	Williamson's shythesis	
159	CH₃CHO gives	PCl ₅	
159 160	CH ₃ CHO gives Which of the following acids acids cannot be	PCl ₅ Formic acid	
	Which of the following acids acids cannot		
160	Which of the following acids acids cannot be	Formic acid	
160	Which of the following acids acids cannot be Chlorobenzene is prepared	Formic acid Raschig Process Friedal-Craft;s	
160 161 162	Which of the following acids acids cannot be Chlorobenzene is prepared Phenol $\frac{Z_n}{\Delta} \times x$. Which of the following reduces Tollens's	Formic acid Raschig Process Friedal-Craft;s reaction	
160 161 162 163	Which of the following acids acids cannot be Chlorobenzene is prepared $\frac{Zn}{\Delta} \times x.$ Which of the following reduces Tollens's reagent	Formic acid Raschig Process Friedal-Craft;s reaction Glucose	
160 161 162 163	Which of the following acids acids cannot be Chlorobenzene is prepared Phenol $\frac{Z_n}{\Delta} \times x$. Which of the following reduces Tollens's reagent Glucose converts into alcohol by action	Formic acid Raschig Process Friedal-Craft;s reaction Glucose Zymase	

CONTACT US: RANKERS POINT PALASIA SQUARE INDORE

168	Which has maximum number of atoms?	24 gms of C ₍₁₂₎
169	Which has the maximum number of unpaired	Fe ²⁺
170	Bond order in species is as the following:	$O_2^+ > O_2 > O_2^-$
171	Which compound has electrovalent bond ?	NaBr
172	Weight Of Urea required to prepare 200 ml	24 gm
173	In Bragg's reaction $n\lambda = 2d\sin\theta$, n present	Order of reflection
174	The differences between number of Neutrons	Tritium atom
175	For the reaction $2NO_{(g)} + Cl_{2(g)} = 2NOCl_{(g)}$	$K_{p} = \frac{K_{c}}{RT}$
176	$CaCO_3(s)$ \Box $CaO(s) + CO_2(g)$,	Increases if T is raised
177	pH of water is 7.0 at 25°C. If water is	pH will be decreases
178	In the reaction $H_2O + HCl \rightarrow H_3O^+ + Cl^-$	H ₂ O
179	The enthalpies of combustion of carbon and carbon	-110.5 kJ mole ⁻¹
180	The quantity of K in a rate of expansion	Is independent of concentration of reactants
181	The half life of radioactive sodium is 15.0 hours. How many	45
182	Which of the following is not true for the reaction	Both Fe ³⁺ and Fe ²⁺ are called acid radicals
183	In the reaction $Pb(s)+Cu^{2+}(aq) \rightarrow Pb^{2+}(aq)+Cu(s)$ which is	Pb(s)

184	The phenomenon of negative	Inhibition
185	is the gold number of hydrophilic colloid, then	Lower
186	In metallurgy if iron when limestone	Slag
187	Identify the least stable ion	Be ⁻
188	Transition metals have generals electronic	in option (c) there should be ns ¹⁻² rather than ns ¹²
189	Variable valency is a general feature of	d-block elements
190	The amount of energy released when 10 ⁶ atoms of iodine in	3.06
191	Sodium hydride when dissolved in water	Basic solution
192	When zinc reacts with very dilute	NH ₄ NO ₃
193	A black sulphide when reacts with ozone becomes	PbSO ₄
194	Strongest reducing agent is	I-
195	The formula of hematite is	Fe_2O_3
196	Which of the following forms with an excess of CN ⁻	Ag^+
197	The IUPAC name of Ni $(CO)_4$ is	Tetracarbonylnickelat e (O)

198	A 5 molar solution of H ₂ SO ₄ acid is diluted from 1 litre to 10 lite	1N	
199	Ferric ions form pressian blue coloured	Fe ₄ [Fe(CN) ₆] ₃	
200	The volume of water to be added to 100 ml of 0.5N H_2SO_4	400 ml	

CONTACT US: RANKERS POINT PALASIA SQUARE INDORE