B.Tech. Civil (Construction Management)

Term-End Examination

December, 2018

anara

ET-540(B) : FLOW IN OPEN CHANNEL

Time: 3 hours
Maximum Marks : 70
Note: Answer any five questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Define and differentiate between the following :
(i) Uniform flow and Varied flow
(ii) Steady flow and Unsteady flow
(b) Define hydraulic grade line and energy grade line. With the help of a neat sketch, show hydraulic grade line and energy grade line for pipe flow.
2. (a) With the help of neat sketches, explain the velocity distribution in the following types of open channels :
(i) Rectangular channel
(ii) Trapezoidal chañinel
(iii) Triangular channel
(b) A trapezoidal channel is having bottom width of 3.0 m , side slope $1.5: 1$, longitudinal slope of 0.0015 and $n=0.013$. Find the normal discharge, if the normal depth of flow is 2.0 m .
3. (a) Discuss the application of specific energy principle to solve the transition problem.
(b) A rectangular channel expands smoothly from a width of 1.5 m to 3.0 m . Upstream of the expansion the depth of flow is 1.8 m and the velocity of flow is $2.0 \mathrm{~m} / \mathrm{s}$. Find the depth of flow after expansion.
4. (a) What is hydraulic jump ? Mention the applications of hydraulic jump.
(b) Water flows in a horizontal channel with a velocity of $8.0 \mathrm{~m} / \mathrm{s}$ at a depth of 1.0 m . Find the conjugate depth and the energy loss in the jump.
5. (a) Define gradually varied flow. Write the assumptions made for deriving dynamic equation of gradually varied flow.
(b) With the help of neat sketches, discuss the practical situations for occurrence of M-flow profiles.
6. (a) Identify and draw flow profiles for the following situations:
(i) A mild channel breaking into a steep channel
(ii) An adverse channel discharging into a mild channel
(b) Describe the method of direct integration (Bresse's method) of computation of flow profile.
7. Write short notes on any four of the following : $4 \times 3 \frac{1}{2}=14$
(a) Control Section
(b) Reynolds Number
(c) Manning's Equation
(d) Hydraulic Exponent for a Prismatic Channel
(e) Relationship between Manning's ' n ' and Chezy's 'C'
