Syllabus

M.Sc. Course in Environmental Science

Directorate of Distance Education VIDYASAGAR UNIVERSITY

MIDNAPORE-721102

WEST BENGAL

Syllabus of M.Sc. Course in Environmental Sciences

(Distance Mode)

M.Sc. Part I

ТҮРЕ	PAPER	TOPIC	FULL MARKS	Credit
Theory	I	Fundamentals of Environmental Science	100	8
Theory	II	Current Issues and Problems in Environment	100	8
Theory	III	Environmental Pollution and Control	100	8
Theory	IV	Environmental Impact Assessment, Eco-planning and Sustainable development, Environmental Biotechnology	100	8
Practical	V	Methods and Techniques For Environmental Analysis	100	8
Practical	VI (A+B)	A. Methods and Techniques of Environmental Geo- Sciences	100 (50+50)	8 (4+4)
		B. Field Work		
Total	1	,	600	48

M.Sc. Part II

ТҮРЕ	PAPER	TOPIC	FULL MARKS	Credit
Theory	VII	Environmental Management, Laws and Policies.	100	8
Theory	VIII	Conventional and Non Conventional Energy Resources	100	8
Theory	IX	Environmental Chemistry and Environmental Geosciences	100	8
Theory	X	Environmental Biology; Biodiversity; Conservation Biology; Different Biomes/Ecosystems.	100	8
Practical	XI	Analytical studies on Environmental Parameters.	100	8
Practical	XII (A+B)	A. Dissertation B. Field Work	100 (75 +25)	8 (6+2)
		Total	600	48

Distribution of Marks for Each Theoretical Paper

Sl.	Theory	Marks	
No.			
1	Answer any 10 questions out of 16	2X10 = 20	
2.	Answer any 5 questions out of 8	4X 5 = 20	
3.	Answer any 5 questions out of 8	8X 5 = 40	
4.	Internal Assessment	20	
	Total	100 Marks	

Note for paper setting: In theory papers questions will be set 16 questions carrying 2 marks each (10 to be answered), 8 questions carrying 4 marks each (5 to be answered), and 8 questions carrying 8 marks each (5 to be answered). Twenty percent (20%) marks will be assigned for internal assessment.

Syllabus of M.Sc. Part - I

Paper - I

Fundamentals of Environmental Science

Marks-100

Unit – I: Basic Aspects of Environmental Science.

Meaning, scope and interdisciplinary nature of Environmental Science; Related subjects and their relation with environmental science; Major components of the environment.

Unit – II: Global environment and its segments.

Structure and composition of atmosphere, hydrosphere, lithosphere, biosphere and Ecosphere.

Unit – III: Fundamentals of Ecology.

Meaning and scope; Ecosystems - types, structural and functional aspects; Energy flow in ecosystems, food chain, food web, trophic levels, ecological pyramids; Ecotone; Ecological niche and Ecological Succession.

Unit – IV: Environmental Resources.

Abiotic resources like Air, Water, Soil, Minerals. Forests and Energy resources; Concept of reserve and resources; Problems with the exploitation of resources and sustainable management; Population Growth – Biological Growth Curves and Carrying capacity.

Unit - V: Weather and climate.

Weather Elements and their variations; Heat balance of the earth atmosphere system; Earth as a heat engine; Major climatic zones of the world; Climates of India; Climate and vegetation; Climatic extremes - environmental implications.

Unit – VI: Energy fundamentals.

Heat transfer processes; Mass and energy transfer across the interfaces of various geospheres. Hydrologic cycle: Types and distribution of water—sustainable management of freshwater. Biogeochemical cycles — carbon, nitrogen, and phosphorus cycles.

Unit - VII: Human Ecology and Ecosystem.

Man and Environment relationship; Concepts and aspects of Human Ecology and Human Eco-system; Different terrestrial ecosystem.

Unit – VIII: Human Adaptability in different environments.

Adaptation in Arid Land, High Altitude, Humid Tropic and Arctic environment.

Unit -IX:Environmental Risk and Hazards.

Risk and hazards; Chemical hazards; Physical hazards; Biological hazards; Basics of hazard management and mitigation.

Unit – X: Human Defense system and Environment.

Role of Cell, tissue, organs of the immune system to against environmental perturbations with special reference to: innate, humoral, cell modified immunity, compliments, hyper sensitivity.

Paper - II

Current Issues and Problems in Environment

Marks-100

Unit – I:Environmental education and Awareness.

Text book knowledge v/s Traditional knowledge; Major mandates and principles on environment; Role of NGO's in environmental management; Green movement and its different dimensions;

Unit – II:Sacred groves and its conservation values.

Concept and historical perspectives of sacred grooves. Role of sacred groves in environmental conservation.

Unit – III:Environmental Ethics and Global Imperatives.

Concepts and aspects of Environmental ethics, Anthropocentrism and Eco-centrism; Deep ecology.

Unit – IV: Global environmental problems.

Green houseeffect, global warming and climate change,ozone layer depletion,acid rain,deforestation and loss of biodiversity,unplanned urbanization.

Unit V: National and Regional Environmental Issues

Resource and its conservation; Ecological refugees; Conservation strategies of the environment: Mines, riverine networks; forest, soil and wild life

Unit - VI: Current Environmental Movements in India.

Silent Valley, Chipko, Narmada dam, Appiko, Tehri Garwal Dam, Uttara Kannada and Almatti dam movements.

Unit – VII:Reclamation and management of Ecosystem.

Soil erosion, Formation and reclamation of Usar, Alkaline and Saline Soil. Waste lands and their reclamation; Water shed management; Desertification and its control.

Unit – VIII: Aspects of Bio-fertilizer and Bio-pesticides

Types of bio-fertilizer; Production and application of bio-fertilizer; Merits and Demerits of bio-fertilizer; Compost and vermi-compost. Types of pests and pesticides; Application and controlling mechanism of bio-pesticides.

Unit – IX: Management of freshwater.

Present scenario of water crisis in India; Conservation of Indian wetlands and freshwater rivers; Rain Water harvesting; River linking projects in India.

Unit – X: Epidemiological issues.

Environmental quality deterioration and public/community health; Problems relating to Goitre, Fluorosis, Arsenic, Malaria, Dengue, Swain flue, HIV; Vectors of disease transmission and Vaccination.

Paper - III

Environmental Pollution and Control

Marks-100

Unit – I: Aspects of Air Pollution.

Structure and composition of atmosphere; Reactions in the lower and upper atmosphere; Sources, types and fate of pollutants; Primary and Secondary pollutants; Persistent organic and inorganic air pollutants; Acid rain and photochemical smog; Air quality standards; Ambient air sampling, analysis and measurement; Mitigative measures; indoor air pollution; Vehicular pollution;

Unit – II: Air pollution management.

Methods of monitoring and control of air pollution SO2, NO2, CO2, S.P.M.; Effect of pollutants on plants, animals, materials and on climate.

Unit - III: Aspects of Water Pollution.

Water Pollution and Waste water transport; Sources and types of water pollutants; Ground water and surface water pollution; Water quality standards; Effects on aquatic ecosystem;

Unit – IV: Aspects of Waste water.

Composition and characteristics; Waste water treatment, recycle/reuse.

Unit - V:Soil.

Physico-chemical and bacteriological sampling as analysis of soil quality. Soil pollution control; Industrial waste and heavy metals.

Unit - VI: Impact of Synthetic Fertilizers on soil.

Different kinds of synthetic fertilizers (NP and K) and their interactions with different components of soil.

Unit - VII: Aspects of *Noise pollution*.

Sources of noise pollution; Measurement of noise and indices; Effect of meteorological parameters on noise propagation; Noise exposure levels and standards; Noise control and abatement measures.

Unit – VIII:Aspects of Marine pollution.

Sources of marine pollution and control; Criteria employed for disposal pollutants in marine system; Oil Pollution;

Unit – IX: Aspects of Coastal Zone Management.

Environmental problems related to Coastal zone; Methods and techniques adopted for coastal zone management; Salient features of Coastal Regulatory Zone notification in India.

Unit – X: Impact of pollutants on human health.

Effect of air and water pollutants; Pesticides, heavy metals, noise, thermal pollution and Ionizing radiation on human health.

Paper - IV

Environmental Impact Assessment (EIA); Eco-planning and Sustainable Development; Environmental Bio-Technology;

Marks-100

Unit – I: Basics of EIA.

Concept of environmental impact assessment; Nexus between development and environment; Origin and development of EIA; Measurement of impact – physical, social - economical, natural; Concept of significant effect; Short term versus long term effect; Relationship of EIA with Sustainable Development.

Unit - II: Framework of Environmental Assessment.

Description of environmental setting; Environmental impact factors and area consideration; Prediction and assessment of impact on air, water, noise and biological environment; Prediction and assessment of impact on the cultural and socio-economic environment; Methods of impact analysis; Public participation in environmental decision making; Integration and Optimization criteria for Multipurpose Development Projects; Environmental auditing.

Unit – III: Impact Assessment Methodologies.

Evaluation of proposed actions and determination of impact importance; Development of value functions and scoping EIA methodologies; Comparison of alternatives and decision making; Compensatory actions - green belts; Preparation and writing of EIA/EIS; Review of procedures, practices and guidelines for EIA in India; Examples of total impact evaluation; Role of GIS in EIA – Base line study, risk assessment, risk management, mitigation measures, comparison of alternatives.

Unit -IV:Socioeconomic Impact Analysis (SIA):

Types of socioeconomic impact; Basic steps in SIA; Analysis of public services and facilities impacts; Fiscal impact analysis; Analysis of social impacts; Impacts of economic profile of the community.

Unit – V: Environmental Planning and Management.

Environmental Monitoring – Bio-monitoring, Eco-restoration, Eco-rehabilitation, Eco-remediation; Bioremediation – Concept, role of bioremediation in controlling various pollution problems like solid water, sewage water, industrial effluents, heavy metals, radioactive substances, oil spillage; Phyto-remediation – Abatement of different types of pollution using plants, types of phyto-remediation, mechanism involved with case studies.

Unit – VI: Bio-monitoring of Environmental Quality

Aquatic biota and its utility in water quality monitoring; Soil biota and its utility in soil quality monitoring; Plant responses to air quality and its application in bio-monitoring of air; Categories, basic measurement methods, computation of species richness indices – Margalef's index and Menhinick's index; Diversity indices – Shannon diversity index; Aquatic biota and its utility in water quality monitoring; Soil biota and its utility in soil quality monitoring; Plant responses to air quality and its application in bio-monitoring of air.

Unit – VII:Sustainable development.

Sustainable development – Concept, underlying principle, types and growth of the idea, indicators of sustainability, models of sustainable development; Sustainable Development Scenario – global and national.

Unit – VIII: Environmental biotechnology.

Basic concept and broad outlines of various application areas – waste treatment, biodegradation of xenobiotic compounds, hydrocarbon degradation, bioleaching:Integrated pest management: concept, technology involved in agriculture & forestry; Basic techniques in Genetic Engineering.

Unit – IX: GM Crops and Biofuel production.

Recombinant DNA technology and its application in strain improvement; Environmental implications of GM Crops and GMO. Alternate fuels: source and mechanism of various bio-fuel productions;

Unit – X: Environmental Toxicology.

Concepts and aspects of Environmental Toxicology; Air borne microbes and allergic disorders; Ecological Toxicology and Forensic toxicology – Dose response relationships, frequency response and cumulative response; Statistical concepts LD 50's – potencyversus toxicity.

Paper – V (Practical)

Methods and Techniques for Environmental Analysis

Marks-100

- 1. Determination of physico-chemical properties of water: pH, transparency, conductivity, DO, CO₂, alkalinity and hardness.
- 2. Determination of the water quality: BOD, COD.
- 3. Microbial water quality analysis through MPN and Spread plate method.
- 4. Air sampling device demonstration of operating principles of high volume air sampler, estimation of dust particles, ambient air quality.
- 5. Estimation of noise level and intensity of light by sound meter and Lux meter respectively.
- 6. Antifungal and antibacterial activity of toxic compounds.
- 7. Estimation of chlorophyll and phenolics.
- 8. Collection and identification of particulatepollutantsincludingmicrobes.

Paper VI: (Practical)

Marks-100

VIA: Methods and Techniques of Environmental Geo-Sciences

Marks -50

- 1. Determination of physico-chemical properties of soil: moisture content, colour, texture, pH, temperature, organic carbon content, electrical conductivity, WHC, bulk density, pore density and porosity.
- 2. Study of soil profile by vertical section.
- 3. Interpretation of SOI toposheets and satelliteimageries.
- 4. Basic identification of rocks and minerals.
- 5. Recording wind direction and wind velocity by Anemometer and preparation of wind rose diagram.

VIB: Field Work

Marks -50

Field visit for at least two days to study the different aspects of Environment.

Syllabus of M.Sc. Part - II

Paper - VII

Environmental Management, Laws and Policies

Marks-100

Unit – I: Environmental Management.

Concept and scope of Environmental Management; Systems and approaches; Standards – international and national; Ecomark; Environmental accounts and auditing; Green funding and taxes; Trade and environmental management.

Unit – II: Ecosystem Management.

Ecosystem analysis, modeling, monitoring and planning; Ecotourism and heritage management; Eco-restoration; Environmental management of water, forest and biological resource.

Unit – III: Environmental management of industrial pollution.

Management of pollution due to chemical, mining and manufacturing industries (petroleum, coal, cement, paper, fertilizer).

Unit – IV: Management of Solid Wastes.

Different types of solid wastes; Methods of disposal and management of Municipal and Thermal power plant generated solid wastes; Bio-medical wastes and Hazardous wastes; Recycling of wastes, Power generation and waste minimization techniques.

Unit – V: Basic elements and tools of statistical analysis.

Probability sampling measurement and distribution of attributes: Distribution of normal and x^2 ; Poisson and Binomial—Arithmetic, geometric and harmonic means: Tests of hypothesis and significance.

Unit – VI: Introduction to environmental system analysis.

Approaches to development of models. Validation and forecasting. Models of population growth and interactions – Lotka- Volterra model. Leslie's matrix model, point source stream pollution model, box model, Gaussian plume model.

Unit - VII: International Environmental Laws.

Evolution and development of International Environmental laws with reference to Stockholm Conference, Nairobi Declaration, Rio Conference, and other international meets/summits on environmental issues.

Unit – VIII: Global environmental issues and International laws.

To control Global warming, Ozone depletion, Acid rains, hazardous waste; Role of UN authorities in protection of Global Environment, Women and environment.

Unit – IX: Environmental laws in India.

Legal, administrative and constitutional provisions for environmental protection in India; Statutory protection of the Human Environment – Factories Act, Motor Vehicle Act, Hazardous Waste legislation for pollution abatement; Biodiversity Act, 2002 and Biodiversity Rules, 2004; Anti Pollution Act; The water (Prevention and control of pollution) Act, 1974; Forest Conservation Act, 1980; Air (Prevention and control of pollution) Act 1988; The Environmental (Protection) Act, 1986; Public Liability Insurance Act, 1991; Wildlife Protection Act, 1972.

Unit – X: Sanction and enforcement bodies of environmental laws in India.

Role of Supreme Court and Green Bench of High Court; Public awareness and Government measures; Role of Pressure Groups and NGOs; Concepts and Aspects of Public Interest Litigation (PIL); Public Interest Litigation in India on different Environmental Issues.

Paper VIII:

Conventional and Non-Conventional Energy Resources

Marks-100

Unit – I: Sources of energy and their classification.

Energy forms and transformation; Sun as source of energy – Source of sun's energy, Solar spectrum, solar radiation – absorption, reflection, scattering and diffusion in the atmosphere, Albedo, Global energy balance.

Unit –II:Energy use pattern.

Human energy requirement; Energy use pattern in different parts of the world and its impact on the environment; Energy use pattern in India;

Unit - III:Fossil Fuels.

Classification, composition, physiochemical characteristics of Fossil fuels; Energy content of coal, petroleum and natural gas; Formation, reserves, exploration/mining and uses of Coal, Oil and Natural gas; Environmental problems associated with exploration/mining, processing, transportation and uses.

Unit – IV:Bio-energy.

Biomass composition and types of Bio-energy; Conversion processes – pyrolysis, charcoal production, compression, gasification and liquefaction; Energy plantation; Biogas – production and uses, anaerobic digestion; Environmental constrains; Energy from solid Wastes – Sources, types, energy production.

Unit – V: Nuclear energy.

Fission and fusion of Nuclear Energy; Nuclear fuels; Mining and processing of Uranium – concentration, refining, enrichment, fuel fabrication and fuel cycle; Nuclear reactors and radioactive waste; Environmental implications.

Unit - VI: Solar Energy.

Harnessing of solar energy; Solar collectors and concentrators; Solar thermal energy; Solar electricity generation; Solar heaters; Dryers and Cookers; Photovoltaics.

Unit - VII: Wind energy.

Wind power; Harnessing of wind energy; Power generation – wind mills, concentrators, wind characteristics and siting; Environmental Considerations; Wind energy potential in India with special reference to Northeast India.

Unit -VIII: Hydroelectricity.

Principles of generation of hydroelectric power; hazard related to hydropower generation and distribution; Environmental impact.

Unit – IX: Geothermal energy.

Sources – crust, high temperature aquifers, low temperature aquifers, reserves; Harnessing of geothermal energy – problems and prospect; Geothermal energy prospect in India;

Unit - X: Hydrothermal energy.

Different aspects of Tidal and wave energy. Problems and prospects associated with utilization of hydrothermal energy.

Paper IX:

Environmental Chemistry and Environmental Geosciences

Marks-100

Unit –I: Chemical Thermodynamics.

Laws of Thermodynamics; Reversible and irreversible processes; Carnot cycle; Thermodynamic functions; Chemical Kinetics: Order and molecularity of a reaction; Basic kinetic laws – first, second and third order reactions; Determination of rate constant; The Arrhenius equation, Steady state concept, Enzyme Kinetics.

Unit -II: Photochemistry.

Laws of photochemistry; Fluorescence and Phosphorescence phenomena; Chemical, photochemical and photosensitized reactions in the atmosphere; Fluorescence Molecular Sensors.

Unit -III: Analytical Methods in Environmental Quality Assessment.

Principles of titrimetry; Gravimetry; Colorimetry; Spectrophotometry; Spectrofluorimetry; Flame photometry, AAS; Chromatographic techniques; Gel electrophoresis and X-ray diffraction techniques.

Unit –IV: Bioinorganic chemistry.

Classification of elements (specially heavy metals); Coordination; Organometallic and Organo metalloidal compounds; Structure-toxicity relationships; Chemical speciation ;Concept of chelates; Chelatetherapy and drug design; Bio-essential metals and their role in life processes; DNA – binding and biological activity of metal ligand complexes.

Unit -V: Geological time scale.

An overview; palaecology (Quaternary and phanerozonic palaeontology); Reconstruction of palaeogeography; Common rocks and minerals – Major categories and their mode of origin; Physical and chemical weathering of rocks.

Unit -VI: Geomorphological process and Forms

Process and forms (Fluvial, eolian, glacial, coastal and Karst); Fundamentals of structural geology and tectonics; Coastal systems – Definitions, Energy and classification with an emphasis on broad scale geological and tectonic controls; The impact of human activity in tidal coastal systems; Mountain environment – landslides and mass wasting; Glacial processing; Periglacial process; Fluvial environment – Drainage system, Establishment of drainage system, drainage patterns, process of erosion and transportation by rivers; Erosional and depositional landforms; River basin concept and its application in regional management; Fluvial cycle of erosion; interruption of cycle of erosion.

Unit -VII: Hydrological cycles and groundwater issues.

Aquifers, Aquitards, Darcy's law and hydraulic conductivity; Groundwater quality and contamination with reference to arsenic fluoride and nitrate;

Unit – VIII: Natural hazards and its management.

Problems and prospects related to the management of Drought, Flood, Earth quake and Landslideetc; Human consequences of flood and bank erosion; Application of GIS in Environmental management.

Unit – IX: Environmental issues related to mining and construction.

Problems and prospects of Coal, mineral and metal Mining. Geological consideration of engineering constructions— Dam, Road & Rail link, Landslide area.

Unit –X: Biogeochemical cycle:

An overview of Biogeochemical Cycle; Importance of chemical and biological processes in carbon; Nitrogen and phosphorus cycle; Climate of India –Seasons in India Indian monsoon; El-nino and La-nino; Tropical cyclones and Western disturbances; Principles of remote sensing and its application in environmental science.

Paper X:

Environmental Biology, Biodiversity and Conservational Biology, Study of Different Ecosystems/ Biomes

Marks-100

Unit -I: Diversities of life forms.

Origin of life and its symbiosis with environment; Environment of Early Men; Origin and Evolution of Man.

Unit -II: Microbial Diversity.

Fundamental concept of microbial diversity – bacteria, fungi, actinomycetes; Microbial diversity in man-made ecosystems and natural ecosystems; Importance of microbes in nutrient cycling.

Unit –III: Plant diversity.

Plant nomenclature and ICBN; Major classes of plant phytogeographical regions of India; Rare and threatened plants; role of Botanical Survey of India in exploration of floral wealth.

Unit -IV:Animal Diversity.

Animal nomenclature and ICZN;Major categories of animals; Rare and threatened species of mammals; Aves; Reptiles and Pisces in India with special reference to N.E. India; Role of Zoological Survey of India/Zoo Authority of India in exploration and conservation of faunal wealth.

Unit –V: Biodiversity and wildlife.

Categories of Biodiversity and Wildlife; Basic measurement methods—Computation of species richness indices by Margalef's index and Menhinick's index; Diversity indices by Shannon diversity index; Causes and consequences of loss of biodiversity, Biodiversity

Page 20 of 22

Conservation – Need of biodiversity conservation; Biodiversity conservation methods: In-situ

Conservation – sanctuaries, biosphere reserves, national parks, nature reserves, preservation

plots; Ex-situ Conservation – botanical gardens, zoos, aquaria, homestead garden, herbarium; In-

vitro Conservation –germplasm and gene bank, tissue culture, pollen and spore bank, DNA bank;

Biodiversity Management – International/National; Concept of SLOSS and Biosphere reserve.

Unit –VI: Global Biodiversity conservation strategies.

Role of MAB, IUCN; Intellectual property rights - TRIPS, role of Indigenous

Knowledge System (IKS), Biopiracy, rights of farmers, breeders and indigenous people.

Unit -VII: Forest Ecology.

Definition of forest and forestry; Classification of forest and their distribution with

special reference to mangrove forest; Composition of forest – fundamentals of forest population,

community, succession, climax; components of a forest ecosystem; Interrelationship among

different components in forest ecosystem; Ecological values of forest; Forest types of the world

and India.

Unit –VIII: Conservation of forest

Definition, National and international conservation strategies; Importance of indigenous

knowledge and people's participation in forest conservation; Concepts and aspects of World

Forestry day, World Environment Day, International Day for Biological Diversity,

Vanamahotsav, Aranya Saptaha; Forest Biotechnology – Forest resources & bioprocess.

Unit –IX:Aquatic Ecology.

Aquatic flora, fauna and microbes; Diversities of aquatic ecosystem; Food chain and

function in aquatic eco-system; Degradation of aquatic ecosystem; Eutrophication and their

conservation; Wetland – status and conservation priorities in India.

Unit –X:Study of different ecosystems/ biomes.

Forest; Marine; Mangrove; Desert; Coral.

Paper XI:PRACTICAL

Analytical studies on Environmental Parameters

Marks-100

- 1. Isolation of microbial population of air, water and soil
- 2. Observation of curd microorganisms.
- 3. Gram staining of bacteria.
- 4. Study of bio-indicators- air pollution and water pollution.
- 5. Demonstration of instruments like Spectrophotometer, Electrophoretic apparatus, HPLC, Incubators etc.
- 6. Study of NPK status of soil.
- 7. Study of biotic-community: Relative Abundance, Density, frequency, Species Dominance Index and Species diversity index. Deduction of α, β, γ diversity.
- 8. Estimation of primary productivity.
- 9. Collection, preservation and ecological comments onmacrophytes, phytoplanktons, zooplanktons and benthos.
- 10. Collection, preservation and ecological comments on soil and litter fauna.
- 11. Demonstration of alcohol from low cost substrate and alcohol content determination.
- 12. Demonstration of Bio-fertilizer: Azotobactor, Rhizobium.
- 13. Demonstration of vermicomposting and vermiculture.
- 14. General survey of a specific area through GPS.
- 15. Geo environmental mapping using SOI Toposheet.
- 16. Problems of testing of hypothesis and significance; mean, median, mode, correlation and regression based on socio economic data.

Paper XII:

Dissertation and Field Work

Marks-100

XII-A: Dissertation (Emperical/ Experimental/ Research based): Marks-75

XII-B: Field Work: Marks-25

At least two days of Field tour for appraisal of common landforms/ rocks/mines/mining process/water resource management/human adaptability in a particular environment.