RAJASTHAN P.E.T. CHEMISTRY – 1997

1.	The hybridiz (1) sp ²		C atom in bute (3) both two	tendioic acid is : (4) sp
2.	(1) n-pent (2) 2, 2-di (3) 2, 3-di	_		Pentane :
3.				CI ₂ and CCI ₄ are respectively: and 4 (4) 2 and 4
4.	Which of the (1) C ₆ H ₅		solves in lonic (3) CCI ₄	
5.		te acid of HS is	s: (3) both two	(4) none
	(1) NH ₄ O (2) NH ₄ O (3) NH ₄ O (4) NaOH	suitable indic H and HCI H and HCOOH H and C ₂ H ₄ O ₂ and C ₂ O ₄ H ₂	ator : I ron are :	sed in which of the following type of iderite (4) Limonite
8.	The molar co	oncentration o	, ,	s in the resulting solution of 300
	(1) 1.7 M		(3) 5.0 M	_
9.	Which of the $(1) N_2^{-2}$	following has (2) N ₂	least bond en	nergy: (4) N ₂
10.	Which of the (1) O ₂ ⁻²		cies has higher	est bond energy : (4) O ₂
11.		yclobutene ne	npound is not	aromatic:

12. Which of the following compound is used as refrigerant: (1) CCI ₂ F ₂ (2) CCI ₄ (3) CF ₄ (4) Acetone
13. Which of the following is weak acid : (1) C_6H_6 (2) CH_3 - $C\equiv CH$ (3) $CH_2=CH_2$ (4) CH_3 - $C\equiv C$ - CH_3
14. L.P.G. mainly consist of the following: (1) Methane (2) Hydrogen (3) Acetylene (4) Butane
15. The solubility product of CaCo ₃ is 5 x 10 ⁻⁹ . The solubility will be: (1) 2.5×10^{-5} (2) 7×10^{-5} (3) 2.5×10^{-4} (4) 2.2×10^{-9}
16. The outer electronic configuration of alkali earth metals is : (1) nd^{10} (2) ns^1 (3) np^6 (4) ns_2
17. The nature of 2, 4, 6-trinitrophenol is: (1) Neutral (2) Basic (3) Acidic (4) Weak basic
18. Which of the following group is sharp ortho and para directive : (1) $-C_6H_5$ (2)-OH (3) $-CH_3$ (4) $-CI$
19. By which of the following process hydrocarbons are found from petroleum: (1) combustion (2) fractional distillation (3) addition (4) all above
20. A sample of petroleum contains 30% n-heptane, 10% 2-methyl hexane and 60% 2, 2, 4-trimethyl pentane, the octane no. of this sample will be: (1) 30% (2) 60% (3) 10% (4) 70%
21. In which of the following halogens p-electrons does not take part in resonance: (1) CH ₂ =CH-CH ₂ Cl (2) BrC ₆ H ₅ (3) C ₆ H ₅ Cl (4) CH ₂ =CHCl
 22. Which of the following statement is false: (1) 40% solution HCHO is known as formalin (2) HCHO is least reactive in its homologous series (3) The B.P. of isovarelaldehyde is less than n-varelaldehyde (4) The boiling point of ketones are higher than that of aldehydes
23. If n + u= 8 then the expected no. of orbitals will be: (1) 4 (2) 9 (3) 16 (4) 25

			compound C will be: e tetra chloride (4) Both 2 and 3					
25. Which of the	e following is lo (2) MgCl ₂							
26. The laughing (1) N ₂ O ₄		(3) N ₂ O	(4) N_2O_5					
	en ion concenti this solution w		ution is 3.98×10^{-6} mole per liter. The					
(1) 6.0	(2) 5.8	(3) 5.4	(4) 5.9					
28. The reaction (1) Butane	of sodium ace (2) Ethane		_					
29. Which of the following acids does not contain – COOH group: (1) Carbamic acid (2) Barbituric acid (3) Lactic acid (4) succinnic acid								
	e following con (2) XeF ₄	-	none does not exists : (4) XeF ₂					
31. FeSO ₄ , 7H ₂ O (1) Mohr's sa		triol (3) G1	reen vitriol (4) White vitriol					
formed which	ch is :		liluted with water white precipitate is					
` '	oxychloride oydroxide	` '						
(3) dichlo		id						
(2) This (3) It doe	does not perform does not gives e	n polymerization dimination react the colour of d	on reaction ction lilute KMnO ₄ solution					
35. Which of the $(1) C_6H_5NH_2$	_	trongest base : H ₃ NH ₂	:					

(3) NH ₃	(4) CH ₃ CONH ₂	!		
36. Which of the follow easily:	ing aromatic co	mpound gives	sulphor	nation reaction very
(1) Chlorobenzene	(2) Nitrobenzer	ne (3) Tolu	iene ((4) benzene
37. The geometry of I3-		(3) Tetrahedral	. ((4) T-shape
38. The half life of a ra		nt is 140 days.	1 gm. o	of this element after
560 days will becon (1) 1 gm (2) 16		gm. ($(4) \frac{1}{2}g$	gm.
39. The volume concen (1) 5 (2) 11	tration of hydro		5.8% co	oncentration will be :
40. Which of the follow (1) Ethane (2) Pr	ring on combusti	_		ergy:
Anhy 41. C6H6 + CH3CL (1) Gattermann (3) Friedel-Craft	(2) Reimer-tien		name of	above reaction is :
42. The oxidation state (1) + 4 (2) +				
43. The natural rubber (1) 1, 3- butadiene			(4) none	e of these
44. Nylone-66 is a : (1) polyester (2) po	olyamide	(3) polyacrylate	e ((4) none of these
45. $2NO(g) + CI_2(g) \underset{\leftarrow}{\rightarrow}$	2 NOCI The equ	uilibrium cons	stant fo	r this reaction is :
(1) $K_c = \frac{[NOCI]^2}{[NO]^2[CI_2]}$	${2}$ (2) $K_c =$	$= \frac{[\text{NOCI}]^2}{[2\text{NO}]^2[\text{CI}_2]}$		
(3) $K_c = \frac{[NOCI]^2}{[NO]^2 [CI^2]}$	(4) $K_c =$	[2NOCI] [2NO][CI]	_	
A C ₆ H ₆ + CO + HCI (1) anhydrans ZnO (3) anhydrous AICO	$(2) V_2 O_5 / 450^0 O_5$	C		

47	C) respectively (1) CH ₃ COOH	y. The st	rongest acid		em is :	nd 1.75 x 10 ⁻⁵ (at 25 ⁰
48	(1) CH ₃ CH (2) CH ₃ CH (3) CH ₃ CH (4) CH ₃ CH	₂ CH (CH ₂ CH (CH ₂ CH ₂ CH	I ₃) CH ₂ OH I ₃) CHOH ₂ CH ₂ OH	tom (asterisk	x) is asyn	nmetric :
49						d AICI ₃ to form: (4) Chlorobenzene
50	Which of the f (1) H ₂ S	_		g agent : O (4) K	$C_2Cr_2O_7$	
51	. In which of th mechanism is:		•	oride the pos	sibility o	f SN ₁ reaction
				CI (3) C	CH ₃ CI	(4) CH ₃ CH ₂ CI
52	The energy pr (1) 28.2 MeV			•		u is : (4) none of these
53	The mole of hy (1) 5 x 10 ²	ydrogen (2) 5 x	ion in 50 m l 10 ⁻³	(3) 5×10^3	CI solutio (4) 5 x	on will be : 10 ⁻²
	(1) Aliphat (2) Aromat (3) Alipnet (4) None of	ic alcoho ic hydroc ic hydroc f these \$\Delta\Delta\$	l carbon carbon			
55. C ₆ will be			+	The pr	oducts ir	the above reaction
	(1) $C_6H_5I+CH_3$ (3) C_6H_5OH+C		, ,	H ₅ CH ₃ +HOI H ₆ +CH ₃ OI		
56	F3 is : (1) Bronsted b	ase (2	2) Lewis base	e (3) Lewis a	cid (4) B	ronsted acid
57. W	Thich of the follo (1) Benzaldehy		mpound giv 2) Aniline	es violet colo (3) Nitroben		FeCI ₃ solution: (4) Phenol
58. Hy	ypo solution for (1) Na ₅ [Ag(S ₂ 0			owing comple ₃ [Ag(S ₂ O ₃) ₂]	ex compo	ound with AgCI :

59. Molecular o	exygen is :			
(1) ferro magnet	ic (2) diamagne	tic (3) par	ra magnetic	(4) non magnetic
60. Bonds in ac	etylene are :			
	onds (2) one π born	ad (3) 3π	bonds (4) no	ne of these
(1) It giv(2) It giv(3) It giv	es tertiary alcohol ves tertiary alcohol ves secondary alcohol es primary alcohol	vith acetamide vith acetone ol with acetaldel	nyde	
62. Which of th (1) C ₂₀ H.	e following alkane 42 (2) C ₃ H ₈	exists is liquid (3) C ₈ H ₁₈	state at norm (4) CH ₄	al temperature :
(1) Potas			aum in :	
	of a benzene moleon. (2) 7.8 gm.		(4) no	ne of these
65. CuFeS ₂ is :				
(1) iorn p	oyrites (2) m	alachite (3) cha	alcosite (4) ch	alcopyrites
66. Primary hal	lides follow the fol	lowing reaction	n mechanism :	
$(1)\mathrm{SN}_1$	$(2) SN_2$	(3) both	(4) none of th	ese
67. C and Si bel	-	roup of periodi (3) solid	c table, CO ₂ is (4) none of th	s a gas and SiO ₂ is a : nese
(1) there (2) bond (3) the ic	while H ₂ O is a liq is association due t energy of OH high onization potential of ectro negativity of	o hydrogen bon of oxygen is higl	C	
unsaturated asy hydrogen atoms (1) Mark (2) Perox	ve part of the mole ymmetric carbon a s." This statement ownikoff's law kide effect r's law of distortion	tom which is li is related to :		C

(4) $Na_3[Ag(S_2O_3)_3]$

(3) $Na_2\{Ag(S_2O_3)_2]$

		(4) NIII [†]				
(1) N_2H_4 (2) NF	H_2 (3) NH_4	(4) NH2				
(4) none of these 70. The conjugate base of NH3 is:						
(1) (a) 2,2 (b) 2,2	(2) (a) 1,2 (b) 2,1					
(3) (a) 2,1 (b) 2,3	(4) (a) 2,1 (b) 2,1					
70. The conjugate base of NH3 is: (1) N ₂ H ₄ (2) NH ₂ (3) NH ₄ (4) NH ₂ [±] 71. (a) N ₂ and (b) C ₂ H ₃ . The nos. of πand σφond in the molecules are respectively: (1) (a) 2,2 (b) 2,2 (2) (a) 1,2 (b) 2,1 (3) (a) 2,1 (b) 2,3 (4) (a) 2,1 (b) 2,1 72. In which of the following compound there are maximum no. of sp ² hybrid C atoms: (1) Benzene (2) 1,3,5-hexatriene (2) 1,2,4-hexatriene (4) both 1 and 2 73. The shape of the molecule having hybrid orbitals of 20% character will be: (1) octahedral (2) tetrahedral (3) square planer (4) triangular bipyramidal 74. The pH of a solution is 5. If the dilution of this solution is increased by 100 times, the pH value will be: (1) 5 (2) 7 (3) 9 (4) 8 75. The required amount of oxygen for combustion of 20 ml. of gaseous hydrocarbon is 50 ml. The hydrocarbon will be: (1) C ₂ H ₂ (2) C ₂ H ₄ (3) C ₂ H ₆ (4) C ₃ H ₄ 76. The formula of Celestine is: (1) SrSO ₄ (2) SrCO ₃ (3) SrO (4) SrCl ₂ 77. CuCl ₂ + → Gu + Cl ₂ . The required amount of electricity for this reaction is: (1) 4 faraday (2) 2 faraday (3) 1 faraday (4) 3 faraday 78. Nitrogen does not forms NF ₅ because: (1) The bondenergy of N=N is very high (2) Vaccent d-orbitals are not present (3) N belongs to V group (4) There is inert effect						
(1) Benzene	(2) 1,3,5-hexatrien	e				
(2) 1,2,4-hexatriene	(4) both 1 and 2					
73. The shape of the molecular	ule having hybrid o	orbitals of 20% character will be :				
` /	` /					
(3) square planer	(4) triangular bipyr	ramidal				
-	5. If the dilution of	this solution is increased by 100 times,				
	(3) 9	(4) 8				
(1) C_2H_2 (2) C_2 76. The formula of Cel	H_4 (3) C_2H_6 estine is:	(4) C_3H_4				
(1) C ₂ H ₂ (2) C ₂ 76. The formula of Cel (1) SrSO ₄ (2) Sr	H_4 (3) C_2H_6 estine is: CO_3 (3) SrO	(4) C ₃ H ₄ (4) SrCl ₂				
 (1) C₂H₂ (2) C₂ 76. The formula of Cel (1) SrSO₄ (2) Sr 77. CuCl₂ + → Gu + Cl 	estine is: CO ₃ (3) SrO 2. The required am	$(4) \ C_3H_4$ $(4) \ SrCl_2$ nount of electricity for this reaction is :				
 (1) C₂H₂ (2) C₂ 76. The formula of Cel (1) SrSO₄ (2) Sr 77. CuCl₂ + → Gu + Cl (1) 4 faraday 	estine is: CO_3 (3) SrO 2. The required am (2) 2 faraday (3)	(4) C ₃ H ₄ (4) SrCl ₂ nount of electricity for this reaction is: 1 faraday (4) 3 faraday				
 (1) C₂H₂ (2) C₂ 76. The formula of Cel (1) SrSO₄ (2) Sr 77. CuCl₂ + → Gu + Cl (1) 4 faraday 78. Nitrogen does not f (1) The bondener 	estine is: CO_3 (3) SrO 2. The required am (2) 2 faraday (3) orms NF ₅ because: gy of N≡N is very h	(4) C ₃ H ₄ (4) SrCl ₂ nount of electricity for this reaction is: 1 faraday (4) 3 faraday igh				
 (1) C₂H₂ (2) C₂ 76. The formula of Cel (1) SrSO₄ (2) Sr 77. CuCl₂ + → Gu + Cl (1) 4 faraday 78. Nitrogen does not f (1) The bondener (2) Vaccent d-orb 	estine is: CO_3 (3) SrO 2. The required am (2) 2 faraday (3) orms NF ₅ because: gy of N≡N is very hobitals are not present	(4) C ₃ H ₄ (4) SrCl ₂ nount of electricity for this reaction is: 1 faraday (4) 3 faraday igh				
 (1) C₂H₂ (2) C₂ 76. The formula of Cel (1) SrSO₄ (2) Sr 77. CuCl₂ + →-Gu + Cl (1) 4 faraday 78. Nitrogen does not f (1) The bondener (2) Vaccent d-orb (3) N belongs to (3) 	estine is: CO ₃ (3) SrO 2. The required am (2) 2 faraday (3) orms NF ₅ because: gy of N≡N is very holitals are not present V group	(4) C ₃ H ₄ (4) SrCl ₂ nount of electricity for this reaction is: 1 faraday (4) 3 faraday igh				
 (1) C₂H₂ (2) C₂ 76. The formula of Cel (1) SrSO₄ (2) Sr 77. CuCl₂ + → Gu + Cl (1) 4 faraday 78. Nitrogen does not f (1) The bondener (2) Vaccent d-orb (3) N belongs to (3) 	estine is: CO ₃ (3) SrO 2. The required am (2) 2 faraday (3) orms NF ₅ because: gy of N≡N is very holitals are not present V group	(4) C ₃ H ₄ (4) SrCl ₂ nount of electricity for this reaction is: 1 faraday (4) 3 faraday igh				
 (1) C₂H₂ (2) C₂ 76. The formula of Cel (1) SrSO₄ (2) Sr 77. CuCl₂ + → Gu + Cl (1) 4 faraday 78. Nitrogen does not f (1) The bondener (2) Vaccent d-orb (3) N belongs to (4) There is inert 79. The normal temper 	estine is: CO ₃ (3) SrO 2. The required am (2) 2 faraday (3) corms NF ₅ because: egy of N≡N is very heatile are not present V group effect rature when raised	(4) C ₃ H ₄ (4) SrCl ₂ nount of electricity for this reaction is: 1 faraday (4) 3 faraday igh				
 (1) C₂H₂ (2) C₂ 76. The formula of Cel (1) SrSO₄ (2) Sr 77. CuCl₂ + → Gu + Cl (1) 4 faraday 78. Nitrogen does not f (1) The bondener (2) Vaccent d-ort (3) N belongs to (4) There is inert 79. The normal temper (1) lowered by 2 	estine is: CO ₃ (3) SrO 2. The required am (2) 2 faraday (3) corms NF ₅ because: gy of N=N is very hoitals are not present V group effect eature when raised times	(4) C ₃ H ₄ (4) SrCl ₂ nount of electricity for this reaction is: 1 faraday (4) 3 faraday igh				
(1) C ₂ H ₂ (2) C ₂ 76. The formula of Cel (1) SrSO ₄ (2) Sr ⁴ 77. CuCl ₂ + → Gu + Cl (1) 4 faraday 78. Nitrogen does not f (1) The bondener (2) Vaccent d-orb (3) N belongs to (4) There is inert 79. The normal temper (1) lowered by 2 (2) increased by 2	estine is: CO ₃ (3) SrO 2. The required am (2) 2 faraday (3) orms NF ₅ because: gy of N=N is very holitals are not present V group effect rature when raised times 2 times	(4) C ₃ H ₄ (4) SrCl ₂ nount of electricity for this reaction is: 1 faraday (4) 3 faraday igh				
(1) C ₂ H ₂ (2) C ₂ 76. The formula of Cel (1) SrSO ₄ (2) Sr 77. CuCl₂ + → Gu + Cl (1) 4 faraday 78. Nitrogen does not f (1) The bondener (2) Vaccent d-orb (3) N belongs to (4) There is inert 79. The normal temper (1) lowered by 2 (2) increased by 2 (3) lowered by 10	estine is: CO ₃ (3) SrO 2. The required am (2) 2 faraday (3) corms NF ₅ because: regy of N≡N is very histals are not present V group effect rature when raised times 2 times 0 times	(4) C ₃ H ₄ (4) SrCl ₂ nount of electricity for this reaction is: 1 faraday (4) 3 faraday igh				
(1) C ₂ H ₂ (2) C ₂ 76. The formula of Cel (1) SrSO ₄ (2) Sr ⁴ 77. CuCl ₂ + → Gu + Cl (1) 4 faraday 78. Nitrogen does not f (1) The bondener (2) Vaccent d-orb (3) N belongs to (4) There is inert 79. The normal temper (1) lowered by 2 (2) increased by 2	estine is: CO ₃ (3) SrO 2. The required am (2) 2 faraday (3) corms NF ₅ because: regy of N≡N is very histals are not present V group effect rature when raised times 2 times 0 times	(4) C ₃ H ₄ (4) SrCl ₂ nount of electricity for this reaction is: 1 faraday (4) 3 faraday igh				
(1) C ₂ H ₂ (2) C ₂ 76. The formula of Cel (1) SrSO ₄ (2) Sr ⁴ 77. CuCl₂ + → Gu + Cl (1) 4 faraday 78. Nitrogen does not f (1) The bondener (2) Vaccent d-orb (3) N belongs to (4) There is inert 79. The normal temper (1) lowered by 2 (2) increased by 2 (3) lowered by 10 (4) increased by 2	estine is: CO ₃ (3) SrO 2. The required am (2) 2 faraday (3) orms NF ₅ because: gy of N≡N is very holitals are not present V group effect rature when raised times 2 times 10 times	(4) C ₃ H ₄ (4) SrCl ₂ nount of electricity for this reaction is: 1 faraday (4) 3 faraday igh				

2+ snows the f e (2) sp ³ d	ollowing hybr (3) dsp ³	ridization: (4) sp ³
recipitate all	of above whe	ons in it. Which of the following ion is en added in this solution : (4) Cu ²⁺
	(3) Al ₂ O ₅	(4) CuFeS ₂
		ne central atom is in ${\rm sp}^2$ hybrid state : (4) ${\rm NH_2}^+$
ng agent knocking agen ching agent of these e hydrolysis of enation (2) d	of ester is known lehydration (3)	wn as:) esterification (4) saponification
of ionization (2) 1 10 ⁻⁵ (4) 1	of 0.4 M aceti .6x10 ⁻³ .8x10 ⁻⁵	c acid will be : $(K_a = 1.8 \times 10^{-3})$
	-	e e e e e e e e e e e e e e e e e e e
ng titrations it OHand HCI OH and CH3CO H and HCI	can be used a	and the pH range is 8-10. In which ones an indicator:
electrons in a	one molecule (3) Ba ²⁺	of CO ₂ : (4) Cu ²⁺
	contains CI-, In precipitate all (2) Ba ²⁺ is: (2) FeS ₂ the following (2) HgCl ₂ r of alkenyl g (2) 5 hyl lead mixed agent knocking agent knocking agent of these e hydrolysis of enation (2) do of ionization (2) do of ionization (2) do of ionization (2) do ess is used for (2) HNO ₃ ue of phenolping titrations it DH and HCI DH and CH ₃ COH and HCI DH and CH ₃ COH and HCI DH electrons in a	is: (2) FeS ₂ (3) Al ₂ O ₅ the following compound the (2) HgCl ₂ (3) XeF ₂ r of alkenyl groups possible (2) 5 (2) 5 (3) 3 hyl lead mixed in petrol is with the selection of these e hydrolysis of ester is known enation (2) dehydration (3) of ionization of 0.4 M acetical (3) 1.6x10 ⁻³ (2) 1.6x10 ⁻³ (3) 10 ⁻⁵ (4) 1.8x10 ⁻⁵ ess is used for production of (2) HNO ₃ (3) H ₂ SO ₄ the of phenolphthalein is 9.1 and the compound of the c

(1) 1.45x10 ⁻¹¹ mo (2) 3.45x10 ⁻⁴ mol (3) 2.05x10 ⁻⁴ mol (4) 3.75 x 10 ⁻¹¹ m	/liter ⁻¹ /liter ⁻¹				
94. When Pb ₃ O ₄ is heat (1) pbO ₂ and pb(N (2) pbO and pb(N (3) pbO ₂ (4) pbO	$NO_3)_2$	dilute H N O ₃	₃ it give	s:	
95. C-H bond length is (1) Acetylene (2) Me			(4) Eth	nane	
96. The minimum nos. of isomerism will be: (1) Seven (2) four					
97. Which of the follow CaCI ₂ : (1) ethanol (2) ber		_			drous
98. Which of the follow water: (1) Nitrobenzene		pound forms nol (3) Ber	_	_	ne
99. Gypsum is : (1) CaSO ₄ .H ₂ O (3) 2CaSO ₄ . 2H ₂ O					
100.Which of the follow	ing carb	oonium ion is	most st	table :	
(1) CH ₃ -C—CH ₃	(2) CH ₃				
CH ₃ + (3) CH ₃ 0CH-CH ₃	+ (4) CH ₃	3			

ANSWER SHEET

1.(2)	2.(3)	3.(3)	4.(2)	5.(2)	6.(4)	7.(1)	8.(3)	9.(1)	10.(4)	11.(1)
12.(1)	13.(2)	14.(4)	15.(2)	16.(4)	17.(3)	18.(2)	19.(2)	20.(2)	21.(1)	22.(2)
23.(3)	24.(4)	25.(4)	26.(3)	27.(3)	28.(3)	29.(2)	30.(3)	31.(3)	32.(1)	33.(2)
34.(3)	35.(2)	36.(3)	37.(2)	38.(1)	39.(4)	40.(4)	41.(3)	42(3)	43.(3)	44.(2)
45.(3)	46.(3)	47.(1)	48.(1)	49.(1)	50.(1)	51.(2)	52.(1)	53.(2)	54.(3)	55.(3)
56.(3)	57.(4)	58.(3)	59.(3)	60.(1)	61.(1)	62.(3)	63.(3)	64.(3)	65.(4)	66.(1)
67.(3)	68.(1)	69.(1)	70.(2)	71.(3)	72.(4)	73.(4)	74.(2)	75.(1)	76.(2)	77.(2)
78.(2)	79.(2)	80.(4)	81.(1)	82.(1)	83.(2)	84.(4)	85.(4)	86.(2)	87.(4)	88.(1)
89.(1)	90.(3)	91.(1)	92.(3)	93.(3)	94.(1)	95.(1)	96.(4)	97.(1)	98.(2)	99.(2)
100.(1)										