

Query Multiple Tables / 51

Chapter 3

QUERY MULTIPLE TABLES

3.0 Objectives
3.1 Introduction
3.2 Joins
 3.2.1 Equi-Join.
 3.2.2 Non-Equi-Join.
 3.2.3 Outer Join versus Inner Join
 3.2.4 Joining Table to Itself.
3.3 Procedures and Functions
3.4 Creating a Procedure
3.5 Executing a Procedure
3.6 Deleting a Procedure
3.7 Functions
 3.7.1 Aggregate Functions
 3.7.2 Date & Time Function
 3.7.3 Arithmatic Functions
 3.7.4 Character Functions
 3.7.5 Conversion Functions
 3.7.6 Miscelleneous Functions
3.8 Summary
3.9 Check Your Progress - Answers
3.10 Questions for Self – Study
3.11 Suggested Readings

3.0 OBJECTIVES

 After reading this chapter you will able to
 explain how to Creating procedure
 explain how to Executing procedure
 explain how to Deleting procedure
 describe Function

3.1 INTRODUCTION

Today you will learn about joins. This information will enable you to gather and
manipulate data across several tables. By the end of the day, you will understand and
be able to do the following :

 Perform an outer join
 Perform a left join
 Perform a right join
 Perform an equi-join
 Perform a non-equi-join
 Join a table to itself.

 Oracle / 52

3.2 JOINS

One of the most powerful features of SQL is its capability to gather and manipulate

data from across several tables. Without this feature you would have to store all the
data elements necessary for each application in one table. Without common tables you
would need to store the same data in several tables. Imagine having to redesign,
rebuild, and repopulate your tables and databases every time your user needed a
query with a new piece of information. The JOIN statement of SQL enables you to
design smaller, more specific tables that are easier to maintain than larger tables.

Multiple Tables in a Single SELECT Statement
Like Dorothy in The Wizard of Oz, you have had the power to join tables since Day

2, "Introduction to the Query : The SELECT Statement," when you learned about
SELECT and FROM. Unlike Dorothy, you do not have to click you heels together three
times to perform a join. Use the following two tables, named, cleverly enough, TABLE1
and TABLE2.

INPUT :
SELECT *
FROM TABLE1

OUTPUT :

ROW REMARKS
======= =======
row 1 Table 1
row 2 Table 1
row 3 Table 1
row 4 Table 1
row 5 Table 1
row 6 Table 1

INPUT :
SELECT *
FROM TABLE2
OUTPUT :

ROW REMARKS
========= ========
row 1 table 2
row 2 table 2
row 3 table 2
row 4 table 2
row 5 table 2
row 6 table 2

To join these two tables, type this :

INPUT :
SELECT *
FROM TABLE1, TABLE2
OUTPUT :

Query Multiple Tables / 53

ROW REMARKS ROW REMARKS
========= ========== ======== ==========
row 1 Table 1 row 1 table 2
row 1 Table 1 row 2 table 2
row 1 Table 1 row 3 table 2
row 1 Table 1 row 4 table 2
row 1 Table 1 row 5 table 2
row 1 Table 1 row 6 table 2
row 2 Table 1 row 1 table 2
row 2 Table 1 row 2 table 2
row 2 Table 1 row 3 table 2
row 2 Table 1 row 4 table 2
row 2 Table 1 row 5 table 2
row 2 Table 1 row 6 table 2
row 3 Table 1 row 1 table 2
row 3 Table 1 row 2 table 2
row 3 Table 1 row 3 table 2
row 3 Table 1 row 4 table 2
row 3 Table 1 row 5 table 2
row 3 Table 1 row 6 table 2
row 4 Table 1 row 1 table 2
row 4 Table 1 row 2 table 2
row 4 Table 1 row 3 table 2
row 4 Table 1 row 4 table 2
row 4 Table 1 row 5 table 2
row 4 Table 1 row 6 table 2
row 5 Table 1 row 1 table 2
row 5 Table 1 row 2 table 2
row 5 Table 1 row 3 table 2
row 5 Table 1 row 4 table 2
row 5 Table 1 row 5 table 2
row 5 Table 1 row 6 table 2
row 6 Table 1 row 1 table 2
row 6 Table 1 row 2 table 2
row 6 Table 1 row 3 table 2
row 6 Table 1 row 4 table 2
row 6 Table 1 row 5 table 2
row 6 Table 1 row 6 table 2

Thirty-six rows! Where did they come from ? And what kind of join is this ?
A close examination of the result of the first join shows that each row from TABLE1

was added to each row from TABLE2. An extract from this join shows what happened :

OUTPUT :
ROW REMARKS ROW REMARKS
===== ========== ======= ========
row 1 Table 1 row 1 table 2
row 1 Table 1 row 2 table 2
row 1 Table 1 row 3 table 2
row 1 Table 1 row 4 table 2
row 1 Table 1 row 5 table 2
row 1 Table 1 row 6 table 2

 Oracle / 54

Notice how each row in TABLE2 was combined with row 1 in TABLE1.
Congratulations! You have performed your first join. But what kind of join? An inner
join? an outer join? or what? Well, actually this type of join is called a cross-join. A
cross-join is not normally as useful as the other joins covered today, but this join does
illustrate the basic combining property of all joins : Joins bring tables together.

Suppose you sold parts to bike shops for a living. When you designed your
database, you built one big table with all the pertinent columns. Every time you had a
new requirement, you added a new column or started a new table with all the old data
plus the new data required to create a specific query. Eventually, your database would
collapse from its own weight-not a pretty sight. An alternative design, based on a
relational model, would have you put all related data into one table. Here's how your
customer table would look :

INPUT :
SELECT *
FROM CUSTOMER
OUTPUT :

NAME ADDRESS STATE ZIP PHONE REMARKS
======== ========= ====== ==== ======= ========
TRUE WHEEL 55O HUSKER NE 58702 555-4545 NONE
BIKE SPEC CPT SHRIVE LA 45678 555-1234 NONE
LE SHOPPE HOMETOWN KS 54678 555-1278 NONE
AAA BIKE 10 OLDTOWN NE 56784 555-3421 JOHN-MGR
JACKS BIKE 24 EGLIN FL 34567 555-2314 NONE

Finding the Correct Column

When you joined TABLE1 and TABLE2, you used SELECT *, which returned all
the columns in both tables. In joining ORDERS to PART, the SELECT statement is a
bit more complicated :

SELECT O.ORDEREDON, O.NAME, O.PARTNUM,
P.PARTNUM, P.DESCRIPTION
SQL is smart enough to know that ORDEREDON and NAME exist only in

ORDERS and that DESCRIPTION exists only in PART, but what about PARTNUM,
which exists in both? If you have a column that has the same name in two tables, you
must use an alias in your SELECT clause to specify which column you want to display.
A common technique is to assign a single character to each table, as you did in the
FROM clause :

FROM ORDERS O, PART P
You use that character with each column name, as you did in the preceding

SELECT clause. The SELECT clause could also be written like this :
SELECT ORDEREDON, NAME, O.PARTNUM, P.PARTNUM, DESCRIPTION
But remember, someday you might have to come back and maintain this query. It

does not hurt to make it more readable. Now back to the missing statement.

3.2.1 Equi-Joins
An extract from the PART/ORDERS join provides a clue as to what is missing :
30-JUN-1996 TRUE WHEEL 42 54 PEDALS
30-JUN-1996 BIKE SPEC 54 54 PEDALS
30-MAY-1996 BIKE SPEC 10 54 PEDALS
Notice the PARTNUM fields that are common to both tables. What if you wrote the

following ?

INPUT :
SELECT O.ORDEREDON, O.NAME, O.PARTNUM,
P.PARTNUM, P.DESCRIPTION

Query Multiple Tables / 55

FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM
OUTPUT :

 ORDEREDON NAME PARTNUM PARTNUM DESCRIPTION
=========== ========= ======== ======= ===========
1-JUN-1996 AAA BIKE 10 10 TANDEM
30-MAY-1996 BIKE SPEC 10 10 TANDEM
2-SEP-1996 TRUE WHEEL 10 10 TANDEM
1-JUN-1996 LE SHOPPE 10 10 TANDEM
30-MAY-1996 BIKE SPEC 23 23 MOUNTAIN BIKE
15-MAY-1996 TRUE WHEEL 23 23 MOUNTAIN BIKE
30-JUN-1996 TRUE WHEEL 42 42 SEATS
1-JUL-1996 AAA BIKE 46 46 TIRES
30-JUN-1996 BIKE SPEC 54 54 PEDALS
1-JUL-1996 AAA BIKE 76 76 ROAD BIKE
17-JAN-1996 BIKE SPEC 76 76 ROAD BIKE
19-MAY-1996 TRUE WHEEL 76 76 ROAD BIKE
11-JUL-1996 JACKS BIKE 76 76 ROAD BIKE
17-JAN-1996 LE SHOPPE 76 76 ROADBIKE

Using the column PARTNUM that exists in both of the preceding tables, you have
just combined the information you had stored in the ORDERS table with information
from the PART table to show a description of the parts the bike shops have ordered
from you. The join that was used is called an equi-join because the goal is to match
the values of a column in one table to the corresponding values in the second table.

You can further qualify this query by adding more conditions in the WHERE
clause. For example:

INPUT/OUTPUT :
SELECT O.ORDEREDON, O.NAME, O.PARTNUM,
P.PARTNUM, P.DESCRIPTION
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM
AND O.PARTNUM = 76

ORDEREDON NAME PARTNUM PARTNUM DESCRIPTION
=========== ======= ======== ==================
1-JUL-1996 AAA BIKE 76 76 ROAD BIKE
17-JAN-1996 BIKE SPEC 76 76 ROAD BIKE
19-MAY-1996 RUE WHEEL 76 76 ROAD BIKE
11-JUL-1996 JACKS BIKE 76 76 ROAD BIKE
17-JAN-1996 LE SHOPPE 76 76 ROAD BIKE

The number 76 is not very descriptive, and you would not want your sales people
to have to memorize a part number. (We have had the misfortune to see many data
information systems in the field that require the end user to know some obscure code
for something that had a perfectly good name. Please don't write one of those!) Here's
another way to write the query :

INPUT/OUTPUT :
SELECT O.ORDEREDON, O.NAME, O.PARTNUM,
P.PARTNUM, P.DESCRIPTION
FROM ORDERS O, PART P

 Oracle / 56

WHERE O.PARTNUM = P.PARTNUM
AND P.DESCRIPTION = 'ROAD BIKE'

ORDEREDON NAME PARTNUM PARTNUM DESCRIPTION
=========== ========= =========== ==================
1-JUL-1996 AAA BIKE 76 76 ROAD BIKE
17-JAN-1996 BIKE SPEC 76 76 ROAD BIKE
19-MAY-1996 TRUE WHEEL 76 76 ROAD BIKE
11-JUL-1996 JACKS BIKE 76 76 ROAD BIKE
17-JAN-1996 LE SHOPPE 76 76 ROAD BIKE

Along the same line, take a look at two more tables to see how they can be joined.
In this example the employee_id column should obviously be unique. You could have
employees with the same name, they could work in the same department, and earn
the same salary. However, each employee would have his or her own employee_id.
To join these two tables, you would use the employee_id column.

EMPLOYEE_TABLE EMPLOYEE_PAY_TABLE

employee_id employee_id

last_name salary

first_name department

middle_name supervisor

 marital_status

INPUT :
SELECT E.EMPLOYEE_ID, E.LAST_NAME, EP.SALARY
FROM EMPLOYEE_TBL E,
 EMPLOYEE_PAY_TBL EP
WHERE E.EMPLOYEE_ID = EP.EMPLOYEE_ID
 AND E.LAST_NAME = 'SMITH';

OUTPUT :

E.EMPLOYEE_ID E.LAST_NAME EP.SALARY
============= =========== =========
 13245 SMITH 35000.00

Back to the original tables. Now you are ready to use all this information about

joins to do something really useful: finding out how much money you have made from
selling road bikes :

INPUT/OUTPUT :
SELECT SUM(O.QUANTITY * P.PRICE) TOTAL
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM
AND P.DESCRIPTION = 'ROAD BIKE'

 TOTAL
===========
 19610.00

With this setup, the sales people can keep the ORDERS table updated, the

production department can keep the PART table current, and you can find your bottom
line without redesigning your database.

Query Multiple Tables / 57

Can you join more than one table? For example, to generate information to send
out an invoice, you could type this statement:

INPUT/OUTPUT :
SELECT C.NAME, C.ADDRESS, (O.QUANTITY * P.PRICE) TOTAL
FROM ORDER O, PART P, CUSTOMER C
WHERE O.PARTNUM = P.PARTNUM
AND O.NAME = C.NAME

 NAME ADDRESS TOTAL
========== ============ =========
TRUE WHEEL 55O HUSKER 1200.00
BIKE SPEC CPT SHRIVE 2400.00
LE SHOPPE HOMETOWN 3600.00
AAA BIKE 10 OLDTOWN 1200.00
TRUE WHEEL 55O HUSKER 2102.70
BIKE SPEC CPT SHRIVE 2803.60
TRUE WHEEL 55O HUSKER 196.00
AAA BIKE 10 OLDTOWN 213.50
BIKE SPEC CPT SHRIVE 542.50
TRUE WHEEL 55O HUSKER 1590.00
BIKE SPEC CPT SHRIVE 5830.00
JACKS BIKE 24 EGLIN 7420.00
LE SHOPPE HOMETOWN 2650.00
AAA BIKE 10 OLDTOWN 2120.00

You could make the output more readable by writing the statement like this :

INPUT/OUTPUT :
SELECT C.NAME, C.ADDRESS,
O.QUANTITY * P.PRICE TOTAL
FROM ORDERS O, PART P, CUSTOMER C
WHERE O.PARTNUM = P.PARTNUM
AND O.NAME = C.NAME
ORDER BY C.NAME

NAME ADDRESS TOTAL
========== ========== ===========

AAA BIKE 10 OLDTOWN 213.50
AAA BIKE 10 OLDTOWN 2120.00
AAA BIKE 10 OLDTOWN 1200.00
BIKE SPEC CPT SHRIVE 542.50
BIKE SPEC CPT SHRIVE 2803.60
BIKE SPEC CPT SHRIVE 5830.00
BIKE SPEC CPT SHRIVE 2400.00
JACKS BIKE 24 EGLIN 7420.00
LE SHOPPE HOMETOWN 2650.00
LE SHOPPE HOMETOWN 3600.00
TRUE WHEEL 55O HUSKER 196.00
TRUE WHEEL 55O HUSKER 2102.70
TRUE WHEEL 55O HUSKER 1590.00
TRUE WHEEL 55O HUSKER 1200.00

 Oracle / 58

You can make the previous query more specific, thus more useful, by adding the
DESCRIPTION column as in the following example :

INPUT/OUTPUT :
SELECT C.NAME, C.ADDRESS,
O.QUANTITY * P.PRICE TOTAL,
P.DESCRIPTION
FROM ORDERS O, PART P, CUSTOMER C
WHERE O.PARTNUM = P.PARTNUM
AND O.NAME = C.NAME

ORDER BY C.NAME

NAME ADDRESS TOTAL DESCRIPTION

========== ========== ========= ==============

AAA BIKE 10 OLDTOWN 213.50 TIRES

AAA BIKE 10 OLDTOWN 2120.00 ROAD BIKE

AAA BIKE 10 OLDTOWN 1200.00 TANDEM

BIKE SPEC CPT SHRIVE 542.50 PEDALS

BIKE SPEC CPT SHRIVE 2803.60 MOUNTAIN BIKE

BIKE SPEC CPT SHRIVE 5830.00 ROAD BIKE

BIKE SPEC CPT SHRIVE 2400.00 TANDEM

JACKS BIKE 24 EGLIN 7420.00 ROAD BIKE

LE SHOPPE HOMETOWN 2650.00 ROAD BIKE

LE SHOPPE HOMETOWN 3600.00 TANDEM

TRUE WHEEL 55O HUSKER 196.00 SEATS

TRUE WHEEL 55O HUSKER 2102.70 MOUNTAIN BIKE

TRUE WHEEL 55O HUSKER 1590.00 ROAD BIKE

TRUE WHEEL 55O HUSKER 1200.00 TANDEM

This information is a result of joining three tables. You can now use this

information to create an invoice.

3.2.2 Non-Equi-Joins

Because SQL supports an equi-join, you might assume that SQL also has a non-

equi-join. You would be right! Whereas the equi-join uses an = sign in the WHERE

statement, the non-equi-join uses everything but an = sign. For example :

INPUT :

SELECT O.NAME, O.PARTNUM, P.PARTNUM,

O.QUANTITY * P.PRICE TOTAL

FROM ORDERS O, PART P

WHERE O.PARTNUM > P.PARTNUM

OUTPUT :

Query Multiple Tables / 59

NAME PARTNUM PARTNUM TOTAL
========== =========== ========= =========
TRUE WHEEL 76 54 162.75
BIKE SPEC 76 54 596.75
LE SHOPPE 76 54 271.25
AAA BIKE 76 54 217.00
JACKS BIKE 76 54 759.50
TRUE WHEEL 76 42 73.50
BIKE SPEC 54 42 245.00
BIKE SPEC 76 42 269.50
LE SHOPPE 76 42 122.50
AAA BIKE 76 42 98.00
AAA BIKE 46 42 343.00
JACKS BIKE 76 42 343.00
TRUE WHEEL 76 46 45.75
BIKE SPEC 54 46 152.50
BIKE SPEC 76 46 167.75
LE SHOPPE 76 46 76.25
AAA BIKE 76 46 61.00
JACKS BIKE 76 46 213.50
TRUE WHEEL 76 23 1051.35
TRUE WHEEL 42 23 2803.60
...
This listing goes on to describe all the rows in the join WHERE O.PARTNUM >

P.PARTNUM. In the context of your bicycle shop, this information does not have much
meaning, and in the real world the equi-join is far more common than the non-equi-
join. However, you may encounter an application in which a non-equi-join produces the
perfect result.
3.2.3 Outer Joins versus Inner Joins

Just as the non-equi-join balances the equi-join, an outer join complements the
inner join. An inner join is where the rows of the tables are combined with each other,
producing a number of new rows equal to the product of the number of rows in each
table. Also, the inner join uses these rows to determine the result of the WHERE
clause. An outer join groups the two tables in a slightly different way. Using the PART
and ORDERS tables from the previous examples, perform the following inner join:

INPUT :
SELECT P.PARTNUM, P.DESCRIPTION, P.PRICE,
O.NAME, O.PARTNUM
FROM PART P
JOIN ORDERS O ON ORDERS.PARTNUM = 54
OUTPUT :

PARTNUM DESCRIPTION PRICE NAME PARTNUM
======= ========== ======= ======== ========

 54 PEDALS 54.25 BIKE SPEC 54
 42 SEATS 24.50 BIKE SPEC 54
 46 TIRES 15.25 BIKE SPEC 54
 23 MOUNTAIN BIKE 350.45 BIKE SPEC 54
 76 ROAD BIKE 530.00 BIKE SPEC 54
 10 TANDEM 1200.00 BIKE SPEC 54

The result is that all the rows in PART are spliced on to specific rows in ORDERS
where the column PARTNUM is 54. Here's a RIGHT OUTER JOIN statement :

INPUT/OUTPUT :
SELECT P.PARTNUM, P.DESCRIPTION, P.PRICE,

 Oracle / 60

O.NAME, O.PARTNUM
FROM PART P
RIGHT OUTER JOIN ORDERS O ON ORDERS.PARTNUM = 54

 PARTNUM DESCRIPTION PRICE NAME PARTNUM
 ======= =========== ======= ======== =======
 <null> <null> <null> TRUE WHEEL 23
 <null> <null> <null> TRUE WHEEL 76
 <null> <null> <null> TRUE WHEEL 10
 <null> <null> <null> TRUE WHEEL 42
 54 PEDALS 54.25 BIKE SPEC 54
 42 SEATS 24.50 BIKE SPEC 54
 46 TIRES 15.25 BIKE SPEC 54
 23 MOUNTAIN BIKE 350.45 BIKE SPEC 54
 76 ROAD BIKE 530.00 BIKE SPEC 54
 10 TANDEM 1200.00 BIKE SPEC 54
 <null> <null> <null> BIKE SPEC 10
 <null> <null> <null> BIKE SPEC 23
 <null> <null> <null> BIKE SPEC 76
 <null> <null> <null> LESHOPPE 76
 <null> <null> <null> LE SHOPPE 10
 <null> <null> <null> AAA BIKE 10
 <null> <null> <null> AAA BIKE 76
 <null> <null> <null> AAA BIKE 46
 <null> <null> <null> JACKS BIKE 76

This type of query is new. First you specified a RIGHT OUTER JOIN, which
caused SQL to return a full set of the right table, ORDERS, and to place nulls in the
fields where ORDERS.PARTNUM <> 54. Following is a LEFT OUTER JOIN statement
:

INPUT/OUTPUT :
SELECT P.PARTNUM, P.DESCRIPTION,P.PRICE,
O.NAME, O.PARTNUM
FROM PART P
LEFT OUTER JOIN ORDERS O ON ORDERS.PARTNUM = 54

PARTNUM DESCRIPTION PRICE NAME PARTNUM
=========== ============== =========== ========= =========
 54 PEDALS 54.25 BIKE SPEC 54
 42 SEATS 24.50 BIKE SPEC 54
 46 TIRES 15.25 BIKE SPEC 54
 23 MOUNTAIN BIKE 350.45 BIKE SPEC 54
 76 ROAD BIKE 530.00 BIKE SPEC 54
 10 TANDEM 1200.00 BIKE SPEC 54

You get the same six rows as the INNER JOIN. Because you specified LEFT (the

LEFT table), PART determined the number of rows you would return. Because PART
is smaller than ORDERS, SQL saw no need to pad those other fields with blanks.

Don't worry too much about inner and outer joins. Most SQL products determine
the optimum JOIN for your query. In fact, if you are placing your query into a stored
procedure (or using it inside a program (both stored procedures and Embedded SQL
covered on Day 13, "Advanced SQL Topics"), you should not specify a join type even
if your SQL implementation provides the proper syntax. If you do specify a join type,
the optimizer chooses your way instead of the optimum way.

Query Multiple Tables / 61

Some implementations of SQL use the + sign instead of an OUTER JOIN
statement. The + simply means "Show me everything even if something is missing".
Here's the syntax :

SYNTAX :
SQL> select e.name, e.employee_id, ep.salary,
 ep.marital_status
 from e,ployee_tbl e,
 employee_pay_tbl ep
 where e.employee_id = ep.employee_id(+)
 and e.name like '%MITH';
This statement is joining the two tables. The + sign on the ep.employee_id column

will return all rows even if they are empty.

3.2.4 Joining a Table to Itself
The syntax of this operation is similar to joining two tables. For example, to join

table TABLE1 to itself, type this :

INPUT :
SELECT *
FROM TABLE1, TABLE1
OUTPUT :

 ROW REMARKS ROW REMARKS
========= ========== ======== ==========

row 1 Table 1 row 1 Table 1
row 1 Table 1 row 2 Table 1
row 1 Table 1 row 3 Table 1
row 1 Table 1 row 4 Table 1
row 1 Table 1 row 5 Table 1
row 1 Table 1 row 6 Table 1
row 2 Table 1 row 1 Table 1
row 2 Table 1 row 2 Table 1
row 2 Table 1 row 3 Table 1
row 2 Table 1 row 4 Table 1
row 2 Table 1 row 5 Table 1
row 2 Table 1 row 6 Table 1
row 3 Table 1 row 1 Table 1
row 3 Table 1 row 2 Table 1
row 3 Table 1 row 3 Table 1
row 3 Table 1 row 4 Table 1
row 3 Table 1 row 5 Table 1
row 3 Table 1 row 6 Table 1
row 4 Table 1 row 1 Table 1
row 4 Table 1 row 2 Table 1

...

In its complete form, this join produces the same number of combinations as

joining two 6-row tables. This type of join could be useful to check the internal
consistency of data. What would happen if someone fell asleep in the production
department and entered a new part with a PARTNUM that already existed? That would
be bad news for everybody: Invoices would be wrong; your application would probably
blow up; and in general you would be in for a very bad time. And the cause of all your
problems would be the duplicate PARTNUM in the table on the next page :

 Oracle / 62

INPUT/OUTPUT :
SELECT * FROM PART
 PARTNUM DESCRIPTION PRICE
=========== ================= ===========
 54 PEDALS 54.25
 42 SEATS 24.50
 46 TIRES 15.25
 23 MOUNTAIN BIKE 350.45
 76 ROAD BIKE 530.00
 10 TANDEM 1200.00
 76 CLIPPLESS SHOE 65.00

<-NOTE SAME #
You saved your company from this bad situation by checking PART before anyone

used it :

INPUT/OUTPUT :
SELECT F.PARTNUM, F.DESCRIPTION,
S.PARTNUM,S.DESCRIPTION
FROM PART F, PART S
WHERE F.PARTNUM = S.PARTNUM
AND F.DESCRIPTION <> S.DESCRIPTION

 PARTNUM DESCRIPTION PARTNUM DESCRIPTION
 ========== ============ =========== =============
 76 ROAD BIKE 76 CLIPPLESS SHOE
 76 CLIPPLESS SHOE 76 ROAD BIKE

 3.1,3.2 Check Your Progress
 Fill in the blanks

1) ………………… can be used for joining of two tables.
2) A………………… must return a value.
3) A Procedure have…………………

3.3 PROCEDURE AND FUNCTIONS

 Procedures are simply a named PL/SQL block, that executes certain task. A
procedure is completely portable among platforms in which Oracle is executed.
 A function is similar to a procedure. The main difference between the function and
procedure is that a function returns a value where procedure does not.

3.3.1 Advantages of using Procedures and Functions
1. Improved performance :
 A block is placed on the database it is parsed at the time it is stored. When it

is subsequently executed Oracle already has the block compiled and it is
therefore much faster.

 Reduce the number of calls to the database and decrease network traffic by
bundling commands.

2. Improved maintenance :
 Modify routines online without interfering with other users.
 Modify one routine to affect multiple applications.
 Modify one routine to eliminate duplicate testing.

Query Multiple Tables / 63

3. Improved data security and integrity :
 Control indirect access to objects from non privileged users.
 Ensure that related actions are performed together or not at all, by funnelling

actions for related tables through a single path.

3.4 CREATING A PROCEDURE

 A procedure is created using CREATE PROCEDURE command.
Syntax :
 CREATE [OR REPLACE] PROCEDURE procedure_name
 [(argument [in/out/in out] datatype [,argument [in/out/in out] datatype…..])]
 {IS / AS}
 [variable declaration]
 {PL/SQL block};
Note : Square brakets [] indicate optional part.
 CREATE PROCEDURE procedure_name will create a new procedure with the
given procedure_name. OR REPLACE is an optional clause. It is used to change the
definition of an existing procedure.
If the procedure accept arguments specify argument details as,
 Argument_name IN / OUT / IN OUT datatype
 Argument_name indicate Variable_name
 IN indicate the variable is passed by the calling program to procedure.
 OUT indicate that the variable pass value from procedure to calling program.
 IN OUT indicate that the variable can pass values both in and out of a procedure.
 Datatype specify any PL/SQL datatype.

3.5 EXECUTING A PROCEDURE

 To execute the stored procedure simply call it by name in EXECUTE command as
 SQL> execute myproc1(7768);
 This will execute myproc1 with the value 7768.
 The second method of calling the procedure is
 Write the following code in an editor.
Declare
 C_empno number;
Begin
 Myproc1(&c_empno);
End;
/
Execute it as
 SQL >/
 In this case the value of variable c_empno is accepted from user and then it is
pass to myproc1 procedure.
 To see the effect of this procedure use command,
 SQL>select * from emp

3.6 DELETING A PROCEDURE

 To delete a procedure DROP PROCEDURE command is used.
Syntax :
 DROP PROCEDURE procedure_name;

 Oracle / 64

For example,
 DROP PROCEDURE myproc1;

3.7 FUNCTIONS
Functions in SQL enable you to perform feats such as determining the sum of a

column or converting all the characters of a string to uppercase. By the end of the day,
you will understand and be able to use all the following :

(a) Aggregate functions
(b) Date and time functions
(c) Arithmetic functions
(d) Character functions
(e) Conversion functions
(f) Miscellaneous functions.
These functions greatly increase your ability to manipulate the information you

retrieved using the basic functions of SQL that were described earlier this week. The
first five aggregate functions, COUNT, SUM, AVG, MAX, and MIN, are defined in the
ANSI standard. Most implementations of SQL have extensions to these aggregate
functions, some of which are covered today. Some implementations may use different
names for these functions.

3.7.1 Aggregate Functions
These functions are also referred to as group functions. They return a value based

on the values in a column. (After all, you would not ask for the average of a single
field.) The examples in this section use the table TEAMSTATS :
 INPUT :

SQL> SELECT * FROM TEAMSTATS;
 OUTPUT :

NAME POS AB HITS WALKS SINGLES DOUBLES TRIPLES HR SO
--------- ------ ---- -------- ------------ ------------ --------------- -------------- ---------
JONES 1B 145 45 34 31 8 1 5 10
DONKNOW 3B 175 65 23 50 10 1 4 15
WORLEY LF 157 49 15 35 8 3 3 16
DAVID OF 187 70 24 48 4 0 17 42
HAMHOCKER 3B 50 12 10 10 2 0 0 13
CASEY DH 1 0 0 0 0 0 0 1
6 rows selected.

 COUNT
The function COUNT returns the number of rows that satisfy the condition in the

WHERE clause. Say you wanted to know how many ball players were hitting under
350. You would type,

INPUT/OUTPUT :
SQL> SELECT COUNT(*)
 2 FROM TEAMSTATS
 3 WHERE HITS/AB < .35;
COUNT(*)

 4

 SUM
SUM does just that. It returns the sum of all values in a column. To find out how

many singles have been hit, type,
INPUT :
SQL> SELECT SUM(SINGLES) TOTAL_SINGLES
 2 FROM TEAMSTATS;

Query Multiple Tables / 65

OUTPUT :
TOTAL_SINGLES

 174
To get several sums, use
INPUT/OUTPUT :
SQL> SELECT SUM(SINGLES) TOTAL_SINGLES, SUM(DOUBLES)

TOTAL_DOUBLES,
 SUM(TRIPLES) TOTAL_TRIPLES, SUM(HR) TOTAL_HR
 2 FROM TEAMSTATS;

TOTAL_SINGLES TOTAL_DOUBLES TOTAL_TRIPLES TOTAL_HR
----------------------- -------------------- ------------------------ --------------------
 174 32 5 29

To collect similar information on all 300 or better players, type
INPUT/OUTPUT :

SQL> SELECT SUM(SINGLES) TOTAL_SINGLES, SUM(DOUBLES)

TOTAL_DOUBLES,
 SUM(TRIPLES) TOTAL_TRIPLES, SUM(HR) TOTAL_HR
 2 FROM TEAMSTATS
 3 WHERE HITS/AB >= .300;

 TOTAL_SINGLES TOTAL_DOUBLES TOTAL_TRIPLES TOTAL_HR

 -------------------- -------------------- --------------------- --------------
 164 30 5 29
 AVG

The AVG function computes the average of a column. To find the average number
of strike outs, use this:

INPUT :
SQL> SELECT AVG(SO) AVE_STRIKE_OUTS
 2 FROM TEAMSTATS;
OUTPUT :
 AVE_STRIKE_OUTS

 16.166667

The following example illustrates the difference between SUM and AVG :
INPUT/OUTPUT :
SQL> SELECT AVG(HITS/AB) TEAM_AVERAGE
 2 FROM TEAMSTATS;
TEAM_AVERAGE

 .26803448

 MAX
If you want to find the largest value in a column, use MAX. For example, what is

the highest number of hits ?
INPUT :
SQL> SELECT MAX(HITS)

 Oracle / 66

 2 FROM TEAMSTATS;
OUTPUT :
MAX (HITS)

70
Can you find out who has the most hits?
INPUT/OUTPUT :
SQL> SELECT NAME
 2 FROM TEAMSTATS
 3 WHERE HITS = MAX(HITS);
ERROR at line 3 :
ORA-00934: group function is not allowed here.
Unfortunately, you can't. The error message is a reminder that this group function

(remember that aggregate functions are also called group functions) does not work in
the WHERE clause. Don't despair, Day 7, "Subqueries : The Embedded SELECT
Statement" covers the concept of subqueries and explains a way to find who has the
MAX hits.

MIN
MIN does the expected thing and works like MAX except it returns the lowest

member of a column. To find out the fewest at bats, type
INPUT :
SQL> SELECT MIN(AB)
 2 FROM TEAMSTATS;
OUTPUT :
MIN (AB)

 1
The following statement returns the name closest to the beginning of the alphabet :
INPUT/OUTPUT :
SQL> SELECT MIN(NAME)
 2 FROM TEAMSTATS;

MIN (NAME)

CASEY
You can combine MIN with MAX to give a range of values. For example :
INPUT/OUTPUT :
SQL> SELECT MIN (AB), MAX (AB)
 2 FROM TEAMSTATS;
 MIN(AB) MAX(AB)
 -------- --------
 1 187
This sort of information can be useful when using statistical functions.

 VARIANCE
VARIANCE produces the square of the standard deviation, a number vital to many

statistical calculations. It works like this :
INPUT :
SQL> SELECT VARIANCE(HITS)
 2 FROM TEAMSTATS;
OUTPUT :

Query Multiple Tables / 67

VARIANCE(HITS)

 802.96667
Example for string,
INPUT/OUTPUT :
SQL> SELECT VARIANCE(NAME)
 2 FROM TEAMSTATS;
ERROR :
ORA-01722: invalid number
no rows selected,
you find that VARIANCE is another function that works exclusively with numbers.

 STDDEV
The final group function, STDDEV, finds the standard deviation of a column of

numbers, as demonstrated by this example :
INPUT :
SQL> SELECT STDDEV(HITS)
 2 FROM TEAMSTATS;
OUTPUT :
STDDEV(HITS)

 28.336666
It also returns an error when confronted by a string :

INPUT/OUTPUT :
SQL> SELECT STDDEV(NAME)
 2 FROM TEAMSTATS;
ERROR :
ORA-01722: invalid number
no rows selected
These aggregate functions can also be used in various combinations :
INPUT/OUTPUT :
SQL> SELECT COUNT(AB),
 2 AVG(AB),
 3 MIN(AB),
 4 MAX(AB),
 5 STDDEV(AB),
 6 VARIANCE(AB),
 7 SUM(AB)
 8 FROM TEAMSTATS;

COUNT(AB) AVG(AB) MIN(AB) MAX(AB) STDDEV(AB) VARIANCE(AB) SUM(AB)
---------------- ------------- ---------- ------------- ----------------- ---------------------- ----------
 6 119.167 1 187 75.589 5712.97 715

The next time you hear a sportscaster use statistics to fill the time between plays,
you will know that SQL is at work somewhere behind the scenes.
3.7.2 Date and Time Functions

We live in a civilization governed by times and dates and most major
implementations of SQL have functions to cope with these concepts. This section uses
the table PROJECT to demonstrate the time and date functions.

 Oracle / 68

INPUT :
SQL> SELECT * FROM PROJECT;
OUTPUT :
TASK STARTDATE ENDDATE
-------------- ------------------- -----------------
KICKOFF MTG 01-APR-95 01-APR-95
TECH SURVEY 02-APR-95 01-MAY-95
USER MTGS 15-MAY-95 30-MAY-95
DESIGN WIDGET 01-JUN-95 30-JUN-95
CODE WIDGET 01-JUL-95 02-SEP-95
TESTING 03-SEP-95 17-JAN-96
6 rows selected.

 NEW_TIME
If you need to adjust the time according to the time zone you are in, the

New_TIME function is for you. Here are the time zones you can use with this function :

Abbreviation Time Zone

AST or ADT Atlantic standard or daylight time

BST or BDT Bering standard or daylight time

CST or CDT Central standard or daylight time

EST or EDT Eastern standard or daylight time

GMT Greenwich mean time

HST or HDT Alaska-Hawaii standard or daylight time

MST or MDT Mountain standard or daylight time

NST Newfoundland standard time

PST or PDT Pacific standard or daylight time

YST or YDT Yukon standard or daylight time

You can adjust your time like this :

INPUT :
SQL> SELECT ENDDATE EDT,
 2 NEW_TIME(ENDDATE, 'EDT','PDT')
 3 FROM PROJECT;
OUTPUT :

 EDT NEW_TIME(ENDDATE
----------------------------- -------------------------------------
01-APR-95 1200AM 31-MAR-95 0900PM
01-MAY-95 1200AM 30-APR-95 0900PM
30-MAY-95 1200AM 29-MAY-95 0900PM
30-JUN-95 1200AM 29-JUN-95 0900PM
02-SEP-95 1200AM 01-SEP-95 0900PM
17-JAN-96 1200AM 16-JAN-96 0900PM
6 rows selected.
Like magic, all the times are in the new time zone and the dates are adjusted.

Query Multiple Tables / 69

 NEXT_DAY
NEXT_DAY finds the name of the first day of the week that is equal to or later than

another specified date. For example, to send a report on the Friday following the first
day of each event, you would type,

INPUT :
SQL> SELECT STARTDATE,
 2 NEXT_DAY(STARTDATE, 'FRIDAY')
 3 FROM PROJECT;

Which would return,
OUTPUT :
STARTDATE NEXT_DAY(
------------------- -------------------
01-APR-95 07-APR-95
02-APR-95 07-APR-95
15-MAY-95 19-MAY-95
01-JUN-95 02-JUN-95
01-JUL-95 07-JUL-95
03-SEP-95 08-SEP-95
6 rows selected.

The output tells you the date of the first Friday that occurs after your STARTDATE.

 SYSDATE

SYSDATE returns the system time and date :
INPUT :
SQL> SELECT DISTINCT SYSDATE
 2 FROM PROJECT;
OUTPUT :
SYSDATE

18-JUN-95 1020PM
If you wanted to see where you stood today in a certain project, you could type
INPUT/OUTPUT :
SQL> SELECT *
 2 FROM PROJECT
 3 WHERE STARTDATE > SYSDATE;
TASK STARTDATE ENDDATE
-------------- -------------------- -----------------
CODE WIDGET 01-JUL-95 02-SEP-95
TESTING 03-SEP-95 17-JAN-96
Now you can see what parts of the project start after today.

2.7.3 Arithmetic Functions
Many of the uses you have for the data you retrieve involve mathematics. Most

implementations of SQL provide arithmetic functions similar to the functions covered
here. The examples in this section use the NUMBERS table :

INPUT :
SQL> SELECT *
 2 FROM NUMBERS;

 Oracle / 70

OUTPUT :
 A B
 --------- ---------
 3.1415 4
 –45 .707
 5 9
 –57.667 42
 15 55
 –7.2 5.3
6 rows selected.

 ABS
The ABS function returns the absolute value of the number you point to. For
example :
INPUT :
SQL> SELECT ABS(A) ABSOLUTE_VALUE
 2 FROM NUMBERS;
OUTPUT :
ABSOLUTE_VALUE

 3.1415
 45
 5
 57.667
 15
 7.2
6 rows selected.
ABS changes all the negative numbers to positive and leaves positive numbers

alone.

 CEIL and FLOOR
CEIL returns the smallest integer greater than or equal to its argument. FLOOR

does just the reverse, returning the largest integer equal to or less than its argument.
For example :

INPUT :
SQL> SELECT B, CEIL(B) CEILING
 2 FROM NUMBERS;
OUTPUT :
 B CEILING
 ---------- --------------
 4 4
 .707 1
 9 9
 42 42
 55 55
 5.3 6
6 rows selected.
And

INPUT/OUTPUT :
SQL> SELECT A, FLOOR(A) FLOOR
 2 FROM NUMBERS;

Query Multiple Tables / 71

 A FLOOR
 --------- ---------
 3.1415 3
 –45 –45
 5 5
–57.667 –58
 15 15
 –7.2 –8
6 rows selected.

 COS, COSH, SIN, SINH, TAN and TANH
The COS, SIN, and TAN functions provide support for various trigonometric

concepts. They all work on the assumption that n is in radians. The following statement
returns some unexpected values if you don't realize COS expects A to be in radians.

INPUT :
SQL> SELECT A, COS(A)
 2 FROM NUMBERS;
OUTPUT :
 A COS(A)
---------- ---------------
 3.1415 –1
 –45 .52532199
 5 .28366219
–57.667 .437183
 15 –.7596879
 –7.2 .60835131

 EXP
EXP enables you to raise e (e is a mathematical constant used in various

formulas) to a power. Here is how EXP raises e by the values in column A :
INPUT :
SQL> SELECT A, EXP(A)
 2 FROM NUMBERS;
OUTPUT :
 A EXP(A)
----------- -------------

 3.1415 23.138549
 –45 2.863E-20
 5 148.41316
 –57.667 9.027E-26
 15 3269017.4
 –7.2 .00074659

6 rows selected.

 LN and LOG
These two functions center on logarithms. LN returns the natural logarithm of its

argument. For example :
INPUT :

 Oracle / 72

SQL> SELECT A, LN(A)
 2 FROM NUMBERS;

OUTPUT :
ERROR :
ORA–01428: argument '–45' is out of range
Did we neglect to mention that the argument had to be positive? Write
INPUT/OUTPUT :
SQL> SELECT A, LN(ABS(A))
 2 FROM NUMBERS;
 A LN(ABS(A))
 --------- ------------------
 3.1415 1.1447004
 –45 3.8066625
 5 1.6094379
–57.667 4.0546851
 15 2.7080502
 –7.2 1.974081
6 rows selected.

 MOD
You have encountered MOD before. On Day 3, "Expressions, Conditions, and

Operators, you saw that the ANSI standard for the modulo operator % is sometimes
implemented as the function MOD. Here is a query that returns a table showing the
remainder of A divided by B :

INPUT :
SQL> SELECT A, B, MOD(A,B)
 2 FROM NUMBERS;
OUTPUT :
 A B MOD(A,B)
----------- ----------- ---------------

 3.1415 4 3.1415
 –45 .707 –.459
 5 9 5
 –57.667 42 –15.667
 15 55 15
 –7.2 5.3 –1.9

6 rows selected.

 POWER
To raise one number to the power of another, use POWER. In this function the first

argument is raised to the power of the second :
INPUT :
SQL> SELECT A, B, POWER(A, B)
 2 FROM NUMBERS;
OUTPUT :
ERROR :
ORA-01428: argument '-45' is out of range

Query Multiple Tables / 73

 SIGN :
SIGN returns -1 if its argument is less than 0, 0 if its argument is equal to 0 and 1 if

its argument is greater than 0, as shown in the following example :

INPUT :
SQL> SELECT A, SIGN(A)
 2 FROM NUMBERS;

OUTPUT :

 A SIGN(A)
------------ --------------

 3.1415 1
 –45 –1
 5 1
 –57.667 –1
 15 1
 –7.2 –1
 0 0

7 rows selected.

 SQRT:
The function SQRT returns the square root of an argument. Because the square

root of a negative number is undefined, you cannot use SQRT on negative numbers.

INPUT/OUTPUT :

SQL> SELECT A, SQRT(A)
 2 FROM NUMBERS;
 ERROR :
ORA-01428: argument '-45' is out of range

3.7.4 Character Functions
Many implementations of SQL provide functions to manipulate characters and

strings of characters. This section covers the most common character functions. The
examples in this section use the table CHARACTERS.

INPUT/OUTPUT :

SQL> SELECT * FROM CHARACTERS;

LASTNAME FIRSTNAME M CODE

 ------------------- ---------------------- --- ---------
PURVIS KELLY A 32
TAYLOR CHUCK J 67
CHRISTINE LAURA C 65
ADAMS FESTER M 87
COSTALES ARMANDO A 77
KONG MAJOR G 52
6 rows selected.

 Oracle / 74

 CHR
CHR returns the character equivalent of the number it uses as an argument. The

character it returns depends on the character set of the database. For this example the
database is set to ASCII. The column CODE includes numbers.

INPUT :
SQL> SELECT CODE, CHR(CODE)
 2 FROM CHARACTERS;
OUTPUT :

 CODE CH
 --------- --
 32
 67 C
 65 A
 87 W
 77 M
 52 4
6 rows selected.
The space opposite the 32 shows that 32 is a space in the ASCII character set.

 CONCAT
You used the equivalent of this function on Day 3, when you learned about

operators. The || symbol splices two strings together, as does CONCAT. It works like
this :

INPUT :
SQL> SELECT CONCAT(FIRSTNAME, LASTNAME) "FIRST AND LAST

NAMES"
 2 FROM CHARACTERS;
OUTPUT :
FIRST AND LAST NAMES

KELLY PURVIS
CHUCK TAYLOR
LAURA CHRISTINE
FESTER ADAMS
ARMANDO COSTALES
MAJOR KONG
6 rows selected.

 INITCAP
INITCAP capitalizes the first letter of a word and makes all other characters

lowercase.

INPUT :
SQL> SELECT FIRSTNAME BEFORE, INITCAP(FIRSTNAME) AFTER
 2 FROM CHARACTERS;
OUTPUT :

Query Multiple Tables / 75

BEFORE AFTER
-------------- ----------
KELLY Kelly
CHUCK Chuck
LAURA Laura
FESTER Fester
ARMANDO Armando
MAJOR Major
6 rows selected.

 LOWER and UPPER
As you might expect, LOWER changes all the characters to lowercase; UPPER

does just the reverse.
The following example starts by doing a little magic with the UPDATE function (you

learn more about this next week) to change one of the values to lowercase :

INPUT :
SQL> UPDATE CHARACTERS
 2 SET FIRSTNAME = 'kelly'
 3 WHERE FIRSTNAME = 'KELLY';
OUTPUT :
1 row updated.
INPUT :
SQL> SELECT FIRSTNAME
 2 FROM CHARACTERS;

OUTPUT :
FIRSTNAME

kelly
CHUCK
LAURA
FESTER
ARMANDO
MAJOR
6 rows selected.
Then you write :
INPUT :
SQL> SELECT FIRSTNAME, UPPER(FIRSTNAME), LOWER(FIRSTNAME)
 2 FROM CHARACTERS;
OUTPUT :
FIRSTNAME UPPER(FIRSTNAME) LOWER(FIRSTNAME)
--------------- ----------------------------- ---------------
kelly KELLY kelly
CHUCK CHUCK chuck
LAURA LAURA laura
FESTER FESTER fester
ARMANDO ARMANDO armando
MAJOR MAJOR major

 Oracle / 76

6 rows selected.
Now you see the desired behavior.

 LPAD and RPAD
LPAD and RPAD take a minimum of two and a maximum of three arguments. The

first argument is the character string to be operated on. The second is the number of
characters to pad it with, and the optional third argument is the character to pad it with.
The third argument defaults to a blank, or it can be a single character or a character
string. The following statement adds five pad characters, assuming that the field
LASTNAME is defined as a 15-character field :

INPUT :
SQL> SELECT LASTNAME, LPAD(LASTNAME,20,'*')
 2 FROM CHARACTERS;
OUTPUT :
LASTNAME LPAD(LASTNAME,20,'*'
------------------ ------------------------------------
PURVIS *****PURVIS
TAYLOR *****TAYLOR
CHRISTINE *****CHRISTINE
ADAMS *****ADAMS
COSTALES *****COSTALES
KONG *****KONG
6 rows selected.

 LTRIM and RTRIM
LTRIM and RTRIM take at least one and at most two arguments. The first

argument, like LPAD and RPAD, is a character string. The optional second element is
either a character or character string or defaults to a blank. If you use a second
argument that is not a blank, these trim functions will trim that character the same way
they trim the blanks in the following examples.

INPUT :
SQL> SELECT LASTNAME, RTRIM(LASTNAME)
 2 FROM CHARACTERS;
OUTPUT :
LASTNAME RTRIM(LASTNAME)
--------------- ---------------
PURVIS PURVIS
TAYLOR TAYLOR
CHRISTINE CHRISTINE
ADAMS ADAMS
COSTALES COSTALES
KONG KONG
6 rows selected.

You can make sure that the characters have been trimmed with the following

statement :

INPUT :
SQL> SELECT LASTNAME, RPAD(RTRIM(LASTNAME),20,'*')

Query Multiple Tables / 77

 2 FROM CHARACTERS;
OUTPUT :
LASTNAME RPAD(RTRIM(LASTNAME)
------------------ ---
PURVIS PURVIS**************
TAYLOR TAYLOR**************
CHRISTINE CHRISTINE***********
ADAMS ADAMS***************
COSTALES COSTALES************
KONG KONG****************
6 rows selected.
The output proves that trim is working. Now try LTRIM :

INPUT :
SQL> SELECT LASTNAME, LTRIM(LASTNAME, 'C')
 2 FROM CHARACTERS;
OUTPUT :
LASTNAME LTRIM(LASTNAME,
------------------- ------------------------------
PURVIS PURVIS
TAYLOR TAYLOR
CHRISTINE HRISTINE
ADAMS ADAMS
COSTALES OSTALES
KONG KONG
6 rows selected.
Note the missing Cs in the third and fifth rows.

 REPLACE
REPLACE does just that. Of its three arguments, the first is the string to be

searched. The second is the search key. The last is the optional replacement string. If
the third argument is left out or NULL, each occurrence of the search key on the string
to be searched is removed and is not replaced with anything.

INPUT :
SQL> SELECT LASTNAME, REPLACE(LASTNAME, 'ST') REPLACEMENT
 2 FROM CHARACTERS;

OUTPUT :
LASTNAME REPLACEMENT
------------------ ------------------------
PURVIS PURVIS
TAYLOR TAYLOR
CHRISTINE CHRIINE
ADAMS ADAMS
COSTALES COALES
KONG KONG
6 rows selected.

 Oracle / 78

If you have a third argument, it is substituted for each occurrence of the search key
in the target string. For example :

INPUT :
SQL> SELECT LASTNAME, REPLACE(LASTNAME, 'ST','**') REPLACEMENT
 2 FROM CHARACTERS;
OUTPUT :
LASTNAME REPLACEMENT
------------------- -------------------------
PURVIS PURVIS
TAYLOR TAYLOR
CHRISTINE CHRI**INE
ADAMS ADAMS
COSTALES CO**ALES
KONG KONG
6 rows selected.

If the second argument is NULL, the target string is returned with no changes.
INPUT :
SQL> SELECT LASTNAME, REPLACE(LASTNAME, NULL) REPLACEMENT
 2 FROM CHARACTERS;

OUTPUT :
LASTNAME REPLACEMENT
------------------- -------------------------
PURVIS PURVIS
TAYLOR TAYLOR
CHRISTINE CHRISTINE
ADAMS ADAMS
COSTALES COSTALES
KONG KONG
6 rows selected.

 SUBSTR
This three-argument function enables you to take a piece out of a target string.

The first argument is the target string. The second argument is the position of the first
character to be output. The third argument is the number of characters to show.

INPUT :
SQL> SELECT FIRSTNAME, SUBSTR(FIRSTNAME,2,3)
 2 FROM CHARACTERS;

OUTPUT :
FIRSTNAME SUB
--------------- ------
kelly ell
CHUCK HUC
LAURA AUR
FESTER EST
ARMANDO RMA
MAJOR AJO
6 rows selected.

Query Multiple Tables / 79

If you use a negative number as the second argument, the starting point is
determined by counting backwards from the end, like this :

INPUT :
SQL> SELECT FIRSTNAME, SUBSTR(FIRSTNAME, –13, 2)
 2 FROM CHARACTERS;
OUTPUT :
FIRSTNAME SU
-------------------- ------
kelly ll
CHUCK UC
LAURA UR
FESTER ST
ARMANDO MA
MAJOR JO
6 rows selected.

Here, is another good use of the SUBSTR function. Suppose you are writing a

report and a few columns are more than 50 characters wide. You can use the
SUBSTR function to reduce the width of the columns to a more manageable size if you
know the nature of the actual data. Consider the following two examples :

INPUT :
SQL> SELECT NAME, JOB, DEPARTMENT FROM JOB_TBL;

OUTPUT :
NAME___
JOB______________________DEPARTMENT_______________
ALVIN SMITH
VICEPRESIDENT MARKETING
1 Row selected.

ANALYSIS :
Notice how the columns wrapped around, which makes reading the results a little

too difficult. Now try this select :

INPUT :
SQL> SELECT SUBSTR(NAME, 1,15) NAME, SUBSTR(JOB,1,15) JOB,
DEPARTMENT
 2 FROM JOB_TBL;

OUTPUT :
NAME________________JOB_______________DEPARTMENT
ALVIN SMITH VICEPRESIDENT MARKETING
Much better!

 TRANSLATE
The function TRANSLATE takes three arguments : the target string, the FROM

string, and the TO string. Elements of the target string that occur in the FROM string
are translated to the corresponding element in the TO string.

INPUT :
SQL> SELECT FIRSTNAME, TRANSLATE(FIRSTNAME
 2 '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

 Oracle / 80

 3 'NNNNNNNNNNAAAAAAAAAAAAAAAAAAAAAAAAAA)
 4 FROM CHARACTERS;
OUTPUT :
FIRSTNAME TRANSLATE(FIRST
-------------------- -------------------------------
kelly kelly
CHUCK AAAAA
LAURA AAAAA
FESTER AAAAAA
ARMANDO AAAAAAA
MAJOR AAAAA
6 rows selected.
Notice that the function is case sensitive.

 INSTR
To find out where in a string a particular pattern occurs, use INSTR. Its first

argument is the target string. The second argument is the pattern to match. The third
and forth are numbers representing where to start looking and which match to report.
This example returns a number representing the first occurrence of O starting with the
second character :

INPUT :
SQL> SELECT LASTNAME, INSTR(LASTNAME, 'O', 2, 1)
 2 FROM CHARACTERS;
OUTPUT :
LASTNAME INSTR(LASTNAME,'O',2,1)
--------------- --
PURVIS 0
TAYLOR 5
CHRISTINE 0
ADAMS 0
COSTALES 2
KONG 2
6 rows selected.

 LENGTH
LENGTH returns the length of its lone character argument. For example :
INPUT :
SQL> SELECT FIRSTNAME, LENGTH(RTRIM(FIRSTNAME))
 2 FROM CHARACTERS;
OUTPUT :
FIRSTNAME LENGTH(RTRIM(FIRSTNAME))
--------------- ---
kelly 5
CHUCK 5
LAURA 5
FESTER 6
ARMANDO 7
MAJOR 5
6 rows selected.

Query Multiple Tables / 81

3.7.5 Conversion Functions
These three conversion functions provide a handy way of converting one type of

data to another. These examples use the table CONVERSIONS.

INPUT :
SQL> SELECT * FROM CONVERSIONS;

OUTPUT :
NAME TESTNUM
--------------- ----------------
 40 95
 13 23
 74 68
The NAME column is a character string 15 characters wide, and TESTNUM is a

number.

 TO_CHAR
The primary use of TO_CHAR is to convert a number into a character. Different

implementations may also use it to convert other data types, like Date, into a character
or to include different formatting arguments. The next example illustrates the primary
use of TO_CHAR

INPUT :
SQL> SELECT TESTNUM, TO_CHAR(TESTNUM)
 2 FROM CONVERT;

OUTPUT :
 TESTNUM TO_CHAR(TESTNUM)
 --------------- ----------------
 95 95
 23 23
 68 68

 TO_NUMBER
TO_NUMBER is the companion function to TO_CHAR, and of course, it converts a

string into a number. For example :

INPUT :
SQL> SELECT NAME, TESTNUM, TESTNUM*TO_NUMBER(NAME)
 2 FROM CONVERT;

OUTPUT :
 NAME TESTNUM TESTNUM*TO_NUMBER(NAME)
--------------- ----------------- --------------------------------------
 40 95 3800
 13 23 299
 74 68 5032

3.7.6 Miscellaneous Functions
Here, are three miscellaneous functions you may find useful.

 GREATEST and LEAST
These functions find the GREATEST or the LEAST member from a series of

expressions. For example :
INPUT : SQL> SELECT GREATEST('ALPHA', 'BRAVO','FOXTROT', 'DELTA')
 2 FROM CONVERT;

 Oracle / 82

OUTPUT :
GREATEST

FOXTROT
FOXTROT
FOXTROT

 USER
USER returns the character name of the current user of the database.

INPUT :
SQL> SELECT USER FROM CONVERT;
OUTPUT :
USER

PERKINS
PERKINS
PERKINS
There really is only one of me. Again, the echo occurs because of the number of

rows in the table. USER is similar to the date functions explained earlier today. Even
though USER is not an actual column in the table, it is selected for each row that is
contained in the table.

3.5, 3.6, 3.7 Check Your Progress

 Fill in the blanks
1) Procedures can be executes by ………………… command.
2) …………………Keyword is stands for recreating the procedure.
3) ………………… and is used to delete the proceure.

SOLVED EXAMPLES

1. Pass empno as an argument to procedure and modify salary of that emp.
 CREATE OR REPLACE PROCEDURE myproc1
 (p_no IN number) /* argument */
 IS
 v_sal number(10,2);
 BEGIN
 Select sal into v_sal
 From emp
 Where empno=p_no;
 If v_sal > 1000 then
 Update emp
 Set sal = v_sal*1.75
 Where empno=p_no;
 Else
 Update emp
 Set sal = 5000
 Where empno=p_no;
 End if;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 Dbms_output.put_line(‘Emp_no doesn’t exists’);
END myproc1;

Query Multiple Tables / 83

2. Pass a empno as argument to procedure and procedure will pass job to the
calling program.

 CREATE OR REPLACE PROCEDURE myproc2
 (p_no IN number, p_job OUT emp.job%TYPE)/* arguments */
 IS
 v_job emp.job%TYPE;
 BEGIN
 Select JOB into v_job
 From emp
 Where empno=p_no;
 P_job:=v_job;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 P_job:=’NO’;
END myproc2;
Calling procedure myproc2 using following code
Declare
 C_empno number;
 C_job emp.job%TYPE;
Begin
 Myproc2(&c_empno,c_job);
 If c_job=’NO’ then
 Dbms_output.put_line(‘Emp_no doesn’t exists’);
 Else
 Dbms_output.put_line(‘Job of emp. Is ’ || c_job);
 End if;
End;
/
Execute this code using
SQL> /
3. Pass salary to procedure and procedure will pass no. of employee(s) having

salary equal to given salary in the same variable. (Use IN OUT variable).
CREATE OR REPLACE PROCEDURE myproc3
(p_sal IN OUT emp.sal%TYPE) /* arguments */
IS
 v_count number;
BEGIN
 Select count(*) into v_count
 From emp
 Where sal=p_sal;
 P_sal:=v_count;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 P_sal:=0;
END myproc3;
Calling procedure myproc3 using following code
Declare
 C_sal emp.sal%TYPE;
Begin
 C_sal:=&c_sal;
 Myproc3(c_sal);
 If c_sal=0 then
 Dbms_output.put_line(‘No employee is having salary equal to accepted salary’);
 Else

 Oracle / 84

 Dbms_output.put_line(‘No. of emp. having salary = accepted salary are ’ ||
c_sal);
 End if;
End;
/
Execute this code using
SQL/

3.8 SUMMARY

Joins are used to manipulate data from multiple tables. Types of joins are 1) Equi-jions
2) Non-equi –joins Procedures are simply a named PL/SQL block, that executes
certain tasks.
Functions increase your ability to manipulate information you retrieved using basic
functions of SQL these are as follows
1) Aggregate Functions 2) Date & time Functions 3) Arithmetic Functions 4)
Character Functions 5) conversion Functions 6) Miscellaneous functions

3.9 CHECK YOUR PROGRESS-ANSWERS

 3.1, ,3.3

1) Joins/Sub-Query
2) Function
3) In, Out, Inout

 3.5,3.6,3.7

1) Exec
2) Recreate
3) Drop

3.10 QUESTIONS FOR SELF – STUDY

Q.1 Why cover outer, inner, left, and right joins when I probably won't ever use them

?
Q.2 How many tables can you join on ?
Q.3 Would it be fair to say that when tables are joined, they actually become one

table ?
Q.4 How many rows would a two-table join produce if one table had 50,000 rows and

the other had 100,000 ?
Q.5 In the WHERE clause, when joining the tables, should you do the join first or the

conditions ?
Q.6 In joining tables are you limited to one-column joins, or can you join on more

than one column ?
Q.7 In the section on joining tables to themselves, the last example returned two

combinations. Rewrite the query so only one entry comes up for each redundant
part number.

Q.8 Rewrite the following query to make it more readable and shorter.
 INPUT :
 select orders.orderedon, orders.name, part.partnum,
 part.price, part.description from orders, part

 where orders.partnum = part.partnum and orders.orderedon
 between '1-SEP-96' and '30-SEP-96'
 order by part.partnum;

Q.9 From the PART table and the ORDERS table, make up a query that will return
the following :

 OUTPUT :

Query Multiple Tables / 85

ORDEREDON NAME PARTNUM QUANTITY
======== ======= ======== ==========
2-SEP-96 TRUE WHEEL 10 1

Q.10 What is the advantages of procedures.
Q.11 How to create a procedure ? Explain.
Q.12 Give Syntax of :
 (a) Deleting a procedure
 (b) Executing a procedure
 (c) Creating a procedure.
Q.13 Which function capitalizes the first letter of a character string and makes the rest

lowercase ?
Q.14 Which functions are also known by the name group functions ?
Q.15 Will this query work ?
 SQL> SELECT COUNT(LASTNAME) FROM CHARACTERS;
Q.16 How about this one ?
 SQL> SELECT SUM(LASTNAME) FROM CHARACTERS;
Q.17 Assuming that they are separate columns, which function(s) would splice

together FIRSTNAME and LASTNAME ?
Q.18 What does the answer 6 mean from the following SELECT ?
 INPUT :
 SQL> SELECT COUNT(*) FROM TEAMSTATS;
 OUTPUT :
 COUNT(*)
Q.19 Will the following statement work ?
 SQL> SELECT SUBSTR LASTNAME,1,5 FROM NAME_TBL;
Q.20 Using today's TEAMSTATS table, write a query to determine who is batting

under .25. (For the baseball-challenged reader, batting average is hits/ab.)
Q.21 Using today's CHARACTERS table, write a query that will return the following:
 INITIALS ……………………….. CODE
 K.A.P. 32
 1 row selected

3.11 SUGGESTED READINGS

 Teach Yourself SQL in 21 Days - By Ryan K. Stephens Ronald R Plew

 Using Oracle Application - By Jim Crum

 Oracle / 86

NOTES

PL/SQL /87

CHAPTER 4

PL / SQL

 4.0 Objectives

 4.1 Introduction to PL / SQL
 4.2 Architecture of PL / SQL
 4.3 Fundamentals of PL / SQL
 4.3.1 PL / SQL Data type
 4.3.2 If Statement
 4.4 Loops in PL / SQL
 4.4.1 Simple Loop
 4.4.2 For Loop
 4.4.3 While Loop
 4.5 Solved Examples
 4.6 Built-in-Functions
 4.6.1 Conditional Control
 4.6.2 Iterative Control
 4.6.3 Sequential Control
 4.7 Cursor Management in PL / SQL
 4.8 Exception (Error) Handling
 4.8.1 Predefined Exception
 4.8.2 User Defined Function
 4.9 Summary
 4.10 Check Your Progress-Answers
 4.11 Questions for Self – Study
 4.12 Suggested Readings

4.0 OBJECTIVES

 After reading this chapter you will able to

Describe Pl/SQL
State Loops in PL/SQL
Built in Function
Describe Cursor Management
Describe Exception

4.1 INTRODUCTION TO PL/SQL

 PL/SQL stands for Procedural Language/SQL. PL/SQL extends SQL by
adding constructs found in procedural languages, resulting in a structural language
that is more powerful than SQL.PL/SQL is not case sensitive. ‘C’ style comments (/*
……… */) may be used in PL/SQL programs whenever required.
 All PL/SQL programs are made up of blocks, each block performs a logical action
in the program. A PL/SQL block consists of three parts
 1. Declaration section
 2. Executable section
 3. Exception handling section

 Oracle / 88

Only the executable section is required. The other sections are optional.

A PL/SQL block has the following structure :

 DECLARE
 /* Declaration section */
 BEGIN
 /* Executable section */
 EXCEPTION
 /* Exception handling section */
 END;

1. Declaration section :
 This is first section which is start with word Declare. All the identifiers (constants
and variables) are declared in this section before they are used in SELECT command.

2. Executable section :
 This section contain procedural and SQL statements. This is the only section of
the block which is required. This section starts with ‘Begin’ word.
 The only SQL statements allowed in a PL/SQL program are SELECT,

INSERT, UPDATE, DELETE and several other data manipulation statements.
 Data definition statements like CREATE, DROP or ALTER are not allowed.
 The executable section also contains constructs such as assignments,

branches, loops, procedure calls and trigger which are all discussed in detail
in subsequent chapters.

3. Exception handling section :
 This section is used to handle errors that occurs during execution of PL/SQL
program. This section starts with ‘exception’ word .
 The ‘End’ indicate end of PL/SQL block.
 Oracle PL/SQL programs, can be invoke either by typing it in sqlplus or by putting
the code in a file and invoking the file. To execute it use ‘/’ on SQL prompt or use ‘.’
and run.

4.2 ARCHITECUTRE OF PL/SQL

 The PL/SQL compilation and run-time system is a technology, not an independent
product. Think of this technology as an engine that compiles and executes PL/SQL
blocks and subprograms. The engine can be installed in an Oracle server or in an
application development tool such as Oracle Forms or Oracle Reports. So, PL/SQL
can reside in two environments :
 1. The Oracle server
 2. Oracle tools.
 These two environments are independent. PL/SQL is bundled with the Oracle
server but might be unavailable in some tools. In either environment, the PL/SQL
engine accepts as input any valid PL/SQL block or subprogram. Fig. 3.1 shows the
PL/SQL engine processing an anonymous block. The engine executes procedural
statements but sends SQL statements to the SQL Statement Executor in the Oracle
server.

PL/SQL /89

PL/SQL
Block

Procedural Procedural
Statement
Executor

PL/SQL Engine

PL/SQL
Block

SQL

SQL Statement Executor

Oracle

 Fig.3.1 : PL/SQL Engine

4.2 FUNDAMENTALS OF PL/SQL

4.3.1 PL/SQL Data Types
 PL/SQL and Oracle have their foundations in SQL. Most PL/SQL data types are
native to Oracle’s data dictionary, there is a very easy integration of PL/SQL code with
the Oracle Engine.
 The default data types that we can declare in PL/SQL are number (for storing
numeric data), char (for storing character data), date (for storing date and time data)
boolean (for storing TRUE, FALSE or NULL). number, char and date data types can
have NULL values.
Here, we explain two data types,
 1. Variable,
 2. Constant.

1. Variables and types of declaration in PL/SQL :
 The SELECT statement has a special form in PL/SQL in which a single tuple is
placed in variables. The information from the database is transferred into variables
which is used in PL/SQL programs. Every variable has a specific type associated with
it.
 That type can be :
 1. A generic type used in PL/SQL
 2. A type same as used by SQL for database columns.
 The most commonly used generic type is NUMBER. Variables of type NUMBER
can hold either an integer or a real number.
For example :
 DECLARE
 Salary Number;
 The most commonly used character string type is VARCHAR2(n), where n is the
maximum length of the string in bytes.
For example :
 DECLARE
 My_name VARCHAR2(20);
 The variable can contain any data type that is valid for SQL and Oracle (such as
char, number, long, varchar2, & date) in addition to these types PL/SQL allows
following types :
 Binary integer : Range is –2,147,483,647 to 2,147,483,647

 Oracle / 90

 Positive : Range is 1 to 2,147,483,647.
 Natural : Range is 0 to 2,147,483,647.
 Boolean : Assigned values either True, False or NULL.
 %type : Assign the same type to variable as that of the relation column

declared in database.
 If there is any type mismatch, variable assignments and comparisons may not

work the way you expect, so instead of hard coding the type of a variable, you
should use the %TYPE operator.

 For example :
 DECLARE
 My_name emp.ename%TYPE;
 gives PL/SQL variable my_name whatever type was declared for the ename

column in emp table.

 %rowtype : A variable can be declared with %rowtype that is equivalent to a

row of a table i.e. record with several fields. The result is a record type in
which the fields have the same names and types as the attributes of the
relation.

 For example :
 DECLARE
 Emp_rec emp1%ROWTYPE;
 This makes variable emp_rec be a record with fields name and salary,

assuming that the relation has the schema emp1(name, salary).
 The initial value of any variable, regardless of its type, is NULL.

2. Constants :
 Declaration of a constant is similar to declaring a variable except that the keyword
constant must be added to the variable name and a value assigned immediately.
Thereafter, no further assignments to the constant are possible, while the constant is
within the constant is within the scope of the PL/SQL block.

 There are two types :
(i) Raw and
(ii) Rawid

 (i) Raw : Raw types are used to store binary data. Character variables are
automatically converted between character sets by Oracle, if necessary. These are
similar to char variables, except that they are not converted between character sets. It
is used to store fixed length binary data. The maximum length of a raw variable is
32,767 bytes. However, the maximum length of a database raw column is 255 bytes.
 Long raw is similar to long data, except that PL/SQL will not convert between
character sets. The maximum length of a long raw variable is 32,760 bytes. The
maximum length of a long raw column is 2 GB.
 (ii) Rowid : This data types is the same as the database ROWID pseudo-column
type. It can hold a rowid, which can be considered as a unique key for every row in the
database. Rowids are stored internally as a fixed length binary quantity, whose actual
fixed length varies depending on the operating system.
 Various DBMS_ROWID functions are used to extract information about the
ROWID pseudo-column. Extented and Restricted are two rowid formats. Restricted
is used mostly to be backward compatible with previous versions of Oracle. The
Extended format takes advantage of new Oracle features.
 The DBMS_ROWID package has several procedures and functions to interpret the
ROWIDs of records. The Table 7.1 shows the DBMS_ROWID functions :

PL/SQL /91

Table 4.1 : Functions of DBMS_ROWID
FUNCTION DESCRIPTION

ROWID_VERIFY Verifies if the ROWID can be extended; 0 = can be
converted to extended format; 1 = cannot be
converted to extended format.

ROWID_TYPE 0 = ROWID, 1 = Extended
ROWID_BLOCK_NUMBER The block number that contains the record;

1 = Extended ROWID
ROWID_OBJECT The object number of the object that contains the

record.
ROWID_RELATIVE_FNO The relative file number contains the record.
ROWID_ROW_NUMBER The row number of the record.

ROWID_TO_ABSOLUTE_FNO The absolute file number; user need to input
rowid_val, schema and object; the absolute file

number is returned.
ROWID_TO_EXTENDED Converts the ROWID from Restricted to Extended;

user need to input restr_rowid, schema, object; the
extended number is returned.

ROWID_TO_RESTRICTED Converts the ROWID from Extended to Restricted.

ROWID is a pseudo-column that has a unique value associated with each record of
the database.
 The DBMS_ROWID package is created by the,
 ORACLE_HOME/RDBMS/ADMIN/DBMSUTIL.SQL script.
 This script is automatically run when the Oracle instance is created.

Operator Precedence :
 If we combine AND and OR in the same expression, the AND operator takes
precedence over the OR operator (which means it’s executed first). The comparison
operators take precedence over AND. We can override these using parentheses.

PL SQL Expressions
Expressions are a composite of operators and operands . In the case of a
mathematical expression ,the operand is the number and operator is the symbol such
as + or – that acts on the operand. The expression value is the evaluated total of the
operands using the operators.
Operators are divided into categories that describe the way that act upon operands.
-Comparison operators are binary, meaning they work with two operands. Examples of
comparison operators are the greater than (>) ,less than(<) and equal(=) signs ,among
others.
-Logical operators include AND,OR and NOT
-Arithmetic operators include addition/positive(+),subtraction/negative(-
),multiplication(*),and division(/).
-The assignment operator is specific to PL/SQL and is written as colon-equal (:=)
-The lone character operator is a double pipe(||) that joins two strings together,
concatenating the operands.
-Other basic SQL operators include IS NULL, IN and BETWEEN.

4.3.2 If statement in PL/SQL
 PL/SQL allows decision making using if statement.
 An IF statement in PL/SQL looks like :
 IF <condition> THEN
 <statement_list>
 END IF;
 If condition is true the statements present inside IF will get executed.

 Oracle / 92

 If…. Else construct :
 IF <condition> THEN
 <statement_list>
 ELSE
 <statement_list>
 END IF;

For example :
1. Accept two numbers and print the largest number
 DECLARE
 x number;
 y number;
 BEGIN
 x :=&x;
 y :=&y;
 if (x>y) then
 dbms_output.put_line(‘x is largest than y’);
 else
 dbms_output.put_line(‘y is largest than x’);
 end if;
 End;
 /
 SQL> /
 Enter value for x : 7
 old 5 : x := &x;
 new 5 : x :=7;
 Enter value for y : 8
 old 6 : y :=&y
 new 6 : y :=8
 Addition is 15
 PL/SQL procedure completed
 y is largest than x
 PL/SQL procedure successfully completed.

2. Check whether the salary of ‘BLAKE’ is grater than 5000 or not.
 DECLARE
 B_salary emp.sal%type;
 BEGIN
 Select sal into B_salary
 From emp
 Where ename=‘BLAKE’;
 If (B_salary > 5000) then
 dbms_output.put_line(‘Blake salary is largest than 5000’);
 else
 dbms_output.put_line(‘Blake salary is less than 5000’);
 end if;
End;
 /
 SQL> /
 Blake salary is less than 5000
 PL/SQL procedure successfully completed.
If with a Multiway Branch :
 IF <condition_1> THEN
 ELSEIF <condition_2> THEN
 <statement_list>

PL/SQL /93

 ELSEIF <condition_n> THEN
 <statement_list>
 ELSE
 <statement_list>
 END IF;

 4.1 - 4.3 Check Your Progress
Fill in the blanks
1) …………………Section is used for declaration of variables.
2) SQL statements are written in ………………… section.

4.4 LOOPS IN PL/SQL

 There are three types of loops in PL/SQL :
 1. Simple loop
 2. For…loop
 3. While loop.

4.4.1 Simple Loop
Syntax 1 :
 LOOP
 <commands> /* A list of statements. */
 if <codition> then
 EXIT;
 End if;
 END LOOP;
 The loop breaks if <condition> is true.

For example :
 DECLARE
 i NUMBER := 0;
 BEGIN
 LOOP
 i := i+1;
 dbms_output.put_line(i);
 If(i>=10) then
 EXIT;
 End if;
 END LOOP;
 END;
 /
 SQL> /
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 PL/SQL procedure successfully completed.

 Oracle / 94

Syntax 2 :
 LOOP
 <commands> /* A list of statements. */
 EXIT WHEN <condition>;
 END LOOP;
For example :
 DECLARE
 i NUMBER := 0;
 BEGIN
 LOOP
 i := i+1;
 dbms_output.put_line(i);
 EXIT when i>=10;
 END LOOP;
 END;
 /
 SQL> /
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 PL/SQL procedure successfully completed.
The loop breaks when <condition> is true.

4.4.2 For…loop
 Syntax :
 FOR <var> IN[reverse] <start>. .<finish> LOOP
 <commands> /* A list of statements. */
 END LOOP;
 Here, <var> can be any variable; it is local to the for-loop and need not be
declared. Also, <start> and <finish> are constants. The value of a variable <var> is
automatically incremented by 1.
 The commands inside the loops are automatically executed until the final value
of variable is reached. Reverse is optional part, when you want to go from maximum
value to minimum value in that case reverse is used.
For example :
 BEGIN
 For i in 1. .10 LOOP
 dbms_output.put_line(i);
 END LOOP;
 END;
 SQL> /
 1
 2
 3
 4
 5
 6
 7
 8
 9

PL/SQL /95

 10
 PL/SQL procedure successfully completed.

4.4.3 While loop
Syntax :
 WHILE <condition> LOOP
 <commands> /* A list of statements. */
 END LOOP;
 This loop executes the commands if the condition is true.
For example :
 DECLARE
 i NUMBER := 0;
 BEGIN
 While i<=10 LOOP
 i := i+1;
 dbms_output.put_line(i);
 END LOOP;
 END;
 /
 SQL> /
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 PL/SQL procedure successfully completed.

4.5 SOLVED EXAMPLES
4.5.1 Simple PL/SQL
1. Accept two numbers and print the largest number.
 DECLARE
 n1 number;
 n2 number;
 BEGIN
 n1:=&n1;
 n2:=&n2;
 if(n1<n2) then
 dbms_output.put_line(n1 ||' is largest');
 else if (n1<n2) then
 dbms_output.put_line(n2 ||' is largest');
 else
 dbms_output.put_line('Both are equal');
 end if;
 end if;
 End;
Output :
 SQL> /
 Enter value for n1: 23
 old 5: n 1 :=&n 1;
 new 5: n 1:=23;
 Enter value for n2: 12
 old 6: n2:=&n2;

 Oracle / 96

 new 6: n2:= 12;
 23 is largest
 SQL>/
 Enter value for n1: 11
 old 5: n 1 :=&n 1;
 new 5: n1:=11;
 Enter value for n2: 11
 old 6: n2:=&n2;
 new 6: n2:=11;
 Both are equal
2. Accept a number and check whether it is odd or even.
 If it is even no. print square of it otherwise cube of it.
 DECLARE
 n1 number;
 BEGIN n1:=&n1;
 if(mod(n1,2)=0) then
 dbms_output.put_line(n1 ||' is even no');
 dbms_output.put_line('Square of '|| n1 ||' is '|| n1*n1);
 else
 dbms_output.put_line(n1 at ||' is odd no');
 dbms_output.put_line('Cube of ' | | n 1 | | ' is ' | | n1 * n1 * n1);
 end if;
 End;
Output :
 SQL> /
 Enter value for n1: 2
 old 4: n1:=&n1;
 new 4: n1:=2;
 2 is even no.
 Square of 2 is 4
 SQL> /
 Enter value for n1: 3
 old 4: n1:=&n1;
 new 4: n1 :=3;
 3 is odd no.
 Cube of 3 is 27

4.5.2 PL/SQL Block using Table
1. Accept the deptno and print the no. of employees working in that
department.
 DECLARE
 v_deptno emp.deptno%type;
 v_count number;
 BEGIN
 v_deptno:=&v_deptno;
 select count(*) into v_count
 from emp
 where deptno=v_deptno;
 dbms_output.put_line('No. of emp working in '|| v_deptno || 'are' || v_count);
 End;
 /
Output :
 SQL> /

PL/SQL /97

 Enter value for v_deptno: 20
 old 5: v_deptno:=&v_deptno;
 new 5: v_deptno:=20;
 No. of emp working in 20 are 2

2. Accept the deptno and print the department name and location.
 DECLARE
 v_deptno dept.deptno%type;
 v_dname dept.dname%type;
 v_loc dept.loc%type;
 BEGIN
 v_deptno:=&v_deptno;
 select dname,loc into v_dname,v_loc
 from dept
 where deptno=v_deptno;
 dbms_output.put_line('Department name is '|| v_dname ||' and location is '||

v_loc);
 End;
 /
Output :
 SQL> /
 Enter value for v_deptno: 10
 old 6: v_deptno:=&v_deptno;
 new (6: v_deptno:= 10;
 Department name is ACCOUNTING and location is NEW YORK

4.6 BUILT-IN-FUNCTIONS

 The control statements can be classified into the following categories :

 Conditional Control
 Iterative Control
 Sequential Control

 We study here Conditional and Iterative control.

4.6.1 Conditional Control
 PL/SQL allows the use of an IF statement to control the execution of a block of
code. In PL/SQL, the IF – THEN – ELSIF – ELSE – END IF construct in code blocks
allow specifying certain conditions under which a specific block of code should be
executed.
Syntax :
 IF <Condition> THEN
 <Action>
 ELSEIF <Condition> THEN
 <Action>
 ELSE
 <Action>
 END IF :
For example :
 Write a PL/SQL code block that will accept an account number from the user,
check if the users balance is less than the minimum balance, only then deduct Rs.
100/- from the balance. The process is fired on the ACCT_MSTR table.
DECLARE

 Oracle / 98

/* Declaration of memory variables and constants to be used in the Execution section
*/
 mCUR_BAL number (11, 2);
 mACCT_NO varchar2(7);
 mFINE number(4) := 100;
 mMIN_BAL constant number(7, 2) := 5000.00;
BEGIN
/* Accept the Account number from the user */
 mACCT_NO := &mACCT_NO;
/* Retrieving the current balance from the ACCT_MSTR table where the ACCT_NO
in the table is equal to the mACCT_NO entered by the user */
 SELECT CURBAL INTO mCUR_BAL FROM ACCT_MSTR WHERE
ACCT_NO=mACCT_NO;
/* Checking if the resultant balance is less than the minimum balance of Rs. 5000. If
the condition is satisfied an amount of Rs. 100 is deducted as a fine from the current
balance of the corresponding ACCT_NO */
 IF mCUR_BAL <mMIN_BAL THEN
 UPDATE ACCT_MSTR SET CURBAL = CURBAL_mFINE
 WHERE ACCT_NO = mACCT_NO;
 END IF;
END;
Output :
Enter value for mACCT_NO : ‘SB9’
Old 11 : mACCT_NO : &mACCT_NO;
new 11 : mACCT_NO : = ‘SB9’;

4.6.2 Iterative Control
 Iterative control indicates the ability to repeat or skip sections of a code block. A
loop marks a sequence of statements that has to be repeated. The keyword loop has
to be placed before the first statement in the sequence of statements to be repeated,
while the keyword end loop is placed immediately after the last statement in the
sequence. Once a loop begins to execute, it will go on forever. Hence, a conditional
statement that controls the number of times a loop is executed always accompanies
loops.
 PL/SQL supports the following structures for iterative control :
Simple Loop :
 In simple loop, the key word loop should be placed before the first statement in
the sequence and the keyword end loop should be written at the end of the sequence
to end the loop.
Syntax :
 Loop
 <Sequence of statements>
 End loop :
For example :
 Create a simple loop such that a message is displayed when a loop exceeds a
particular value.
DECLARE
 i number := 0;
BEGIN
 LOOP
 i := i + 2;

PL/SQL /99

 EXIT WHEN I > 10;
 END LOOP;
 dbms_output.put_line(Loop exited as the value of i has reached ‘|| to_char(i));
END;
Output :
 Loop exited as the value of i has reached 12
 PL/SQL procedure successfully completed.
The WHILE Loop :
Syntax :
 WHILE <Condition>
 LOOP
 <Action>
 END LOOP;
For example :
 Write a PL/SQL code block to calculate the area of a circle for a value of radius
varying from 3 to 7. Store the radius and the corresponding values of calculated area
in an empty table named Areas, consisting of two columns Radius and Area.
Table Name : Areas

RADIUS AREA

 Create the table AREAS as :
 CREATE TABLE AREAS (RADIUS NUMBER (5), AREA NUMBER(14,2));
DECLARE
 /* Declaration of memory variables and constants to be used in the Execution
section */
 pi constant number(4, 2) := 3.14;
 radius number(5);
 area number(14, 2);
BEGIN
/* Initialize the radius to 3, since calculations are required for radius 3 to 7 */
radius : = 3;
/* Set a loop so that it fires till the radius value reaches 7 */
 WHILE RADIUS <= 7
 LOOP
 /* Area calculation for a circle */
 area := pi *power(radius, 2);
 /* Insert the value for the radius and its corresponding area calculated in the
table */
 INSERT INTO areas VALUES (radius, area);
 /* Increment the value of the variable radius by 1 */
 radius := radius + 1;
 END LOOP;
END;
 The above PL/SQL code block initializes a variable radius to hold the value of 3.
The area calculations are required for the radius between 3 and 7. The value for area
is calculated first with radius 3 and the radius and area are inserted into the table
Areas. Now, the variable holding the value of radius is incremented by 1, i.e. it now
holds the value 4. Since the code is held within a loop structure, the code continues to
fire till the radius value reaches 7. Each time the value of radius and area is inserted
into the areas table.

 Oracle / 100

 After the loop is completed the table will now hold the following :

Radius Area

3 28.26

4 50.24

5 78.5

6 113.04

7 153.86

The FOR Loop
Syntax :
 FOR variable IN [REVERSE] start..end
 LOOP
 <Action>
 END LOOP;
For example :
 Write a PL/SQL block of code for inverting a number 5639 to 9365.

DECLARE

/* Declaration of memory variables and constants to be used in the Execution section
*/

 given_number varchar(5) := ‘5639’;

 str_length number(2);

 inverted_number varchar(5);

BEGIN

/* strore the length of the given number */

 str_length := length(given_number);

/* Initialize the loop such that it repeats for the number of times equal to the length of
the given number. Also, since the number is required to be inverted, the loop should
consider the last number first and store it i.e. in reverse order */

FOR cntr IN REVERSE 1..str_length
/* Variables used as counter in the for loop need not be declared i.e. cntr declaration
is not required */

LOOP

 /* The last digit of the number is obtained using the substr function and stored in a
variable, while retaining the previous digit stored in the variable */

 inverted_number := inverted_number || substr (given_number, cntr, 1);

END LOOP;

/* Display the initial number, as well as the inverted number, which is stored in the
variable on screen */

 dbms_output.put_line (‘The Given number is “|| given_number);

 dbms_output.put_line (‘The Inverted number is ‘|| inverted_number);

END;

Output :
 The Given number is 5639

