
Xilinx Tutorial

Pallavi Paliwal
(pallavip@ee.iitb.ac.in)

Indian Institute of Technology, Bombay

1. Introduction to Xilinx
§ Purpose of Xilinx Tool
§ Xilinx Flow Overview
§ Available Xilinx Product Families
§ Selection Consideration for Xilinx Device

2. Creating new ISE Project
3. Synthesizing the Design

§ Understanding Synthesis Process Properties
§ Analyzing Synthesis Report
§ Generating Post-Synthesis Simulation Model

4. Specifying User Constraints
§ Understanding Timing Constraints
§ Assigning Package Pins

5. Translating the Design
6. Mapping the Design

§ Understanding MAP Options
§ Analyzing MAP Report

7. Placing and Routing the Design
§ Understanding PAR options
§ Analyzing PAR Report
§ Asynchronous Delay Report
§ Post PAR Static Timing Analysis
§ Generating Post PAR Simulation Model

8. Generating BitMap File

Contents

Purpose of Xilinx Tool

Requirement of Xilinx Tool :

Xilinx is a Synthesis Tool which converts Schematic/HDL Design Entry into functionally equivalent
logic gates on Xilinx FPGA, with optimized speed & area.

So, after specifying behavioral description for HDL, the designer merely has to select the Library and
specify Optimization Criteria; and Xilinx Synthesis Tool determines the netlist to meet the specification;
which is then converted into Bit-File to be loaded onto FPGA PROM .

Also, Xilinx Tool generates Post-Process Simulation Model after every Implementation Step, which is
used to functionally verify generated netlist after processes, like Map, Place & Route.

Some more Features of Xilinx :

• Allows Mixed Mode HDL Design Entry

• Xilinx ISE allows integration with other Synthesis Engine from Mentor Graphics/Exemplar,
Synopsys and Synplicity. (XST is proprietary Synthesis Tool of Xilinx.)

Xilinx Flow Overview

1) Add HDL/Schematic Design Entry to ISE
Project, targeted for a particular Xilinx
Product Family.

2) Design Synthesis : Converts HDL into
equivalent boolean equations; according to
which logic gates are then correspondingly
packed into Logic Cells, LUT’s & FF’s from
Xilinx UNISIM Library

3) Design Implementation :

I. Translate : Translate step checks the design
and ensures that netlist is consistent with
chosen architecture. Translate also checks
User-defined Constraint file, for any
inconsistencies.

The above mentioned Process Steps are
Technology-Independent Part of Xilinx, since
these processes would be carried out
successfully by tool, for any product family.
(irrespective of the resources available in that
particular Xilinx FPGA Product)

[Figure Source: Xilinx ISE 8 Software Manual]

Xilinx Flow Overview

The following mentioned Implementation Process Steps are Technology Dependent Part of Xilinx, wherein Design
could be Mapped, Placed & Routed, with desired Speed & Area constraint, only if Targeted Xilinx Product has

required speed grade, sufficient Logic Blocks & Interconnect resources available for Design Entry.

II. Map : Calculates & Allocates Physical Combinational Logic Blocks (CLB) & Input Output Block (IOB)
Components in Targeted Device, to Logic Element symbols in Netlist that is generated during
Translation Process.

III. Place & Route (PAR): Places CLBs into logical position and utilizes the routing resources on target
device, to connect logic cells on Xilinx Product such that desired Timing Specification are met.

4) Bit-File Generation : Creates Bit-Stream file containing Configuration Data for Target FPGA Device

__

Further in this tutorial, Xilinx Flow will be demonstrated through 32-bit Shift and Add Multiplier
Implementation on Spartan xc3s500e-5-pq208 device.

This 32-bit Shift & Add Multiplier latches value on Input Data Bus, when
START control signal is high; and outputs valid 64-bit Product, while
asserting DONE control signal high.

DUT asserts READY control signal, when Multiplier FSM is in idle state.

Available Xilinx Product Families

• Spartan

• Virtex

• Coolrunner

• XC9500

[Figure Source: Programmable Logic Design Quick Start Handbook, By Karen Pawell & Nick Mehta]

Selection Consideration for Xilinx Device

According to Design Specification, decide which device best meets the design criteria.

Selection Consideration in order of general priority are :-

1. Speed Requirement :- If the Maximum Frequency requirement for the design is not met with a
particular Xilinx device, choose a Xilinx device of higher Speed Grade (or) switch to next generation
Xilinx Product Family.

For eg. Following is the Speed Comparison of Shift & Add Multiplier synthesized on Spartan Device (with different
Speed Grade) & Virtex Device.

Note :-

i) In Target Device Name, -2/-3/-4/-5 indicates Speed Grade available for the device. (Higher the
indicated Speed Grade number, higher is the maximum frequency obtained through that device)

ii) Virtex and Spartan Product Family are indicated by text “vlx” and “s” respectively, in Xilinx
Device name.

Target Device Maximum Frequency

(of Multiplier design)

Spartan :- xc3s500e-4-pq208 119 MHz

Spartan :- xc3s500e-5-pq208 137 MHz

Virtex :- xc5vlx30-2-ff324 259.639 MHz

Virtex :-xc5vlx30-3-ff324 295.683 MHz

Selection Consideration for Xilinx Device

2. Logic Density :- Choose the device which has Gate Count and Macro-Cells to meet the Logic
Density of the design.

For e.g. Following is Device Utilization Summary of Multiplier Implementation on xc3s500e-5-pq208 device.
(Here, number 500 in device name indicates that this device has 500k gates)

Device utilization summary:

Number of Slices: 198 out of 4656 4% (Small Designs like Multiplier can be implemented on CPLD
Number of Slice Flip Flops: 165 out of 9312 1% Series having minimum number of gates, amongst available
Number of 4 input LUTs: 379 out of 9312 4% Xilinx Product families)
Number of IOs: 133
Number of bonded IOBs: 133 out of 158 84%
Number of GCLKs: 1 out of 24 4%

3. Package Type and Number of IO Pins :- Based on Number of Input/Output Ports of the design,
decide on device having sufficient number of IO Pins.

For e.g. 32-bit Multiplier Design cannot be implemented using device 3s500ecp132-5, since, this Chip-Scale Package only
has 92 I/O pins, whereas Multiplier design here has 133 I/O ports.

xc3s500e-5-pq208 device can be used for Multiplier Design because this Plastic Quad Flat Package has 158 I/O
Pins.

Creating new ISE Project

1. From Project Navigator, select File > New Project.

(Specify the Project Name, Project Location; and select Top Level Source Type as HDL)

2. Click Next & describe Device Properties in New Project Wizard. (Based on the Selection Design Consideration
mentioned earlier, select Xilinx Product Family/ Device Type/ Package Type & Speed Grade)

Following image window indicates the Device Properties selected for Shift-Add Multiplier Implementation :-

3. Click Next & then click Add Source tab in New Project Wizard, to browse and add existing HDL source files to current
ISE Project

Synthesizing Design

Synthesis Tool Functionality :

During synthesis, HDL files are translated into gates and optimized for the target architecture.

Thus, XST Synthesis tool uses design’s HDL code and generates a supported netlist type (NGC) for Xilinx implementation
tools, by performing following general steps :-

• Analyze / Check Syntax of the Source Code.

• Compile : Translates and optimizes the HDL code into a set of components that the synthesis tool can recognize.

• Map : Translates the components from the compile stage into the target technology’s primitive components from UNISIM
Library.

Steps to Synthesize HDL Design :

• Select top-level HDL design in the Sources window.

• To set Synthesis options, right-click Synthesize - XST in the Processes

window; select Properties to display the Process Properties dialog box.

• With the top-level source file selected, right-click Synthesize - XST in the

Processes window & select Run option.

• Synthesis Report file is stored with extension <project_name>.syr

in ISE Project Directory.

Synthesis options enables designer to modify the behaviour of the synthesis tool, to make optimizations according to the
needs of design.

• Optimization Effort : constraint allows to choose synthesis optimization level as Normal or High optimization.

• Optimization Goal : constraint allows to choose synthesis optimization strategy as Speed or Area.

For e.g. In Shift Add Multiplier implementation, when Optimization Goal is selected as Area, though Number of Slices
and LUTs utilized reduces by 1%, but the maximum frequency for the design also reduces by 8MHz, in comparison to
Synthesis done with default Optimization Goal (i.e. Speed).

• Use Synthesis Constraint File : option allows to include (or) exclude .xcf Constraint File ,during synthesis process.

• Keep Hierarchy : is a synthesis and implementation constraint. If hierarchy is maintained during Synthesis, the
Implementation tools will use this constraint to preserve the hierarchy throughout the implementation process and allow
a simulation netlist to be created with the desired hierarchy. Though preserving the hierarchy gives the advantage of fast
processing; but, merging the hierarchy blocks improves the fitting results (i.e. fewer device macrocells & better
frequency).

• Global Optimization Goal : allows to optimize speed in different regions (register to register, inpad to register,
register to outpad, and inpad to outpad) of the design.

• Write Timing Constraints : enables or disables propagation of timing constraints to the NGC file, which will be used
during place and route, as well as synthesis optimization.

• Slice Utilization Ratio : defines the area size in absolute number or percent of total number of slices that XST must not
exceed, during timing optimization.

Synthesizing Design – Understanding Synthesis Options
[Source : Xilinx Synthesis and Simulation Design Guide]

• RAM / ROM / MUX / DECODER / PRIORITY ENCODER / LOGICAL SHIFTER / SHIFT REGISTER / LOGICAL
SHIFTER Extraction : constraints enable or disable corresponding macro inference.

• Following table indicates how various constraints control the way, the macro-generator implements the inferred
various macros:-

Synthesizing Design – Understanding HDL Options
[Source : Xilinx Synthesis and Simulation Design Guide]

HDL Options Allowed Values

RAM Style Auto/Block/Distributed/Pipe-Distributed RAM

ROM Style Auto/Block/Distributed ROM

MUX Style Auto/MUXF/MUXCY (Value AUTO indicates that XST looks for best implementation for each macro inference)

Multiplier Style Auto/Block/LUT/Pipe_Block/KCM/CSD/Pipe_LUT

FSM Style BRAM/LUT ; [Large FSMs can be made more compact and faster by implementing them in Block RAM
resources (instead of LUTs) provided in Virtex and later technologies].

Case Implementation Style
(This option instructs XST
how to interpret Verilog Case
statements)

None/Full/Parallel/Full-Parallel

[- If full is used, XST assumes that the case statements are complete and avoids latch creation.
- If parallel is used, XST assumes that the branches cannot occur in parallel and does not use a priority encoder.]

FSM Encoding Algorithm
(This constraint selects FSM
encoding technique to use)

Auto/One-Hot/Compact/Sequential/Gray/Johnson/Speed1/User
(FPGA State Machines are usually One-Hot encoded.)

For e.g. In Shift Add Multiplier Synthesis, leaving FSM Encoding Algorithm as “Auto” causes One-Hot encoding to be
implemented for <cur_state> and <nxt_state> signal.

•

• Safe Implementation : constraint implements FSM with additional logic, that forces FSM to a valid state (recovery
state), if FSM gets into an invalid state.

• XOR Collapsing : controls collapsing of cascaded XORs into single XOR.

• Resource Sharing : constraint enables or disables resource sharing of arithematic operators.

Synthesizing Design – Understanding HDL Options

Synthesizing Design – Understanding Xilinx Options
[Source : Xilinx Synthesis and Simulation Design Guide]

• Add I/O Buffers : enables or disables I/O buffer insertion, to all the port names in the top level entity of the design

• Max Fanout : constraint limits the fanout of nets or signals. Large fanouts can cause routability problems, therefore
XST tries to limit fanout by duplicating gates or by inserting buffers. (These buffers will be protected against logic
trimming at the implementation level by defining a KEEP attribute in the NGC file.)

• Number Of Clock Buffers : controls maximum number of Clock Buffers created by XST.

• Register Duplication : enables or disables register replication, during timing optimization and fanout control.

• Equivalent Register Removal : enables or disables removal of equivalent registers, described at the RTL Level.

• Register Balancing : option allows to move flip-flops and latches across logic to increase clock frequency.

(Forward Register Balancing will move a set of flip-flops that are at the inputs of a LUT to a single flip-flop at its output.

Backward Register Balancing will move a flip-flop which is at the output of a LUT to a set of flip-flops at its inputs.)

• Move First Stage : constraint controls the retiming of registers with paths coming from primary inputs.

• Move Last Stage : constraint controls the retiming of registers with paths going to primary outputs.

• Pack I/O Registers into IOBs : constraint packs flip-flops in the I/Os to improve input/output path timing.

• Slice Packing : option enables the XST internal packer, which attempts to pack critical LUT-to-LUT connections
within a slice or a CLB.

• Use Clock Enable : enables or disables the use of clock enable function in flip-flops. The disabling of the clock
enable function is typically used for ASIC prototyping on FPGAs. In auto mode, XST tries to estimate a trade off
between using a dedicated clock enable input of a flip-flop input and putting clock enable logic on the D input of a flip-
flop.

• Use Synchronous Set/Reset : constraint enables or disables the use of synchronous set/reset function in flip-flops.

• Optimize Instantiated Primitives : Constraint allows XST to optimize Xilinx library primitives that have been
instantiated in HDL.

• HDL Compilation & Analysis

During HDL Compilation and HDL Analysis, XST parses and analyzes VHDL/Verilog files and gives the name of the
libraries into which they are compiled. During this step, XST may report potential mismatches between synthesis and

simulation results, potential multi-sources, and other issues.

• HDL Synthesis

During this step, XST tries to recognize as many basic macros as possible ,to create a technology specific implementation.

Synthesizing Design – Analyzing Synthesis Report

Following is the sectional details of Synthesis Report (.syr) file :-

• Advanced HDL Synthesis : During this step, XST performs advanced macro recognition and inference like recognizing
dynamic shift registers, implementing pipelined multipliers, coding state machines, etc.

(Following is the Advanced Synthesis Report section generated for Shift & Add Multiplier)

• Low Level Synthesis : During this step XST

reports the potential removal of equivalent

flip-flops, register replication, etc

• Final Report : includes (NGC) output file name

(having extension .ngr), target family and cell usage.

Synthesizing Design – Analyzing Synthesis Report

Final Report also includes following information :-

• Device Utilization Summary: where XST estimates the number of slices, gives the number of flip-flops, IOBs,
BRAMS, etc. This report is very close to the one produced by MAP.

Following is the Device Utilization Summary & Clock Information for Shift Add Multiplier Synthesis :

• Clock Information: gives information about the number of clocks in the design, how each clock is buffered and
how many loads it has.

• Timing report : Timing Summary section gives a summary of following timing paths :-

(i) The path from any clock to any clock (i.e. flop to flop delay) in the design:

(ii) The maximum path from all primary inputs to the sequential elements.

(iii) The maximum path from the sequential elements to all primary outputs.

(iv) The maximum path from input to output pad.

Timing Summary for Shift Add Multiplier Synthesis ->

Synthesizing Design – Analyzing Synthesis Report

Requirement & Generation of Post-Synthesis Simulation Model :

To verify whether the correct functionality of the design is retained, after synthesizing it into netlist; HDL Design’s
equivalent simulation model can be generated, by clicking on Generate Post-Synthesis Simulation Model option within
Synthesis-XST process list. (Netlist simulation model is generated in netgen/synthesis directory)

Post-Synthesis Simulation using Modelsim :

Post-Synthesis Simulation Model can be compiled & simulated using the same HDL testbench, that was used for HDL
behavioral code verification.

In Modelsim, after creating a new project for Post Synthesis Simulation, include Netlist (_synthesis.vhd) from
<ise_project>/netgen/synthesis directory. This netlist file is compiled along with testbench, instead of HDL behavioral
Code being compiled.

Post-Synthesis Simulation Result :

For the generated Post-Synthesis Simulation Model, no standard delay file (.sdf file) is back-annotated during
simulation.(Thus, UNISIM Library primitives, included in the synthesis generated netlist, do not have any delay
associated with it)

Therefore, expected Post-Synthesis Simulation result is same as Functional Verification result of HDL Design, as can be
seen in following Post-Synthesis simulation waveform for Shift-Add Multiplier design :-

Synthesizing Design– Generating Post-Synthesis Simulation Model

Specifying User Constraints

Need for Setting Constraints :

For Design to meet desired Area/Frequency Specification on FPGA, it is required to tell the Implementation Tool for
what performance it should optimize the design implementation processes like Map, Place & Route. Thus, User Defined
Constraints allows to specify desired Clock period/ Pad to Setup/Clock to Pad delay & assign areas to hierarchical
blocks of logic.

Physical User Constraint also allows to allocate HDL design’s I/O signals to specific package pins.

Adding Constraints to Design :

User can specify Constraints for ISE Design Project , either through GUI by double-clicking on following options
available within User Constraints label in Processes Window:-

(i) Create Timing Constraints

(ii) Assign Package Pins

(iii) Create Area Constraints

(or) the User can specify constraints in .ucf file, through any text editor.

While opening Constraint Editor window, Translate step runs automatically

because implementation stage must see the netlist before it can offer the user

the chance to constraint sections of design.

(i) Timing Constraints :

The Global Clock Domain and Input/Output Ports tab of Create Timing Constraints window automatically displays all
clock nets in the design, and enables designer to define the associated Period, Pad to Setup, and Clock to Pad values.

(Since, there are no combinatorial paths in Shift Add Multiplier design, Pad to Pad constraint is not specified for this case.)

ISE tool Timing Analyzer is used to analyze the results of these timing specifications for the design.

Specifying User Constraints – Timing Constraints

Clock Period constraint ensures that the internal paths starting and ending at synchronous points (Flip-Flops /RAM /
Latches) have logic delay less than Maximum Delay allowed in the design specification.

Pad to Setup is the path starting at Input Port of the design and ending at an input to a flip-flop/latch/RAM—wherever there
is a setup time against a control signal.

The Pad to Setup constraint defines the maximum time required for the data to enter the FPGA, travel through logic and
routing, and arrive at the input before the clock or control signal arrives.

Pad-to-Setup Delay Constraint can be calculated as follows :-

TData + TSetup - TClock <= TOffset_IN_BEFORE

where,
TData = Total Data path delay from the Flip Flop
TSetup = Intrinsic Flip Flop setup time
TClock = Total Clock path delay to the Flip Flop
TOffset_IN_BEFORE = Overall Setup Requirement

Clock to Pad is the path starting at the Q output of a flip-flop or latch and ending at Output Port of the design. It includes the
Clock-to-Q delay of the flip-flop and path delay from that flip-flop to FPGA output.

The Clock to Pad constraint defines the maximum time required for the data to leave the source flip-flop, travel through logic
and routing, and arrive at output pin of FPGA.

The clock-to-pad path time is the maximum time required for the data to leave the source flip-flop, travel through logic and
routing, and leave the chip.

Specifying User Constraints – Timing Constraints
[Source : Xilinx Timing Constraint User Guide]

Specifying User Constraints – Timing Constraints
[Source : Xilinx Timing Constraint User Guide]

Clock to Pad Delay Constraint can be calculated as follows :-

TQ + TData2Out + TClock <= TOffset_OUT_AFTER

where,
TQ = Intrinsic Flip Flop Clock to Out
TClock = Total Clock path delay to the Flip Flop
TData2Out = Total Data path delay from the Flip Flop
TOffset_OUT_AFTER = Overall Clock to Out Requirement

Pad to Pad constraint constrains combinatorial asynchronous paths having start and endpoints as Pads of the design.

(ii) Assigning Package Pins :

Package Pins can be assigned to Design’s Input/Output Ports through LOC constraint in .ucf file or through Assign
Package Pin GUI Window.

Specifying User Constraints – Assigning Package Pins

Translating Design

Translate Process Functionality :

During translation, the NGDBuild program performs the following functions :-

• Converts input design netlists and writes results to a single merged NGD netlist. The merged netlist describes the
logic in the design as well as any location and timing constraints.

• Performs timing specification and logical design rule checks.
• Adds constraints from the User Constraints File (UCF) to the merged netlist.

Steps to Translate the Design :

• Translate Process gets automatically executed while opening Consraint Editor GUI Window (or) User can right-click
Translate option in Processes Window and select Run option.

• To set Translate Properties, right-click Translate in the Processes window; select Properties to display the Process
Properties dialog box.

• Synthesis Report file is stored with extension <project_name>.bld in ISE Project Directory.

Translate Process File Types :

Translate Process uses following files as input :-

§ NGC netlist file from Synthesis Process.
§ UCF constraint file containing timing and layout constraints.

Translate Process creates following files as output :-

§ NGD file, containing logical description of the design, expressed
in terms of lower level Xilinx Primitives, with constraint applied to design.
§ BLD Report file shows following error in design or UCF file :-

– Missing or untranslatable hierarchical blocks
– Invalid or incomplete timing constraints
– Output contention, loadless outputs, and sourceless inputs

Translating Design – Understanding Translate Options
[Source : Xilinx Development System Reference Guide]

Use LOC Constraints :- Deselecting this option allows to ignore Location constraint in UCF file, when user may require to
migrate to a different device or architecture, because location in one architecture may not match location in another.

Create I/O Pads from Ports :- Adds a PAD symbol to every signal that is connected to a port on the root-level cell.

Allow Unexpanded Blocks :- Translate Process generates an error if a block in the design cannot be expanded to NGD
primitives. If Allow Unexpanded Blocks option is selected, only warning is generated instead of an error, and NGD file
is still written, containing the unexpanded block.

This option is used to perform preliminary mapping, placement and routing, timing analysis, or simulation on the design,
even though the design is not complete.

Allow Unmatched LOC Constraints :- Translate Process generates error if the constraints specified for pin, net, or instance
names in the UCF file cannot be found in the design. If this error occurs, an NGD file is not written. If Allow Unmatched
LOC option is selected, Translate Process generates a warning instead of an error for LOC constraints, and still writes an
NGD file.

This option is useful if User Constraints File includes location constraints for pin, net, or instance names that have not
yet been defined in the HDL or schematic. This allows user to maintain single version of User Constraints File for

both partially complete and final designs.

Mapping the Design

MAP Process Functionality :

• Allocates CLB and IOB resources for all basic logic elements in the design.
• Processes all location and timing constraints, performs target device optimizations, and runs a design rule check on the

resulting mapped netlist.

Steps to Map the Design :

• To set Map Process Properties, right-click Map in the Processes window; select Properties to display the Process
Properties dialog box.

• Right-click Map label in Processes Window and select Run option.
• Synthesis Report file is stored with extension <project_name>.mrp in ISE Project Directory.

Map Process File Types :

MAP Process uses NGD file, created during Translate Process, as Input file.

MAP Process creates following files as output :-

• NCD (Native Circuit Description) file containing physical description
of design in terms of the components in the target Xilinx device.

• PCF (Physical Constraints File) contains constraints specified during
design entry expressed in terms of physical elements.

• MRP (MAP Report File) confirms the resources used within the device; and describes trimmed and merged logic.
Detailed Report also describes exactly where each portion of the design is located in the device.

Mapping Design – Understanding MAP Options
[Source : Xilinx Development System Reference]

• Perform Timing driven packing & Placement :- directs MAP to give priority to timing critical paths during packing,
then places the design.Timing-driven packing and placement is recommended to improve design performance, timing,
and packing for highly utilized designs.

• Map Effort Level :- specifies the level of effort MAP uses to pack the design.

• Extra Effort :- Continue on Impossible allows to direct MAP to continue and improve packing, until little or no
improvement can be made.

• Combinatorial Logic Optimization :-Invokes post-placement logic restructuring for improved timing and design
performance.

• Register Duplication :-option duplicates registers to improve timing when running timing-driven packing.

• Replicate Logic to Allow Logic level Reduction :- Logic replication is an optimization method in which MAP operates
on a single driver that is driving multiple loads and maps it as multiple components, each driving a single load which
makes it easier to meet timing requirements, since some delays can be eliminated on critical nets.

• Allow Logic Optimization across Heirarchy :- specifies whether Area/Speed/Balanced criteria has to be used during the
cover phase of MAP, during which, MAP assigns the logic to CLB function generators (LUTs).

• Use RLOC Constraints :- Unchecking this option allows to ignore the RLOC constraint that cannot be met.

• Disable Register Ordering :- By default, MAP looks at the register bit names for similarities and tries to map register
bits in an ordered manner. Specify this option, register bit names are ignored when registers are mapped, and the bits are
not mapped in any special order.

• CLB Pack Factor Percentage :- determines the degree to which CLBs are packed when the design is mapped.

• MAP Slice Logic into Unused Block RAMs :- When block RAM mapping is enabled, MAP attempts to place LUTs and
FFs into single-output, single-port block RAMs.

• Power Reduction :- Specifies that placement is optimized to reduce the power consumed by a design during timing-
driven packing and placement.

Following is the sectional details of MAP Report (.mrp) file :-

• Design Summary - Summarizes the mapper run, showing the number of errors and warnings, and how many of the
resources in the target device are used by the mapped design.

Mapping Design – Analyzing MAP Report

• Removed Logic - Describes in detail all logic (design components and nets) removed for the following reasons, from the
input NGD file when the design is mapped :-

- The design uses only part of the logic in a library macro.
- The design has been mapped even though it is not yet complete.
- The mapper has optimized the design logic.
- Unused logic has been created in error during schematic entry.

• IOB Properties - Lists each IOB to which the user has supplied constraints along with the applicable constraints.

Mapping Design – Analyzing MAP Report

• Timing Report - This section, produced with Perform Timing driven packing & Placement option, shows information on

timing constraints considered during the MAP run.

Placing and Routing the Design

Place And Route Process Functionality :-

• During placement, PAR places components into sites based on factors such as constraints, the length of connections,
and the available routing resources.

• After placing the design, the router performs a converging procedure for a solution that routes the design to
completion and meets timing constraints.

Steps to Place and Route the Design :-

• To execute PAR in the Processes tab, right-click Place & Route under the Implement Design process group, and
select Run option.

• To set Place and Route Properties, right-click Place & Route in the Processes window; select Properties to display
the Process Properties dialog box.

PAR Process File Types :-

PAR Process uses Mapped Design (NCD) File and Physical Constraint (PCF)

file created during MAP Process, as Input File.

PAR Process creates following files as output :-

- Placed and Routed NCD Design File

- PAR Report File, including summary information of all placement

and routing iterations.

• Place and Route Effort Level :- specifies the level of effort PAR uses to place and route design to completion and to
achieve timing constraints.

• Extra effort Level :- option Continue on Impossible allows user to direct PAR to continue routing, even if PAR
determines the timing constraints cannot be met. PAR , then, continues to attempt to route and improve timing until little
or no timing improvement can be made.

• Use Timing Constraints :- On deselecting this option, all timing constraints are ignored and the implementation tools do
not use any timing information to place and route the design.

• Power Reduction :- option optimizes the capacitance of non-timing driven design signals

Placing and Routing Design – Understanding PAR Options
[Source : Xilinx Development System Reference Guide]

Placing and Routing Design – Analyzing PAR Report

Following is the sectional details of PAR Report (. par) file :-

• Design Summary - Provides a breakdown of the resources in the design and includes the Device Utilization Summary

• Clock Report - Lists all clocks in the design and provides information on the routing resources, number of fanout,
maximum net skew for each clock, and the maximum delay. The locked column in the clock table indicates whether the
clock driver (BUFGMUX) is assigned to a particular site or left floating..

• Delay Summary Report - Summarizes the connection and pin delays for the design.

• Timing Score - Lists information on timing constraints contained in the input PCF, including how many timing
constraints were met.

Slack value indicates the difference between the constraint and the analyzed value, with negative slack indicating an error condition.

• Setup Slack informs about the amount of setup violation seen for a path, and is calculated as :

Setup Slack = Constraint_requirement - Tclock_skew - Tdata_path - Tsu

• Hold Slack :- Hold/Race checks are performed on register-to-register paths by taking the data path (TckQ+Troute_total +Tlogic_total) and
subtracting the clock skew (Tdest_clk - Tsrc_clk) and the register hold delay (Th) i.e.

Hold Slack = Tdata - Tskew - Thold.

Placing and Routing Design – Analyzing PAR Report

• Asynchronous Delay Report is concerned with Worst Path logic and routing delays in the design

For e.g. Following is the data from Shift Add Multiplier Design Asynchronous Delay Report :-

Placing and Routing Design – Asynchronous Delay Report

• Post PAR Static Timing report evaluates the logical block delays and the routing delays.

• To display this report, run Analyze Post-Place & Route Static Timing

process in the Processes view under Implement Design > Place & Route

> Generate Post-Place & Route Static Timing label.

Advanced Design Analysis report can be generated by selecting Perform Advanced Analysis in Post Place and Route
Static Timing Report Properties (accessed by right-clicking on Generate Post-Place and Route Static Timing label and
selecting Properties option)

The Timing Report will open in Timing Analyzer window.

Placing and Routing Design - Post PAR Static Timing Analysis

Following is the sectional details of Analyze Post Place and Route Static Timing GUI window options and Static Timing
Report (. twr) text file :-

(i) Timing Constraints Analysis report compares the design’s performance to the timing constraints.

Placing and Routing Design - Post PAR Static Timing Analysis

(ii) Data Sheet Report includes the source and destination PAD names, and either the propagation delay between the source
and destination or the setup and hold requirements for the source relative to the destination.

Negative Hold Time indicates that data pin of the flip-flop can change ahead of the clock pin and still meet Hold Time check, due to
internal data path-delay of Flip-Flop.

Placing and Routing Design - Post PAR Static Timing Analysis

Requirement & Generation of Post-Place & Route Simulation Model :

Timing Simulation is required to verify whether the correct functionality of the design is retained, after the netlist is
back-annotated with logic and routing delay information.

Equivalent simulation model for Placed & Routed Netlist can be generated, by clicking on Generate Post-Place &
Route Simulation Model option within Place & Route process list. (Netlist simulation model is generated in
netgen/par directory)

Timing Simulation using Modelsim :

Post-PAR Simulation Model can be compiled & simulated using the same HDL testbench, that was used for HDL
behavioral code verification.

i) In Modelsim, after creating a new project for Post

Synthesis Simulation, include Netlist (_synthesis.vhd) from

<ise_project>/netgen/par directory. This netlist file is

compiled along with testbench, instead of HDL behavioral

Code being compiled.

ii) After compiling Netlist & Testbench, add SDF file

(containing Netlist Logic & Routing Delay information)

from <ise_project>/ netgen/ par directory, through

Simulate Menu -> Start Simulation Window -> SDF tab.

Placing & Routing Design-Generating Post PAR Simulation Model

Post-PAR Simulation Result :

Since, in this Timing Simulation, SDF file containing logic/routing delay information is back-annotated to the netlist,
simulation waveform result shows delay in updating output signal ports, after input clock and data is applied to the
design.

For e.g., In case of Shift-Add Multiplier Design, as indicated in Static Timing Report (.twr), Clock to Pad Output Path Delay is around
8ns for product_dly_o data bus, which is also observed in Post PAR Simulation Waveform, wherein Registered Product data
output appears after 8ns relative to Clock rising edge.

Placing & Routing Design-Generating Post PAR Simulation Model

Generating BitMap Programming File

Purpose of Generating Programming File :

After design has been routed, it is required to generate the binary data which can be used to program the physical device.
The Programming BIT File for FPGA Device should contain all the configuration information, defining the internal
logic and interconnections of the FPGA, plus device-specific information from other files associated with the target
device. The binary data in the BIT file can then be downloaded into the FPGA's memory cells or it can be used to create
a PROM file.

Step to Generate Programming File :

To create BitMap file, right-click Generate Programming File label in Processes window & click Run option.

BitGen Process File Types :

Xilinx uses BitGen process for generating Bitstream program. BitGen takes a fully routed NCD file, generated during
PAR process as its input, and produces a configuration bitstream - a binary file with a .bit extension.

