

Osmania University

Faculty of Informatics

Bachelor of Computer Applications (BCA) Semester I and II 2019 – 2020

> Scheme of Instruction and Syllabi

Osmania University Hyderabad

Osmania University Proposed Scheme of Instruction Bachelor of Computer Applications (BCA) Scheme W.E.F 2019-2020

	1							1	1		1
Sem	Course-1	Course-2	Course-3	Course -4	Course-5	Lab-1	Lab-2	Lab-3	Hrs	Cr	Categories
Ι	Mathema tical Foundati ons of Compute r Science (4) BSC	Digital Principle s (4) PCC	Programm ing in C (4) PCC	Introdu ction to Web Techno logy (4) PCC	Effective Commun ication (4) HSC	Programming in C Lab (2) LCC	Web Technology Lab (2) LCC	IT Workshop (2) LCC	32	26	BSC=4 PCC=12 HSC=4 LCC=6
II	Fundame ntals of Probabili ty and Statistics (4) BSC	Object Oriented Program ming using CPP (4) PCC	Computer Architectu re (4) PCC	Data Structu res (4) PCC	Data Commun ications (4) PCC	Object Oriented Programming using CPP Lab (2) LCC	Data Structures Lab (2) LCC	Communication Skills Lab (2) LHC	32	26	BSC=4 PCC=16 LCC=4 LHC=2
III	Applied Mathema tics (4) BSC	Core Java Program ming (4) PCC	Software Engineerin g (4) PCC	Operati ng System Concep ts (4) PCC	Database Design (4) PCC	Core Java Programming Lab (2) LCC	Software Engineering Lab (2) LCC	Database Design Lab (2) LCC	32	26	BSC=4 PCC=16 LCC=6
IV	Distribut ed and Cloud Computi ng (4) ETC	Algorith m Design (4) PCC	Computer Networks (4) PCC	Data Scienc e using Python Lab (4) ETC	Artificial Intelligen ce (4) ETC	Data Science using Python Lab (2) LTC	Computer Networks Lab (2) LCC	Technical Seminar (1) LCC	30	25	PCC=8 ETC=12 LCC=3 LTC=2
V	Parallel Program ming (4) ETC	Big Data Analytics (4) ETC	Software Quality and Testing (4) ETC	Enviro nmenta 1 Scienc e (0) MC	Professio nal Elective –I Advance d Java Program ming / Program using c# and ASP.NE T / Internet Program ming using PHP (4) PEC	Big Data Analytics Hadoop Lab (2) LTC	Professional Elective –I Lab (2) LPC	Project Phase -I (2) LCC	32	22	ETC=12 PEC=4 LTC=2 LPC=2 LCC=2
VI	Professio nal Elective –II	Professio nal Elective –III	Open Elective Human Relation at	-	-		Project Phas (4) LCC	se –II	20	16	PEC=8 HSC=4 LCC=4

Machine	Informati	Work					Γ
Learning	on	/ Ethics					
/ Internet	Retrieval	and					
of Things	Systems	Holistic					
/	/	Life					
Blockcha	Distribut	/ Gender					
in	ed	Sensitizati					
(4) PEC	Database	on					
	S	(4) HSC					
	/ Cyber						
	Security						
	(4) PEC						

Categories of Courses and Credits

Abbreviation	Full Form	Credits	Abbreviation	Full Form	Credits
BSC	Basic Science Course	12	LCC	Laboratory Core	25
				Course	
PCC	Professional Core	52	LTC	Laboratory	4
	Course			Technological	
				Course	
ETC	Emerging	24	LPC	Laboratory	2
	Technological			Professional Course	
	Course				
HSC	Humanities and	8	LHC	Laboratory	2
	Social Science			Humanities Course	
	Course				
PEC	Professional Elective	12			
	Course				
Tota	141				

PROPOSED SCHEME OF INSTRUCTION
BACHELOR OF COMPUTER APPLICATIONS (BCA)
SEMESTER- I

	Course	Course	Cate-	Ног	ırs/	No of	S Ex	Schei xami	ne of nation
SNO	Code	Title	gory Week Credits			Ma	X	Duration	
							Mar	ks	(hrs)
	r	ГHEORY		L	Р		SEE	CIE	SEE
1	BSC101	Mathematical Foundations of Computer Science	BSC	4	-	4	70	30	3
2	PCC102	Digital Principles	PCC	4	-	4	70	30	3
3	PCC103	Programming in C	PCC	4	-	4	70	30	3
4	PCC104	Introduction to Web Technology	PCC	4	-	4	70	30	3
5	HSC105	Effective Communication	HSC	4	-	4	70	30	3
	PF	RACTICAL							
6	LCC151	Programming in C Lab	LCC	-	4	2	50	25	3
7	LCC152	Web Technology Lab	LCC	-	4	2	50	25	3
8	LCC153	IT Workshop	LCC	-	4	2	50	25	3
			Total	20	12	26	500	225	-

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

PROPOSED SCHEME OF INSTRUCTION
BACHELOR OF COMPUTER APPLICATIONS (BCA)
SEMESTER- II

CNL	Course	Course	Cate-	Ног	ırs/	No of	S E	Schei xami	ne of nation				
SINO	Code	Title	gory	Week		ry Week		ory Week		Credits	Max		Duration
							Mar	ks	(hrs)				
	Τ	HEORY		L	Р		SEE	CIE	SEE				
1	BSC201	Fundamentals of Probability and Statistics	BSC	4	-	4	70	30	3				
2	PCC202	Object Oriented Programming using CPP	PCC	4	-	4	70	30	3				
3	PCC203	Computer Architecture	PCC	4	-	4	70	30	3				
4	PCC204	Data Structures	PCC	4	-	4	70	30	3				
5	PCC205	Data Communications	PCC	4	-	4	70	30	3				
	PRA	CTICALS											
6	LCC251	Object Oriented Programming using CPP Lab	LCC	-	4	2	50	25	3				
7	LCC252	Data Structures Lab	LCC	-	4	2	50	25	3				
8	LHC253	Communication Skills Lab	LHC	-	4	2	50	25	3				
			Total	20	12	26	500	225	-				

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

PROPOSED SCHEME OF INSTRUCTION BACHELOR OF COMPUTER APPLICATIONS (BCA) SEMESTER- III

~~~	Course	Course	Cate-	Ног	ırs/	No of	S E	Schei xami	ne of nation								
SNO	Code	Title	gory	y Week		Week		gory Week		gory Week		Week		Credits	Ma Mar	x ks	Duration (hrs)
	Т	HEORY		L	P		SEE	CIE	SEE								
1	BSC301	Applied Mathematics	BSC	4	-	4	70	30	3								
2	PCC302	Core Java Programming	PCC	4	-	4	70	30	3								
3	PCC303	Software Engineering	PCC	4	-	4	70	30	3								
4	PCC304	Operating System Concepts	PCC	4	-	4	70	30	3								
5	PCC305	Database Design	PCC	4	-	4	70	30	3								
	PRA	ACTICALS															
6	LCC351	Core Java Programming Lab	LCC	-	4	2	50	25	3								
7	LCC352	Software Engineering Lab	LCC	-	4	2	50	25	3								
8	LCC353	Database Design Lab	LCC	-	4	2	50	25	3								
		·	Total	20	12	26	500	225	-								

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

PROPOSED SCHEME OF INSTRUCTION
BACHELOR OF COMPUTER APPLICATIONS (BCA)
SEMESTER- IV

GN	Course	Course	Cate-	Hours/		No of	S Ex	Schei xami	ne of nation
SNO	Code	Title	gory	We	eek	Credits	Max Marka		Duration (brs)
	ļ	ГНЕОКУ		L P			SEE	CIE	SEE
1	ETC401	Distributed and Cloud Computing	ETC	4	-	4	70	30	3
2	PCC402	Algorithm Design	PCC	4	-	4	70	30	3
3	PCC403	Computer Networks	PCC	4	-	4	70	30	3
4	ETC404	Data Science using Python	ETC	4	-	4	70	30	3
5	ETC405	Artificial Intelligence	ETC	4	-	4	70	30	3
	PR	ACTICALS							
6	LCC451	Data Science using Python Lab	LT C	-	4	2	50	25	3
7	LCC452	Computer Networks Lab	LCC	-	4	2	50	25	3
8	LCC453	Technical Seminar	LCC	-	2	1	50	25	3
			Total	20	10	25	500	225	-

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

### PROPOSED SCHEME OF INSTRUCTION BACHELOR OF COMPUTER APPLICATIONS (BCA) SEMESTER-V

	Course	Course	Cate-	Ног	irs/	No of	E S	Schei vami	ne of nation
SNo	Code	Title	gorv	We	ek	Credits	Ma	v	Duration
	Coue	The	5015			creatio	Mar	a ks	(hrs)
	<u>ו</u>	THEORY		L	Р		SEE	CIE	SEE
	-			-					522
1	ETC501	Parallel Programming	ETC	4	-	4	70	30	3
2	ETC502	Big Data Analytics	ETC	4	-	4	70	30	3
3	ETC503	Software Quality and Testing	ETC	4	-	4	70	30	3
4	MC504	Environmental Science	MC	4	-	Non Credit	70	30	3
	Profess	sional Elective I	PEC	4	-	4	70	30	3
<b>4</b> a	PEC511	Advanced Java Programming							
4b	PEC512	Programming using C# and ASP.NET							
4c	PEC513	Internet Programming using PHP							
	PR	ACTICALS							
6	LTC551	Big Data Analytics Hadoop Lab	LTC	-	4	2	50	25	3
7	LPC552	Professional Elective-I Lab	LPC	-	4	2	50	25	3
8	LCC553	Project Phase I	LCC	-	4	2	50	25	3
			Total	20	12	22	500	225	-

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

### PROPOSED SCHEME OF INSTRUCTION BACHELOR OF COMPUTER APPLICATIONS (BCA) SEMESTER-VI

	Course	Course	Cate-	Но	ırs/	No of	S Ex	Schei xami	ne of nation
SNo	Code	Title	gory	We	ek	Credits	Ma Mar	x ks	Duration (hrs)
	·	THEORY		L	Р		SEE	CIE	SEE
	Profes	sional Elective II	PEC	4	-	4	70	30	3
1a	PEC601	Machine Learning							
1b	PEC602	Internet of Things							
1c	PEC603	Blockchain							
	Profess	sional Elective III	PEC	4	-	4	70	30	3
2a	PEC611	Information Retrieval Systems							
2b	PEC612	Distributed Databases							
3c	PEC613	Cyber Security							
	0	pen Elective	HSC	4	-	4	70	30	3
3a	HSC621	Human Relations at Work							
3b	HSC622	Ethics and Holistic Life							
3c	HSC623	Gender Sensitization							
	PRACTICALS								
4	LCC651	Project Phase II	LCC	-	8	4	100	50	3
		Total		12	8	16	310	140	-

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

#### PROPOSED SCHEME OF INSTRUCTION BACHELOR OF COMPUTER APPLICATIONS (BCA) SEMESTER- I

SNo	Course	Course	Cate-	Но	ırs/	No of	s E	Schei xami	ne of nation
5110	Code	Title	gory	We	eek	Credits	Max Marks		Duration (hrs)
		THEORY		L	P		SEE	CIE	SEE
1	BSC101	Mathematical Foundations of Computer Science	BSC	4	-	4	70	30	3
2	PCC102	Digital Principles	PCC	4	-	4	70	30	3
3	PCC103	Programming in C	PCC	4	-	4	70	30	3
4	PCC104	Introduction to Web Technology	PCC	4	-	4	70	30	3
5	HSC105	Effective Communication	HSC	4	-	4	70	30	3
	P	RACTICAL							
6	LCC151	Programming in C Lab	LCC	-	4	2	50	25	3
7	LCC152	Web Technology Lab	LCC	-	4	2	50	25	3
8	LCC153	IT Workshop	LCC	-	4	2	50	25	3
	1		Total	20	12	26	500	225	-

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

With effect from the academic year 2019-2020

BCA SEM L THEORY			Ho	urs		Scheme of Examination			
BCA SENI I – THEORY			/week			MaxN	Marks	Duratio	on(hrs)
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE
BSC101	Mathematical Foundations of Computer Science	BSC	4	-	4	70	30	3	1

### UNIT- I

**Fundamentals of Logic**: Basic Connectives and Truth Tables, Logical Equivalence, Logical Implication, Use of Quantifiers, Definitions and the Proof of Theorems.

**Set Theory**: Set and Subsets, Set Operations, and the Laws of Set theory, Counting and Venn Diagrams.

**Properties of the Integers**: The well – ordering principle, Recursive Definitions, Division Algorithms, Fundamental theorem of Arithmetic.

### UNIT-II

**Relations and Functions**: Cartesian Product, Functions onto Functions, Special Functions, Pigeonhole Principle, Composition and Inverse Functions.

**Relations:** Partial Orders, Equivalence Relations and Partitions.

**Principle of Inclusion and Exclusion:** Principles of Inclusion and Exclusion, Generalization of Principle.

#### UNIT-III

**Generating Functions:** Introductory Examples, Definition And Examples, Partitions of Integers. **Recurrence Relations:** First – order linear recurrence relation, second – order linear homogenous recurrence relation with constant coefficients.

#### UNIT-IV

Algebraic Structures: Algebraic System – General Properties, Semi Groups, Monoids, Homomorphism, Groups, Residue Arithmetic.

### UNIT -V

**Graph Theory:** Definitions and examples, sub graphs, complements and graph Isomorphism, Vertex degree, Planar graphs, Hamiltonian paths and Cycles.

**Trees:** Definitions, properties and Examples, Rooted Trees, Spanning Trees and Minimum Spanning Trees.

### Suggested Reading:

1) Mott Joe L Mott, Abraham Kandel, and Theodore P Baker, **Discrete Mathematics for Computer Scientists & Mathematicians**, Prentice Hall NJ, 2nd Edition, 2015.

2) Jr. P. Tremblay and R Manohar **Discrete Mathematical Structures with Applications to Computer Science**, McGraw Hill, 1987.

3) R.K.Bisht and H.S.Dhami, **Discrete Mathematics** Oxford Higher Education, 2015

4) Bhavanari Satyanarayana, Tumurukota Venkata Pradeep Kumar and Shaik Mohiddin Shaw, Mathematical Foundation of Computer Science, BSP, 2016

5) Ralph P. Grimaldi Discrete and Combinatorial Mathematics, 5th Edition, Pearson, 2004.

With effect from the academic year 2019-2020

BCA SEM I – THEORY			Ho	urs		Scheme of Examination				
			/week			MaxMarks Duratio		on(hrs)		
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
PCC102	Digital Principles	PCC	4	-	4	70	30	3	1	

#### UNIT I

**Binary Systems**: Digital Systems, Binary Numbers, Number Base Conversions, Octal and Hexadecimal Numbers, Complements, Signed Binary Numbers, Binary Codes, Binary Storage and Registers, Binary Logic.

**Boolean Algebra and Logic Gates**: Basic Theorems and Properties of Boolean Algebra, Boolean Functions, Canonical and Standard Forms, Digital Logic Gates.

### UNIT II

**Minimization**: K-Map Method – Table Method, POS - SOP, Don't Care Conditions, NAND, NOR Implementation.

**Combinational Logic**: Combinational Circuits, Analysis and Design Procedure, Binary Adder, Subtractor, Decimal Adder, Binary Multiplier, Magnitude Comparator, Decoders, Encoders, Multiplexers.

#### UNIT III

**Synchronous Sequential Logic**: Sequential Circuits - Latches, Flip-Flops, An analysis of Clocked Sequential Circuits, State Reduction and Assignment Design Procedure.

### UNIT IV

**Registers and Counters**: Registers, Shift Registers, Ripple Counters, Synchronous Counters, Ring Counters-Johnson Counter.

#### UNIT V

Asynchronous Sequential Circuit : Introduction, Analysis Procedure, Circuits with Latches, Design Procedure.

### Suggested Reading:

1 M.Morris Mano, "Digital Design", 3rd edition, Pearson Education, Delhi, 2007. 2 Donald P Leech, Albert Paul Malvino and Goutam Saha, "Digital Principles and Applications", Tata Mc Graw Hill, 2007.

With effect from the academic year 2019-2020

DCA SEM L THEODY			Hours			Scheme of Examination			
BCA SENI I – THEORY			/week			MaxN	Marks	Duratio	on(hrs)
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE
PCC103	Programming in C	PCC	4	-	4	70	30	3	1

#### UNIT – I

Introduction to Computers: Computer Systems, Computing Environments, Computer Languages, Creating and Running Programs, Software Development, Flow charts.

Number Systems: Binary, Octal, Decimal, Hexadecimal

**Introduction to C Language -** Background, C Programs, Identifiers, Data Types, Variables, Constants, Input / Output Statements

Arithmetic Operators and Expressions: Evaluating Expressions, Precedence and Associativity of Operators, Type Conversions.

#### UNIT-II

**Conditional Control Statements:** Bitwise Operators, Relational and Logical Operators, If, If-Else, Switch-Statement and Examples. Loop Control Statements: For, While, Do-While and Examples. Continue, Break and Goto statements

**Functions:** Function Basics, User-defined Functions, Inter Function Communication, Standard Functions, Methods of Parameter Passing. **Recursion-** Recursive Functions.

Storage Classes: Auto, Register, Static, Extern, Scope Rules, and Type Qualifiers.

### UNIT – III

**Preprocessors**: Preprocessor Commands. **Arrays** - Concepts, Using Arrays in C, Inter-Function Communication, Array Applications, Two- Dimensional Arrays, Multidimensional Arrays, Linear and Binary Search, Selection and Bubble Sort.

#### UNIT - IV

**Pointers** - Introduction, Pointers for Inter-Function Communication, Pointers to Pointers, Compatibility, L-value and R-value, Arrays and Pointers, Pointer Arithmetic and Arrays, Passing an Array to a Function, Memory Allocation Functions, Array of Pointers, Programming Applications, Pointers to void, Pointers to Functions, Command-line Arguments.

**Strings -** Concepts, C Strings, String Input/Output Functions, Arrays of Strings, String Manipulation Functions.

#### UNIT - V

**Structures:** Definition and Initialization of Structures, Accessing Structures, Nested Structures, Arrays of Structures, Structures and Functions, Pointers to Structures, Self Referential Structures, Unions, Type Definition (typedef), Enumerated Types.

**Input and Output:** Introduction to Files, Modes of Files, Streams, Standard Library Input/Output Functions, Character Input/Output Functions.

### Suggested Reading:

1. B.A. Forouzan and R.F. Gilberg, "A Structured Programming Approach in C", Cengage Learning, 2007

2. Kernighan BW and Ritchie DM, "*The C Programming Language*", 2nd Edition, Prentice Hall of India, 2006.

3. Rajaraman V, "The Fundamentals of Computer", 4th Edition, Prentice-Hall of India, 2006.

With effect from the academic year 2019-2020

BCA SEM I – THEORY			Hours /week			Scheme of Examination				
						MaxN	Marks	Duration(hrs)		
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
PCC104	Introduction to Web Technology	PCC	4	-	4	70	30	3	1	

### UNIT-I

Introduction to World Wide Web, Web Browsers, Web Servers, Uniform Resource Locators, HTTP.

**HTML5**: Introduction, Links, Images, Multimedia, Lists, Tables, Creating Forms, Styling Forms.

### UNIT-II

**Dynamic HTML** – Cascading Style Sheets, Inline Styles, Style Elements, External Style Sheets, Text Flow and Box Model, User Style Sheets

**Object Model and Collections** – Object Referencing, Collections, Children Frames, Navigator Objects

**Event Model** - ONCLICK, ONLOAD, Error Handling, ONERRORS, ONMOUSEMOVE, ONMOUSEOVER, ONMOUSEOUT, ONFOCUES, ONBLUR, ONSUBMIT

### UNIT-III

**Introduction to Java script**, Java Script and Forms Variables, Functions, Operators, Conditional Statements and Loops, Arrays DOM, Strings, Event and Event Handling, Java Script Closures.

### UNIT-IV

**Introduction to Python**: Features of Python, Operators, Input/Output Statements, Control Statements, Execution of Simple Python Programs.

### UNIT-V

**Introduction to XML**, XML document structure, Document Type Definition, Namespaces, XML Schemas, XPath Basics, XSLT, XML Processors.

### Suggested Reading:

1. Robert W.Sebesta, Programming the World Wide Web, 3rd Edition, Pearson Education, 2006

2. Wendy Willard, HTML5, McGraw Hill Education (India) Edition, 2013

3. John Pollock, Java Script, 4th Edition, McGraw Hill Education (India) Edition, 2013

4. R. Nageswara Rao, Corer Python Programming, Dreamtech Press

		VV 11	n ejje	cijio	m ine	ucuue	mic ye	201	9-2020	
	DCA SEMI THEODY		Hours			Scheme of Examination				
BCA SEWIT - THEORY			/week			MaxMarks		Duration(hr		
Course	Course	Cate-	L	Р	Cre-	SEE	CIE	SEE	CIE	
Code	Title	gory	-	-	dits	211		~===	012	
HSC105	Effective Communication	HSC	4	-	4	70	30	3	1	

With effect from the academic year 2019-2020

### UNIT – I

**Effective Communication:** Role and importance of communication; Features of human communication; Process of communication; Barriers to communication; Oral and Written Communication; Importance of listening, speaking, reading, and writing;

**Types of communication**: Verbal – formal versus informal communication, one-way versus two-way communication, Non-verbal communication.

### UNIT – II

**Personality Development and Interpersonal Communication:** Models of interpersonal development, Johari window, Knapp's model, Styles of communication, Time management, Emotional Quotient, Teamwork, Persuasion techniques.

### UNIT – III

**Remedial English:** Tenses, Subject-verb agreement, Noun-pronoun agreement, Misplaced modifiers, Articles, Prepositions, Redundancies, Clichés. (Note: The focus is on appropriate usage)

### UNIT – IV

Vocabulary Building and Written Communication: Roots and affixes;

Words often confused: Homonyms, Homophones, Homographs; One-word substitutes; Idiomatic usage: Idioms, Phrases, Phrasal Verbs; Synonyms; Antonyms; Paragraph writing; Précis writing; Essay writing; Official letters; E-mail etiquette; Technical report writing: Feasibility and Progress reports.

### UNIT – V

**Reading Comprehension:** Unseen Passages, A.P.J. Abdul Kalam, Azim Premji, Sachin Tendulkar, Sathya Nadella, Sam Pitroda

(Note: No descriptive questions to be set from this unit and only Reading Comprehension/s from unseen passages should be set in the Examination Question Papers)

### Suggested Readings:

1. E. Suresh Kumar, Engineering English, Orient BlackSwan, 2014

2. Language and Life A Skills Approach, Orient Black Swan, 2018

3. Michael Swan, Practical English Usage. OUP, 1995

4. Ashraf Rizvi, M, *Effective Technical Communication*, Tata McGraw Hill, 2009.

5. Meenakshi Raman and Sangeeta Sharma. *Technical Communication: Principles and Practice*. OUP, 2011.

With effect from the academic year 2019-2020

	PCA SEM L. Laboratory		Hours			Sche	me of	Examination	
	DCA SEW I – Laboratory		/week			MaxN	Marks	Duratio	on(hrs)
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE
LCC151	Programming in C Lab	LCC	-	4	2	50	25	3	2

1. Write programs using arithmetic, logical, bitwise and ternary operators.

2. Write programs simple control statements : Roots of a Quadratic Equation, extracting digits of integers, reversing digits ,finding sum of digit ,printing multiplication tables, Armstrong numbers, checking for prime, magic number,

3. Sin x and Cos x values using series expansion

- 4. Conversion of Binary to Decimal, Octal, Hexa and Vice versa
- 5. Generating a Pascal triangle and Pyramid of numbers
- 6. Recursion: Factorial, Fibonacci, GCD

7. Finding the maximum, minimum, average and standard deviation of given set of numbers using arrays

8. Reversing an array ,removal of duplicates from array

9. Matrix addition, multiplication and transpose of a square matrix .using functions

10. Functions of string manipulation: inputting and outputting string , using string functions such as strlen(),strcat(),strcpy().....etc

11. Writing simple programs for strings without using string functions.

- 12. Finding the No. of characters, words and lines of given text file
- 13. File handling programs : student memo printing

	DCA SEM L. Laboratory		Hours			Sche	me of	Examination		
BCA SEW I – Laboratory			/week			MaxN	MaxMarks Dura		tion(hrs)	
Course	Course	Cate-	T	D	Cre-	SEE	CIE	SEE	CIE	
Code	Title	gory	L	I	dits	SEE		SEE	CIL	
LCC152	Web Technology Lab	LCC	-	4	2	50	25	3	2	

With effect from the academic year 2019-2020

- 1. Creating HTML Pages to test different tags
  - a. Headers
  - b. Linking Images
  - c. Images as Anchors Text Formatting
  - d. HTML Table Formatting
  - e. Ordered and Unordered Lsits
  - f. Creations of Frames
- 2. Develop HTML5 form with client validations using Java Script
- 3. Methods of date and time objects
- 4. Using CSS perform the following
  - a. Aligning Text
  - b. Setting box dimensions
  - c. Floating alerts
- 5. Demonstrating object hierarchy using collection
- 6. Using HTML events
- 7. Develop College Website using HTML5 and CSS
- 8. Develop Time Table Website using HTML5 and CSS
- 9. Write basic Python programs
- 10. Write basic XML programs

	the gjeer from the deddentie year 2019 2020								
	DCA SEMI Laboratory		Hours			Sche	me of	Examin	nation
BCA SEM I – Laboratory			/week			MaxN	MaxMarks		on(hrs)
Course	Course	Cate-	T	р	Cre-	SEE	CIE	SEE	CIE
Code	Title	gory	L	1	dits	JLL	CIL	SLL	CIL
LCC153	IT Workshop	LCC	-	4	2	50	25	3	2

With effect from the academic year 2019-2020

1. System Assembling , Disassembling and identification of Parts / Peripherals

 Operating System Installation – Install Operating Systems like Windows, Linux along with necessary Device Drivers.

3. Introducing to programming Environment(Linux commands, editing tools such as vi editor, sample program entry, compilation and execution )

- 4. MS-Office / Open Office
  - a. Word Formatting Page Borders, Reviewing Equations, symbols
  - b. Spread Sheet organize data, usage of formula graphs charts
  - c. Power point features of power point, guidelines for preparing an effective presentation
  - d. Access creation of database, validate data
- 5. Network Configuration & Software Installation: Configuring TCP/IP, proxy and firewall settings. Installing application software system software & tools.
- 6. Internet and World Wide Web-Search Engines. Types of search engines, netiquette, Cyber hygiene.
- 7. Trouble Shooting Hardware trouble shooting, Software trouble shooting.

### **Suggested Reading:**

1. K. L. James, Computer Hardware, Installation, Interfacing Troubleshooting and Maintenance,

Eastern Economy Edition.

2. Gary B.Shelly, Misty E Vermaat and Thomas J. Cashman, Microsoft Office 2007 Introduction

Concepts and Techniques, Windows XP Edition, 2007, Paperback.

- 3. Leslie Lam port, LATEX-User"s Guide and Reference manual, Pearson, LPE, 2nd Edition.
- 4. Rudraprathap, Getting Started with MATLAB: A Quick Introduction for Scientists and Engineers, Oxford University Press, 2002.
- 5. Scott Mueller"s, Upgrading and Repairing PCs, 18th Edition, Scott. Mueller, QUE, Pearson, 2008.
- 6. Cherry l A Schmidt, The Complete Computer Upgrade and Repair Book, 3rd Edition, Dream tech.
- 7. Vikas Gupta, Comdex Information Technology Course Tool Kit, WILEY Dream tech.

8. ITL Education Solutions Limited, Introduction to Information Technology, Pearson Education.

PROPOSED SCHEME OF INSTRUCTION
<b>BACHELOR OF COMPUTER APPLICATIONS (BCA)</b>
SEMESTER- II

	0	G			,		Scheme of			
SNo	Course	Course	Cate-	Ηοι	irs/	No of	E	xamı	nation	
	Code	Title	gory	We	ek	Credits	Ma	X	Duration	
							Mar	ks	(hrs)	
	Т	HEORY		L	P		SEE	CIE	SEE	
1	BSC201	Fundamentals of	BSC	4	-	4	70	30	3	
		Probability and Statistics								
2	PCC202	Object Oriented	PCC	4	-	4	70	30	3	
-	100202	Programming using CPP	100	•		-	70		J	
		Commuter Analite sture	DCC	4		4	70	20	2	
3	PCC205	Computer Architecture	PCC	4	-	4	70	30	3	
4	PCC204	Data Structures	PCC	4	-	4	70	30	3	
5	PCC205	Data Communications	PCC	4	-	4	70	30	3	
	PRA	CTICALS								
6	LCC251	Object Oriented	LCC	-	4	2	50	25	3	
		Programming using CPP Lab								
7	LCC252	Data Structures Lab	LCC	-	4	2	50	25	3	
8	LHC253	Communication Skills	LHC	-	4	2	50	25	3	
		Lab								
			Total	20	12	26	500	225	-	

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

With effect from the academic year 2019-2020

г	CASEMIL THEODY		Hours			Sche	me of	Examination	
1	BCA SEM II – THEOR I			eek		MaxN	Marks	Duratio	on(hrs)
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE
BSC201	Fundamentals of Probability and Statistics	BSC	4	-	4	70	30	3	1

#### UNIT-I

**Data Validation and Information Abstraction**: Methods of collecting data efficiently, Gathering information from data charting.

### UNIT-II

**Probability:** Laws of Probability, Probability distributions, Discrete, Equiprobable, binomial, Poisson.

### UNIT-III

Continuous Distributions: Rectangular, normal, gamma and beta.

### UNIT-IV

**Statistical Methods**: Frequency distributions, Mathematical Expectation, Moments, Skewness and Kurtosis.

### UNIT-V

Correlation and Regression, Introduction to tests of Significance, u, t, x tests.

### **Suggested reading:**

 S.C. Gupta and V.K. Kapoor, "Fundamentals of Mathematical Statistics", 1989.
William Mendenhall, Robert J. Beaver, Barbara M.. Beaver, "Introduction to Probability and Statistics", Thomson Brooks / Cole, Eleventh Edition, 2003.\
Richard A. Johnson, "Probability and Statistics for Engineers", Prentice Hall of India,

Seventh Edition, 2005.

							~			
	DCA SEM IL THEODY		Hours			Scheme of Examination				
	BCA SEM II – THEOR I		/week		/week		MaxMarks		Duration(hrs)	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
PCC202	Object oriented Programming using CPP	PCC	4	-	4	70	30	3	1	

With effect from the academic year 2019-2020

### UNIT I

**Introduction to OOP:** Procedure oriented programming, object oriented programming, basic concepts of OOP, benefits and applications of OOP, simple C++ program, namespace scope, structure of C++ Program, creating, compiling and linking a file.

**Tokens :** Keywords, identifiers, constants, basic data types, user defined data types, storage classes, derived data types, dynamic initialization of variables, reference variables, operators in C++, scope resolution operator, member dereferencing operators, memory management operators.

### UNIT II

**Control Structures:** if, if..else, elseif ladder, nested if, switch, for, while, do..while, break, continue, exit, goto.

**Classes and Objects:** Specifying a class, defining member functions, C++ program with class, private member functions, arrays within class, memory allocation for objects, static data members, static member functions, arrays of objects, returning objects.

**Functions in C++:** Main function, function prototyping, call by reference, return by reference, inline functions, default arguments.

### UNIT III

**More about Functions:** Function overloading, friend function, a function friendly to two classes, objects as function arguments.

**Constructors & Destructors:** Constructors, parameterized constructors, multiple constructors in a class, constructors with default arguments, copy constructors, dynamic constructors, destructors.

### UNIT IV

**Inheritance:** Introduction to inheritance, single inheritance, multi-level inheritance, multiple inheritance, hierarchical inheritance, hybrid inheritance.

**Operator Overloading:** Rules for overloading operators, overloading unary operators, overloading binary operators.

**Pointers:** Introduction to pointers, declaring and initializing pointers, arithmetic operations on pointers, pointers with arrays, arrays of pointers, pointers to objects, 'this' pointer.

### UNIT V

**Polymorphism and Virtual Functions:** Compile-time polymorphism, runtime polymorphism, virtual functions.

**Templates:** Introduction, function templates, class templates.

**Exception Handling:** Introduction, exception handling mechanism, throwing mechanism, catching mechanism.

#### **Suggested Reading:**

1. E. Balagurusamy, Object Oriented Programming with C++, 6/e, McGraw Hill, 2013.

2. Behrouz A. Forouzan and Richard F. Gilberg, Computer Science : A Structured Approach Using C++, 2/e, Cengage Learning, 2003.

3. Ashok N. Kamthane, Object Oriented Programming with ANSI and Turbo C++, 1/e, Pearson Education, 2006.

	55 5								
	DCA SEM IL THEODY		Ho	Hours		Sche	me of	Examination	
	DCA SEM II - THEORY		/week			MaxN	Marks	Duratio	on(hrs)
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE
PCC203	Computer Architecture	PCC	4	-	4	70	30	3	1

With effect from the academic year 2019-2020

### UNIT I

#### **Basic Structure of Computers**

Functional units, Basic operational concepts, Bus structures, Software performance, Memory locations and addresses, Memory operations, Instruction and instruction sequencing, Addressing modes, Assembly language, Basic I/O operations.

### UNIT II

### Arithmetic Unit

Addition and subtraction of signed numbers, Design of fast adders, Multiplication of positive Numbers, Signed operand multiplication and fast multiplication, Integer division, Floating point numbers and operations.

### UNIT III

#### **Basic Processing Unit**

Fundamental concepts, Execution of a complete instruction,

Hardwired control, Microprogrammed control, Pipelining, Basic concepts, Data hazards, Instruction hazards, Influence on Instruction sets, Data path and control consideration.

### UNIT IV

### Memory System

Basic concepts, Semiconductor RAMs, ROMs, Speed, size and cost, Cache memories, Performance consideration, Virtual memory, Memory Management requirements, Secondary storage.

### UNIT V

### I/O Organization

Accessing I/O devices, Interrupts, Direct Memory Access, Buses, Interface circuits, Standard I/O Interfaces (PCI, SCSI, USB).

### Suggested Reading:

1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, 5th Edition "Computer Organization", McGraw-Hill, 2002.

2. William Stallings, "Computer Organization and Architecture – Designing for Performance", 6th Edition, Pearson Education, 2003.

3. David A.Patterson and John L.Hennessy, "Computer Organization and Design: The hardware / software interface", 2nd Edition, Morgan Kaufmann, 2002.

4. John P.Hayes, "Computer Architecture and Organization", 3rd Edition, McGraw Hill, 1998.

			• • • • • • • • •	<i></i>					
г	CA SEM IL THEODY		Hours			Sche	me of	Examination	
BCA SEM II – THEOR I			/week			MaxN	Marks	Duratio	on(hrs)
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE
PCC204	Data Structures	PCC	4	-	4	70	30	3	1

With effect from the academic year 2019-2020

#### UNIT-I

Introduction to Data Structures: Definition, Uses, Types.

**Arrays**: Abstract Data Types and the C++ Class, Array as an Abstract Data Type, Representation of Arrays, Matrices, Special Matrices Sparse Matrices, Strings.

### UNIT-II

**Stacks and Queues**: Representation of Stacks, Representation of Queue, Operations on Stacks, Operations on Queues, Types of Queues.

### UNIT-III

Linked Lists: Singly Linked Lists, Doubly Linked Lists, Circular Lists. Hashing: Static Hashing, Hash Tables, Hash Functions, Overflow Handling.

### UNIT-IV

**Trees**: Introduction, Binary Trees, Representation of Binary Tree, Binary Tree Traversal, Binary Search Tree, Operations on Binary Search Tree, Heap tree, B-tree. **Graphs**: Terminology, Types, Representation of Graph, Elementary Graph operations- DFS and BFS.

### UNIT-V

**Sorting**: Bubble, Selection, Insertion sort, Quick sort, Merge sort, Heap sort, shell sort. **Searching Techniques**: Linear Search, Binary Search

### Suggested Reading:

1. Ellis Horowitz, Dinesh Mehta, S. Sahani. Fundamentals of Data Structures in C++, Universities Press. 2007.

Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, Pearson Education 2006.
Michael T. Goodrich, Roberto Tamassia, David Mount, Data Structures and Algorithms in C++, Wiley India Pvt. Ltd, 2004.

With effect from the academic year 2019-2020

-	PCA SEM IL THEODY		Ho	urs		Scheme of Examination				
	BCA SEM II – THEORY		/we	eek		MaxN	Marks	Duratio	on(hrs)	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
PCC205	Data Communications	PCC	4	-	4	70	30	3	1	

### UNIT I

**Data communication, Data networking and the Internet:** A communication model, data communications, networks, the internet.

**Protocol Architecture:** Need for protocol architecture, TCP/IP protocol architecture, OSI model, TCP/IP Vs OSI model.

### UNIT II

**Data transmission:** Concepts and terminology, analog and digital data transmission, transmission impairments.

Transmission Media: Guided and unguided.

### UNIT III

**Signal encoding techniques:** Digital data to digital signals, digital data to analog signals, analog data to digital signals, analog data to analog signals.

### UNIT IV

**Digital Data Communication Techniques:** Asynchronous and synchronous transmission, types of errors, error detection techniques.

**Data link control protocols:** Flow control, error control, high level data link control (HDLC) protocol.

### UNIT V

**Multiplexing:** Frequency division multiplexing, characteristics, synchronous time division multiplexing, characteristics. Statistical time division multiplexing, characteristics.

### Suggested Readings:

William Stallings, Data and Computer Communications, 8/e, Pearson Education., 2013.
Fred Harshall, Data Communications, Computer Networks and Open systems, 4/e, Pearson Education, 2005.

2. Behrouz A Forouzan, Data Communications and Networking, 4/e, McGraw Hill, 2012.

r				erjie		0.000000		2011	2020
PCA SEM II Jahoratory			Ho	urs		Sche	Examin	nation	
BCA SEM II – Laboratory			/week			MaxN	Marks	Duration(hrs)	
Course	Course	Cate-	L	Р	Cre-	SEE	CIE	SEE	CIE
Code	litle	gory			dits				
LCC251	Object oriented Programming using	LCC	-	4	2	50	25	3	2
	CPP Lab								

With effect from the academic year 2019-2020

1. Write a program that contains a function to exchange (swap) values of two arguments by using pointers and References parameters.

2. Write a program to check the given string is palindrome or not using a private member function.

3. Write a program to find transpose of 2-D matrix by allocating memory dynamically to the matrix. Initialize and display contents of the matrix and deallocate memory.

4. Write a program to add corresponding elements of two 2-D matrices using friend function. Create two classes each capable of storing one 2-D matrix. Declare the matrices under private access specifier and access them outside the class.

5. Write a program for finding area of different geometric shapes (Circle, Rectangle and Cube) using function overloading.

6. Write a Program to generate Fibonacci Series by using Constructor to initialize the Data Members.

7. Write a program to add two matrices of same copy. Create two objects of the class and each of which refers to one 2-D matrix. Use constructor to allocate memory dynamically and use copy constructor to allocate memory when one array object is used to initialize another.

8. Write a program to demonstrate single inheritance distinguishing public and private derivation.

9. Write a program to illustrate the implementation of both Multilevel and Multiple (Hybrid) inheritance.

10. Write a program to find transpose of a given matrix of mxn size using unary operator overloading.

11. Write a program to add two matrices of mxn size using binary operator overloading.

12. Write a program to demonstrate the usage of virtual functions.

13. Write a program to sort a given set of elements using function template.

14. Write a program to search a key element in a given set of elements using class template.

15. Write a program to find average marks of the subjects of a student. Throw multiple exceptions and define multiple catch statements to handle division by zero as well as array index out of bounds exceptions.

D	BCA SFM II – Laboratory			urs		Scheme of Examination				
BCA SEM II – Laboratory			/we	eek		MaxN	Marks	Duratio	on(hrs)	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
LCC252	Data Structures Lab	LCC	-	4	2	50	25	3	2	

*With effect from the academic year 2019-2020* 

#### **Experiments:**

- 1. Write a C++ program for the implementation of Array.
- 2. Write a C++ program for the implementation of Special Matrices.
- 3. Write a C++ program for the implementation of Sparse Matrices
- 4. Write a C++ program for the implementation of String
- 5. Write a C++ program to implement the following using array
  - a) Stack
  - b) Queue

6. Write a C++ program to implement the following using a) single linked list b) Doubly linked list c)Circular linked list

- 7. Write a C++ program to implement stack using linked list.
- 8. Write a C++ program to implement queue using linked list.
- 9. Write a C++ program to implement binary tree.
- 10. Write C++ program for implementing the following sorting methods
  - a) Bubble sort
  - b) Selection sort
  - c) Insertion sort
  - d) Quick sort
  - e) shell sort
  - f) Merge sort
  - g) g) Heap sort
- 11. Programs on Linear Search and Binary Search using recursion and iteration

	BCA SEM II – Laboratory			Hours		Scheme of Examination				
BCA SEM II – Laboratory			/we	eek		MaxN	Marks	Duratio	on(hrs)	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
LHC253	Communication Skills Lab	LHC	-	4	2	50	25	3	2	

With effect from the academic year 2019-2020

1. **Introduction to English Phonetics**: Organs of Speech: respiratory, articulatory and phonatory systems; Sounds of English: Introduction to International Phonetic Alphabet; Minimal pairs; Syllable; Word Stress; Introduction of rhythm and intonation; Difficulties of Indians speakers with stress and intonation.

2. Speaking Activities: Self Introduction, Picture perception, JAM.

3. Group discussion, Debate, Presentation skills

4. Listening Activities: Listening to different types of materials for effective comprehension

5. **Role play:** Use of dialogues in a variety of situations and settings

### Suggested Readings:

1. E. Suresh Kumar. *A Handbook for English Language Laboratories (with CD)*. Revised edition, Cambridge University Press India Pvt. Ltd. 2014

2. T. Balasubramanian. A Textbook of English Phonetics for Indian Students. Macmillan, 2008.

3. J. Sethi et al., A *Practical Course in English Pronunciation (with CD)*. Prentice Hall of India, 2005.

4. Hari Mohan Prasad. *How to Prepare for Group Discussions and Interviews*. Tata McGraw Hill, 2006.



Faculty of Informatics

_____

Master of Computer Applications (MCA) Semester I and II 2019 – 2020

Scheme of Instruction

and

Syllabi

Osmania University Hyderabad

### Osmania University Proposed Scheme of Instruction Master of Computer Applications (MCA) Scheme W.E.F 2019-2020

Sem	Course-	Course-2	Course-	Course-4	Course-5	Lab-1	Lab-2	Lab-3	Hours	Credits	Categories
Ι	Discrete Mathem atics (4) BSC	Introduct ion to Logic Theory (4) PCC	Python Progra mming (4) ETC	Data Structures with CPP (4) PCC	Data Communica tions (4) PCC	Python Programm ing Lab (2) LTC	Data Structures with CPP Lab (2) LCC	Soft Skills Lab (2) LHC	32	26	BSC=4 PCC=12 ETC=4 LCC=2 LHC=2 LTC=2
Π	Probabi lity and Statistic s (4) BSC	Operatin g Systems (4) PCC	Comput er Organiz ation (4) PCC	Java Program ming (4) PCC	Database Managemen t Systems (4) PCC	Operating Systems Lab (2) LCC	Java Programmin g Lab (2) LCC	Database Management Systems Lab (2) LCC	32	26	BSC=4 PCC=16 LCC=6
III	Design and Analysi s of Algorit hms (4) PCC	Compute r Networks (4) PCC	Web Progra mming (4) PCC	Automata Theory and Compiler Design (4) PCC	Distributed Computing (4) ETC	Algorithm s Design Lab (2) LCC	Computer Networks Lab (2) LCC	Web Programming Lab (2) LCC	32	26	PCC=16 ETC=4 LCC=6
IV	Data Mining (4) ETC	Artificial Intelligen ce (4)ETC	Softwar e Enginee ring (4) PCC	Professio nal Elective – I Advanced Java Program ming / Program ming using C# and ASP.NET / Internet Program ming using PHP (4)PEC	Open Elective - I Human Relation at Work/Ethic s and Holistic Life / Gender Sensitizatio n (4) HSC	Data Mining Lab (2) LTC	Software Design Lab using UML (2) LCC	Professional Elective –I Lab (2) LPC	32	26	PCC=4 ETC=8 PEC=4 HSC=4 LCC=2 LPC=2 LTC=2
V	Cryptog raphic Algorit hms and Networ k Security (4) PCC	Big Data and Hadoop (4) ETC	Cloud Comput ing (4) ETC	Professio nal Elective – II Adhoc and Sensor Networks /Internet of Things /Blockcha in	Open Elective – II Economics for Engineers/ Fundamenta ls of Managemen t for Engineers / Project Managemen	Big Data and Hadoop Lab (2) LTC	Technical Seminar (1) LCC		26	23	PCC=4 ETC=8 PEC=4 MGC=4 LCC=1 LTC=2

		(4) PEC	t and						
			Entrepreneu						
			rship						
			(4) MGC						
VI	Main Project Dissertation and Presentation (4) LCC					8	4	LCC=4	

# **Categories of Courses and Credits**

Abbreviation	Full Form	Credits	Abbreviation	Full Form	Credits
BSC	Basic Science Course	8	PEC	<b>Professional Elective</b>	8
				Course	
PCC	Professional Core	52	LCC	Laboratory Core	21
	Course			Course	
ETC	Emerging	24	LTC	Laboratory	6
	Technological			Technological	
	Course			Course	
HSC	Humanities and	4	LPC	Laboratory	2
	Social Science			Professional Course	
	Course				
MGC	Management Course	4	LHC	Laboratory	2
	-			Humanities Course	
Tota	131				

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

### PROPOSED SCHEME OF INSTRUCTION MASTER OF COMPUTER APPLICATIONS (MCA) SEMESTER- I

SNo	Course	Course	Cate-	Ног	ırs/	No of	S Ex	Schei kami	ne of nation
5110	Code	Title	gory	We	ek	Credits	Ma	X	<b>Duration</b>
				-				KS	(nrs)
	Ί	HEORY		L	Р		SEE	CIE	SEE
1	BSC101	Discrete Mathematics	BSC	4	-	4	70	30	3
2	PCC102	Introduction to Logic Theory	PCC	4	-	4	70	30	3
3	ETC103	Python Programming	ETC	4	-	4	70	30	3
4	PCC104	Data Structures with CPP	PCC	4	-	4	70	30	3
5	PCC105	Data Communications	PCC	4	-	4	70	30	3
	PR	ACTICAL							
6	LTC151	Python Programming Lab	LTC	-	4	2	50	25	3
7	LCC152	Data Structures with CPP Lab	LCC	-	4	2	50	25	3
8	LHC153	Soft Skills Lab	LHC	-	4	2	50	25	3
				20	12	26	500	225	-

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

### PROPOSED SCHEME OF INSTRUCTION MASTER OF COMPUTER APPLICATIONS (MCA) SEMESTER- II

	Course	Course	Cate-	Ног	ırs/	No of	S Ex	Schei xami	ne of nation		
SNO	Code	Title	gory Week C		Week		y Week		Max Marks		Duration (hrs)
	THEORY			L	Р		SEE	CIE	SEE		
1	BSC201	Probability and Statistics	BSC	4	-	4	70	30	3		
2	PCC202	Operating Systems	PCC	4	-	4	70	30	3		
3	PCC203	Computer Organization	PCC	4	-	4	70	30	3		
4	PCC204	Java Programming	PCC	4	-	4	70	30	3		
5	PCC205	Database Management Systems	PCC	4	-	4	70	30	3		
	PRA	ACTICALS									
6	LCC251	Operating Systems Lab	LCC	-	4	2	50	25	3		
7	LCC252	Java Programming Lab	LCC	-	4	2	50	25	3		
8	LCC253	Database Management Systems Lab	LCC	-	4	2	50	25	3		
				20	12	26	500	225	-		

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

### PROPOSED SCHEME OF INSTRUCTION MASTER OF COMPUTER APPLICATIONS (MCA) SEMESTER- III

	C	0	C. A.	Hours/		Nuc	S E	Schei	ne of		
SNo	Course	Title	gory Week C		gory Wee		gory Week C		Max		Duration
							Mar	ks	(hrs)		
	THEORY			L	Р		SEE	CIE	SEE		
1	PCC301	Design and Analysis of Algorithms	PCC	4	-	4	70	30	3		
2	PCC302	Computer Networks	PCC	4	-	4	70	30	3		
3	PCC303	Web Programming	PCC	4	-	4	70	30	3		
4	PCC304	Automata Theory and Compiler Design	PCC	4	-	4	70	30	3		
5	ETC305	Distributed Computing	ETC	4	-	4	70	30	3		
	PRA	ACTICALS									
6	LCC351	Algorithms Design Lab	LCC	•	4	2	50	25	3		
7	LCC352	Computer Networks Lab	LCC	-	4	2	50	25	3		
8	LCC353	Web Programming Lab	LCC		4	2	50	25	3		
				20	12	26	500	225	-		

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

### PROPOSED SCHEME OF INSTRUCTION MASTER OF COMPUTER APPLICATIONS (MCA) SEMESTER- IV

				Cate- Hours/			Scheme of		
SNo	Course	Course	Cate-			No of	Examination		nation
5110	Code	Title	gory	We	ek	Credits	Ma	X	Duration
				<u> </u>			Marks		(hrs)
	r	ГНЕОRY		L	Р		SEE	CIE	SEE
1	ETC401	Data Mining	ETC	4	-	4	70	30	3
2	ETC402	Artificial Intelligence	ETC	4	-	4	70	30	3
3	PCC403	Software Engineering	PCC	4	-	4	70	30	3
4 Professional Elective - I		PEC	4	-	4	70	30	3	
4a	PEC411	Advanced Java Programming							
4b	PEC412	Programming using C# and ASP.NET							
4c	PEC413	Internet Programming using PHP							
5 Open Elective - I		HSC	4	-	4	70	30	3	
5a	HSC421	Human Relations at Work							
5b	HSC422	Ethics and Holistic Life							
5c	HSC423	Gender Sensitization							
PRACTICALS									
6	LTC451	Data Mining Lab	LTC	-	4	2	50	25	3
7	LCC452	Software Design Lab using UML	LCC	-	4	2	50	25	3
8	LPC453	Professional Elective – I Lab	LPC		4	2	50	25	3
			Total	20	12	26	500	225	-

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

### PROPOSED SCHEME OF INSTRUCTION MASTER OF COMPUTER APPLICATIONS (MCA) SEMESTER-V

				e- Hours/			Scheme of		
SNo	Course	Course	Cate-			No of	Examination		nation
5110	Code	Title	gory	We	ek	Credits	Ma	X	Duration
							Marks		(hrs)
	r	ΓHEORY		L	Р		SEE	CIE	SEE
1	PCC501	Cryptographic Algorithms and Network Security	PCC	4	-	4	70	30	3
2	ETC502	Big Data and Hadoop	ETC	4	-	4	70	30	3
3	ETC503	Cloud Computing	ETC	4	-	4	70	30	3
4	Professional	Elective - II	PEC	4	-	4	70	30	3
4a	PEC511	Ad-Hoc and Sensor Networks							
4b	PEC512	Internet of Things							
4c	PEC513	Blockchain							
5	5 Open Elective - II		MGC	4	-	4	70	30	3
5a	MGC521	Economics for Engineers							
5b	MGC522	Fundamentals of Management for Engineers							
5c	MGC523	Project Management and Entrepreneurship							
PRACTICALS									
6	LTC552	Big Data and Hadoop Lab	LTC	-	4	2	50	25	3
7	LCC553	Technical Seminar	LCC		2	1	50	25	3
	1				6	23	450	200	-

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical
## PROPOSED SCHEME OF INSTRUCTION MASTER OF COMPUTER APPLICATIONS (MCA) SEMESTER-VI

SNo	Course	Course	Cate-	Ног	ırs/	No of	Schem Examina		ne of nation	
5110	Code	Title	gory	We	ek Credits Max Dur		Duration			
							Mar	ks	(hrs)	
	PRACTICALS			L	Р		SEE	CIE	SEE	
1	LCC651	Main Project Dissertation	LCC	-	8	4	100	50	3	
		and Presentation								
			Total	-	8	4	100	50	-	

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

## PROPOSED SCHEME OF INSTRUCTION MASTER OF COMPUTER APPLICATIONS (MCA) SEMESTER- I

CNL	Course	Course	Cate-	Ног	ırs/	No of	S Ex	Schei xami	ne of nation
SNO	Code	Title	gory	We	ek	Credits	Ma	X	Duration
							Mar	ks	(hrs)
	Τ	HEORY		L	Р		SEE	CIE	SEE
1	BSC101	Discrete Mathematics	BSC	4	-	4	70	30	3
2	PCC102	Introduction to Logic Theory	PCC	4	-	4	70	30	3
3	ETC103	Python Programming	ETC	4	-	4	70	30	3
4	PCC104	Data Structures with CPP	PCC	4	-	4	70	30	3
5	PCC105	Data Communications	PCC	4	-	4	70	30	3
	PR	ACTICAL							
6	LTC151	Python Programming Lab	LTC	-	4	2	50	25	3
7	LCC152	Data Structures with CPP Lab	LCC	-	4	2	50	25	3
8	LHC153	Soft Skills Lab	LHC	-	4	2	50	25	3
				20	12	26	500	225	-

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

With effect from the academic year 2019-2020

	MCA SEM I – THEORY		Ho	urs		Sche	me of	Examin	nation
MCA SEM I – THEOR I			/week			MaxN	Marks	Duration(hrs	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE
BSC101	Discrete Mathematics	BSC	4	-	4	70	30	3	1

### UNIT- I

**Fundamentals of Logic**: Basic Connectives and Truth Tables, Logical Equivalence, Logical Implication, Use of Quantifiers, Definitions and the Proof of Theorems.

**Set Theory**: Set and Subsets, Set Operations, and the Laws of Set theory, Counting and Venn Diagrams.

**Properties of the Integers**: The well – ordering principle, Recursive Definitions, Division Algorithms, Fundamental theorem of Arithmetic.

## UNIT-II

**Relations and Functions**: Cartesian Product, Functions onto Functions, Special Functions, Pigeonhole Principle, Composition and Inverse Functions, Computational Complexity. **Relations:** Partial Orders, Equivalence Relations and Partitions.

**Principle of Inclusion and Exclusion:** Principles of Inclusion and Exclusion, Generalization of Principle, Derangements, Rock Polynomials, Arrangements with Forbidden Positions. **UNIT-III** 

**Generating Functions:** Introductory Examples, Definition And Examples, Partitions Of Integers, Exponential Generating Function, Summation Operator.

**Recurrence Relations:** First – order linear recurrence relation, second – order linear homogenous recurrence relation with constant coefficients, Non homogenous recurrence relation, divide and conquer algorithms.

## UNIT-IV

Algebraic Structures: Algebraic System – General Properties, Semi Groups, Monoids, Homomorphism, Groups, Residue Arithmetic, Group Codes and their Applications. UNIT -V

**Graph Theory:** Definitions and examples, sub graphs, complements and graph Isomorphism, Vertex degree, Planar graphs, Hamiltonian paths and Cycles, Graph Coloring, Euler & Hamiltonian graphs, and Chromatic number.

**Trees:** Definitions, properties and Examples, Rooted Trees, Spanning Trees and Minimum Spanning Trees.

## Suggested Reading:

1) Mott Joe L Mott, Abraham Kandel, and Theodore P Baker, **Discrete Mathematics for Computer Scientists & Mathematicians**, Prentice Hall NJ, 2nd Edition, 2015.

2) Jr. P. Tremblay and R Manohar **Discrete Mathematical Structures with Applications to Computer Science**, McGraw Hill, 1987.

3) R.K.Bisht and H.S.Dhami, Discrete Mathematics Oxford Higher Education, 2015

4) Bhavanari Satyanarayana, Tumurukota Venkata Pradeep Kumar and Shaik Mohiddin Shaw, **Mathematical Foundation of Computer Science,** BSP, 2016

5) Ralph P. Grimaldi Discrete and Combinatorial Mathematics, 5th Edition, Pearson, 2004.

With effect from the academic year 2019-2020

	MCA SEM I – THEORY		Ho	urs		Scheme of Examination				
MCA SEM I – IIIEOK I			/week			MaxMarks		Duration(hrs		
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
PCC102	Introduction to Logic Theory	PCC	4	-	4	70	30	3	1	

### UNIT-I

**Boolean Algebra:** Axiomatic definition of Boolean Algebra Operators, Postulates and Theorems, Boolean Functions, Canonical Forms and Standard Forms, Simplification of Boolean Functions Using Theorems and Karnaugh Map Method.

## UNIT-II

**Minimization of Switching Functions:** Quine-McCluskey Tabular Method, Determination of Prime Implicants and Essential Prime Implicants.

**Combinational Logic Design:** Single-Output and Multiple-Output Combinational Circuit Design, AND-OR, OR-AND and NAND/NOR Realizations, Exclusive-OR and Equivalence functions.

### UNIT-III

**Design of Combinational Logic Circuits**: Gate Level design of Small Scale Integration (SSI) circuits, Modular Combinational Logic Elements- Decoders, Encoders, Priority encoders, Multiplexers and De-multiplexers.

**Design of Integer Arithmetic Circuits using Combinational Logic**: Integer Adders – Binary Adders, Subtractors, Ripple Carry Adder and Carry Look Ahead Adder, and Carry Save Adders. **UNIT-IV** 

**Design of Combinational Circuits using Programmable Logic Devices (PLDs):** Programmable Read Only Memories (PROMs), Programmable Logic Arrays (PLAs), Programmable Array Logic (PAL) devices.

**Introduction to Sequential Circuit Elements:** Latch, Various types of Flip-Flops and their Excitation Tables.

## UNIT -V

**Models of Sequential Circuits:** Moore Machine and Mealy Machine, Analysis of Sequential Circuits-State Table and State Transition Diagrams. Design of Sequential Circuits-Counters. Moore and Mealy State Graphs for Sequence Detection, Methods for Reduction of State Tables and State Assignments.

## Suggested Reading:

1) M Morris Mano and Michael D Ciletti, **Digital Design**, Prentice Hall of India, Fourth Edition, 2008.

2) Zvi Kohavi, **Switching and Finite Automata Theory**, Tata McGraw Hill, 2nd Edition, 1979.

With effect from the academic year 2019-2020

	MCA SEM I THEODY		Ho	urs		Scheme of Examination				
MCA SEM I – THEOR I			/we	/week		MaxMarks		Duration(hrs		
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
ETC103	Python Programming	ETC	4	-	4	70	30	3	1	

### UNIT I

### Algorithmic Problem Solving

Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion).

### Data, Expressions, Statements

Python interpreter and interactive mode; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments;

# UNIT II

**modules and functions:** function definition and use, flow of execution, parameters and arguments

### Control Flow, Functions

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays.

## UNIT III

## Lists, Tuples, Dictionaries

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension.

### UNIT IV

## Files, Modules, Packages

Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages.

### UNIT V

## **Object Oriented Programming**

Classes and Objects, Classes and Functions, Classes and Methods, Working with instances, Inheritance and Polymorphism.

## Suggested Reading:

1. Allen B. Downey, ``Think Python: How to Think Like a Computer Scientist'', 2nd edition, Updated for Python 3, Shroff/O'Reilly Publishers, 2016.

## (http://greenteapress.com/wp/thinkpython/)

2. Guido van Rossum and Fred L. Drake Jr, —An Introduction to Python – Revised and updated for Python 3.2, Network Theory Ltd., 2011.

**References:** 1. John V Guttag, —Introduction to Computation and Programming Using Python", Revised and expanded Edition, MIT Press, 2013

2. Robert Sedgewick, Kevin Wayne, Robert Dondero, —Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.

With effect from the academic year 2019-2020

N	MCA SEM I – THEORY			urs		Scheme of Examination				
IN				/week		MaxMarks Dur		Duratio	on(hrs)	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
PCC104	Data Structures with CPP	PCC	4	-	4	70	30	3	1	

## UNIT–I

**Performance and Complexity Analysis:** Space Complexity, Time Complexity, Asymptotic Notation (Big-Oh), Complexity Analysis Examples.

**Linear List-Array Representation:** Vector Representation, Multiple Lists Single Array. **Linear List-Linked Representation:** Singly Linked Lists, Circular Lists, Doubly Linked Lists, Applications (Polynomial Arithmetic).

Arrays and Matrices: Row And Column Major Representations, Sparse Matrices. UNIT –II

**Stacks:** Array Representation, Linked Representation, Applications (Recursive Calls, Infix to Postfix, Postfix Evaluation).

**Queues:** Array Representation, Linked Representation.

Skip Lists and Hashing: Skip Lists Representation, Hash Table Representation, Application-Text Compression.

## UNIT-III

**Trees:** Definitions and Properties, Representation of Binary Trees, Operations, Binary Tree Traversal.

**Binary Search Trees:** Definitions, Operations on Binary Search Trees. **Balanced Search Trees:** AVL Trees, and B-Trees.

## UNIT –IV

**Graphs:** Definitions and Properties, Representation, Graph Search Methods (Depth First Search and Breadth First Search)

**Application of Graphs:** Shortest Path Algorithm (Dijkstra), Minimum Spanning Tree (Prim's and Kruskal's Algorithms).

UNIT -V

**Sorting and Complexity Analysis:** Selection Sort, Insertion Sort, Quick Sort, Merge Sort, Closest Pair Of Points, and Heap Sort.

## Suggested Reading:

1) Sartaj Sahni, **Data Structures--Algorithms and Applications in C++**, 2nd Edition, Universities Press (India) Pvt. Ltd., 2005.

2) Mark Allen Weiss, **Data Structures and Problem Solving using C++**, Pearson Education International, 2003.

3) Michael T. Goodrich, Roberto Tamassia, David M. Mount, **Data Structures and Algorithms** in C++, John Wiley & Sons, 2010.

			33	5			~			
	MCASEMI THEODY		Hours			Sche	me of	f Examination		
MCA SEM I – THEOR I			/we	eek		MaxMarks Dura		Duratio	tion(hrs)	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
PCC105	Data Communications	PCC	4	-	4	70	30	3	1	

With effect from the academic year 2019-2020

### UNIT – I

Data Communication and Networking Overview, Protocol Architectures: OSI, TCP/IP and ATM. Data transmission, Guided and Wireless transmission. Data Encoding: digital data-digital signals, digital data-analog signals, analog data-digital signals, analog data-analog signals. **UNIT – II** 

Multiplexing, Circuit switching and Packet switching, Digital Data Communication Techniques, Asynchronous and Synchronous transmission, DSL and ADSL.

### ÚNIT – III

Data Link Control: Error detection techniques, Interfacing. Line configurations, Flow control, Error control, Data link control protocols, Protocol verification.

### UNIT – IV

Local Area Networks, LAN Technologies, MAC sub layer, CSMA/CD, Token Ring, Fibre channel, IEEE Standards, High Speed LAN: Switched, Fast, Gigabit Ethernets.

## UNIT – V

Wireless LANs, 802.11 Broadband wireless, 802.16 Bluetooth, Bridge, Spanning Tree Bridge, Source Routing Bridge, Repeaters, Hubs, Switches, Routers and Gateways, Virtual LANs.

### Suggested Readings:

1. William Stallings, Data and Computer Communications, 8th Edition, Prentice Hall of India, 2012

2. Andrew S. Tanenbaum, David J. Wetherall, Computer Networks, 5th Edition, Pearson, 2012

With effect from the academic year 2019-2020

	MCA SEM I – Laboratory		Hours /week			Sche	me of	Examin	Examination	
MCA SEM I – Laboratory						MaxMarks Duration			on(hrs)	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
LTC151	Python Programming Lab	LTC	-	4	2	50	25	3	2	

1. Write a program to demonstrate different number data types in Python.

2. Write a program to perform different Arithmetic Operations on numbers in Python.

3. Write a program to create, concatenate and print a string and accessing sub-string from a given string.

4. Write a python script to print the current date in the following format "Sun May 29 02:26:23 IST 2017"

5. Write a program to create, append, and remove lists in python.

6. Write a program to demonstrate working with tuples in python.

7. Write a program to demonstrate working with dictionaries in python.

8. Write a python program to find largest of three numbers.

9. Write a Python program to convert temperatures to and from Celsius, Fahrenheit. [Formula : c/5 = f-32/9]

10. Write a Python program to construct the different pattern, using a nested for loop.

11. Write a Python script that prints prime numbers less than 20.

12. Write a python program to find factorial of a number using Recursion.

13. Write a program that accepts the lengths of three sides of a triangle as inputs. The program output should indicate whether or not the triangle is a right triangle (Recall from the Pythagorean Theorem that in a right triangle, the square of one side equals the sum of the squares of the other two sides).

14. Write a python program to define a module to find Fibonacci Numbers and import the module to another program.

15. Write a python program to define a module and import a specific function in that module to another program.

16. Write a script named copyfile.py. This script should prompt the user for the names of two text files. The contents of the first file should be input and written to the second file.

17. Write a program that inputs a text file. The program should print all of the unique words in the file in alphabetical order.

18. Write a Python class to convert an integer to a roman numeral. 19. Write a Python class to implement pow(x, n)

20. Write a Python class to reverse a string word by word

**Note:** Use of Python IDEs like PyCharm, Spyder or Anaconda should be used for executing programs.

			33	5			~			
	MCA SEM L. Laboratory		Ho	urs		Sche	me of	Examination		
MCA SEM I – Laboratory			/week			MaxN	Marks Duration(			
Course	Course	Cate-	L	Р	Cre-	SEE	CIE	SEE	CIE	
Code	Title	gory	Ľ	1	dits	DLL	CIL	DLL	CIL	
LCC152	Data Structures with CPP Lab	LCC	-	4	2	50	25	3	2	

With effect from the academic year 2019-2020

1) Implementation of Singly Linked List, Doubly Linked List and Circular List.

2) Implementation of Stacks, Queues (using both arrays and linked lists).

3) Infix to Postfix conversion, evaluation of postfix expression.

4) Polynomial arithmetic using linked list.

5) Implementation of Binary Search and Hashing.

6) Implementation of recursive and iterative traversals on binary tree.

7) Implementation of Binary Search Tree.

8) Implementation of operations on binary tree (delete entire tree, copy entire tree, mirror image, level order, search for a node etc.)

9) Implementation of Selection, Shell, Merge and Quick sorts.

10) Implementation of Heap Sort.

11) Implementation of Liner Search and Binary Search.

12) Implementation of operations on AVL trees.

13) Implementation of traversal on Graphs.

14) Implementation of B-Trees.

**Note:** Visual Studio is recommended for the development of programs.

To debug these programs it is recommended to use a debugging tool.

		1111	n ejje	cijio	m me	ucuuc	mic y	201	2020
	MCA SEM L. Laboratory	Hours			Scheme of Examinatio				
MCA SEM I – Laboratory			/week			MaxMarks		Duration(hrs)	
Course	Course	Cate-	т	D	Cre-	SEE	CIE	SEE	CIE
Code	Title	gory	L	Г	dits	SEE	CIL	SEE	CIE
LHC153	Soft Skills Lab	LHC	-	4	2	50	25	3	2

With effect from the academic year 2019-2020

## Activities

- 1. Conversation skills, Listening dialogues from TV/radio/Ted talk/Podcast
- ^{2.} Group discussion
- 3. Interview skills, Making presentation
- 4. Listening to Lectures and News Programmes, Listening to Talk show
- 5. Watching videos on interesting events on Youtube,
- 6. Reading different genres of tests ranging from newspapers to philosophical treatises
- 7. Reading strategies graphic organizers, Reading strategies summarizing
- 8. Reading strategies interpretation, Reports
- 9. Cover letter, Resume,
- 10. Writing for publications, Letters, Memos, Emails and blogs
- 11. Civil Service (Language related), Verbal ability
- ^{12.} Motivation, Self image
- 13. Goal setting, Managing changes
- 14. Time management, Stress management
- ^{15.} Leadership traits
- 16. Team work
- ^{17.} Career and life planning.
- 18. Multiple intelligences
- 19. Emotional intelligence
- ^{20.} Spiritual quotient (ethics)
- 21. Intercultural communication
- ^{22.} Creative and critical thinking
- ^{23.} Learning styles and strategies

# Suggested Reading:

1. Business English Certificate Materials, Cambridge University Press.

2. Graded Examinations in Spoken English and Spoken English for Work downloadable materials from Trinity College, London.

2. International English Language Testing System Practice Tests, Cambridge University Press.

3. Interactive Multimedia Programs on Managing Time and Stress.

4. Personality Development (CD-ROM), Times Multimedia, Mumbai.

5. Robert M Sherfield and et al. "Developing Soft Skills" 4th edition, New Delhi: Pearson Education, 2009.

### Web Sources:

http://www.slideshare.net/rohitjsh/presentation-on-group-discussion http://www.washington.edu/doit/TeamN/present_tips.html http://www.oxforddictionaries.com/words/writing-job-applications http://www.kent.ac.uk/careers/cv/coveringletters.htm http://www.mindtools.com/pages/article/newCDV_34.htm

## PROPOSED SCHEME OF INSTRUCTION MASTER OF COMPUTER APPLICATIONS (MCA) SEMESTER- II

CNL	Course	Course	Cate-	Ног	ırs/	No of	S Ex	Schei xami	ne of nation
SNO	Code	Title	gory	We	ek	Credits	Max Marks		Duration (hrs)
	Т	HEORY		L	P		SEE	CIE	SEE
1	BSC201	Probability and Statistics	BSC	4	-	4	70	30	3
2	PCC202	Operating Systems	PCC	4	-	4	70	30	3
3	PCC203	Computer Organization	PCC	4	-	4	70	30	3
4	PCC204	Java Programming	PCC	4	-	4	70	30	3
5	PCC205	Database Management Systems	PCC	4	-	4	70	30	3
	PRA	CTICALS							
6	LCC251	Operating Systems Lab	LCC	-	4	2	50	25	3
7	LCC252	Java Programming Lab	LCC	-	4	2	50	25	3
8	LCC253	Database Management Systems Lab	LCC	-	4	2	50	25	3
			Total	20	12	26	500	225	-

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

	MCA SEM II – THEORY			Hours		Scheme of Examination				
MCA SEM II – THEORY			/week			MaxMarks		Duratio	on(hrs)	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
BSC201	Probability and Statistics	BSC	4	-	4	70	30	3	1	

With effect from the academic year 2019-2020

### UNIT-I

Grouping and displaying data to convey meaning - arrangement of data, examples of raw data, frequency distribution, graphing frequency distribution Measures of central tendency - arithmetic mean, weighted mean, geometric mean, Median, mode, Dispersion, measures of dispersion, average deviation measures, coefficient of variation, exploratory data analysis

#### UNIT-II

Probability - Basic terminology, Three types, Probability rules, Statistical independence, statistical dependency, Bayes' theorem

Probability distributions - random variables, expected values, binomial distribution, Poisson distribution, normal distribution, choosing correct distribution Sampling and sampling distributions - Random sampling, design of experiments, sampling distributions, operational considerations in sampling UNIT-III

Estimation - Point estimates, interval estimates, confidence intervals, calculating interval estimates of the mean and proportion, t-distribution, determination of sample size in estimation

Testing Hypotheses - one sample tests, hypotheses testing of mean when the population standard deviation is know, powers of hypotheses test, hypotheses testing of proportions, hypotheses testing of means when std is not known

### UNIT-IV

Testing Hypotheses - Two sample tests - tests for difference between means - large sample, small sample, with dependent samples, testing for difference between proportions, probe values Chi-square and analysis of variance - chi-square as test of independence, chi-square as a test of goodness of fit, analysis of variance, inferences about a population variance, inferences about two population variances. UNIT-V

Simple regression and correlation - Estimation using regression line, correlation analysis, making inferences about population parameters, limitations, errors and caveats in regression and correlation analysis multiple regression and modeling - finding multiple regression equations, inference about population parameters, modeling techniques.

### Suggested Reading:

Richard I Levin, David S Rubin - Statistics for Management, Seventh Edition, PHI -1997

With effect from the academic year 2019-2020

	MCA SEM II – THEORY			Hours		Scheme of Examination			
MCA SEM II – THEORY			/week			MaxN	Marks	Duration(hr	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE
PCC202	Operating Systems	PCC	4	-	4	70	30	3	1

### UNIT-I

Introduction to Operating Systems: OS structure and strategies, Process concepts, Multithreaded Programming, Process scheduling, Process synchronization, Deadlocks.

## UNIT-II

Memory management strategies with example architectures: Swapping, Contiguous allocation, Paging, Segmentation, Segmentation with paging, Virtual memory management : Demand paging, Page replacement, Thrashing.

## UNIT-III

File system interface: File concepts, Access methods and protection. File system implementation: File system structure, Allocation methods, Directory implementation of file systems, Mass storage structures, I/O systems 11

## **UNIT-IV**

**System Protection** : Principles and Domain, Access Matrix and implementation, Access control and access rights, Capability based systems, Language based Protection, **System Security**: Problem, Program threats, cryptography, user authentication, implementing security defenses, Firewalling, Computer security Classification

### UNIT-V

**Case Studies**: The Linux System–Design principles, Kernel modules, Process management, Scheduling, Memory management, File systems, Input and Output, Inter process communication. Windows 7 –Design principles, System components, Terminal services and fast user switching File systems, Networking, Programmer interface.

## Suggested Reading:

Abraham Silberschatz, Peter B Galvin, Operating System Concepts, 9th edition, Wiley, 2016
 William Stallings, Operating Systems-Internals and Design Principles, 8th edition, Pearson, 2014

3. Andrew S Tanenbaum, Modern Operating Systems, 4th edition, Pearson, 2016.

N	MCA SEM II – THEORY			Hours		Scheme of Examination				
MCA SEM II – THEOR I			/week			MaxN	Marks	s Duration(h		
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
PCC203	Computer Organization	PCC	4	-	4	70	30	3	1	

With effect from the academic year 2019-2020

## UNIT -I

**Data Representation:** Data types, Complements, Fixed and Floating Point representations, and Binary codes.

Overview of Computer Function and Interconnections: Computer components,

Interconnection structures, Bus interconnection, Bus structure, and Data transfer. **UNIT-II** 

**Register Transfer Micro operations:** Register Transfer Language, Register Transfer, Bus and Memory Transfers, Arithmetic, Logic and Shift micro operations, Arithmetic Logic Shift Unit. **Basic Computer Organization and Design:** Instruction Codes, Computer Registers, Computer Instructions, Timing and Control, Instruction Cycle, Memory reference instruction, Input-Output and Interrupt.

### UNIT-III

**Micro programmed Control:** Control memory, Address Sequencing, Micro program example, Design of Control Unit.

**Central Processing Unit:** General Register Organization, Stack Organization, Instruction formats, Addressing modes, Data Transfer and Manipulation, and Program control.

**Computer Arithmetic:** Addition and Subtraction, Multiplication, Division, and Floating Point Arithmetic Operations.

## UNIT-IV

**Memory Organization:** Memory Hierarchy, Main Memory, RAM and ROM, Auxiliary memory, Associative memory, Cache memory, Virtual memory, Memory Management hardware.

## UNIT-V

**Input-Output Organization:** Peripheral Devices, Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupt, Direct Memory Access (DMA), I/O Processor, Serial Communication.

**Pipeline Processing:** Arithmetic, Instruction and RISC Pipelines.

Assessing and Understanding Performance: CPU performance and its factors, Evaluating performance.

## Suggested Reading:

1) Morris Mano M, **Computer System Architecture**, Pearson Education India, 3rd Edition, 2007.

2) William Stallings, **Computer Organization and Architecture**, PHI, 7th Edition, 2008.

3) David A Patterson, John L Hennessy, **Computer Organization and Design**, Morgan Kaufmann, 5th Edition, 2013.

4) Carl Hamacher, Zvonko Vranesic, Safwat Zaky, **Computer Organization**, Tata McGraw-Hill Education , 5th Edition, 2002

	MCA SEM II – THEORY			Hours		Scheme of Examination			
MCA SEM II – THEORY			/week			MaxMarks		Duration(hrs	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE
PCC204	Java Programming	PCC	4	-	4	70	30	3	1

With effect from the academic year 2019-2020

## UNIT-I

**Object Oriented System Development**: Understanding Object Oriented Development, Understanding Object Concepts, Benefits of Object Oriented Development.

**Java Programming Fundamentals**: Introduction, Overview of Java, Data Type, Variables and Arrays, Operators, Control statements, Classes, Methods, Inheritance, Packages and Interfaces, Inner Classes.

## UNIT-II

I/O basics, Stream and Byte classes, Character Streams, Reading Console input and output, Print Writer Class, String Handling, Exceptions Handling, Multithreaded Programming.

### UNIT-III

Exploring Java Language, Collections Overview, Collections Interfaces, Collections Classes, Iterators, Random Access Interface, Maps, Comparators, Arrays, Legacy classes and interfaces, Sting Tokenizer, BitSet, Date, Calendar, Timer.

### UNIT-IV

**Introducing AWT working With Graphics:** AWT Classes, Working with Graphics. **Event Handling:** Two Event Handling Mechanisms, The Delegation Event Model, Event Classes, Source of Events, Event Listener Interfaces.

**AWT Controls:** Control Fundamentals, Labels, Using Buttons, Applying Check Boxes, CheckboxGroup, Choice Controls, Using Lists, Managing Scroll Bars, Using TextField, Using TextArea, Understanding Layout Managers, Menu bars and Menus, Dialog Boxes, FileDialog, Handling events by Extending AWT Components, Exploring the controls, Menus and Layout Managers.

## UNIT-V

Introduction to Swing Package, Java I/O classes and interfaces, Reading and Writing Files, Serialization, Introduction to Java Network Programming, Object Class, Exploring Image package.

## Suggested Reading:

1) Herbert Schildt, **The Complete Reference Java**, 9th Edition, Tata McGraw Hill, 2005.

2) Bruce Eckel, **Thinking in Java**, 4th Edition, Pearson Education

3) Dietel and Dietel, Java: How to Program, 5th Edition, Prentice Hall

4) James M Slack, **Programming and Problem solving with JAVA**, Thomson Learning, 2002

5) C Thomas Wu, **An Introduction to Object Oriented programming with Java**, Tata McGraw Hill, 2005.

6) Kathy Sierra, Bert Bates ,**Head First Java**, 2nd Edition, **A Brain-Friendly Guide**, Publisher: O'Reilly Media, February 2005.

With effect from the academic year 2019-2020

N	ICA SEM IL THEODY		Hours			Scheme of Examination				
10		/week			MaxMarks Du		Duratio	on(hrs)		
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
PCC205	Database Management Systems	PCC	4	-	4	70	30	3	1	
1										

## UNIT – I

**Introduction**: Database System Applications, Purpose of Database Systems, View of Values, Nested Sub-queries, Complex Queries, Views, Modification of the Database, Joined Relations Data, Database Languages, Relational Databases, Database Design, Object–based and Semistructured Databases, Data Storage and Querying, Transaction Management, Data Mining and Analysis, Database Architecture, Database Users and Administrators. Database Design and the **E-R Model**: Overview of the Design Process, The Entity- Relationship Model, Constraints, Entity-Relationship Diagrams, Entity – Relationship Design Issues, Weak Entity Sets, Extended E-R Features, Database Design for Banking Enterprise, Reduction to Relational Schemas, Other Aspects of Database Design

## UNIT – II

**Relational Model**: Structure of Relational Databases, Fundamental Relational-Algebra Operations, Additional Relational – Algebra Operations, Extended Relational - Algebra Operations, Null Values, Modification of the Databases. Structured Query Language: Data Definition, Basic Structure of SQL Queries, Set Operations, Aggregate Functions, Null **UNIT – III** 

Advanced SQL: SQL Data Types and Schemas, Integrity Constraints, Authorization, Embedded SQL, Dynamic SQL, Functions and Procedural Constructs, Recursive Queries, Advanced SQL Features. Relational Database Design: Features of Good Relational Design, Atomic Domains and First Normal Form, Functional-Dependency Theory, Decomposition using Functional Dependencies.

## UNIT – IV

**Indexing and Hashing**: Basic Concepts, Ordered Indices, B+-tree Index Files, B-tree Index Files, Multiple-Key Access, Static Hashing, Dynamic Hashing, Comparison of Ordered Indexing and Hashing, Bitmap Indices. Index Definition in SQL Transactions: Transaction Concepts, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for Serializability **UNIT – V** 

**Concurrency Control**: Lock-based Protocols, Timestamp-based Protocols, Validation-based Protocols, Multiple Granularity, Multi-version Schemes, Deadlock Handling, Insert and Delete Operations, Weak Levels of Consistency, Concurrency of Index Structures. Recovery System: Failure Classification, Storage Structure, Recovery and Atomicity, Log-Based Recovery, Recovery with Concurrent Transactions, Buffer Management, Failure with Loss of Nonvolatile Storage, Advanced Recovery Techniques, Remote Backup Systems

## Suggested Readings:

1. Abraham Silberschatz, Henry F Korth, S Sudarshan, Database System Concepts, McGraw-Hill International Edition, 6th Edition, 2010

2. Ramakrishnan, Gehrke, Database Management Systems, McGraw-Hill International Edition, 3rd Edition, 2003

3. Elmasri, Navathe, Somayajulu, Fundamentals of Database Systems, Pearson Education, 4th Edition, 2004

With effect from the academic year 2019-2020

	MCA SEM II – Laboratory			Hours		Scheme of Examination				
MCA SEM II – Laboratory			/week			MaxMarks Duratio			on(hrs)	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
LCC251	Operating Systems Lab	LCC	-	4	2	50	25	3	2	

1-3. Memory Management Algorithms

4-5. Examples of Multithreading

6. Producer & Consumer problem using Semaphores and Shared memory

7-8. Processor Scheduling algorithms

9. Dining Philosophers problem using Semaphores

10. Readers and Writers problem using Semaphores

11. Shell-programming exercises

	MCA SFM II – Laboratory			Hours		Scheme of Examination				
MCA SEM II – Laboratory			/week			MaxN	Marks	Duratio	on(hrs)	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
LCC252	Java Programming Lab	LCC	-	4	2	50	25	3	2	

With effect from the academic year 2019-2020

1) Write a program to calculate salary of n employees using concept of classes with constructors and methods.

2) Write a program to demonstrate e-commerce website using inheritance, abstract class and dynamic polymorphism.

3) Write a program to demonstrate various arithmetic calculations using packages.

4) Write a program to demonstrate client-server environment using multithreading.

5) Write a program to demonstrate mutual exclusion using thread synchronization.

6) Write a program to demonstrate Linked list class.

7) Write a program to demonstrate Hash set and Iterator classes.

8) Write a program to demonstrate Enumeration and Comparator interfaces.

9) Write a program to accept data and display output in key, value pair.

10) Write a program to create a registration form with different controls, menus and demonstrate event handling.

11) Write a program to copy data from one file to another file.

12) Write a program to merge contents of two files and display output on console.

13) Write a program to illustrate Serialization.

14) Write a program to retrieve web page using URL class.

15) Write a program to load and display image and perform gray scale.

Note: A minimum of Ten Programs should be done by the end of the semester.

M	CASEMIL Laboratory		Hours			Scheme of Examination				
IVI		/week			MaxN	Marks	s Duration(hr			
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
LCC253	Database Management Systems Lab	LCC	-	4	2	50	25	3	2	

With effect from the academic year 2019-2020

Creation of database (exercising the commands for creation).

1. Simple to Complex condition query creation using SQL Plus.

2. Usage of Triggers and Stored Procedures.

3. Creation of Forms for Student information, Library information, Pay roll etc.

4. Writing PL/SQL procedures for data validation.

5. Report generation using SQL reports.

6. Creating password and security features for applications.

7. Usage of File locking, Table locking facilities in applications.

8. Creation of small full- fledged database application spreading over 3 sessions.

**Note:** The creation of sample database for the purpose of the experiments is expected to be predecided by the instructor.



Osmania University

Faculty of Informatics

_____

_____

Master of Science (Information System) MScIS Semester I and II 2019 – 2020

> Scheme of Instruction and Syllabi

Osmania University Hyderabad

## Osmania University Proposed Scheme of Instruction Master of Science – Information Systems (MSc-IS) Scheme W.E.F 2019-2020

0	C	0	0	<b>C</b>	<u> </u>	T.1.1	T 1 0	T 1 2	TT.	C 1	C
Sem	Course-1	Course-2	Course-3	Course-4	Course-5	Lab-1	Lab-2	Lab-3	Hou	Crea	Categorie
									rs	ıts	S
Ι	Advanced	Mobile and	Distribut	Software	Machine Learning	Advanced	Machine	Communic	30	25	PCC=12
	Data	Pervasive	ed	Project	(4) ETC	Data	Learning	ation			ETC=8
	Structures	Computing	System	Manageme		Structures	Lab	Skills			LCC=2
	and	(4) ETC	(4) PCC	nt		and	(2) LPC	(1) LHC			LPC=2
	Algorithm			(4) PCC		Algorithm					LHC=1
	(4) PCC					Lab					
						(2) LCC					
II	Cloud	Network	Natural	Advanced	Professional	Network	Natural	Technical	30	25	ETC=8
	Computing	Security	Languag	Software	Elective-I	Security Lab	Language	Seminar			PEC=4
	(4) ETC	(4) PCC	e	Engineerin	Network Design and	(2) LTC	Processing	(1) LPC			PCC=8
			Processin	g	Technologies / Web		Lab				LTC=4
			g	$(4) \tilde{PCC}$	Engineering /		(2) LTC				LPC=1
			(4) ETC		Information						
			~ /		Retrieval System						
					(4) PEC						
III	Big Data	Principles	Software	Financial	Open Elective	Big Data	Research	-	26	23	PEC=4
	Analytics	of	Architect	Manageme	Soft Computing /	Analytics	Seminar				ETC=12
	(4) ETC	Programmi	ure and	nt	Web Mining / Grid	Lab	(1) LHC				MGC=4
		ng(4) ETC	Design	Accountin	Computing	(2) LTC					LTC=2
			Patterns	g	(4) PEC						LHC=1
			(4) ETC	(4) MGC	. ,						
IV			Mai	n Project D	bissertation and Preser	ntation			8	4	LCC=4
				•	(4) LCC						

# **Categories of Courses and Credits**

Abbreviation	Full Form	Credits	Abbreviation	Full Form	Credits
PCC	Professional Core Course	20	LCC	Laboratory Core Course	6
ETC	Emerging Technological	28	LTC	Laboratory Technological	6
	Course			Course	
MGC	Management Course	4	LPC	Laboratory Professional	3
				Course	
PEC	Professional Elective Course	8	LHC	Laboratory Humanities	2
				Course	
Total	77				

### PROPOSED SCHEME OF INSTRUCTION MASTER OF SCIENCE INFORMATION SYSTEMS (MSCIS) SEMESTER- I

	Course	Course	Cata	Hours/ Week		Neef	Scheme of			
SNo	Course	Title	cale- gory			Credits	 Ma	xann x	Duration	
	couc		80-3			cicales	Mar	ks	(hrs)	
THEORY			L	Р		SEE	CIE	SEE		
1	PCC101	Advanced Data Structures	PCC	4	-	4	70	30	3	
		and Algorithms								
2	ETC102	Mobile and Pervasive	ETC	4	-	4	70	30	3	
		Computing								
3	PCC103	Distributed System	PCC	4	-	4	70	30	3	
4	PCC104	Software Project	PCC	4	-	4	70	30	3	
		Management								
5	ETC105	Machine Learning	ETC	4	-	4	70	30	3	
	P	RACTICALS								
6	LCC151	Advanced Data Structures	LCC	-	4	2	50	25	3	
		and Algorithm Lab								
7	LPC152	Machine Learning Lab	LPC	-	4	2	50	25	3	
8	LHC153	Communication Skills	LHC		2	1	50	25	3	
			Total	20	10	25	500	225	-	

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

## PROPOSED SCHEME OF INSTRUCTION MASTER OF SCIENCE INFORMATION SYSTEMS (MSCIS) SEMESTER- II

	Course	Course Course Cate- Hours/		ure/	No of	Scheme of Examination			
SNo	Code	Title	Gorv	We	ek	Credits	Ma	xann X	Duration
					-		Marks		(hrs)
THEORY			L	Р		SEE	CIE	SEE	
1	ETC201	Cloud Computing	ETC	4	-	4	70	30	3
2	PCC202	Network Security	PCC	4	-	4	70	30	3
3	ETC203	Natural Language Processing	ETC	4	-	4	70	30	3
4	PCC204	Advanced Software	PCC	4	-	4	70	30	3
		Engineering							
		Professional Elective - I		4	-	4	70	30	3
5a	PEC211	Network Design and	PEC						
		Technologies							
5b	PEC212	Web Engineering	PEC						
5c	PEC213	Information Retrieval System	PEC						
	P	RACTICALS							
6	LTC251	Network Security Lab	LTC		4	2	50	25	3
7	LTC252	Natural Language Processing	LTC	-	4	2	50	25	3
		Lab							
8	LPC253	Technical Seminar	LPC	-	2	1	50	25	3
			Total	20	10	25	500	225	-

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

	PROPOSED SC	<u>CHEME OF INSTRUCT</u>	ION
MASTER	OF SCIENCE	<b>INFORMATION SYST</b>	EMS (MSCIS)
		SEMESTER- III	

	Course	Course	Cate-	Hours/		No of	Scheme o No of Examination		
SNo	Code	Title	e Gory Week		Credits	Ma	x	Duration	
			v				Mar	ks	(hrs)
THEORY			L	Р		SEE	CIE	SEE	
1	ETC301	Big Data Analytics	ETC	4	-	4	70	30	3
2	ETC302	Principles of Programming	ETC	4	-	4	70	30	3
3	ETC303	Software Architecture&	ETC	4	-	4	70	30	3
		Design Patterns							
4	MGC304	Financial Management	MGC	4	-	4	70	30	3
		Accounting							
		Open Elective		4	-	4	70	30	3
5a	PEC311	Soft Computing	PEC						
5b	PEC312	Web Mining	PEC						
5c	PEC313	Grid Computing	PEC						
PRACTICALS									
7	LTC352	Big Data Analytics Lab	LTC	-	4	2	50	25	3
8	LHC353	Research Seminar	LHC	-	2	1	50	25	3
	•		Total	20	6	23	450	200	-

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

## PROPOSED SCHEME OF INSTRUCTION MASTER OF SCIENCE INFORMATION SYSTEMS (MSCIS) SEMESTER- IV

SNo	Course Course Cate-		Hours/		No of	Scheme of Examination			
5110	Code	Title	gory	We	ek	Credits	Ma	X	Duration
							Marks		(hrs)
	PR	RACTICALS		L	Р		SEE	CIE	SEE
1	LCC401	Main Project Dissertation	LCC	-	8	4	100	50	3
		and Presentation							
			Total	-	8	4	100	50	-

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

## PROPOSED SCHEME OF INSTRUCTION MASTER OF SCIENCE INFORMATION SYSTEMS (MSCIS) SEMESTER- I

SNo	Course	Course	Cate-	- Hours/		No of	Scheme of Examination			
2110	Code	Title	gory	We	ek	Credits	Ma	X	Duration	
							Mar	ks	(hrs)	
THEORY			L	Р		SEE CIF		SEE		
1	PCC101	Advanced Data Structures	PCC	4	-	4	70	30	3	
		and Algorithms								
2	ETC102	Mobile and Pervasive	ETC	4	-	4	70	30	3	
		Computing								
3	PCC103	Distributed System	PCC	4	-	4	70	30	3	
4	PCC104	Software Project	PCC	4	-	4	70	30	3	
		Management								
5	ETC105	Machine Learning	ETC	4	-	4	70	30	3	
	PI	RACTICALS								
6	LCC151	Advanced Data Structures	LCC	-	4	2	50	25	3	
		and Algorithm Lab								
7	LTC152	Machine Learning Lab	LTC	-	4	2	50	25	3	
8	LHC153	Communication Skills	LHC		2	1	50	25	3	
			Total	20	10	25	500	225	-	

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

N	MScIS SEM I – THEORY			Hours		Scheme of Examination			
10	ISCIS SEMT – THEORT		/week			MaxMarks		Duratio	on(hrs)
Course Code	Course Title	Cate- gory	L	L P		SEE	CIE	SEE	CIE
PCC101	Advanced Data Structures and Algorithms	PCC	4	-	4	70	30	3	1

With effect from the academic year 2019-2020

### UNIT I

### Role of algorithms in computing

Algorithms – Algorithms as a Technology- Insertion Sort – Analyzing Algorithms – Designing Algorithms- Growth of Functions: Asymptotic Notation – Standard Notations and Common Functions- Recurrences: The Substitution Method – The Recursion-Tree Method

### UNIT II

### Hierarchical data structures

Binary Search Trees: Basics – Querying a Binary search tree – Insertion and Deletion- Red-Black trees: Properties of Red-Black Trees – Rotations – Insertion – Deletion -B-Trees: Definition of B-trees – Basic operations on B-Trees – Deleting a key from a B-Tree- Fibonacci Heaps: structure – Mergeable-heap operations- Decreasing a key and deleting a node-Bounding the maximum degree.

### UNIT III

### Graphs

Elementary Graph Algorithms: Representations of Graphs – Breadth-First Search – Depth-First Search – Topological Sort – Strongly Connected Components- Minimum Spanning Trees: Growing a Minimum Spanning Tree – Kruskal and Prim- Single-Source Shortest Paths: The Bellman-Ford algorithm – Single-Source Shortest paths in Directed Acyclic Graphs – Dijkstra's Algorithm; All-Pairs Shortest Paths: Shortest Paths and Matrix Multiplication – The Floyd-Wars hall Algorithm;

### UNIT IV

## Algorithm design techniques

Greedy method- General method, applications- Knapsack problem, Job sequencing with deadlines, Minimum cost spanning trees, Single source shortest path problem.

### UNIT V

## Algorithm design techniques

Dynamic Programming: Matrix-Chain Multiplication – Elements of Dynamic Programming – Longest Common Subsequence- Greedy Algorithms: An Activity-Selection Problem – Elements of the Greedy Strategy- Huffman Codes.

### Suggested Reading:

1. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, —Data Structures and Algorithmsl, Pearson Education, Reprint 2006.

2. Robert Sedgewick and Kevin Wayne, —ALGORITHMSI, Fourth Edition, Pearson Education. 4. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, —Introduction to AlgorithmsI, Third Edition, Prentice-Hall, 2011.

With effect from the academic year 2019-2020

MScIS SEM I – THEORY			Hours			Se	tion		
		/week			MaxMarks		Duratio	on(hrs)	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE
ETC102	Mobile and Pervasive Computing	ETC	4	-	4	70	30	3	1

## UNIT I

## Introduction

History – Wireless communications: GSM – DECT – TETRA – UMTS – IMT – 2000 – Blue tooth, WiFi, WiMAX, 3G ,WATM.- Mobile IP protocols -WAP push architecture-Wml scripts and applications. Data networks – SMS – GPRS – EDGE – Hybrid Wireless100 Networks – ATM – Wireless ATM.

## UNIT II

## Overview of a Modern 4G Telecommunications System

Introduction. LTE-A System Architecture. LTE RAN. OFDM Air Interface. Evolved Packet Core. LTE Requirements. LTE-Advanced. LTE-A in Release. OFDMA – Introduction. OFDM Principles. LTE Uplink—SC-FDMA. Summary of OFDMA

## UNIT III

### **Pervasive Concepts and Elements**

Technology Trend Overview - Pervasive Computing: Concepts - Challenges -Middleware - Context Awareness - Resource Management - Human–Computer Interaction - Pervasive Transaction Processing - Infrastructure and Devices - Wireless Networks - Middleware for Pervasive Computing Systems - Resource Management -User Tracking- Context Management -Service Management - Data Management -Security Management - Pervasive Computing Environments - Smart Car Space -Intelligent Campus

## UNIT IV

## HCI in Pervasive Computing

Prototype for Application Migration - Prototype for Multimodalities - Human-Computer Interface in Pervasive Environments - HCI Service and Interaction Migration - Context-Driven HCI Service Selection - Interaction Service Selection Overview -User Devices - Service-Oriented Middleware Support - User History and Preference -Context Manager - Local Service Matching - Global Combination - Effective Region -User Active Scope - Service Combination Selection Algorithm

## UNIT V

## **Pervasive Mobile Transactions**

Pervasive Mobile Transactions - Introduction to Pervasive Transactions - Mobile Transaction Framework - Unavailable Transaction Service - Pervasive Transaction Processing Framework - Context-Aware Pervasive Transaction Model - Context Model for Pervasive Transaction Processing - Context-Aware Pervasive Transaction Model - A Case of Pervasive Transactions - Dynamic Transaction Management - Context-Aware Transaction Coordination Mechanism - Coordination Algorithm for Pervasive Transactions - Participant Discovery - Formal Transaction Verification - Petri Net with Selective Transition.

#### **Suggested Reading:**

- 1. Alan Colman, Jun Han, and Muhammad Ashad Kabir, Pervasive Social Computing Socially-Aware Pervasive Systems and Mobile Applications, Springer, 2016.
- 2. J.Schiller, -- Mobile Communication^{II}, Addison Wesley, 2000.
- 3. Juha Korhonen, —Introduction to 4G Mobile Communications^{II}, Artech House Publishers, 2014
- 4. Kolomvatsos, Kostas, Intelligent Technologies and Techniques for Pervasive Computing, IGI Global, 2013.
- 5. M. Bala Krishna, Jaime Lloret Mauri, —Advances in Mobile Computing and Communications: Perspectives and Emerging Trends in 5G Networksl, CRC 2016
- 6. Minyi Guo, Jingyu Zhou, Feilong Tang, Yao Shen, Pervasive Computing: Concepts, Technologies and Applications || CRC Press, 2016

With effect from the academic year 2019-2020

MScIS SEM I – THEORY			Ho	urs		Scheme of Examination				
			/we	/week		MaxMarks Duratic			on(hrs)	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
PCC103	Distributed System	PCC	4	-	4	70	30	3	1	

#### UNIT-I

**Introduction:** Goals and Types of Distributed systems

Architectures: Architectural Styles, System Architectures, Architectures versus Middleware, Self Management in Distributed Systems

**Processes:** Threads, Virtualization, Clients, Servers, and Code Migration.

**Communication:** Fundamentals, Remote Procedure Call, Message Oriented Communication, Stream oriented communication and Multicast communication

### UNIT-II

**Naming:** Names, Identifiers and Addresses, Flat Naming, Structured namaaing, and Attribute based naming.

**Synchronization**: clock synchronizations, Logical Clocks, Mutual Exclusion, Global Positioning of Nodes and Election Algorithms.

**Consistency and Replication:** Introduction, Data centric consistency Models, Client centric consistency models, Replica Management and consistency protocols

### UNIT-III

**Fault Tolerance:** Introduction to fault tolerance, Process Resilience, Reliable Client-Server communication, Reliable Group communication, Distributed commit and Recovery

Distributed Object Based System: Architecture, Processes, Communication, Naming,

Synchronization, consistency and replication, Fault tolerance and security

### UNIT IV

**Distributed File System:** Architecture, Processes, Communication, Naming, Synchronization, consistency and replication, Fault tolerance and security.

Distributed Web-Based Systems: Architecture, Processes, Communication, Naming,

Synchronization, consistency and replication, Fault tolerance and security

### **ÚNIT -V**

**Distributed Coordination-Based Systems**: Introduction to coordination Models, Architecture, Processes, Communication, Naming, Synchronization, Consistency and Replication, Fault tolerance and security.

## Suggested Readings:

- Andrew S. Tanenbaum and Maarten Van Steen, "Distributed Systems", PHI 2nd Edition, 2009.
- 2. R.Hill, L.Hirsch, P.Lake, S.Moshiri, "Guide to cloud computing, Principles and Practice", Springer, 2013.
- 3. R.Buyya, J.Borberg, A.Goscinski, "Cloud Computing-Principles and Paradigms", Wiley 2013.

With effect from the academic year 2019-2020

MScIS SEM I – THEORY			Hours /week			Scheme of Examination				
						MaxN	AaxMarks Durati		on(hrs)	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
PCC104	Software Project Management	PCC	4	-	4	70	30	3	1	

### UNIT – I

Conventional Software Management, Evolution of Software Economics, Improving Software Economics, Old Way & New.

## UNIT – II

Life – Cycle phases, Artifacts of the process, Model Based Software Architectures, Workflows of the Process, Checkpoints of the process.

## UNIT – III

Iterative Process Planning, Project Organizations & Responsibilities, Process Automation, Project Control of Process Instrumentation, Tailoring the Process.

## UNIT – IV

Modern Project profiles, Next Generation Software Economics, Modern process Transitions, Managing Contacts, Managing People & Organizing Terms.

## UNIT – V

Process improvement & mapping to the CMM, ISO 12207 – an overview, programme management.

## Suggested Reading:

1. Walker Royce, *Software Project Management – A Unified frame work*, Pearson Education, Addision, 1998,

2. Bob Hughes and Mike Cotterell, *Software Project Management*, Tata Mc Graw Hill, 3rd Edition, 2010.

3. Watt.S. Humphery, Managing Software Process, Addison - Wesley, 2008.

With effect from the academic year 2019-2020

MScIS SEM I – THEORY			Ho	urs		Scheme of Examination				
			/we	veek		MaxMarks D		Duration(hrs)		
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
ETC105	Machine Learning	ETC	4	-	4	70	30	3	1	

### UNIT I

#### Introduction

Learning – Types of Machine Learning – Supervised Learning – The Brain and the Neuron – Design a Learning System – Perspectives and Issues in Machine Learning – Concept Learning Task – Concept Learning as Search – Finding a Maximally Specific Hypothesis – Version Spaces and the Candidate Elimination Algorithm – Linear Discriminants – Perceptron – Linear Separability – Linear Regression.

## UNIT II

### Linear Models

Multi-layer Perceptron – Going Forwards – Going Backwards: Back Propagation Error – Multilayer Perceptron in Practice – Examples of using the MLP – Overview – Deriving Back-Propagation – Radial Basis Functions and Splines – Concepts – RBF Network – Curse of Dimensionality – Interpolations and Basis Functions – Support Vector Machines.

## UNIT III

### Tree And Probabilistic Models

Learning with Trees – Decision Trees – Constructing Decision Trees – Classification and Regression Trees – Ensemble Learning – Boosting – Bagging – Different ways to Combine Classifiers – Probability and Learning – Data into Probabilities – Basic Statistics – Gaussian Mixture Models – Nearest Neighbor Methods – Unsupervised Learning – K means Algorithms – Vector Quantization – Self Organizing Feature Map

## UNIT IV

## **Dimensionality Reduction And Evolutionary Models**

Dimensionality Reduction – Linear Discriminant Analysis – Principal Component Analysis – Factor Analysis – Independent Component Analysis – Locally Linear Embedding – Isomap – Least Squares Optimization – Evolutionary Learning – Genetic algorithms – Genetic Offspring: -Genetic Operators – Using Genetic Algorithms – Reinforcement Learning – Overview – Getting Lost Example – Markov Decision Process

## UNIT V

### **Graphical Models**

Markov Chain Monte Carlo Methods – Sampling – Proposal Distribution – Markov Chain Monte Carlo – Graphical Models – Bayesian Networks – Markov Random Fields – Hidden Markov Models – Tracking Methods

### **Suggested Reading:**

1. Ethem Alpaydin, —Introduction to Machine Learning 3e (Adaptive Computation and Machine Learning Series), Third Edition, MIT Press, 2014.

- 2. Peter Flach, —Machine Learning: The Art and Science of Algorithms that Make Sense of Datal, First Edition, Cambridge University Press, 2012.
- 3. Stephen Marsland, —Machine Learning An Algorithmic Perspectivel, Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.
- 4. Tom M Mitchell, —Machine Learningl, First Edition, McGraw Hill Education, 2013.

MScIS SEM I – Laboratory			Ho	urs		Scheme of Examination				
			/week			MaxN	IaxMarks Duration		on(hrs)	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
LCC151	Advanced Data Structures and Algorithm Lab	LCC	-	4	2	50	25	3	2	

With effect from the academic year 2019-2020

#### **EXPERIMENTS:**

- 1. Implementation of Merge Sort and Quick Sort-Analysis
- 2. Implementation of a Binary Search Tree
- 3. Red-Black Tree Implementation
- 4. Heap Implementation
- 5. Fibonacci Heap Implementation
- 6. Graph Traversals
- 7. Spanning Tree Implementation
- 8. Shortest Path Algorithms (Dijkstra's algorithm, Bellmann Ford Algorithm)
- 9. Implementation of Matrix Chain Multiplication
- 10. Activity Selection and Huffman Coding Implementation.

MScIS SEM I – Laboratory			Ho	urs		Scheme of Examination			
			/week			MaxMarks Dura		Duratio	on(hrs)
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE
LPC152	Machine Learning Lab	LPC	-	4	2	50	25	3	2

With effect from the academic year 2019-2020

**Description:** 1. The programs should be implemented in Python 3. For Problems 1 to 6 and 10, programs are to be developed without using the built-in classes or APIs of Python 3. Data sets can be taken from standard repositories (https://archive.ics.uci.edu/ml/datasets.html) or constructed by the students.

### Lab Experiments:

1. Implement and demonstrate the **FIND-S algorithm** for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.

2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the **Candidate-Elimination algorithm** to output a description of the set of all hypotheses consistent with the training examples.

3. Write a program to demonstrate the working of the decision tree based **ID3 algorithm**. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

4. Build an Artificial Neural Network by implementing the **Backpropagation algorithm** and test the same using appropriate data sets.

5. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
6. Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.

7. Write a program to construct a **Bayesian network** considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.

8. Apply **EM algorithm** to cluster a set of data stored in a .CSV file. Use the same data set for clustering using *k*-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.

9. Write a program to implement *k*-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.

10. Implement the non-parametric **Locally Weighted Regression algorithm** in order to fit data points. Select appropriate data set for your experiment and draw graphs.
| N              | ISAIS SEM L. Laboratory  |               | Ho  | urs |              | Scheme of Examination |       |         |         |
|----------------|--------------------------|---------------|-----|-----|--------------|-----------------------|-------|---------|---------|
| 10.            |                          |               | /we | eek |              | MaxN                  | Marks | Duratio | on(hrs) |
| Course<br>Code | Course<br>Title          | Cate-<br>gory | L   | Р   | Cre-<br>dits | SEE                   | CIE   | SEE     | CIE     |
| LHC153         | Communication Skills Lab | LHC           |     | 2   | 1            | 50                    | 25    | 3       | 2       |

With effect from the academic year 2019-2020

1. **Introduction to English Phonetics**: Organs of Speech: respiratory, articulatory and phonatory systems; Sounds of English: Introduction to International Phonetic Alphabet; Minimal pairs; Syllable; Word Stress; Introduction of rhythm and intonation; Difficulties of Indians speakers with stress and intonation.

2. **Speaking Activities**: Self Introduction, Picture perception, JAM.

3. Group discussion, Debate, Presentation skills

4. Listening Activities: Listening to different types of materials for effective comprehension

5. **Role play**: Use of dialogues in a variety of situations and settings

#### Suggested Readings:

1. E. Suresh Kumar. A Handbook for English Language Laboratories (with CD).

Revised edition, Cambridge University Press India Pvt. Ltd. 2014

2. T. Balasubramanian. A Textbook of English Phonetics for Indian Students. Macmillan, 2008.

3. J. Sethi et al., A Practical Course in English Pronunciation (with CD). Prentice Hall of India, 2005.

4. Hari Mohan Prasad. How to Prepare for Group Discussions and Interviews. Tata McGraw Hill, 2006.

## PROPOSED SCHEME OF INSTRUCTION MASTER OF SCIENCE INFORMATION SYSTEMS (MSCIS) SEMESTER- II

SNo	Course	Course	Cate-	Ног	ırs/	No of	S Ex	Schei xami	ne of nation
5110	Code	Title	Gory	We	ek	Credits	Ma	X	Duration
							Mar	ks	(hrs)
		THEORY		L	P		SEE	CIE	SEE
1	ETC201	Cloud Computing	ETC	4	-	4	70	30	3
2	PCC202	Network Security	PCC	4	-	4	70	30	3
3	ETC203	Natural Language Processing	ETC	4	-	4	70	30	3
4	PCC204	Advanced Software	PCC	4	-	4	70	30	3
		Engineering							
		Professional Elective - I		4	-	4	70	30	3
5a	PEC211	Network Design and	PEC						
		Technologies							
5b	PEC212	Web Engineering	PEC						
5c	PEC213	Information Retrieval System	PEC						
	I	PRACTICALS							
6	LTC251	Network Security Lab	LTC		4	2	50	25	3
7	LTC252	Natural Language Processing	LTC	-	4	2	50	25	3
		Lab							
8	LPC253	Technical Seminar	LPC	-	2	1	50	25	3
	•		Total	20	10	25	500	225	-

Abbreviation	Full Form	Abbreviation	Full Form
BSC	Basic Science Course	LTC	Laboratory Technological Course
PCC	Professional Core Course	LPC	Laboratory Professional Course
ETC	Emerging Technological Course	LHC	Laboratory Humanities Course
HSC	Humanities and Social Science Course	CIE	Continuous Internal Evaluation
MGC	Management Course	SEE	Semester End Evaluation
PEC	Professional Elective Course	L	Lecture
LCC	Laboratory Core Course	Р	Practical

м	Sals SEM IL THEODY		Hours			Sche	me of	Examin	nation
IVI	SCIS SEW II – THEOR I	/week		/week		MaxN	Marks Duration		on(hrs)
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE
ETC201	Cloud Computing	ETC	4	-	4	70	30	3	1

With effect from the academic year 2019-2020

## Virtualization

Basics of Virtual Machines - Process Virtual Machines – System Virtual Machines –Emulation – Interpretation – Binary Translation - Taxonomy of Virtual Machines. Virtualization –Management Virtualization — Hardware Maximization – Architectures – Virtualization Management – Storage Virtualization – Network Virtualization

# UNIT II

## Virtualization infrastructure

Comprehensive Analysis – Resource Pool – Testing Environment –Server Virtualization – Virtual Workloads – Provision Virtual Machines – Desktop Virtualization – Application Virtualization - Implementation levels of virtualization – virtualization structure – virtualization of CPU, Memory and I/O devices – virtual clusters and Resource Management – Virtualization for data center automation.

## UNIT III

## Cloud platform architecture

Cloud deployment models: public, private, hybrid, community – Categories of cloud computing: Everything as a service: Infrastructure, platform, software- A Generic Cloud Architecture Design – Layered cloud Architectural Development – Virtualization Support and Disaster Recovery – Architectural Design Challenges - Public Cloud Platforms : GAE,AWS – Inter-cloud Resource Management

## UNIT IV

## Programming model

Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job –Developing Map Reduce Applications - Design of Hadoop file system –Setting up Hadoop Cluster - Cloud Software Environments -Eucalyptus, Open Nebula, Open Stack, Nimbus

## UNIT V

## Cloud security

Cloud Infrastructure security: network, host and application level – aspects of data security, provider data and its security, Identity and access management architecture, IAM practices in the cloud, SaaS, PaaS, IaaS availability in the cloud - Key privacy issues in the cloud –Cloud Security and Trust Management

## **Suggested Reading:**

1.	Danielle Ruest, Nelson Ruest, —Virtualization: A Beginner"s Guidel, McGraw-Hill
	Osborne Media, 2009.
2.	Jim Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes",
	Elsevier/Morgan Kaufmann, 2005
3.	John W.Rittinghouse and James F.Ransome, "Cloud Computing: Implementation,
	Management, and Security", CRC Press, 2010.
4.	Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing, From
	Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
5.	Tim Mather, Subra Kumaraswamy, and Shahed Latif, "Cloud Security and Privacy",
	O'Reilly Media, Inc.,2009.
6.	Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A Practical Approach",
	McGraw-Hill Osborne Media, 2009.
7.	Tom White, "Hadoop: The Definitive Guide", Yahoo Press, 2012.

м	Sals SEM II THEODY		Ho	urs		Sche	me of	Examin	nation
111	SCIS SEM II – THEOR I		/week			MaxN	Aarks	Duratio	on(hrs)
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE
PCC202	Network Security	PCC	4	-	4	70	30	3	1

With effect from the academic year 2019-2020

#### UNIT-I

Introduction: Attributes of Security, Integrity, Authenticity, Non-repudiation, Confidentiality Authorization, Anonymity, Types of Attacks, DoS, IP Spoofing, Replay, Man-in-the-Middle attacks General Threats to Computer Network, Worms, Viruses, -Trojans

## UNIT-II

Secret Key Cryptography : DES, Triple DES, AES, Key distribution, Attacks Public Key Cryptography: RSA, ECC, Key Exchange (Diffie-Hellman), Java Cryptography Extensions, Attacks

## UNIT-III

Integrity, Authentication and Non-Repudiation : Hash Function (MD5, SHA5), Message Authentication Code (MAC), Digital Signature (RSA, DSA Signatures), Biometric Authentication.

### UNIT-IV

PKI Interface: Digital Certificates, Certifying Authorities, POP Key Interface, System Security using Firewalls and VPN's. Smart Cards: Application Security using Smart Cards, Zero Knowledge Protocols and their use in Smart Cards, Attacks on Smart Cards

## UNIT-V

Applications: Kerberos, Web Security Protocols (SSL), IPSec, Electronic Payments, E-cash, Secure Electronic Transaction (SET), Micro Payments, Case Studies of Enterprise Security (.NET and J2EE)

#### Suggested Reading:

1. William Stallings, Cryptography and Network Security, 4th Edition. Pearson, 2009.

- 2. Behrouz A Forouzan, Cryptography and Network Security, TMH, 2009
- 3. Joseph Migga Kizza, A Guide to Computer Network Security, Springer, 2010

4. Dario Cataiano, Contemporary Cryptology, Springer, 2010.

With effect from the academic year 2019-2020

M	SAIS SEM II THEODY		Ho	Hours Sc week Ma		Scheme of Examination				
101	SCIS SEW II – THEOR I		/we			MaxMarks Durati		Duratio	on(hrs)	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
ETC203	Natural Language Processing	ETC	4	-	4	70	30	3	1	

Introduction of Elementary Probability Theory, Essential Information Theory.

#### UNIT II

Linguistic Essentials Corpus-Based Work Collocations.

## UNIT III

**Statistical Inference:** Bins: Forming Equivalence Classes, Reliability vs. Discrimination, n-gram models, Building ngram models, An Information Theoretic Approach.

**Word Sense Disambiguation:** Methodological Preliminaries, Supervised and unsupervised learning, Pseudo words, Upper and lower bounds on performance, Supervised Disambiguation, Bayesian classification.

## UNIT IV

**Evaluation Measures, Markov Models:** Hidden Markov Models, Use, General form of an HMM Part-of-Speech Tagging

#### UNIT-V

**Probabilistic Context Free Grammars:** Introduction of Clustering **Information Retrieval:** Background, The Vector Space Model.

#### **Suggested Reading:**

1. Christopher D. Manning, Hinrich Schutze, *Foundations of Statistical Natural Language Processing*, MIT Press, 1999.

2. James Allan, Natural Language Understanding, Pearson Education, 1994.

3. Tanveer Siddiqui, US Tiwary, *Natural Language Processing and Information Retrieval*, Oxford University Press, 2008.

M	Sals SEM II THEODY		Hours			Scheme of Examination				
IVI	ISCIS SEM II – THEOR I		/we	eek		MaxMarks Duration   SEE CIE SEE		on(hrs)		
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
PCC204	Advanced Software Engineering	PCC	4	-	4	70	30	3	1	

With effect from the academic year 2019-2020

### Introduction

Software engineering concepts – Development activities – Software lifecycle models -Classical waterfall - Iterative waterfall – Prototyping – Evolutionary - Spiral – Software project management – Project planning – Estimation – Scheduling – Risk management – Software configuration management.

## UNIT II

## Software Requirement Specification

Requirement analysis and specification – Requirements gathering and analysis – Software Requirement Specification – Formal system specification – Finite State Machines – Petrinets – Object modelling using UML – Use case Model – Class diagrams – Interaction diagrams – Activity diagrams – State chart diagrams – Functional modelling – Data Flow Diagram.

## UNIT III

## Architecture And Design

Software design – Design process – Design concepts – Coupling – Cohesion – Functional independence – Design patterns – Model-view-controller – Publish-subscribe – Adapter – Command – Strategy – Observer – Proxy – Facade – Architectural styles – Layered - Clientserver - Tiered - Pipe and filter.- User interface design

## UNIT IV

## Testing

Testing – Unit testing – Black box testing– White box testing – Integration and System testing– Regression testing – Debugging - Program analysis – Symbolic execution – Model Checking

## UNIT V

## Devops

DevOps:Motivation-Cloud as a platform-Operations- Deployment Pipeline:Overall Architecture-Building and Testing-Deployment- Case study: Migrating to Microservices.

## **Suggested Reading:**

1. Bernd Bruegge, Alan H Dutoit, Object-Oriented Software Engineering, 2nd edition, Pearso Education, 2004.

2. Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli, Fundamentals of Software Engineering, 2nd edition, PHI Learning Pvt. Ltd., 2010.

3. Craig Larman, Applying UML and Patterns, 3rd ed, Pearson Education, 2005.

4. Len Bass, Ingo Weber and Liming Zhu, —DevOps: A Software Architect's Perspectivel, Pearson Education, 2016

5. Rajib Mall, Fundamentals of Software Engineering, 3rd edition, PHI Learning Pvt. Ltd., 2009.

6. Stephen Schach, Software Engineering 7th ed, McGraw-Hill, 2007.

М			Ho	Iours		Scheme of Examination			
IVI	SCIS SEIVI II – ELECTIVE		/week			MaxN	Marks	Duration(hrs)	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE
PEC211	Network Design and Technologies	PEC	4	-	4	70	30	3	1

With effect from the academic year 2019-2020

## Network Design

Advanced multiplexing – Code Division Multiplexing, DWDM and OFDM – Shared media networks – Switched networks – End to end semantics – Connectionless, Connection oriented, Wireless Scenarios – Applications, Quality of Service – End to end level and network level solutions. LAN cabling topologies – Ethernet Switches, Routers, Firewalls and L3 switches – Remote Access Technologies and Devices – Modems and DSLs – SLIP and PPP – Core networks, and distribution networks.

## UNIT II

## Wireless Networks

IEEE802.16 and WiMAX – Security – Advanced 802.16 Functionalities – Mobile WiMAX -802.16e – Network Infrastructure – WLAN – Configuration – Management Operation – Security – IEEE 802.11e and WMM – QoS – Comparison of WLAN and UMTS – Bluetooth – Protocol Stack – Security – Profiles

## UNIT III

## **Cellular Networks**

GSM – Mobility Management and call control – GPRS – Network Elements – Radio Resource Management – Mobility Management and Session Management – Small Screen Web Browsing over GPRS and EDGE – MMS over GPRS – UMTS – Channel Structure on the Air Interface – UTRAN –Core and Radio Network Mobility Management – UMTS Security

## UNIT IV

## 4g Networks

LTE – Network Architecture and Interfaces – FDD Air Interface and Radio Networks – Scheduling – Mobility Management and Power Optimization – LTE Security Architecture – Interconnection with UMTS and GSM – LTE Advanced (3GPPP Release 10) - 4G Networks and Composite Radio Environment – Protocol Boosters – Hybrid 4G Wireless Networks Protocols – Green Wireless Networks – Physical Layer and Multiple Access – Channel Modelling for 4G – Introduction to 5G

## UNIT V

## Software Defined Networks

Introduction – Centralized and Distributed Control and Data Planes – Open Flow – SDN Controllers – General Concepts – VLANs – NVGRE – Open Flow – Network Overlays – Types – Virtualization – Data Plane – I/O – Design of SDN Framework

#### **Suggested Reading:**

1. Erik Dahlman, Stefan Parkvall, Johan Skold, —4G: LTE/LTE-Advanced for Mobile Broadbandl, Academic Press, 2013.

2. Jonathan Rodriguez, -Fundamentals of 5G Mobile Networksl, Wiley, 2015.

3. Larry Peterson and Bruce Davie, —Computer Networks: A Systems Approach^{II}, 5th edition, Morgan Kauffman, 2011

4. Martin Sauter, "From GSM to LTE, An Introduction to Mobile Networks and Mobile Broadband", Wiley, 2014.

5. Martin Sauter, —Beyond 3G - Bringing Networks, Terminals and the Web Together: LTE, WiMAX, IMS, 4G Devices and the Mobile Web 2.0l, Wiley, 2009.

6. Naveen Chilamkurti, Sherali Zeadally, Hakima Chaouchi, —Next-Generation Wireless Technologies^I, Springer, 2013.

7. Paul Goransson, Chuck Black, —Software Defined Networks: A Comprehensive Approach^I, Morgan Kauffman, 2014.

8. Savo G Glisic, —Advanced Wireless Networks – 4G Technologiesl, John Wiley & Sons, 2007.

9. Thomas D.Nadeau and Ken Gray, —SDN – Software Defined Networksl, O"Reilly Publishers, 2013.

10. Ying Dar Lin, Ren-Hung Hwang and Fred Baker, —Computer Networks: An Open Source Approach^I, McGraw Hill, 2011

М			Hours			Scheme of Examination				
			/week			MaxN	Marks	Duratio	on(hrs)	
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE	
PEC212	Web Engineering	PEC	4	-	4	70	30	3	1	

With effect from the academic year 2019-2020

## INTRODUCTION TO WEB ENGINEERING

Motivation, Categories of Web Applications, Characteristics of Web Applications. Requirements of Engineering in Web Applications- Web Engineering-Components of Web Engineering-Web Engineering Process-Communication-Planning.

#### UNIT II

WEB APPLICATION ARCHITECTURES & MODELLING WEB APPLICATIONS

Introduction- Categorizing Architectures- Specifics of Web Application Architectures, Components of a Generic Web Application Architecture- Layered Architectures, 2-Layer Architectures, N-Layer Architectures-Data-aspect Architectures, Database-centric Architectures- Architectures for Web Document Management- Architectures for Multimedia Data- Modeling Specifics in Web Engineering, Levels, Aspects, Phases Customization, Modeling Requirements, Hypertext Modeling, Hypertext Structure Modeling Concepts, Access Modeling Concepts, Relation to Content Modeling, Presentation Modeling, Relation to Hypertext Modeling, Customization Modeling, Modelling Framework-Modeling languages-Analysis Modeling for Web Apps-The Content Model-The Interaction Model-Configuration Model.

## UNIT III

## WEB APPLICATION DESIGN

Design for WebApps- Goals-Design Process-Interactive Design- Principles and Guidelines-Workflow-Preliminaries-Design Steps- Usability- Issues- Information Design- Information Architecture- structuring- Accessing Information-Navigation Design- Functional Design-Wep App Functionality- Design Process- Functional Architecture- Detailed Functional Design. **UNIT IV** 

## **TESTING WEB APPLICATIONS**

Introduction-Fundamentals-Test Specifics in Web Engineering-Test Approaches-Conventional Approaches, Agile Approaches- Testing concepts- Testing Process -Test Scheme- Test Methods and Techniques- Link Testing- Browser Testing-Usability Testing-Load, Stress, and Continuous Testing, Testing Security, Test-driven Development, -Content Testing-User Interface testing-Usability Testing-Compatibility Testing-Component Level Testing-Navigation Testing-Configuration testing-Security and Performance Testing- Test Automation.

## UNIT V

## PROMOTING WEB APPLICATIONS AND WEB PROJECT MANAGEMENT

Introduction-challenges in launching the web Application-Promoting Web Application-Content Management-Usage Analysis-Web Project Management-Challenges in Web Project Management-Managing Web Team- Managing the Development Process of a Web Application- Risk, Developing a Schedule, Managing Quality, Managing Change, Tracking the Project. Introduction to node JS - web sockets.

#### Suggested Reading:

- 1. Chris Bates, —Web Programming: Building Internet Applications^{II}, Third Edition, Wiley India Edition, 2007.
- 2. Gerti Kappel, Birgit Proll, -Web Engineeringl, John Wiley and Sons Ltd, 2006.
- 3. Guy W. Lecky-Thompson, —Web Programmingl, Cengage Learning, 2008.
- 4. John Paul Mueller, —Web Development with Microsoft Visual Studio 2005^{II}, Wiley Dream tech, 2006.
- 5. John Paul Mueller, —Web Development with Microsoft Visual Studio 2005^{II}, Wiley Dream tech, 2006.

М			Hours			Scheme of Examination					
MSCIS SEM II – ELECTIVE			/week			MaxN	Marks	Duratio	on(hrs)		
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE		
PEC213	Information Retrieval Systems	PEC	4	-	4	70	30	3	1		

With effect from the academic year 2019-2020

### **Introduction and Motivation**

Basic Concepts – Practical Issues - Retrieval Process – Architecture - Boolean Retrieval –Retrieval Evaluation – Open Source IR Systems–History of Web Search – Web Characteristics–The impact of the web on IR —IR Versus Web Search– Components of a Search engine.

## UNIT II

#### Modeling

Taxonomy and Characterization of IR Models – Boolean Model – Vector Model -Term Weighting – Scoring and Ranking –Language Models – Set Theoretic Models -Probabilistic Models – Algebraic Models – Structured Text Retrieval Models – Models for Browsing.

#### UNIT III

### Indexing

Static and Dynamic Inverted Indices – Index Construction and Index Compression. Searching - Sequential Searching and Pattern Matching. Query Operations -Query Languages – Query Processing - Relevance Feedback and Query Expansion -Automatic Local and Global Analysis – Measuring Effectiveness and Efficiency.

#### UNIT IV

## **Classification And Clustering**

Text Classification and Naïve Bayes – Vector Space Classification – Support vector machines and Machine learning on documents. Flat Clustering – Hierarchical Clustering – Matrix decompositions and latent semantic indexing – Fusion and Meta learning.

## UNIT V

## Searching The Web

Searching the Web –Structure of the Web –IR and web search – Static and Dynamic Ranking – Web Crawling and Indexing – Link Analysis - XML Retrieval Multimedia IR: Models and Languages – Indexing and Searching Parallel and Distributed IR – Digital Libraries

## Suggested Reading:

 Christopher D. Manning, Prabhakar Raghavan, Hinrich Schutze, —Introduction to Information Retrievall, Cambridge University Press, First South Asian Edition, 2008.
Implementing and Evaluating Search Enginesl, The MIT Press, Cambridge,

Massachusetts London, England, 2010

3. Ricardo Baeza – Yates, Berthier Ribeiro – Neto, —Modern Information Retrieval: The concepts and Technology behind Searchl (ACM Press Books), Second Edition, 2011.

4. Stefan Buttcher, Charles L. A. Clarke, Gordon V. Cormack, -Information Retrieval

м	Sals SEM II Laboratory		Ho	Hours		Sche	me of	Examin	nation
111			/week			MaxN	on(hrs)		
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE
LTC251	Network Security Lab	LTC		4	2	50	25	3	2

With effect from the academic year 2019-2020

### Experiments

1. Implementation of Ciphers

(A) Caesar Cipher

(B) Playfair Cipher

(C) Hill Cipher

(D) Vigenere Cipher

(E) Rail fence - row & Column Transformation

2. Implementation of Security Algorithms

(A) Data Encryption Standard(DES)

(B) RSA Algorithm

(C) Diffiee-Hellman Algorithm

(D) MD5

(E) SHA-1

3 Implement the Signature Scheme for Digital Signature Standard

4 Demonstrate how to provide secure data storage, secure data transmission and for creating digital signatures (GnuPG)

5 Installation of rootkits and study about the variety of options

MScIS SEM II – Laboratory			Hours /week			Scheme of Examination			
						MaxMarks Duration(			on(hrs)
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE
LTC252	Natural Language Processing Lab	LTC	-	4	2	50	25	3	2

With effect from the academic year 2019-2020

#### Experiments

- 1. Language Processing and Python
- 2. Accessing Text Corpora and Lexical Resources
- 3. Processing Raw Text
- 4. Writing Structured Programs
- 5. Categorizing and Tagging Words
- 6. Learning to Classify Text
- 7. Extracting Information from Text
- 8. Analyzing Sentence Structure
- 9. Building Feature Based Grammars
- 10. Analyzing the Meaning of Sentences
- 11. Managing Linguistic Data
- 12. Afterword: Facing the Language Challenge

#### **Reference**:

https://www.nltk.org/book/

MScIS SEM II – Laboratory			Hours /week			Scheme of Examination			
						MaxMarks Duration(h			on(hrs)
Course Code	Course Title	Cate- gory	L	Р	Cre- dits	SEE	CIE	SEE	CIE
LPC253	Technical Seminar	LPC	-	2	1	50	25	3	2

With effect from the academic year 2019-2020

Oral presentation is an important aspect of engineering education. The objective of the seminar is to prepare the student for systematic independent study of state of the art topics in broad are his/her specialization.

Seminar topics can be chosen by the students with the advice from the faculty members. Students are to be exposed to following aspects of seminar presentation.

Literature Survey

Organization of material

Preparation of Power point Presentation slides and Technical Writing.

#### Each Student is required to:

Submit one page of synopsis of the seminar talk two days before for display on notice board.
Give 20 minutes presentation through MS-Power Point presentation slides followed by 10 minutes discussion.

3. Submit a report on the seminar topic with a list of references and slides used within a week