Academic Council 25/05/2011 Item No. 4.58

<u>Revised Syllabus in Physics (Theory & Practical)</u> <u>As per credit based system</u> First Year B. Sc. 2011 – 2012.

The revised syllabus in Physics as per credit based system for the First Year B. Sc. course will be implemented from the academic year 2011 - 2012.

Name of the Programme	Duration	Semester	Subject		
B.Sc. in Physics	Six semesters	Ι	Physics [courses USPH101,		
Course Code	Title	Credits	USPH102 and		
USPH101	Mechanics, Properties of Matter, Heat, Sound & Optics	4 for USPH101 and USPH102	USPHP1]		

Unit : I 15 lecture	Unit • I
---------------------	----------

i) Newton's Laws :

Newton's first, second and third laws of motion. Interpretation and applications, pseudo forces. Worked out examples (without friction): 1, 2, 3, 5 Chapter 5 - HCV

Worked out examples (with friction): 1, 2, 3, 4 Chapter 6 – HCV

Ref.: HCV : 5.1 to 5.5 and 5.7

Add. Ref. : TM, HRW.

ii) Elasticity : (*Elastic constants Y, K, \eta, \sigma: review*)

Equivalence of shear strain to compression and extension strains. Relation between elastic constants, Couple for twist in cylinder.

Ref.: HP : 15.2. A to 15.5.A and 15.7.A

Add Ref.: DSM

iii) Fluid Dynamics :

Equation of continuity, Bernoulli's equation, streamline and turbulent flow, lines of flow in airfoil, Poiseuille's equation.

Ref.: HP 15.2B to 15.6B

Add. Ref.: HCV, DSM

Unit : II	15 lectures
Concept of Heat. The first law. Non adjabatic	process and Heat is a path function. Internal

Concept of Heat, The first law, Non adiabatic process and Heat is a path function, Internal energy, Applications of first law to simple processes, Heat Capacity and Specific heat, General relations from the First Law : The Enthalpy, The case of an Ideal gas, Dependence of Temperature of the Atmosphere on Height above sea level, Worked examples, problems.

Ref. EG : Chapter 3, Page No. 44 to 64.

Unit : III	15 lectures
i)Wave motion in one dimension. :	
General solution of wave equation, C	lassification of waves, Examples of one
dimensional wave: Transverse wave on st	ring. Longitudinal Waves on Rod, Pressure
waves in a gas.	
Ref. SPP : 6.1, 6.2, 6.5, 6.5.1, 6.5.2, 6.5.	3.
ii) Ultrasonics	
Piezoelectric effect, Production of Ultra	sonic waves: Piezoelectric Crystal Method:
Magnetostriction Method.Detection, Prop	erties and applications of Ultrasonic Waves
iii) Acoustics of Buildings	
Reverberation, Sabine's formula (without	derivation) Absorption coefficient, Acoustics
of Buildings, factors affecting Acoustics	of Buildings, Sound distribution in an
auditorium.	-

Ref.: MS : 5.1to 5.6, 5.8, 5.9, 5.10, 5.12, 5.13, 5.14, 5.15.

Note:

A good number of numerical examples are expected to be covered during the prescribed *lectures*.

References.

- 1. HCV : Concepts of Physics H. C. Verma (Part I) 2002 Ed. Bharati Bhavan Publishers.
- 2. **HP** : Mechanics Hans and Puri, 2nd Ed. Tata McGraw Hill.
- 3. EG : Basic Thermodynamics-Evylen Guha (Narosa Publication)
- 4. **SPP** : Fundamentals of vibration and waves S P Puri (Tata McGraw Hill)
- 5. MS : Properties of matter and Acoustics R Murugeshan and K. Shivaprasath, S Chand & Co.Ltd. (2005-Ed)

Additional References

Unit – I

- 1. **TM**: Classical Dynamics Thornton & Marion (5th Ed)
- 2. **DSM :** Element of Properties of Matter D S Mathur, S Chand & Co.
- 3. **HRW :** Fundamental of Physics (extended) Haliday, Resnick and Walker (6th Ed.), John Wiley and Sons.

Unit - II

- 1. Heat and Thermodynamics M. W Zemonsky & R H Dittman. McGraw Hill.
- 2. Theory and Experiments on Thermal Physics D. K. Chakrabarti (2006 Ed), Central book.

Unit - III

- 1. A Text book of Sound Subramanyam and Brij Lal
- 2. A Text book of Sound M. N. Srinivasan, Himalaya Publishing House
- 3. Acoustics Waves and Oscillations S. N. Sen Wiley Estern Ltd.
- 4. Sound F. G. Mee. Heinemann Educational Books Ltd.

Name of the Programme	Duration		Semester	Subject				
B.Sc. in Physics	Six semesters		I	Physics				
Course Code	Title		Credits	[courses				
USPH102	Electricity. Magnetism.		4 for USPH101	USPH101,				
	Electronics, Atomic,	Nuclear	and USPH102	USPH102 and				
	and Modern Physics			USPHP1]				
Unit : I		15 lecture						
1. Transient respons Series LR CR and	se of circuits: LCR circuit Growth and	decay of	current					
CR : 14.1 to 14.3		deedy of	ourront					
2. Alternating curre	nt theory: (Concept of L,	R and C	: Review)					
Complex numbers,	AC circuit containing pu	re R, Pure	e L and pure C, Se	ries L-R, C-R and				
LCR circuits. Res	onance in LCR circuit (bo	th series	and parallel) Powe	er in AC circuit,				
Q factor. Transfor CR - 15.2 .15.5 to	mer : (Ref. CR : Art 5.12 5 15.12	2 Omit ph	asor diagram & A	uto transformer)				
Unit : II				15 lectures				
1) Nuclear atom, ele	ctron orbits, atomic spectr	a, Bohr a	tom, energy levels	and spectra,				
correspondence pr	rincipal, nuclear motion, a	tomic ex	citation.	1 /				
2) X-Rays productio	n, continuous and charact	eristic X	ray spectra, X-Ray	Diffraction,				
Bragg's Law,								
AB: 4.1 to 4.8,	2.4, 2.5, 2,6.							
Unit : III				15 lectures				
1) Rectifier Circuit	: (Half wave and Full wa	ve rectifie	er : Review)	ilter circuite.				
Bridge rectifier: F			wave Reculler, F					
types of filter circ	uits – capacitor filter, cho	ke input i	filter, π Filter, Vol	tage stabilization				
– Zener diode as v	voltage stabilizer.							
VKM : 9.10 to 9	9.20, 9.22, 9.23.							
2) Transistor as am	plifier – CB, CE, CC mod	des. Defii	nition of gain α , β	(dc ∾) and				
cut off and saturat	ion points	ation, Lo	ad fine Analysis,	operating point,				
VKM : 11.7 to 11	.17, 11.21							
3) Digital electronic	s (Logic Gates : Review)							
De-Morgan's The	orems, NAND & NOR a	s Univers	al Building blocks	5.				
EX-OR gate: Log	ic expression, logic symbolic	ol, truth ta	able, Implementati	on using basic				
gates and its appli	cations : Controlled inver	ter, Half	Adder, Full adder.	-				
VKM : 28.8 to 28.14, 28.19								
LM : 6.7								
Additional Reference	es:							
$\frac{\text{Umit} - \text{III}}{1 - \text{E}^{1}}$	· 1 1 1· .·							
I. Electronic Prin	1. Electronic Principles and applications – A B Bhattacharya, Central Publisher.							
2. Electronic Devices and Circuit Theory – Boylestad and Nasnelsky (o Ed.), Prentice Hall of India								
3 Flectronic Drin	ciples $\Delta \mathbf{P}$ Malvino (5 th)	Ed) Tot	a McGraw Hill					
4. Digital Principles and Applications – A P Malvino, McGraw Hill International.								

Digital Principles and Applications – A P Marvino, McGraw Hill International Edition.
Digital Electronics – Tokheim (4th Ed.) – McGraw Hill International Edition.

Name of the Programme	Duration	Semester	Subject
B.Sc. in Physics	Six semesters	Ι	Physics
Course Code	Title	Credits	[courses
USPHP1	i) Mechanics, Properties of Matter, Heat, Sound & Optics ii) Electricity, Magnetism, Electronics, Atomic, Nuclear and Modern Physics	2	USPH102 and USPHP1]

Regular experiments

- 1. Flywheel
- 2. Torsional oscillations
- 3. Bifilar Pendulum
- 4. Helmholtz Resonator
- 5. Y by Vibration
- 6. η By Poisseuli Method
- 7. Bridge rectifier (to study load regulation)
- 8. Zener diode as regulator
- 9. Transistor (CE) characteristics
- 10. DeMorgan's Theorems
- 11. EX-OR Gate, NAND and NOR as Universal Building Blocks.

Skill Experiments

- 1. Use of Vernier Callipers, Micrometer Screw Gauge and Travelling Microscope
- Graph plotting (Exponential, Straight line with intercept, Resonance curve etc.)
- 3. Spectrometer : Schuster's Method
- 4. Use of DMM

Minimum 7 experiments from both the papers should be completed in first semester. All the skill experiments are to be reported in journal. Certified journal is must to be eligible to appear for the semester end practical examination.

Name of the Programme	Duration	Semester	Subject
B.Sc. in Physics	Six semesters	II	Physics
Course Code	Title	Credits	[courses
USPH201	Mechanics, Properties of Matter, Heat, Sound & Optics	4 for USPH201 And USPH202	USPH202 and USPHP2]

Unit : I

i)Composition of two SHM,s :

(Definition of SHM and composition of two parallel SHM's of same period : review) Composition of two perpendicular S H M's having same period and period in the ratio

15 lectures

1:2, Lissajous figures.

Ref.: SPP 2.4.1, 2.4.3, 2.4.4.

ii)Mechanics of a system of particles:

Centre of mass of a system of particles, Linear momentum of a system of particles and its conservation. Angular momentum of a system of particles and its conservation. Rocket motion (neglecting gravity)

Ref.: TM: 9.2, 9.3, 9.4, 9.11

Unit : II	15 lectures
i)Geometrical Optics:	
Refraction through lenses, Thin lens, Thick	lens, Lens combination.
ii)Aberrations:	
Spherical Aberration, Reduction of Spl	herical Aberration Chromatic Aberration,
Condition for Achromatism	
iii)Simple Table Spectrometer:	
Adjustments, measurement of angle of min	imum deviation
iv)Interference of light:	
Interference in thin films, Fringes in Wedg	ge shaped films, Newton's Rings.
Ref.: S. B 2.1 to 2.11, 2.14, 2.15, 3.5 to 3.11	l, 3.25 to 3.28, 4.36, 4.37, 8.15 to 8.25.
Unit : III	15 lectures
Laser :	
Introduction, transition between Atomic er	nergy states (without derivation), Principle of

other applications. **Ref.: S P: 9.1, to 9.6, 9.10, 9.11.**

Fibre Optics :

Light propagation through Fibres, Fibre Geometry, Internal reflection, Numerical Aperture, Step-Index and Graded-Index Fibres, Applications of Fibres.

Laser, Properties of Laser, Helium-Neon Laser, Application of Laser to Holography and

Ref.: S P : - 13.3, 13.5, 13.9.

Note:

A good number of numerical examples are expected to be covered during the prescribed *lectures*.

- 1. **TM** : Classical Dynamics Thornton and Marion (5th Ed.) Thomson Books.
- SB : A Text Book of Optics, N. Subramaniyam and Brij Lal, S. Chand and Co. 22nd Ed. (1994)
- 3. **SPP** : Fundamentals of vibration and waves S P Puri (Tata McGraw Hill)
- 4. **SP** : Modern Physics Concept and Applications Sanjeev Puri, Narosa Publication.

Additional References

Unit – I

- 1. **DSM**: Element of Properties of Matter D.S. Mathur, S. Chand & Co. (Ed. 2001)
- 2. **KRS** : Mechanics K R Symon Addision Wesley Publishing Co.

Unit – II

- 1. Principles of Optics B. K. Mathur and T. P. Pandya (3rd Ed.) 1981, McGraw Hill International.
- 2. Fundamentals of Optics Khanna and Gulati (1994), S. Chand.
- 3. Optics C. L. Arora, S. Cand & Co. Ltd (2001)

Unit – III

- 1. Fundamentals of Optics Jenkins and White. (4th Ed) McGraw Hill International.
- 2. Optics Ajoy Ghatak (2nd Ed.) Tata McGraw Hill.
- 3. Electronic Communication System and Device Kennedy. (4th Ed) Tata McGraw Hill.
- 4. Fibre Optics Kaiser, McGraw Hill.

Name of the Programme	Duration	Semester	Subject
B.Sc. in Physics	Six semesters	II	Physics
Course Code	Title	Credits	[Courses
USPH202	Electricity, Magnetism, Electronics, Atomic, Nuclear and Modern Physics	4 for USPH201 And USPH202	USPH202 and USPHP2]

Unit : I

15 lectures

1. a) Circuit theorems:

Thevenin theorem, Norton theorem, Reciprocity theorem, Maximum power transfer theorem.

CR: 7.7, 7.8, 7.9, 7.10, 7.11

b) A C bridges: General AC Bridge, Maxwell, de-Sauty, Wien, Schering. CR: 15.14

2. Electromagnetic Measuring Instruments:

General theory of MCG, Dead beat and Ballistic galvanometer.

Difference between Dead beat and Ballistic galvanometer.

CR – 12.1, 12.2, 12.4, 12.5.

Unit : II 15 lectures

- 1. Nuclear composition, some nuclear properties, stable nuclei, binding energy, Meson theory of nuclear forces.
- Radioactive decay: Five kinds, Radioactivity and the Earth, Radiation Hazards, Half-Life, Radiometric Dating, Successive Disintegration A =>B =>C(stable), Radioactive Series and Radioactive Equilibrium.

AB: 11.1 to 11.4, 11.7, 12.1 to 12.3.

Unit : III							15 lectures
. ~	- 22						

- 1. Compton Effect, Pair production, Photons and Gravity, Gravitational Red Shift.
- De Broglie Waves, Wave function, Particle Diffraction, Davisson Germer Experiment, Heisenberg's Uncertainty Principle.
 AB: 2.7, 2.8, 2.9, 3.1, 3.2, 3.5, 3.7, 3.8, 3.9.

Note:

A good number of numerical examples are expected to be covered during the prescribed lectures.

References :

- CR : Electricity and Magnetism- D. Chattopadhaya and P. C. Rakshit (4th Ed) Reprint – 2000) Books and Allied (P) Ltd.
- 2. AB : Concepts of Modern Physics A. Beiser (6th Ed), Tata McGraw Hill.
- 3. **VKM** : Principles of Electronics V. K. Mehta and Rohit Mehta (2006 revised Ed), S. Chand and Co.
- 4. **LM :** Digital Principles and Applications Leach and Malvino (5th Ed), Tata McGraw Hill.

Additional References

<u>Unit I</u>

- 1. Mechanics and Electrodynamics Brij Lal, N. Subramaniyam, Jivan Seshan (Revised and enlarged Ed 2005) S. Chand.
- 2. Schaum's Outline Series Electricity and magnetism Administer.

Unit II and III

- 1. Perspectives of modern Physics A Beiser, Tata McGraw Hill.
- 2. Quantum Mechanics S B Singh, M K Bagde, Kamal Singh, S Chand (Reprinted 2000).
- 3. Nuclear Physics S B Patel, New Age International Pvt. Ltd.
- 4. Atomic and Nuclear Physics S. N. Ghosal (2nd Ed. 2000) S Chand & Co.
- 5. Atomic and Nuclear Physics A. B. Gupta and Deepak Ghosh, Books & Allied (P)Ltd. (2nd Ed. 1999.)

Name of the	Duration	Semester	Subject
Programme			
B.Sc. in Physics	Six semesters	Ι	Physics [courses
Course Code	Title	Credits	USPH201,
USPHP2	i) Mechanics, Properties of Matter,	2	USPH202 and
	Heat, Sound & Optics ii) Electricity,		USPHP2]
	Magnetism, Electronics, Atomic,		
	Nuclear and Modern Physics		

Regular experiments Paper – I and II

- 1. J by Electrical Method
- 2. Spectrometer (determination of angle of prism A)
- 3. Spectrometer (determination of refractive index μ of material of prism)
- 4. Combination of lenses
- 5. Newton's rings
- 6. Wedge Shaped Film
- 7. Thevenin's theorem
- 8. Norton's theorem
- 9. LR circuit
- 10. CR circuit
- 11. Frequency of AC mains
- 12. LDR characteristics
- 13. LCR Series Resonance

Demonstration experiments

- 1. Angular momentum conservation (Rotating platform)
- 2. Brewster's law
- 3. Laser beam divergence, intensity
- 4. Use of oscilloscope
- 5. Charging and Discharging of a capacitor
- 6. Use of PC for graphs, demonstration experiments
- 7. Single Slit Fraunhoffer diffraction.
- 8. Faraday's Induction Experiment

Minimum 7 experiments from both the papers should be completed in the second semester. At least four demonstration experiments are to be reported in journal. Certified journal is must to be eligible to appear for the semester end practical

The scheme of examination for the revised course in Physics at the First Year B. Sc. Semester end examination will be as follows.

Scheme of Examination:

The performance of the learners shall be evaluated into two parts. The learner's performance shall be assessed by Internal Assessment with 40% marks in the first part & by conducting the Semester End Examinations with 60% marks in the second part.

The Course having Practical training will have Practical Examination for 50 marks at the end of Semester, out of which 30 marks for the Practical task assigned at the time of examination. The 20 marks are allotted as Internal Assessment.

The allocation of marks for the Internal Assessment and Semester End Examinations are as shown below:-

Internal Assessment: It is defined as the assessment of the learners on the basis of continuous evaluation as envisaged in the Credit based system by way of participation of learners in various academic and correlated activities in the given semester of the progamme.

Semester End Assessment : It is defined as the assessment of the learners on the basis of Performance in the semester end Theory/ written/ Practical examination.

Modality of Assessment : Internal Assessment - 40%

40 marks.

a) Theory	40 marks
Sr No	Evaluation type	Marks
1	Two Assignments/Case study/Project	20
2	One class Test (multiple choice questions objective)	10
3	Active participation in routine class instructional	05
	deliveries(case studies/ seminars//presentation)	
4	Overall conduct as a responsible student, manners, skill in	05
	articulation, leadership qualities demonstrated through	
	organizing co-curricular activities, etc.	
b) Practicals	20 marks
Sr No	Evaluation type	Marks
1	Two best practicals	10
2	Journal	05
3	Viva	05

B) External examination - 60 %

Semester End Theory Assessment - 60%

60 marks

- i. Duration These examinations shall be of two hours duration.
- ii. Theory question paper pattern :-
- 1. There shall be four questions each of 15 marks. On each unit there will be one question & fourth one will be based on entire syllabus.
- 2. All questions shall be compulsory with internal choice within the questions. Each question will be of 20 to 23 marks with options.

3. Questions may be sub divided into sub questions a, b, c, d & e only & the allocation of marks depends on the weightage of the topic.

Practical External Assessment

30 marks

A candidate will be allowed to appear for the examination only if the candidate submits a Certified journal at the time of practical examination of the semester or a certificate from the Head of the Department / Institute to the effect that the candidate has completed the practical course of that semester of F. Y. B. Sc. Physics as per the minimum requirement.