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ABSTRACT ALGEBRA

J'gcbra is 2 word that you alt are familiar with. You may also know that it is derived from
18 Arabic word ‘al-jabr'. Classically, algebra was concerned with obtaining sclutions of
juations. Then came modem algebra, a term used 1o describe delziled investigations within
lassical atgebra. And now we have abstract algebra, a generalisation of modem algebra. In
astract 2lgebra we study algebraic systems that are defined by axioms alone, These axioms
yrmally evolve from concrete situations. Froim the Linear Algebra course, you are already
vare of one such algebraic system, namely, a vector space. As you know, the axioms that
finc a vecior space were developed by keeping the Euclidean space R" in mind.

. this course we will deal with three other basic algebraic systems, namely; groups, rings
id fields. In the first two blocks of this course we will introduce you to groups and their
operties. In the remaining two blocks we discuss rings and fields. To start with, in Unit 1,
= give a summary of basic definitions and results on sets, functions and properties of
visibility of integers. This will help you to grasp the concepls that come later, more

sily.

u may wonder why you should study this course, As you rcad this course you will realise
il the methods of abstract algebra aliow us to deal with several similar algebraic systems

just dealing with one representative system. This helps us to be concise and to understand
* structure of several systems more quickly.

ere are several practical applications of what you will study in this course. Let us start

th some applications of group theory. This theory is used by physicisis and chemists in
'stallography, spectroscopy, gencral relativity, solid state physics and the medem theory of
mentary particies. [n fact, using group theory, scientists predicted the existence of the
1ega minus particle, which was identified in 1964, much after the prediction.

w let us look at some applications 6f rings and fields. Polynomial rings and matrix rings
used in quantum mechanics. Field theory is being used to construct efficient error

ecting and comecting codes in the area of data cosmmunication. Of course, finite fields are
¥ useful in statistics too.

+ would like to say a few words about the way we have presented the matcrial, We have
:sented this course with the assumption that you have already studied
‘material giveninour Elementary Algebraand Linear Algebracourses. As youknow,
enever we iniroduce concepts, we give alotof concrete exa mples to help you undersiand
Quite a few examples are taken {rom linear algebra. We also assume a knowledge of the
ipertics of the basis of a vector space in Block 4 of this course.,

s course is divided into four blocks. In each block we give a block introduction, a list of
1bols that are used in the block and then, the units of the block. Every unit has exercises
rspersed with the text. They are nicant to help you check your progress. The solutions or
WES 10 Lue exercises in a unit are given at the end of the unil. After you finish
dying a unit, please go back to the ohjectives of the unit {given in the
oduction), and see if they have.been achieved.

v & word aboul our notation, Each unit has been divided into seqtions. Since the material
1¢ different units is heavily interlinked, we will be doing a lot of cross-referencing. For
we will be using the notation Sec. X.¥. to mean Section y of Unit x.

ing your study of this course we will send youtwo assignments. They arc also meant o

zaching aids. Your academic counsellors will assess them and retwm them to you with
blz detailed remarks

u may ulso like 1o view our video programme, “Group - of Symmetres™. In it we hoave
Lloconcretine soime concepis of group theory that you have swadied in the first two blocks
tg course. The notes of Ihis programme are in Block 2.

e feot like reading more than whai this course contains, you may consult the
nwing bouks:

University Algebra by N.S. Gopalakrishnan (Wiley - Eastern Ltd.)
Topics in Algebra by LN. Herstein (Vikas)
A Texr Book of Modern Abstract Algebra by Shanti Narayan

i€ bocis will be available at your study centre,
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the set of all x such that x satisfies the property P_
the set of natural numbers

the set of inlegers (nori-zcro integers})

the set of rational numbers (non-zero rational numbers)
the sct of real numbers (non-zero real numbers)
the set of complex numbers (non-zero complex numbers)
the set of integers modulo n. ‘

the empty sct
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union of the sets A and B

intersection of the sets A and B

the set of elements of A that are not in B
complement of A
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image (inverse image) of the set S under the functon £
composition of the functions f and g
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a is congruen! to b modulo n
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inverse of the element x
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an r<cycle
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H is not a subgroup of G

group gencraled by 1he set S

cyclic group generaled by a

right coset of the subgroup H

aliernating group on n symbols

quaternion group
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order of the group G
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BLOCK 1 ELEMENTARY GROUP
- THEORY.

A group is an algebmic system consisting of a set, along with one binary operation defined
on it. Groups have been studicd by mathematicians for over two hundred years. Throughout
the nineteenth century, group, theory was a study of permutations and substitutions. It
stowly evolved into its present abstract form.

Group theory, in its present (orm, helps in analysing basic mathematical structures,
Maihematicians working in a variety of branches of mathematics can borrow methods and
tools from groip theory lo make progress in their own ficld. Not only mathematicians, but
chemists and physicists also use group theory to analyse the structures of molecules and
crystals, or to study the "solid circuits” of sophisticated electronics. It was a group of
algebraic transformalions, devised by a Dutch physicist Lorentz, which Einstein used for
analysing Special Relativity. It is the basics of this interesting and useful theory Lhat we
want to share with you in this block.

In the ﬁrst unit of this block we summarise some of the basic ideas CONceming sets,
functions and number theory. We also establish certain notation that is used throughout the
course.

We start the study of group theory in Unit 2. In this unit you will see what a group is. You
will also discover that a lot of familiar sets, like the scts of integers and rational fumbers,
are groups with respect (o addition.

We also introduce you lo three groups that you will come across off and on, throughout the
course: the group of integers modulo n, permutation groups and the group of complex
numbers.

In Unit 3 you will study subsets of groups that are groups in their own right. They are
appropriately called subgroups.

In the last unit we discuss a very elementary thcorem about groups with a finite number of
elements. This result is named after the mathematician Lagrange.

In the next block you will go a little deeper into group theory and you will need everything
that you leam in this block. So go through this block carefully. Try every exercise, and go
further only after solving it.






UNIT 1 SETS AND FUNCTIONS

Structure
.1 Introduction ' 9
Objectives '

1.2 Sets - 9
1.3 Canesian E’roducm 13
1.4  Relations ' 13
1.5 Functions 16
1.6  Some Number Theory 20

Principle of Induciion
Divisibility in Z
1.7 Summary 25

[.8  Solutions/Answers _ 25

1.1 INTRODUCTION

In this unit we first discuss some basic ideas concerning sets and functions, These concepts
are fundamental to the study of any branch of mathematics, in particular of algebra.

In the last section we discuss some clementary number theory. The primary aim of this
section is to assemble a few facts that we will need iy the rest of the course. We also hope to
Eive you a ghimpsc of the clegance of number theory. It is this elegance that led the
mathematician Gauss to call number theory ihe ‘queen of mathematics’,

We would like o repeat that this unit consists of very basic ideas that will be Used
throughout the course. So go through it carcfully.

Objectives

After reading this unit, you should be able to

e  use¢ various operations on sels;

*  deline Castesian products of sets;

@  check if a relation is an equivalence relation or not, and find equivalence cluasses:
e define and use different kinds of functions:

¢  state and use the principle ol induction;

e use the division algorithm and unique prime factorisation theorem.

You must have need the word ‘sar” off and on o your cunversations to descnbe any
colicciian. In walhamatics the lerm sel is used to describe any well defined collection of

objects, that is, every set shoutd be sa deseribed that given any object it should be clear
wheslier the given object belongs to the set or not,

For instance, the collection N of all naturul numbers is well defined, and hence is a sct. Bui
the collection of all rich people is not a set, because there is no way of deciding whether a
human being is rich or not. -

IF S is a set, an object a In the collection § is called an element of S. This fact is expressed
in symbols as a € § (read as "a is in $" or "a belongs 10 §7). If a is not in S. we write

a & S. For example, 3 € R Ihe set of real numbers. But \"Tl- € R.

The Greek lenss, e, denotes betougs
I, [ = ik abbreviation of the Greek

word meaning is
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"3 " denotes there existy’,

10

A set with no element in it is called the empty sﬁt, and is denoted by the Greek idtter ¢
(phi). For example, the set of all natural numbers less than 1 is §.

There are usually two way of describing a non-empty set:
(1) rosier method, and (2} set builder method.

Roster Method : In this method, we list all the elements of the set within braces. For
instance, the collection of all positive divisors of 48 contains 1, 2, 3, 4, 6, 8, 12, 16, 24 and
48 as its elements. So this set may be wrilicn as {1, 2, 3. 4, 6, 8, 12, 16, 24, 48).

In this description of a sel, the following two conventions are followed:
Convention 1 : The order in which the elements of the set are listed is not important.
Coavention 2 : No element is written more than once. that is, every element must be
written exactly once.

. . 1 1 . .
For example, consider the sct S of all integers between 12 and 42. Obvicusly, these integers

are 2, 3 and 4. So we may write § = (2, 3, 4].

We may atso write $ = {3, 2, 4}, but we must not wrile S = {2,3,2,4}). Why? Isn't this
what Convention 2 says?

The roster methed is sometimes used 1e list the elements of a large set also. n this case we
may not want to list all the elements of the-set. We list a few, enough to give an indication
of the rest of the elements. For example, the set of integers lying between 0 and 100 is

{0, 1, 2, , 1001, and the set of all integers is Z = {0, £1, £2, ...}

Another method that we can use for describing a setis the

Set Builder Method : In this method we {irst try to find a property which characierises
the elements of the set, that is, a property P which all the elements of the set possess, and
which no other objects possess. Then we describe the set as

{x | % has property P}, or as
{x : x has property P}.

This is 10 be read as “Lhe set of all x such that x has property P, For example, the set of all
integers can also be written as

Z=1{x | x is an integer).

Some other sets that you may be familiar with are

Q, the sct of rational numbers = {% abe Z,b=0

R, the set of real numbers

C, the set of complex numbers = {a+ibl a, 0= R].(Hereci= ‘J:_l J

Let us now sce what subsets are.

Subsels: Consider the sets A = (1, 3, 4] and B = (1, 4]. Here every element of B is also an

element of A. In such 2 case, that is, when every e¢lement of a set B is an element of aset A
we say that B is a subset of A, and we write this as B € A.

1t is obvious that if A is any sct, then every element of A is certainly an element of A, So,
for cvery set AL A <Al

Also, for any set A, ¢ S AL

Now consider the set § = (1.3.5. 15} and 1= {2.3. 3. 7}. Is § ¢ T? Ne. because nol every

clement of S is in T; for example. | = S but 1 € T. In this cuse we say that 3 is not a
subse! of T, and denote it by S & T.

Note that if B is not a subsel of A, thera must b= an clement of B which is not an clement
of A. In mathematical notation this can be written as * 3 x € B such thatx ¢ A"

We can now say that two sets A and B arc cqual (i.e., have precisely the same clements) -

if and only if A € Band B C A.



. Fry the following cxercise now.

E 1) Which of the following statements are true?

@ NcZ 0 ZcN © {(0)c{l.23), @ (24 6} ¢ {2 4, 9.

Let us now look at some operations on sets. We will briefly discuss the operations of union,
intersection and complementation on sets.

Union : If' A and B are subsets of a set S, we can collect the elements of both to geta new
set. This set is called their vnion. Formally, we define the union of A and B to be the set
of all those eiements of § which are in A or in B. We denote the union of A and'B by

A UB. Thus,

AUB={xeS|xe Aorxe B).
For example, if A= {1, 2) and B = {4, 6, 7}, then AUB = {1, 2,4, 6, 7).

Again,ifA={1,2,3,4)andB={2,4,6,8}.then AUB = [1.2 3,4, 6, 8). Observe that
2 and 4 are in both A and B, but when we write A U B, we wrile these clements only once,
in accordance with Convention 2 given earlier.

Can you see that, for any set A, AUA = A?

Try the following cxercise now. While trying it remember 1hat 1o show that A C B you need
toshowthatx e A= x e B.

E2) LetA,B,C be subsets of a sel S such that A < C and B cC. -
Then show that

a AUBcC
"b) AUB=BUA
¢t AUg=A

Now we will extend the definition of union to define the union of more than two sets,

IfFA,L Au Ay, . « Ay are k subsets of a set S, then their union A jUASULLLLUA, s
the set of elements which belong 1o al least one of these sets. That is,

k

The expression AU A;U.......1 .-‘\k.‘is often abbreviated 10 U A,
i=1

Il gis a collection ol subsets of a sct S, then we can define the union of all members ofjo
by -

-

U A={xeS|xe AforsomeAe ).
= txe s | o)
Now let us lock at another way of obtaining a new set from two or morc given sels,

Inlcrsecliqn :IF A and B are 1wo subsels of a sot 5. we can collect the elements that are

commen to botin A and B. We call this set the intersection of A, and B (denoted by
ANDB, Sa,

ANB=i{xeS|xe Aandxe G}

Thus, if P={1.2.3, 4} and Q = {2.4.6.5). thea PN Q = {2, 45,

Can you sce that, for any set A, &N A = A?

Now suppose A= [1. 2) and B = {&, 6, 7}. Then what is A 0 7 We observe that. in thiy

Case. Aand B have no common elctiis, and 50 ANB = ¢, the emply set.

When the iniersection of 1wo sers ic @ we sav that Lhe two sels arc disjoint (or mutually
disjoint). For example, the sets {1, 4] and {0, 5. 7, 14] are disjoint.

Try this exercise now.

4

Sets gnc Functions
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‘="' denates 'implies’.

"W denotes 'for every”,

[ 2]

£3) Lct A and B be subsets of a sel S, Show that
a) ANB=BNA
b) ACB=ANBR=A
g ANg=¢

The definition of interseclion can be extended 10 any number of sets. Thus, the intersection
of k subsets A;, As,...... A ofaserSis
AN AN L NAy={xeSlxe A;jforeachi=12,....k].

k
We can shonen the expression AjN AN .. .NA 10 DA,
i=l

In generad, il g2is a collection of subsels of a sel S, then we can define the intersection of alt
the members of @by

N A=ixeSlxeavae p}

Asp

In Lhe following exerciscs we give importanl propertics of unions and intersections of sets.

E4) For any subsets A, B, Cof a sel S, show rhat
3 {(AUBYUC=AUBUQO)
b (ANBNC =ANBNC)
g AUBNO=(AUBINAUC)
& ANBUC)=(ANB)UANC)

E3)  State whether the following are true or false. If false, give a counter-example.
2 IACBadBgCthenAgC.
by IfA¢ BandB g A then A and B are disjoint.
) A¢ AUB
d BCAUB
¢y fAUB=d1thenA=B=0g.

Apart from the operations of unions and inlersections, there is another operalion on sels,
namiely, the opzration of aking differences.

Differences : Consider the sets A = {1,2,3} and B = {2.3,4]. Now Lhe sel of all elements
of A that are not in B is [ 1]. We call this sel the difference ANB. Similarly. the dilference
U A s the set of elements of B that are novin A, that is, {4}

Thus, for any lwo subscis A and B ol a set 5.
AB=[xcS|xe Aandxe B}

When we are working with elements and subscts of a single set X, we say thai the s:L X is
the universal set. Suppoese X is the universal set and A ¢ X, Then the set of all clements
ot X which are nol in A is calied the complement of A and is denoted by A", A% or X\ A.
iy, ’

ATl ve X ! w2 AL

T

Forevanple, 10N = L Bopog L] and A = {a,p,ql.ihen AT = (bl

Irv the following exercise now.

E 6y Why are the following statemanls true?
2 Aand AS are disjoint, e, AN AT = ¢,
b) A UAS =X, where X is ihe universal set.

q (A=A




And now we discuss one of the most Important constructions in set theory. -

1.3 CARTESIAN PRODUCT

"An interesting set that can be formed from two given scts is their Cartesian product,
named after the French philosopher and mathematician Rene Descartes (1596 - 1650). He
also invented the Cartesian coordinate Sysiem.

Lel A and B be two sets. Consider the nair (a.b).:in which the first element is from A and
the second from B. Then (a,b) is callcd an ordered pair. In an ordered pair the order in
which the two clements are written is imponant. Thus. (a,b) and (b,a) are different
ordered pairs. Two ordered pairs {a,b) and (c,d) arc called equal, or the same, if
A=cand b =d.

Definition : The Cartesian product A x B, of the scts A and B, is the set of ali
possible ordered pairs (a, b), where a € A,be B,

For example, if A={[,2,3) and B= {4, 6], then

AxXB={((1,4),(1,6), 2, 4), (2, 6, (3, 4), (3, 6) }.

Also note (hat

BxA=[(4,1).42). (4. 3), (6. 1), (6, 2), 6,3)Jand AXB#BxA.

Let us make some remarks about the Cartesian product here.
Remark : i) AXB=¢iffA=¢orB=0.

iiy If A has m elements and B has o elements, then A x B has min elements. B x A also has
mn elements. But the elements of B x A need not be the same as the elements of A x B, as
¥cu have just seen.

We can also defline the Cariesian product of more than two scis in a similar way. Thus, if
Ay A Agyeeeeeen, Ag 2re 1sels. we can define their Cariesian product as
ArX AgX XA = (@1 8g0d) | 3 € Appcoeni@y € Ap |

For example, if R is the set of all real numbers, then

RXR={(a;,a;) | a,€ R.aye R}
RXRXR={(a, 1, a) | 2 ¢ Rfori=1,2,3}, and so on. I is customary to write
R:for Rx Rand R% for R x ... x R {n times).

Now, you know that every point in a plane has two cdordinates, x and y. Also, every ordered
pair (x,y} of real numbers defines the coordinates of a point in the plane. So. we can say that
R? represents a plane. In fact, R?is the Cartesian preduct of the x-axis and the y-axis. In the
same way R? represents three-dimensional space, and R represents n-dimensional space, for
any n z 1. Note that R represents a line.

Try the following excreises now.

E7) IFA=1(25,,B=(23).ind AXB.BxAand A x A
E8) IfAXB={(7.2).(7.3),(7,4), (2. 2). (2. 3}, (2, 4) |. determine A and B.
E9) Prove that (AUB) x C = (A x C) U (B x C) and (ANBYXC=(AxXxC)N(B xC).

Let us now look at certain subscls af Cartesian producls.

1.4 RELATIONS

You are already familiar with the concept of a refationship between peopic For example, a
parent-child relationship exists between A and B if and only if Aisapareniof BorBisa
parent of A.

In mathematics, a relation R on 2 sel Sisa relationship between the elements of S, Ifae§
is related 1o b € S by means of this relation, we write a R b or (a,b).e R, From the latter
notation we sce that R € S x S. And this is cxaclly how we define a relatien on a ser.

Sets and Fun clions
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e denetes implies and is iniplicd

by,

Delinition : A relation R on a sel S 15 a subser of § % §--

Far example, if N is the set of natural numbers and R is the relation ‘is a multiple of, then
I5R 5, butnot 5 R 15. That is. (15,5) e Rbut (5, 15) & R. Here R ¢ N x N.

Again, if Q is the set of all rational numbers and R is the relation *is greater than’, then
3 R 2 (because 3 > 2). '

The following exercise deals with relations.

E 10)  Let N be the set of all natural numbers and R the relation [(a,a%) [ ae N J. State
whether the following are iruc or lalse:

a) 2R3, by 3RS, c) 9R 3.

We now look al some particular kinds of relations.

Definition : A relation R defined on a set S is said to be
i) reflexive if we have aRa, ¥ ae S. '
iil) symmetricif aRb = bRaMa, be 5.

iii) ' (ransitive if aRb and bRc = aRc ¥ a,b,c e S.

To gel used 1o these concepts, consider the following examples.

Example 1 : Consider the relation R on Z given by “aRb if and enly if a > b'. Determiine
whether R is reflexive, symmetric and Lransitive.

Solution : Since a > a is not true, aRa is not 1cue. Hence, R is not reflexive,

If a > b, then certainly b > a is not true. That is, aRb does not imply bRa. Hence., R is not
Ssymmetric.

Sincca>bandb>c implies a > ¢, we find that aRb, bRc implies aRe. Thus, R is
transitive.

Exaraple 2 : Let S be a non-empty sct. Let g (5) denote the set of all subsets of §, ic.,
pS)=(A | AcS). We call @(5) the power set of 5.

Define the relation R on g2 (S} by

R=[(A.B)| A.Be @(S)and A CB].

Check whether R is reflexive, symmetric or transitive.

Solution  Since A € A WA & £2(5). R is refiexive,
ITA B, Bneedpotbe conainedin A.(Inlact, ACcBandBCc A= A=B.)Thus, Ris
ﬂDl_ S)‘I‘I‘II‘I‘lC[riC.

HAcBand BgC,then A € C¥A, B, Ce g(3). Thus, R is transilive,

You may like to try the following excrcises now,

E 11}  The relation R ¢ N % N is defined by (a.b) € R iff 3 divides (2 — b). Is R reflexive?
symmetric? transilive?
E 12y Give axamplas to show why the relation

iransitive,

The relutionship in E U1 is reflexive, symmettic @nd transitive. Such 2 relation is called an
equivalence relation.

A very imponani property of an equivalence relation on a set S is that it divides 5 idte a
number of mutually disjoiit subsels, that is, il partitions S. Let us see how this happens.

Let R be an cqutvalence relation on the set S. Letae S. Then theset (be S | aRb} is
called the equivalence class of a in S, Tt is just the set of elements in § which are related
to it. We denote ii vy [al, .




For instance, what is the equivatence class of 1 for R given in'E 11?2 - . Sets and Functions
This is '
{1 ={n]|Rn;neN}
- = {n | n'e N and 5 divides 1-n}
= {n | ne N and 5 divides n-1}
= {1, 6, 11, 16, 21,......}.
Similarly, ) ) .
21 = {n| ne Nand 5 divides n-2} : . -
= (2,7, 12, 17, 22,.......},
31 = (3,8, 13, 18, 23,.......},

{4 = {4,9, 14,19, 24_....},
(5] = (5,10, 15, 20, 25,......},
B = {l.6, 11, 16, 21,....... {},
(71 = {27,712, 17, 22,.......), .
Note that '

i) {1).and [6] are not disjoint. In Fact, [1] = [6]. Similarly, [2] = [7]., and s0 on.

i) "'N=[1]1U[2]U[3] U [4]U 5], and the scts on the right hand side are mutually
disjoint.

We will prove these observations in gencral in the following theorem.

_ Theorem 1 : Let R be an equivalence relation ona set S. Fora e S, let [2] denote the
equivalence class of a. Then . .

a) ae [a],

b) be [a] & (a) =[b],

c S= a EJS [a]

d)-ifa,be S, then fal N [b) = ¢ or [a] = [b].

Proof : a) Since R is an equivalence relation, it is reflexive. . <
s aRa¥ae$. - ae [a].

b) Firstly, assume that b € {a]. We will show that [a} ¢ [b] and [b] < [a]. For this, let
x € [a]. Then xRa,
We algo know that aRb. Thﬁs, by transitivity ef R, we have xRb, i.c., x € [b]. .. [a] < [b].
We can.similarly show that [b] < [a].
[a] = (b].
Coaversely, assumne that [a) = [b]. Thenb e {b]=[a]. .. be [a].

€¢) SincefalcS¥ae §, nys fal © S (see E 2).

Conversely, let x € S, Then x € {x] by (a) above. [x]‘ is one of the sets in the collection .
whose union is U [a].
a€ §

Hence, x & . ys {a). So, S ¢ a!‘aJs [a}.”
Thus, S ; ys [a] and N 95 fa] < S, proving (c).

d)  Suppose [a) O [b} 6. Let x @ [a] N (b].
Then x € [al and x e [b)
= [x]="{aland [x] - [b], by (b} above,

= [a] = [b].

Nole that, in Tireorem 1, distinct sets on the right hand side of (¢} are mutually disjoint
because of (d). Therelore, + ) expresses S as a union of mulually disjoint subsels of §; that
s, we have a partition of § ito equivaience classes,

Let us look at some more examples of partitioning a set inlo equivalence classes. -

Example 3 : Let § be the set of straight lines in R x R. Consider the relation on § given

by ‘L1 R Ly iff L, = L; or L, is parallel to L,". Show that R is an equivalence relation. What

are the equivalence classes in S? 15 J
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Solution : R is yciflexive, symmetric and transitive. Thus, R is an equivalence relation.
Now, take any line L, (see Fig.1).

Y
LY
\ hY
A A A\
Y ‘\ .\
N LA \
N
\ \ \\ L.'I
* \ \
v Al
\ hY
h b \\ [
1Y N -
v O S X
1Y \ kY
19 \ *
kN A" \\
1
\ \\ A
A kS
A Y 5
A \ N

Fig.l : The cquivalence class of L

Let L be the line through (0,0) and parallel to Ly. Then L & [L,]). Thus, [L] = [L,]. In this
way the distinct lines through (0,0) give distincl equivalence classes into which S is
partitioned. Lach Lqu\'EIe[lCL class [L] consists of all the lines in the plane that are parailel
1o L.

Now for a nice cxercise!

E13) Show that ‘aRbif and only if [al = lbl"isan equivalence relation on Z., What arc

[0) and (1}?

In the next section we will briefly discuss a concept that you may be familiar with, namely,
funclions.

1.5 FUNCTIONS

Recall that 2 function f from a non-empty set A 1o 2 non-empty sct B is 2 rule which
associates with cvery element of A exactly one element of B, This is written as f : A — B.
Il F associates with a e A, the element b of B we wrile [(ay =b. A is called the domain of
{, and the seL {(A) = {f{a) [ ac A} is called the range of £. The range of f is a subset of B,
i.e., f{A) < B. B is called-the codomain of [,

Note that

i) For each element of A, we associale some element of B.
i) For cach clement of A, we associale ouly one element of B.

|i|} 1 WO O more l‘|L maernls nI’ a‘\ r‘OUId b 'lqcr\.r‘mh\n u-|r|| thp gamn C!CF‘.B.".[ m:'

e ksl L gl 1 LRI

230LB=(12.3.4506,7,89 10} Define i - A -5 B by
(1y=1. 12y =4.4(3) =9 TIIC"! fis 2 function with domain A and r1rgc 11.4.9]). In this
case we can 2lso write f(x) = x? forcach x € Aorf: A — B f(x)y = x2. We will often usc
this noialion for delining any function.

For example, let A = (I,

Ifwedetineg: A = Bbye(l)=1,8(2) =1, g(3) =4, then g is also a (unction. The donmn
of g remains the same, namely. A. But the range of g is {1, 4}.

Remark : We can 2lso consider o funciion F; A — B o be the subset{(a, F{a))| ae Aol
AxB.

Now let us leok ar functions with special properties.




Definition : A furiction f: A—> Bis called onz-one (or injective) if { associates . Sets =24 Functions
different elements of A with different elements of B.ie.ifa;, 3¢ Aand 2, » a,, then -Tisonc-one' can also be writien as
f(a;) # [(a;). In other words, fis 1-1if flay) = f(a;) = a) = a,, fis -l

In the examples given abave, the function f is one-one. The function £ I5 not onc-pne »
because 1 and 2 are distinct elements of A, but g(1)=g(2).

Now consider another example of sets and functions.

‘LetA={1.2.3},B=(p,q,r}. Letf: A - B be defined by f(1) = £(2) =1, (3) = p. Then
fis a function. Here the range of f = B = codomain of f. This is an example of an onlo
function, as you shall see. o

Definitlon : A function f : A = B is called onto (or surjective) if the range of f is B,
i.e., if, for each b € B, there is an a € A such that f(a) = b. In other words, f is onto if
f(A) = B. - :

For another important example of a surjective function, consider 1wo non-emply sets A and
B. We define the function T :AXBo A:m(a, b)) =a 7y is called the projection of
‘A X B onto A. You can see that the minge of m; is the whole of A. Therefore, 7/ is onto.
Similarly, 7;: AXB = B : T ((a, b)Y = b, the projection of A X B onto B, isa surjective
function, )

If a function.is both onc—oﬁe and onto, it is czlled bijective, ora bijection. You will be
using this type of function heavily in Block 2 of this course,

Consider the following example that you will use'aga.in and again.

Example 4 : LeI\?A\bc any set. The lunction I, : A — A - I4(a) = a is called the identity
function on A. Show thar I is bijective, :

Sulqtién :Foranyae A, I, (a) = a. Thus, the range of I, is the whole of A. That is, I
is onto, ’

I, is also 1-1 because if |, 2, € A such thata, #ay, then [, (a,) * I, (2;).

Thus, Ix is bijective. S

Iff:A—> Bisa bijection, then we ais?rlay that the sets A and B are e&-a.uivalenl. Any
set which is equivalént to the set {1,2,3,..cccc... n), for some n € N, is called a finite
set. A set that is not finite is called an infinite set.

Convention : The Cmpty set ¢ is assumed to be finize.

Try the following exercises now.

El4) Letf:N — N be defined by f{n) = n+s5. Prove that f is one-one bul not onto.
E15) Laf:7z- 7 be defined by f(n) = n+3. Prove that f is both one-one and onto.

The next exercise deals with a function that you will often come across, ramely, the
constaat function f: A — B - f(a) = ¢, where ¢ is 2 fixed clement of B.

E 16) What must X be like Tar the constan| function f: X — {c} to be injective? Is f
surjective? .

Let us now see what the inverse image of a function js.

Definition : Lel A and B be 1wa sers and f: A - B be a [unction. Then, tor any subser §
of B, the inversea image of § under Tis the set

£ Sy=1ae sl s _

Forcxample, l]: (Al=lae A In(2)e A)=A.

Again, for the function [ jn E 14, 17
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f:A —0and
g:C— D are equal
_il'A-‘:C:lnd
f(a)=glalvae A

I

£71({1.2,3) (ne N|fme {1,231
{ne N|n+5€ {1,231

= ¢. the cmply sel.

x

But £~ V) = 6. 7. 8, }-
We now give some nice theorems involving the inverse image of a function.
Theorem 2: Letf: A— Bbea function. Then,

a) forany subset S of B, fiE (S S.

b) ‘forany subset Xof A, X C £ (](X))-

Proof : We wi_ll prove (a) and you can prove (b) (sec E 17). Let be {(f~' (S) ). Then, by
definition, 3 a € £-1(S) such that b = f(a). Buta € £-1(8)= f{a) e S. Thatis. be 5.
Thus, f{f' () < 8. . )

“The theorem will be proved once you solve E 17.

E17) Prove (b of Theorem 2.

E18) Givenf: A= B and S, T < B, show that
5 ifScT.thenf ()™ (D
B £ EUT = EUET (M
g frEnm=£f" (SN~ (T)

Now let us look at the most important wiy of producing new functions from given ones.

Composition of Functions

Iff:A-Bandg:C— D ate fusctions and if the range of f i5 2 subset of C, thereis a
naturat way of combining g andf to yield a new function h: A — D’ Let us see how.

For each x € A, h(x) is defined by the formula h(x) = g{f(x).

Note that §(x) is in the range of f, so that f(x) € C. Thercfore, 2(f(x)} is defincd and is an
element of D. This function h is called the composition of g and [ and i$ writien as

g o [. The domain of gofis Aandils codomain is D. In most cases that we will be dealing
with we will have B = C. Let us look al some examples.

Example 5 :Lclf:R—‘rRandg:Rﬂ)Rb-edcﬁncdbyf(x)=x1andg(x)=x+l.
Whatisgof? Whatisfog? '

Solution: We observe that the range of fis a subset of R, the domain of g. Therefore,
g o { is defined. By definition. ¥xe R, gof()=glf(xn=[x)+1= x>+ 1.

Now, letus find { o g. Again, Lis easy to sce that f o g is defined. ¥ x € R,
fo g(x) = f{g(x) = (g(X))* = (x + 1)

So fogand g o f aré both defined. Butgof# fog . (Forexample, go f(1) = f o g(1).)

Example 6: Lot A = {1, 2,3}, B={p,q. 1} and C = {x.y). Let f1 A = B be defined by
f(y=pf@=p f(3)=r.lerg:B-Che defined by g(p) =x, 5(@) =Y. & =-
Determine if fo g and g o f can be defined.

Snlution : For { o g to be defined, it is nevessary that the range of g should be a subset of
ihe domain of {. In this case the range of g 15 C and the domain of T is A, As Cis otz
subsel of A, [ o ¢ cannol bz defined.

Since the range of f, which is (p, r], is a subset of B, e domain of g, we sce thatgof is
defined. Also g o {1 A — C is such thal

g o f(1)=g((1) = g(p} = X,
gof(2)=p(f) =s{p) =X,
gof(N=gUBN =280 =Y.
In this example note that g is surjective, andsoisgof.

Now for an excrcise on the composition of functinns.
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E19) Ineachofthe foll'owing questions, both f and g are functions from R — R. Define
fogandgof. .

a  1(x) = Sr,g(xy=x+5
by f(x}=5x. g(x)=x/5
9 fix)=[x], gx)=x2

We now come to a theorem which shows us that the identity function behaves like the
number 1 € R does for multiplication. That is, if we take the composition of any function f
with a suitable identity function, we get the same function f. '

Theorem 3 : Lot A be a set, For cvery funciionf: A — A, we have fo Is=I,of=Ff

Proof : Since both f and I, are defined from A 10 A, botn the compositiens f o Iy and Iiof
are defined. Moreover, ¥ x & A,

foa() = f(Ia(x) )= (X}, so fal, =f.
Also, ¥xe A, Liof(x) =, (f(x)) = f(x),s0l,0f=F

You can uy the next exercise on the lines of this theorem.

E 20) IanndBarcseLsandg:B—}A.pmvclhatIAogzga.ndgoIB=g.

In the case of real numbers, you know that given any real number x = 0,3 y # 0 such that

xy = L. ¥ is called the inverse of x. Similarly, we can define an inverse function for z given
function. '

Deflnition : Letf: A—> B be a given function. If there exists afunction g : B — A such
thatfog=Igandgof= Ix, then we say that g is the inverse of f, and we write g = .

For example, considerf: R s R defined by {{x) = x + 3. If we define £ R —> R by

B(x) = x-3, then f o g(x) = f(g(x)) = gx)+3=(x-N+3I=x¥xec R, Hence, fo g = Ig. You
can also verify that g o f = Ig. Sog= .

Note that in this example f adds 3 to x and g does the opposite — il subrracts 3 from x.
Thus, the key 1o finding the inverse of a given {unction is : iry to retrieve x from f(x).

For example, let{: R — R be defined by f(x} = 3x + 5. How can we retrieve x from

3x + 57 The answer is “first subtract 5 and then divide hy 3", So, we try g(x) = x5 And we

3 -
find g o f(x) = g(f(x)) = &)3__2 =!3¢%);5 =x.

A[so.fog'(x)=3(g(x))+s=3[-(~"—;5—1]+5=x’exe R,

Let's see if you've understood the process of extraciing the inverse of a function.

E21) Wha; isthe inverse of f; R = R - f(x) =%"

Do all functions have an inverse? No, as the following example shows,

Example 7 : Latf: R 5 R bedhe constant funciion piven by i(x) = | ¥ x = R. What is
the inverse of £7

Solution : If f has an inverse E:R 3R wehavefo g=lp.ic. Mxec R, o glx) = x,
Now lake x = 5. We should have fo g (5) =5, ic.. g(3)) = 5, But e =1,

since f(x) = | ¥ x. So we reach 2 contradiction. Thercfore. f has no inverse,

[n view of this example, we naturally ask for necessary and sufficient conditions for f to have
ar inverse. The answer is given by the following theorem. )

Theorem 4 : A function f: A — B has an inverse if and only if f is bijective.
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gofisl-1 = lis1-{.

g of is onto = g is onlo.

Proof : Ficstly, supposc f is bijective. We shall define a function g : B — A and provc that
g=f".

Letb e B. Since fis onlo, there is some a € A such ma: f(a) b. Since f is ane-one, there
is only enc such a € A. We 1zke this unique clement a of A as g(b). That is, given b € B,
we define g(b) = a, where f(a) =

Note that, since [ is onto, B = {[(a) | a € A}. Then, we are simply defining g : B — A by
g(f(a)) = a. This antomatically ensures thatgo f = L.

Now, let b £ B and g(b) = a. Then f(a) = b, by definition of g. Therefore,
fo g(b) = f(g(b)) =[(a) =b. Hence, fo g =1p.

So.fog:lnandgof:IA.Thisprovcsl.halg:f"

Conversely, suppose f has an inverse and that g = f . We must prove that f is one-one and
onto. .
Suppose f(a) = [{a;). Then g{f(a,)) = g({(2,))-

= g o f(a;) = g o f(ay)

= a2, =2 becausc go f=1,.

So, [ is one-one. b
Next, given b € B, we have fog = I, so that fo g(b} = Iz(b) =
i.e., f(g(b)) = b. That is, f is ento.

Hence, the iheorem is proved.

Try the following exercise now.

E22) Considcr.lhc following functions from R to R. For each determine whether it has
an inverse and, when the inverse exists, find it.

) fxy=x2ke R
b} f(x):l)::’bjxe R.
9 fx)=1lx+7¥xe R

Let us now discuss some elementary number theory.

1.6 SOME NUMBER THEORY

{n this section we will spell out certain (actorisation properties ol integers that we will use
throughout the course. For this we first nced to present the principle of finite induction.

1.6.1 Principle of Induction

We will first state an axiom of the integers that we will often use implicitly, namely, the
well-ordering principle. We start with a definition.

Definition : Let S be a non-cmpty subscl of Z, An clementa € S is called a [east
element (or o minimum element) of Sifa<b 10‘ b e §. For examiple, N has a least

AT

clemant, namely, 1. Bul Z has no ieast eiement. in Id(.l many subseis of Z, ke 24, :
{~1, =2, 3] .....], clc,, don't have least elements.

The following axiom tells us of some sets that have a feast element.
Well-ordering Principle : Every non-cmply subsct of N has a lzast clement,

You may be surprised 1o know that this principle is actually equivalent to the principle of

(inite induction, which we now slatc.
Theorem 35: Let S © N such that . i

i) 1le S and : !




ii) wheneverk = S, then k+1 ¢ S.
Then S =N.
This theorém is further equivalent.to :
- Theorem 6 :.Let S ¢ N such that

) 1les§,and
i) ifme S¥m<k,thenke S.
Then S=N

We will not prove the equivalence of the weli-ordering principle ind Theorems 5 and 6 in
this course, since the proof is slightly technical, ’

Let us rewrite Theorems 5 and € in the forms that we will normally use.
Theorem 5' : Let P(n) be a statement about a positive integer n such that
i} P(1)is mue, and
ii) if P(k) is true for some k € N, then P(k+1) is true.

Then, Pkn) is true for 2lln e N.
Theorem ¢": Let P'(n) be a statement aboul a positive integer n such that
i) P(1)is true, and |
ii) if P(m) is true for all positive integers m < k, than P(k) is true.

Théh P(n) is rue for alln € N.

The equivalent statements given above are very uscful for proving a lot of results in algebra.
As we go along, we will often use the principle of induction in whichever form is

convenient. Let us look at an example.
Example 8 : Provethat 13+ 23 + ... + 13 =LTIE foreveryne N.

Solution : Let S, = 13 + oovveoevevvn, + 0, and let P(n) be the smtcmen-f that
n?(n+1)? .
S ="
2 2

Since §, =1 :’2 . P(1) is tue,

. =132 02
Now, suppose P(n-1) is true, i.e., S, | = (n—la)*q—
Then, S, = 13+ e + (=103 + 12

= S + 1

-I?n? . .
= (n__!&)i + 03, since P(n—I) is true.

n2[ (n—1)% + 4n ]
4

_ nim+1)?

C 4

Thus, P(n) is true.

Therefore, by the principle of induction. P{n)is rucferallnin N.

Now, use the principle of induction to prove the following property of numbers that you
must have used time and again.

'
n

E23) Fora, beR and n € N, prove thal (ab)" = a".b".

Let us now look at some factorisation properties of integers. -

Sets and Funetlons
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1.6.2 Divisibility in Z ~

One of the fundamcnla.l ideas of number theory is the divisibility of integers. \\\
Definition : Leta, b €, Z, a # 0. Then, we say that a divides b if there exists an
integer ¢ such that B = ac. We write this as a | b and say that a is a divisor (or factor} of
b, or b is divisible by a, or b is a multiple of a.

If a does not divide b we writca | b.

We give some propertics of divisibility of integers in the following exercise. You can prove
them very easily.

\\\-

E24) Leta, b, c be non-zero integers. Then
a) _a|0.:tl|a,:|:a|a. .
b} alb=sac|be.
¢ a|pandblc=ale
& a|bandb|asa=xb.
e claandc|b=c | (axtby) ¥x,ye Z.

Tie,a=

We will now give a result, to prove which we use Theorem 5'.

Theorem 7 (Divislon Algorithm) : Leta, be Z,b> 0. Then there exist uﬁiquc
integers q. r such thata=qb + 1, where 0 St <b. .

Proof : We will first prove that q and r exist. Then we will show that they are unigque. To
prove their existence, we will consider three different sitwations :a=0,a>0.a<0.

Case 1 (a=0) :TSkeq:O,r=0.Thena=qb+r.

Case 2 (2> 0):Let P(n) be the siatement thatn = gb + 1 for some g, r € Z,0<r<b.
Now let us see if P(1) is tue. .

Ifb=1, wecantakeq=1,r=0,and thus, I = 1.1 +0.

b+ 1. thentake q=0,r=1,ie.,1=0b+ 1.

So. P(1) is true. - g

Now suppose P(n—1) is true, i.e., (n-1) = q b + 1, for some g,. 1y € Z,0s=.r <b.But then
r £b—-1,1ie, r+l £ b. Thercfore,

qib + (o+1), if (r+1) <b

=1 (q+D)b+0,ifr+l=b

This shows that P(n) is rue. Hence, by Theorem 5, P(n} is true, for any n € N . That is.

Cfora>0,a=qbir,q. T € Z,0sr<b.

Case 3 (a<0): Here (—a) > 0. Therefore; by Case 2, we can write
(-a)=qb+r,0sr'<b
: (—qb,ifr'=0
(-g-1)b + (b-1),if0 < <b
This proves the existence of the integers g, 1 with the required propertics.

5
Now let q'. 7 be in Z such thata=gb + rand a=q'b + . where O0r,r<b Thenr—-r'=
(g — ). Thus, 5} =) But [’} < b, Heace, rr'=0ie. r=rand g = g’ Se we have
proved the uniqueness of q and r.

In the expression, a=qb +r.0<r<b.ris called the remainder obiained when a is
divided by o.
el us go back Lo discussing faclors.

Definition : Leta,be Z.ce 7. is called a cormmon divisor of a and b if cla and ¢ | b.

For example, 2 is a common divisor of 2 and 4. From E 24 (a) you know that | and -1 are
common divisors of a and b, for any a, b € Z. Thus, a pair of integers do have more than
one common divisor, This fart leads us 1o the following definition,




Definition :-An integer d is said to be a greatest common divisor (g.c.d. in short)
of two non-zero int:22.; 2 and b if

i) d|aandd|b,and
if) ifclaandc|b, thenc|d.

Note that if d and d" are two g.c.d s of a and b, then (ii) says that d|d' and d'd. Thus, d = 1d' -
(see E 24). But then only one of them is positive. This unique positive g.c.d. is
denoted by (a,b).

\
We will now show that (a,b) exists for any non-zero integers a and b. You wil] also see how
useful the well-ordering principle is. : -

Theorem B : Any two non-zero integers a and b have a g.c.d, and (a, b) = ma+nb, for
somem, n € Z.

Proof : Let S = {xa+yb | x,y € Z, (xa+yb) > 0.

Since a?+b2 > 0, aZ+b?e §,je. S = ¢. But then, by the well-ordering principle, S has a
least element, say d = ma+nb for some m, n € Z. We show thatd = (a, b),

Now d € S. Therefore, d > 0. So, by the division algorithm we can write
a=qd+r,0<r<d. Thus,
r=a—qd =a-qg(ma+nb) = (I-qm}a + (-qn}b.

Now,ifr=0, thenr e S, which contradicts the minimality of d in §. Thus, r=10, i.e.,
a=qd.ie.,d{a Wecan similarly show that d | b. Thus, d is a common divisor of
aand b,

Now, let ¢ be an integer such that ¢ laandc|b.
"I‘hen a=ac, b=bicforsomea, b, e Z.

"But then d = ma+nb = ma,c + nbic = (ma,; + nb,)é. Thus, ¢ | d. So we have shown that d is
a g.c.d”In fact, it is the unique positive g.c.d. (a,b).

For example, the g.c.d. of 2 and 10is 2 = 1.2 + 0.10, and the g.c.¢. of 2-and 3 is
I=(¢DI2+1(3). : ' <

Pairs of integers whose g.c.d.is | have a special name,

Definition : If (a,b) = |, then the (wo integers a and b are said 10 be relatively prime
{orcoprime) to each other,

Using Theorem 8, we can say that a and b are coprime to each other iff there
exist m, n € Z such that I = ma+nb.

The next theorem shows us a nice property of relatively prime numbers.
Theorem 9 : If a,b € Z; such that (a,b) = 1 and b|ac, then bje,

Proof : We know that 3 m, n € Z such that 1 = ma+nb, Thenec=c.l = c{ma+nb) =
mac + nbe. -

Now, blac and bjt. -, b](mac+nbe) (by E 24(c)). Thus, b|c.
Let us now discuss prime factorisation.

r
F

Definition : A natural number P (# 1) is called a prime if irs only divicors ara § and B. I
a natural number n (¢ 1} is not a prime, then il is calied a composite number,

For example, 2 and 3 are prime numbers. while 4 is 2 composile number,
Note that, if pisa prime number and a € Z such that ft 4, then (p.a) = l.

Try the following cxereisces now.

E25) 1Ifpisaprime and p|ab, then show that p|a orp | b.

E26) Ifpisaprme andp|a;a, wwvenneByy-then show that p| a; for some i = I,......, .

Sets, end (Functions
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Now consider the number 50. We can write 50 = 2 X 5 X 5 as & product of primes. In fact we
£an always express any natural number as a product of primes. This is what the unique prime
factorisation theorem says.

Theorem 10 (Unique Prime Factorisation Theorem) : Every integer n > I cap-be
written as i = py.pz-.-.....Pn. Where py, ... , P 2re prime numbers. This representation is
unique, except for the order in which the prime factors occur.

Proof : We will first prove the existence of such -a factorisation. Let P(n) be the statement
that n+1 is a product of primes. P(1) is truc, because 2 is a prime number itself.

Now let us assume that P(m) is true for all positive integers m < k. We want 10 show that
P(K) is true. If (k+1) is a prime, P(k) is true. If k+1 is not 2 prime, then we can write
k+1=m;my, where [ <m, <k+1 and T < m; < k+1. But then P(m,—1) and P(m;-1) are
both true. Thus, My = P1Pze.r.-Bre Ma = Q1 Q2 -vereenelsy WHETE PPy cvones Pro Q1 G20 +eve-2s
are primes. Thus,

. K+1=pPypP2.. PrQ; Q3 --.- Gus i.€., P(K) is rue. Hence, by Theorem 6", P(n) is true for

everyyn € N.

Now let us show that the factorisation is unique.
Letn=p(Pa... =01 G -.- s, Where

Ple B2 eenns Pe 1, G2, ¢ ++e»-s Qs AT€ primes, We will use induction on L

Ift=1,thenp; =g qz oomeer g, - But p| is 2 prime. Thus, its only factors are 1 and itself.
Thus,s5=1 and p; =q;. ' :

Now suppose t > [ and the uniqueness holds for a product of t—1 primes. Now p; | qiGzeee s

and hence, by E 26, p, | q; for some i. By re-ordering q . ..... , @ We can assume that p; {q,.
But both p; and q, are primes. Therefore, py = q;. But then p; ... py = @z-----4s- S0, by
induction, 1-1 = s—1 and Py y.eeerery Py 2T the SAME 25 Gau.-..-,4,, iN SOMeE Order.

Hence, we have proved the uniqueness of the factorisation.

The primes that oceur in the factgsisation of a number may be repeated, just as 5 is repeated
in the factorisation 50 = 2 X 5 X 5. By collecting the same primes together we can give the
following corollary to Theorem 10. )

Corollary : Any natural number o can be uniguely writien as n = N p{"’ wePr T, where
fori=1,2, ... . t,each m; € N and each p; is 8 prime with 1 <p; <Pz < ...< Pr.

As an application of Theorem 10, we give the following important theorem, due to the
ancient Greek mathematician Euclid.

Theorem 11 : There are infinitely many primes.

Proof : Assume that the set P of prime nembers is finite, say
P = ( Pi, P2» - Pa}- Consider the natural number
n={pP2 coeeePn) +

Now, suppose some p; | 0. Then p; | (i — P1pa «Po)s 164 By | 1, 2 conmadiction.
Therefore, no p; divides n. But since n > 1, Theorem 10 says that n must have 2 prime
faclor. We teach a contradiction. Therefore, the st of primes must be infinite,

Try the following excrcise now.

E27:  Prove Lhat VD s irratiomal for any nrme n.

{Hint : Suppose Vp is rational. Then V¥p= % , where a, b e Z and we can

assume that {a.b} = 1. Now use the properiics of prime numbers that we have just
discussed ) -

Let us now summarise what we have done in this unit,
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1.7 SUMMARY

In this unit' we have covered the following points.

1) Some properties of sels and subsets,

2} The union, intersection, difference and cbmplcnﬁems of sets.

3) The Cartesian product of sets. ‘

4) Relations in general, and equivalence relations in particutar.

5 ' The definition of a functlion, a 1-1 function, an onto functicn and a bijecx.vc- functiun.
6) The composition of funcrions,

7) The well-ordering principle. which states that every subset of N has a feast element.

8) The principie of finite induction, which states that - If P(n) is a statement about some
n € N such that )

i P(1) is true, and
it)  if P(K) is tree for some k € N, then P(k+]) is true,
then P(n) is true for every ne N,
9) The principle of finite induction can also be stated as
If P(n) is a statement aboul some n & N-such that
] P(I) is true, and
ii)  if P(m) is true for every positive integer m < k, then P(K) is rue,
" then P(n) is true for every n € N: .
Note that the well-ordering principle is cquivalent to the principle of finitc induction.

10) Properties of divisibility in Z, like the division algorithm and unigue prime

factorisaLiqn.
1.8 SOLUTIONS/ANSWERS L
EI) a T b} F ¢) F T -

E 2) ay xeAUB::xe‘AorxeB::'xeC.sinceAgCanng,C.

b) xeAUB&xe Aorxe B&xeBoer Aoxe BU?\‘_ S AUB=
BUA,

Q xeAUd=xecAorxe @ => X & A, since ¢ has no element.
LAUSC A,
Also.A:AUlp,sincch Amxe AU
SA=AUS.

E3) a) Youca.ndoilonthciincsofE?(b).
b) xeAﬂB:xeAandxeB_::-xeA,sini:cA‘;B.
S ANBCA,
Conversely, x e A= xe Aandx ¢ B since A < B,
= xe ANB.
S ACANB.
TANB=A.
¢} Usethe fact that & — A,
E4) aj xe‘(AUB]UC =X AUBoarxe C
< X€ Aorxe Borxe C.
—=xe Aoarxe BUC
S Xxe AUBUC
~(AUB)UC=AU(BUQ)

b) Tryiton the same lines as (a).
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"iT denotes *if and only i,

E 5)

E 6)

E7-

EB).

"E9)

E 10)
E1D

E12)

E 13)

"9 BNCCB=AUBNC)CAUB.

Similarly, AUBANC)c AUC.
L AU(BNO)C(AUB)N(AUQ)
Conversely, x e (AUBIN(AUC)
=x€ AUBandxe AUC
=xe Aorxe Bandxe Aorxe C.
=xe Aorxe BNC
=xe AUBNCQC)
L{AUBINAUC)CAUBNC)
. Thus,{c) is proved
d Try it on the same lines as (¢).
a T - )
b) F.Forexample, if A= (0,1} and B = (0,2}, then
A¢B,BgAand ANB={0}=¢.

¢) F.Infact foranyset A, AC AUB.
4 T.

e T.

2) xe Aiffxe A"

b) Since A and Ac are subsets of X, AUATC X
Conversely, if x & X and x #A, then x € AS.
~XCAUAS
L X=AUAS

0 xeAdexeA’oxe @Y. A=A

AxB={(2,2),(2,3,052.(5.3}

BxA={(2.32, 2535}

AxA={(22),@2)>5), (5.2, 5.5}

The sct of«the first coordinates is A. . A = {7,2}.

The st of the second coordinates is B... B=1{2, 3, 4}.

x.y)e (AUBYXC & x e AUB andye C

>xe Aorxe Bandye C

=xc Aandye Corxe Bandye C
& (y)e AxCor(x.y)€ BXC
e E e (AxCQUExC)

You can similarly show that

(ANBXC=AXCINEB xC).

g F b T ¢ F

Since 5 divides (a-) = 0 ¥ a e N, R is reflexive.

If 5 | (a-b), then 5 | (b—a). ., R is symmetric.

If5 | (a-b) and S | (b—<c), then 5 | {(a—b) + (b0}, Le.,

5] (a-c). ... R is transitive,

2 R 2 is {alsc,

(2, 4) € R, bul (4,2) € R,

(2, e R (416 e R, bur (2, 16) ¢ R,

af = la] Mae Z -, Risreflexive.

a| = |v] = |b| =la] . Ris symmetric,

2| = |b} and lb| = el = lal =|el: -, Ris wansitive.
., R is an equivalence relation, ‘
0)={acZ|aR0O}={aeZ ]| |a| =0}=(0)

(1) = {1, -1}

ol

t
|
|




E14)
E15)
- E16)
EIT)

E 18)

E 19)

E 20)

_521)'

E 22)

E 23)

E 24)

-_Em‘n.meNf(n} I(m):on+5=m+5=>n m., .

<, Cis -1,
Since 1 € f(N). f(N);tN .. [ is ot snrjective.

fis 1- I(a.smEI4)

Foxanyze Z,(e5)=z. -, £is surjective, and hence, bijective.

f(x)=c¥WxeX

-

Suppose X has at least two elements, say x and y. Then f(x) = ¢ = f(y), but x * .

That is, f is riot 1-1. Therefore. if f is -1, then X consists of only one element.
Since [(X) = {c}, f is surjective.

xe X=f(x)e () = x & 7 (O, = X o (EK).

) xef(S) =fx)eScT.
. =fx)e T
- . =xef(@.
f"(SJ:r-‘m
b) xef” {SUT) = f(x)e SUT
=f(x)e Sorf(x)e T
oxefl@oxef’ M
%xef"fS)Uf']m
¢) Dwiton the lines of (). _ i

" fogandgo f are functions from R.to R in.all the cases.

3 fop (X) =f(x+5) = 5x+5) ¥ xe R
Eof(X)=g(5x)=5x+5¥ xe R.

b) fogX)=gof(x)=x¥xeR.
 fogxy=xt=gof(x}¥xeR. ,
Show thatI,og (b)= gb)and goIg (b)=gb) ¥ be B. o

E:R—-R:g)=3x
8 fisnot 1-1, since £(1) = f(-1).

.'..1"'1 doesn’t exist -
by fis not surjective, since f(R) #R.
.. I " doesn't exist.

¢) fisbijective. .., ™! exists.

fY:RoR -f"(::):"{—;?.
Let P(n} be the statement that {ab)" = a"b".
P(1) is true. Assume that P{n-1) is true. Then .
(ab)" = (ab)™ (@b} = (a™' b*)ab, since P(n-1) is tue.
. a‘rb-l fb""a)b
=am! (abn-l)b
= aII'I bn.
., P(n} is true. -
SLCPmYistue ¥ ne M,
a) Since2.0=0.2|0.
(FD(Ea)=a .~ £l |aandtal| a
b) a|b =>b=ad forsomede Z
=3 bc = (ac)d, '
= ac | bc.

¢ b=ad, c'= be, for some d,ee Z.
sac=ade. ,afc .. :

Bets .and Fumctions

27
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E 25)
E 26)

E27)

d n|b=>b=ad. forsomede Z
bfa::a:be,forsomee.e Z.
Sha=ade=de=1,sinceax.
sh,e=%xl.n,a=xbh

) claandc[b:aa:cd.b=r:cfurs-omed.ce Zz
-~ forany x, y € Z, ax+by = ¢{dx+ey).

.'..c| {ax+by).
Suppose p a. Then (p,a) = 1. .., by Theorem 9, p(b.
Let P(n) be the statement that p| a, 2, ........ a,
= p|a; for somei=12, ..., n.
P(1) is wrue,
Suppose P (m-1) is que.
Now, letpla,a; ........ am- Then p{(ay vovneene, A )2,
By E 25, p[(a) 23 cooveeeone 8} OF pf 2y, _
e p] g; forsome i = |, ........, m (since P{m~i} is true).

-, P(m) is true.
S, Pn)istmueMne N

¥p=2_, a’=pb?=p |a? = p} a, since is a prime.
b p |

Leta=pc, Then 2% = pb? = pc? = pb? = pc? = b2
=p|b*=spfo.

-, Pl (@b} = 1, a contradiclion.

i \5 is trrational.
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21 INTRODUCTION

In Unit 1 we have discussed some basic propertics of sets and functions. In this unit we are
going 1o discuss certain sets with algebraic structures, We call them groups,

The theory of groups is ene of the oldest branchies of abstract algebra. It has many

applications in mathematics and in the other sciences. Group theory has helped in developing

physics, chemistry and computer science. Its own roots go back 1o the wosk of the
eighteenth century mathematicians Lagrange, Ruffini and Galois. =

In this unit we start the study of this theory. We define groups and-give some examples.
Then we give details of some properties that the elements of 3 group salisfy, We finally
discuss three well known and often used groups. In futvre units we will be developing group
theory further, -

Objectives
Alfter reading this unit, you should be able 10

¢ define and give examples of binary aperations:

® define and give examples of abelian and non-abelian groups;

¢ usc the cancellation laws and laws of indices for various groups;

®  use basic properties of integers modulo n, permutations and complex numbers,

2.2 BINARY OPERATIONS

You are familiar with the nenal snaraisns of additlon and multiplication in R, Q and C.
These operalions are examples of binary operalions, a term that we will now define.

Definilion : Let § be a non-ch1pty sel, Any function < 1 S%x 8 — 5 is called a4 binary
operation on S.

So, a binary operation associates a unique elerment of § 1o every ordercd pair of elements of
S. )

Fora binary operation « on S and (a,b) € §x 8§, we denote *(a,b) by axb.

We will use symbols like +, —, X, @, 0, % and A 1o denote binary operations.

Let us Took at some examples.
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i) + and x are binary operations on Z. In fact, we have +{a.bd=a +b

and X-(a, D) =ax b¥ a,be Z. We witl normally denote . .. 2 by ab. _

il}  Lel o(8) be the set of all subsets of 8. Then the operations U and N arc binary
operations on g(5). since AUB and AN B arc in £(8) for all subsels A and B of §.

iif) LetX beanon-cmpty sct and F{X) be the family of all functions { : X — X. Then

the compositien of functions is a binary operation on F(X), since fop € ,’F(X) Ly

ge F(X)

We are now in a pasition 10 define centain propertics thal binary operations can have.

Definition : Let « be a binary operalion on a set S. We say that
i) «isclosedonasubset TofS,ifaxbe TH¥a, be T.
il) = isassociative if. foralla.b,c &€ S,(a«by+c=aw(b*ch

iil) = is commutative if, foralla,be S,2« b=b ==&,

For example, the operations of addition and multiplication on R are commutative as well as

associative, But. subtraction ts neither commutative nor associative on R. Why? Is a—b =
b-a or {a-b}—< = a—{b—T ¥ a. b, c € R ? No, forexample, |-2 # 2-land (1-2} -3 =
[-{2-3}. Also subtraction is not closecd on N & R, hecause | € N,2e Nbul 1-2 ¢ N,

Note thal a binary operation on S is always closed on §, but may not be closed on a subset

of S.

Try the following excrcise now,

E 1)  For the following binary operations defined on R, determine whether they are

commulative or associative. Are they closed on N?
a) xVy=x+y-3
b xey=2x+y)

-5 -
.C) XAy 2
forallx,y € R.

in calculaticns you must have often used the fact that a(b+¢) = ab + ac and (b+c}a=bc +.ba

% a,b.ce R. This facl says that nu.luphcauon distributes over addition in R. In general,

we have the following definition, .

Deﬁuilion : If o and + are two binary operations on a set 8, we say that - is
distribulive overoif ¥ a.b,ce S, we have a2 + (b ocy={a*b)ofa=c)and
(boc)+*a=(bwijo(c*a).

For example, lclatb-;%’v‘a.be R. Then n[b*c):a( b:c J:ab; ac

=ab + ac, and

(b*c)a=[b : c]a b“:Cd—ba*caVa b,ce R,

s LA s
i

For another example go back 1o E 4 of Unil 1. What does it say 71 says that lill_.

lem sermermes mf mmtn Aim

o Iyt

sricoveciion of sels dislibuics over the unini of scis an
the intersection of scls.

Let us now look deeper at some binary opera‘ions. You know thai, foreny ¢ 2 R, a+0= o
0+a=naanda+ (-a) ={—a) +a = 0. We say that 0 is the identity element for addition and -

A -~
O nd U0 O 3015 QiRTiOUIST

i

o

ver

{—a) is the negative or addilive inverse of a. In general, we have the following definition,

Definition : Eet « be a binary operation on a set S. If there is an element e € S_such that

Mae S arc=aarde~a=a, theneiscalled an identity element for «




Foriie S, we say thatb € S is an-invcfse ofa,ifasxb=cand b« a=e In"this case we - Groups
usually write b = a-!. - :

Bef&:rc .di'scussing examples of identity elements and inverses consider the following'rcsu!t.-
In it we will prove the uniqueness of the identity element for ¥, and the uniqueness of the
inverse of an element with respect to », if i exists. - '

Theorem 1 :Let bea blinan\( operation on-a set S. Then

:l) i'f-r_ has an identity element, it must-be unique.

b) if =is associative and s € S has an inverse with respect Lo «, it must be unique,
Proof : a) Suppose ¢ &nd ¢' are both identity elements for «, |

Thene=e v ¢, since ¢' is an identity element.
= ¢', since ¢ is an identity element,
Thatis, ¢ ="¢'. Hente, the identity element is Lnigue.

b) Suppose there exista,be Ssuchthatssa=c=aes ahds«b=ec=b s, ¢ being
the identity element for «, Then
a=gwe=aw(s+h)
={a * s) » b, since « is associative.
=ewb=b, ‘
Thatis,a=b. ) o
Hence, the inverse of s is unique.

This uniqﬁcncss theorem allows us to say the identity element and the inverse, henceforth.

A binary operation may or may not have an identity elemen:. For example, the operation of
addition on N-has no identity* element, -

Similarly, an element may not have an inverse with respect 1o a binary operation.-For
example, 2 € Z has no inverse with respect to multiplication on Z, does it?

L2t us consider the following examples now.

E'xamp_le 1: If the binary operation @ : R xR - R is'dcﬁncq-by a@®b=axsb-l1,
prove that® has dn identity. If x € R, determine the inverse of x with respect to ®, if it
exists. . . o~

Solutien : We are loaking for some ¢ € R such that s Be=azegDa¥ae R Sowe
wantc € Rsuchlhata+e—] =aMae R, Qbviously, ¢ = 1 will satisfy this. Also,
l®a=a¥aeR. Hence, | is the identity element of &, '

For x. R, if biis the inverse of x, we should bave b @ x = 1.
ie,b+x-I=1te,b=2-x. Indced, (2-x) @ x = (2 - )+x-1=1.

Also, x B2 ~-xX)=x+2-x-]=1. So, %! = 2,

Examp!e-'z tletSbea nen-empty set. Consider £ (S), the set of all subsets of S. Are U
and Al commutative or associative operations on §2(5)7 Do identity elements and inverses of
elements of g(S) exist wilh respect Lo these operations?

Solutlen : Since A U B=BUAand-ANB=Bn AV A, B € @.(S). the operations of
union and intc‘:rseqﬁon are commuiative. E 4 of Unit | zlso says that both operations are
associative, You can sée that the empty set ¢ and the set S are the identitics of the
operations of union and integsaction, respectively. Sinee S = O there isno R g e2(8) such
that 3UB = §. In f2er, for any A € ©(8) such thar A » ¢ A does not liuve an inverse with
respect fo union, Similarly, any proper subsei of § docs not have an inverse with respect Lo
inlersection. |

Try the Following CXErcise now.

E 2) 3) Obtain the identity clement, if it exists, for the .opcrations givenin E 1.

b)’ Forx € R, "ébtain x“V(iF it exists) for each of the operations given in E 1,
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Fig- 1 : Arthur Cayley

When the set S under consideration is’small, we can represent the way a binary operation on
S acts by a table. ” K

Opecration. Table

Let S be a finite set and * be a binary aperation en §. We can represent the binary operation
by a square table, called an operation table or a Cayley table. The Cayley table is named afer
the famous mathéimatician Arthur Cayley (1821-1895).

To write this mble: we [irst kst the elements of 8 verticatly as well as horizontally, in the
same order. Then we wrilc a « b in the table at the intersection of the row headed by a and
the column headed by b.

For example, if § = (=1, 0, 1} and the binary operation is mulliplication, denoted by .,
then it can be represented by the following table.

=1 0 1
s
DL -n.o -1).1
-1 =1 =0 =-1
0.(-1) 0.0 o1
o =0 ' =0 =0
1.(=1) 1.0 L1
1 =1 =0 =1t

Conversely, if we are given a table, we can define z binary operation on 3. For example, we
can define the operation * on S = {1,2,3} by the following table. -

| . 1 2 3
1 ! 2 3
2 3 i 2
3 2 3 ]

From this table we sec that, for instance, 1 ¥2=2and 2«3 =2.
Now?2«1=3and1+2=2 - 2«l#1« 2 Thatis, % is not commutative,

Again, 2« ) *3=3+3=land2 + {1 *» =72
S (2e w32 (1«3). o, « is not associative.
Sece how much information a mere table can give !

The fallowing exercise will give you some practice in drawing Cayley 1ables.

E3) Draw the cperation tabie for the set & (3} (rei. Eawnpie 2}, Widic

= {0,1} and the eperaion is N,

Now consider the following definition.
Definition : Lot = be a binary operation on 2 non-empty set S and leta,. ... 2., € S.
We defire the producta, » ... *» 1, ras [ollows:

If k= 1,4, 4 a, is a wall defined element in 5.
Ifa ... « a, is defined, then
I S «2,,=(3, %...... “ 3y .2




© We vse this definit._., 1a the following result -, _ - R + Groups
Theorem 2 : Leta,, ...... a_,. be clcmcms in a set’S with an associative binary
operation . Then ] ; o : -

Proof : We use mducuon on n. That 1s, we will show that the slalemcm is truc forn=1.
“Then, assuming that it is true for n-1, we will prove it for n.

If n = I, our definition above gives us

(@ ...... A Y wa=a % ... €A .

Now, assume that ., .
(3, *...... LI L ¢S Ao )= v a0

{a, ...... A} (Apg ¥ e w a4,

={a *...... #a_ ) ( GNP T *a o ywag ) '
=({a; *...... wa Jw(a % ka1 ))ea . since * is associative
= (8 % cverees * 3gnay) * Ay by induction

=a ¥ ... %2 by definition.

Hence, the result holds for all n.

m+n *}

We will use Theorem 2 quite often in this course, without explicitly referring to it.

Now that we have discussed binary operations let us talk about groups.

2.3 WHAT IS A GROUP ?

In this section we study seme basic properties of an algebraic system called a group. This
a.lgebrmc system consists of a set with a binary operation which satisfies certain properties
that we have defined in Sec. 2.2. Let us see what this system is.

Definition : Let G be a non-empty set and « be a binary cperation on G. We say that the
pair (G, = ) is a- group if
G 1) = is associativer (G. =} is called a semigroup il »
satisfies the property G1. Thus, every
group is a semigroup.

&

G2) G contains an identity element ¢ for % , and

G 3) every elementin G has an inverse in G with respect to .
We will now give some examples of groups.

Example 3 : Show that (Z, +) is a group, but (Z, . ) is not.

Solution : + is an associalive binary operation on Z. The identity element with féspcct N
to +is 0, and the inverse of any n e Z is (—n). Thus, (Z, +) satisfies GI, G2 and G3.
Therefore, itis a group.

:

Now, muitiplication in Z is associative and 1 € Z is the multiplicative identity. But does
every clement in Z have a2 multiplicative inverse? No. For instance, 0 and 2 have no
inverses with respect to *." . Thercfore, (Z,.) is not a group.

* Naote that (Z,)) is a sermgroup since it satisfics G1. So, there exist semigroups that aren't
groups!

"The follawing exercise gives you two more examples of gfpups.

E4) Show that (Q, +).and (R, +) arc groups.

Acrunlly, lo show that (G, ») is a group it is sufficient to show that « sadsfics the following
axioms.

G 1'} «is associative.
G2) 3ce Gsuch thatase=a¥ae G. . .
G3') Givenae G,3be Gsuchthatz b =e. - 33
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What we are saying is that the two sets of axioms are cqﬁivalem. The difference between
them is the following:

In the first sct we need to prove that ¢ is a two-sided identty and that the inverse b of any
ae Gsaisfiesa ¢ b=c and b » a =¢. In the second set we only need 1o prove that e is a
one¢-sided identity and that the inverse b of any a € G only satisfies a » b=e.

In fact, these axioms are also equivalent to

G 1"  +is associative.

G2 dee Gsuchthatesa=a¥%ae G.

G 3" .Givcnae G3dbe Gsuchthal‘h-:'l=e. ‘

Clearly, if » satisfics GL, G2 and G3, then it also satisfies G1'. G2' and G3'. The fallowing

theorem tells us that if + satisfics the second set of axioms, then it satisfies the first set too.

Theorem 3 : Let (G, + ) satisfy G1', G2' and G3. Thene « a=a¥ae G. Also, given
ae G,ifdbe Gsuchthata* b=c¢, then b % a=c. Thus, (G, *) satisfies G1, G2 and
G3.

To prove this theorem, we need the following result.

Lemma 1: Let (G, * ) satisfy G1°, G2'and G3'.If 3 ae Gsuchthatasa=a, thena=e.
Proofl : By G3' we know that 3 b e G such thata» b=e.

Now(as'a)« b=avb=e.

Also,a «{a+ by=a+ e=a. Therefore,by Gl',a=¢c.

Now we.will use this lemma to prove Theorem 3.

Proof of Theorem 3 : GI holds since Gt and Gi' are the same axiom. We will next

prove that G3 is rue. Leta € G. By G3'3 b e G such that a » b = e. We will show that

bwa=g Now,

(bea)s(bra)y=(be(asxb))wvac=(bxec)wa=bxa

Therefore, by Lemma 1, b = a = ¢, Therefore, G3is true.

Now we will show that G2 holds. Letae G. Then by G2', fora e G,a * e = a, Since G3 -

holds,dbe Gsuchthata«b=>b «a=e. Then
‘eva={asb)ra=as(bspa)=aee=a

That is, G2 also holds.
Thus, (G, «) satisfies G, G2 and G3.

-

Now consider some more examples of groups.

Example 4 ; Let G = {£ 1, #i}.i = V1. Letthe binary operation be multiplication.
Show that (G,') is a group.

Solution : The table of the eperation is

This table shows us that a.l = a & a € G. Thercfore, 1 is the identity element. It also shows
us tha (3,7) satisfies G3'. Therefore. (G.) is a group,

Notethat G = {1, x, x3, 23}, where x = i. '




From Example 4 you can se¢c how we can use Theorem 3 to decrease the amount of checking . Groups
we have to do while proving that a system is a group.

Notc that the group in Example 4 has only 4 elements, while those in Example 3 and E4
have infinitely many clements. We have the following definitions.

Definition : If (G, #} is a group, where U js a finite sel consisting of n elements, then we
- say that (G,+} is a finite group of order n. If G is an infinite set, then we say that (G, *)

is an infinite group.

Il « s a commutative.binary operation we sdy that (G, «) is 2 commutative group, or an
abelizn group, Abclian groups are named afier the gifted young Norwegian mathematician
Niels Henrik Abel, - e

Thus. the group in Example 4 is a finite abelian group of order 4. The groups in Example 3
and F4 are infinite abelian groups.

Now lét us look at an example of a non-commutative (or non-abelian) group. Before doing
this example recall that an m % n matrix over aset S is a rectangular arranpement of

clements of S in m rows and n columns, Fig 2 N.H. Abel (1802
. " 1829)

Example 5 : Let G be the set of all 2 x 2 matrices with non-zero determinant, That is,

a b
G=
c d
then ad-be is calied the determingnt

Consider G with the usual matrix multiplication, i.e, for of A, and is writeen 4s det A o

a b i ap+br  agtbs . lAl:
A=[ ]md?:[p q]inG.A.P:[ e " :’
c d r s cpHdr  oHds

. b
a,b.cd € R, ad-bc & 0} IFA=[ : ]
c d

Show Lhat (G, - ) is a group.

Solution : .Firs't we show that . is a binary operation, thatis, A, Pe G= APe G,

Now, .
det(A.Py=det A. det P# 0, since det A 20, det P » 0. ’ )
Hence, A.P € Gforall A, PinG. _ Oet (AB} = (deg A) (det B)

' 1.0
¥e also know that matrix multiplication is associative a.nd[ 0 :I

. a b
is the multiplicative identity. Now, for A =[ 4 ] in G, the mamx
c
d - . .
: - - 1 0
‘B= ad - be ad - be is such thatdet B = #0and AB = .
- C 1 ad - be 0 !

ad — be ad - be

Thus, B = A<, (Note that we have used the axiom G3' here, and not G3.) This shows that
the set of 2l 2 x 2 marrices over R with non-zero determinant forms a group under
multiplication. Since

(320830
PR

w2 sec thag this mioup is not commurative,

L—

1s

A group is wswadly denoted by GLUR), and 15 called the generai fincar group of order

-
2 over Ro We will be using this group for examptes thravghout Blocvs 1 and 2.
And now another example of an abelizn ETOUD.

Example 6 : Consider the set of 21l translations of R,

T= { oot R¥= R [ 1, (x.y) = (x+a. y+b) for some fixed a.b « R }
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Note that cach element f,,in T is rcpfcsenwd by & point (a,b) in Re »now that (To)isa

group, where o denotes the composition of functions.
Solution : Let s sec if o is a binary operation on T.

Now f,pof 4 (x,y) =1, (x+c, y+d) = (x+c+a, y+d+b)
= £, e, bea (%) for any (x,y) € R2,

afpef g=fucpa€ T

Thus, o is a binary operation on T.

Now, f,y, 0 foo = fop{¥fep € T-

Therefore, £, is the identity element.

Also, £ 08, o= fpo@h,e T. -

Therefore, f_,_yis theinverseof f,, € T.

Thus, (T.o) satisfies GI', G2' and G3', and hence is a group.

Note that fy 0 Fy = fe g0 fup () fup fog & T Therefore, (T} is abelian. .

+ Try the following exercises now-

E5) Let Q¥ R*and Z* denote the sets of non-zero rationals, reals and integers. Are the
following staiements true? If niot, give reasons.

8 (QY ) is anabelian group.
b) (R*,.)is 2 finite abelian group.
g (Z* Disa group.
d) Q%) (RB. Jand (Z*. .) arc semigroups,
E6) Show that(G)isa non-abelian group,

where G = {(a.b) l abe R,a# 0} and = is defined on G by
(ab) * (c.d) = (ac, beid).

We will now look at some properties that clements of a group satisfy. -

24 PROPERTIES OF GROUPS

r

In this section we shall give some clementary results about properties that group clements

satisfy. But first let us give some notational conventions.

Convention : Henceforth, for convenience, we will denote a group (G,*) by G, if
there is no danger of confusion. We will also denote a » b by ab, fora, b &€ G, and say
that we are multiplying 2 and b. The letter ¢ will continue to denote the group identity.

_ Now let us prove a simple result

Theorem 4 : Let G be a group. Thﬁri
a) (ahyl=aforeveryae G I ' -
B {abyl=1htal forall :l..b e G.
Proof : (2) By the deﬁnilion of Inverse,
@bt @hy=es @
But,aa! =a! a = ¢ also. Thus, by Theorem 1 (b), (@Y t=a

{t) Fora,be G,abe G. Therefore, (ab)~! € G and is the unique element satisfying
(ab} (aby~! = (ab)~! (ab) =e¢.
However, (ab) (o &) = ((ab) b1} 2
=(abbiyal)

=(ac) al : '
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. .
Simitarly, (b~' 27!} (ab)=c.

Thus. by uniqueness of the inverse we get (ab)™ = b“ .
Note that, for & group G, (ab)" = a" b" -\;fn.be G only er is abchan iy

You know that wheneverba=caorab=acfora, bycinR¥y: .0« verm o e -
we can conclude that b = c. That is, we can canccl o Thls facl 1s truc for any group

- -
.o

Theorem 5 : For a, b,cinagroup G, '~ R f-
a) ab=ac = b =c. (This is known as the lelt_canceliation fawJd ... ...,

P

b) ba=ca= b =c. (This is known as the right canc'ellntion Naw,)

Prool : We will prove {a) and leave you to prove (b) (sec E 7).-. :
(1) Letab=ac. Muluplymg both sides on thc lct't hnnd s:dc by a“ £ G  We gct
Flab)=a! (ac) .
= (a." 1y b=(Tax .
= eb =ec, e being the identity element.
= b=c :
Remember that by multiplying we mean we'are pcrfonmng‘i.hc‘opemuonf o

LT R P L R i O

- - » o
= J -"—n. Wl B9

E Prave {by of Theorem 5.

o e “‘J"‘tu:._;:r“b £ 5t win
Now use Theorem 5 [o solvc the fol!owmg CXCFCISC K i I

PRI P

n - '

E8) Ifinaproup G, there exists an'element g such Lhat gx g) for a.ll x E G thcn show
that G = {e}. .

C - -u:n-%(ﬂ'r-mr-v '
We now prove another prop-erty of groups.

“E "r lt" Lh ,_nfﬂ.i e

Theorem 6 : For clcn;cnts g bina gro vpp,lhcgquaga_ ‘%%jk‘ﬁqum,hav&mmuc

501uu0ns in G.
T et

Proof : We will first show that ﬂzcsc'lg{ar'cqﬁ'ﬁaﬁéf do_ hayezoluHgne fnidand, then we
will show that the sofutions are unique. :

Fora, b e G,consider a-! b e G. We find that a(a! b)\-‘-r(aa“ii) IR EThis, a b «
satisfies the equation ax = b, i.e., ax = b has a solution.i G

But is this the only solution 7 Suppese Xjo Xp Ore t}:fg*so ut::onsﬂ_.ax =bj in 9 "l'_'hcu .

= b = ax,. By tiie left cancellation law, “we et X, = %y ‘Thus ‘a‘"b 1541.hc‘umqiﬁ: ‘solution
mG . - )

Simllnrly, using the right canceliation law; we can show’ Lhatba“l 15“1hc umquc ‘solution of
ya=binG.

i ST g _/“f. et opm T
Now we will illustrate the property given in Theorem 6. et il - e
| 2 3 i L3 |
Fxamule 7 : Consider A = l ! B =I ] in GL, (R) (sce Example 3).
Lv 2] Lo ¢l 7

Find the solution of AX = B,
Solution : From Theorem 6, we know that X = A-t B. Now,

f 2 -3
A :]_ : , {sce Fxample 5).

2 2 =
ATTB= ] = X. :
-1 3 37

In the next example we consider an important groujh
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Example 8 : Let S be a ron-empry set, Consider @ (S) (see Example 2% with the binary
operation of symmetric difference A, given by’

AAB=(A\DB)UB\A) ¥ A,Ee p(S)

Show (hat (&(S), A) is &n abelidh group. What is the unigue solution for the equation
YAA=B7?7 '

I' Solution : A is an associative binary operation. This can be ssen by 'using the facts that
- AXB=ANB" (ANBY=A°UB*, (AUBY=A°NB"

and that U and N are commutative and associative, A is also commutative since A A B
=BAAVMA,Beg(s). {

Also, ¢ is the identity element since A A9 = A ¥-A € P (S).

Further, any elemant is its own invc'rsc,_ sincc AAASOY Ac p(s).
Thus, (@ (S), A} is an abelian group, :

For A, B in (£(5), &) we want 1o solve Y & A = B, But we know that A is its own

inverse. So, by Theorem 6, Y=B AA~' =B A A is the unique solution. What we have also
'pmvedis_tha.t(BAA}AA:Bfura.nyA.Bi:lp(S). :

Try the following cxercise now.

E9%) Consider Z with subtraction as a binary ope.ation. Is 7Z, ~) a group 7 Can you
obtain a solution for e-x = b Vo, be Z ?

Abnd-now let us dlscussrepcatc.d multiplication of an element by itself.
Definition : Le Gbea 'gmup, Fora € (3, we define

B | aP=se

i3] n"éa"‘.s.ifﬁ‘;vﬁ

iiiy) E*=@@Y=if n>o0. ' .
D is called the expozent (or Index) of the Integral power a® of a.
Thus, by definition af = a, 82 = a.8;a? = aZ.2, and 50 on,

Note : When ths notation used for the binary operatién is addition, a® becomes na. For |
example, for aaye e T,

nac0ifa=0Q,

cada+..+e(otmes)ifon>0;

Be'= (—2) H-8) + ... + (—8) (-1 times) if 0 < 0.

quimpfwcmhmo{mdbcsfofmpelanmts.
Theorem 7 : Let G be a group. Fora-a Gandm,'n € Z,
@Y =Ete @I, b) e e, o) (g g,

,Proof:chm'\_rc(a)md('b),andlmvclhcproofof(c)toyou(ml?. 10).

® n=0, deady (& = o= (- y.

" Now suppose n >.0. Since ar! = e, we soe that

e=efc (gxi)a
= ) (a) ...... (o) (o tirmes)
= &% (1), since n end o1 commyte.
L@ = (T
Adeo, 2133 = == b detinilion.

S @ = (@Y = 59 wikn o> 0,
Ho«<0,then (—n)>0and °
(@) = i

L EIEY, by thecase n > 0

=g




Ao, () =@y 3
= [(&)1] =, by the casa n> 0
=gt ‘
So, in this case (00, |
(gl =a=(xlf
) fm=0orn= Othcnam—nma“ Strpposcm:eomdu;to
We will conaider 4 situations.

Cese 1 (m>Oandn>0):We prove the prupmmqn by mductlon on o.

If n=1, then a®, g = g™, bydcﬁmucm

Now assume that g™, 8%} = a™+a-1

Then, a™ a? = a2, a) = (a™ , n"“) a= am‘“’" a ? a“’" Thus, by the principle of -
induction, {(a) holds for all m > ¢ and n > 0

Case 2 (m<Qendn<0): Thcn(—m)>0md(—-n)>0 Thus bndsc 1,a o™
= g~(=m) = (™), Taking inverses of both the sides and using (&), we get,
armr = (n—u_ a-cn)—l = (ﬂ—m)—l_ (a—n}—l = am gb,

Case 3(m>0,n<0suchthat m+nz0): Thmlbndsc I, 2™, g9= g™, Multiplying
both sides on the right by af = (a2)-!, we 1 :1"”" = n"' an,

Case 4 { m > 0, n < 0 such that m+n < 0); Bndch @, a'“?-a.“ Multiplying both
sides on the lefi by a™ = (a ™)), we geta™o =g a0 . g :

Thccnscswhcnm{ﬂandn>0msunﬂs:to€am3and4 Hmoc.am-n"‘a“ for al}
ae Gondm,ne Z.  Mrere e s s e L

PR ety TR R

"To finish the proof of this thcorcm, ujé El0.

o R

.. R R
E10) Now youcan prove (c) crf'Ihcorem s _ ]
- ;_‘ _‘-J_‘ 1.,”
(Hint : Prove, by induction on n, fortheca.scn 0. Thcnprovc forn<0)

.- ce4dy srpee=n, 08
We will now study three impprtant groups. ) ’

2.5 THREE GROUPS . .

et e
- R nd iy

In this section we shall look at three groups thiatavd wilt usé a5 exsmples very often |
throughout this course — the grm.p ofmtcgcr" mcdu.lo n, thcsy:mn.rnc group and the sel
of complex numbers.

2.5.1 Integers Modulo n

Consider the set of integers, Z, and n € N. Let us define the i‘ci;ﬁatf of congruence on 7.
by : 2 is congruent to b modulo n if n divides a—-b, We write thls asaeb (mo-d n). For
example, 4 =  {mod 3), since 3| (4-1).

 Similarly, (-5) = 2(med 7) and 30 = 0 (mod 6).

= is an equivalence relation (see Sec.1.4.), and hence partitions Z into disjoint equivalence
classes called congruence classes modulo n. We denote the ciass cantaining r by T.

Thus, T={me Z| mer(modn) }.

L

o an integer mobelongs W r forsomer, O Sr<n, l‘I]‘I|Ll’-—"ﬂ).!L‘ i r—m = kn, for some
K e Z.
T ={rmknlre Z)

Now, if m 2n, then the division algorithm says that m = nq+r forsome g, r€ Z,0<r < n.
‘That is, m = r (mod n), for some r =0, ....., n=1. Therefore, all the congruence ¢lasses

modulo nare 0, 1, ....., n—1 . Let Z.={0,T1,2, ....a-1}. We define iiic operation + on

Z,by 2 +b=a+b._

Groups
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Is this operation well defined? To check this, we have 1o see thatifa=h-1dc=din Z,,

then a+b = c+d.

Now,a=b (mod n) and ¢ =d (mod r). Hénce, there exist integers k, and Kasuch thata ~b =
kjnand ¢ —d =%, n. But then (a+c)—(b+d) = (a-b) + (c—d) = (k; + ko)n.

L oate =bd.
Thus, +is a binary operation on Z, .
For cxample, 2 + 2 =0 in Z, since 2 + 2 = 4 and 4 = 0(mod 4).
To understand addition in Z, ry the following exercise.

E11)  Fill up the following operation table for + an Z,,

T+ 0 i 2

]

B3|

Now, ler us show that (Z,, +) is 2 commutative group.

i) Z+b=a+b =b+a =D+3 ¥3,beZ,ie.,

addition is commutative in Z_.

i) 3+(b+ O=T+(b +¢c)=a + (D +C)

=@+b)+c =(3 F DT =(2 +D)+o Y a,bceZ,
i.c., addition is assbcialive in Z,.

iii) a +0 =2=0 +a ¥ae Z_ ic. 0isthe identity for addilion.

iv) ForaeZ,3n-2€Z,suchthala + s ~a=n=10=10 =3 +a. -
Thus, every clement a in Z, has an inverse with respect (o addition,

The properties (i) to (iv} show thar (Z,, +) is an abelian group.

Try the following exercise now.

E12)  Describe the partition of Z determined by the relation congruence modulo 5°.

[

Actually we can also define multiplication on Z, by 3.5=2ab. Then.3 B =5 3
M2 B cZy Also, G B)L =a b eIV Ub Ce Zy. Thus, multiplication in Z. is a

commuialive and associative binary operation,
Z, aiso has a multiplicative identity, namely, T .

But (Z,, .) is nota group. This is because every element of Z_, for example 0, dees not have
a multiplicative inverse. -

But, suppose we consider the non-zero clements of Z, , that i, (Z;. -)- Is this a group? Far*

example Z} = {1, 2, 3} is not a group because . is not even a binary operation on Z, since

2.2=0 & Z'. But(Z"..). is an abelian group for any prime p.
4 P
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E 13) Show that (Z5 . .) is an abelian group.
{Hint : Draw thc operation table.)

Let us now discuss the symmetric group.

2.5.2 The Symmetric Group '

We will now discuss the symmetric group briefly. In Unit 7 we will discuss this group in
more detail.

LetXbea non-empEy sel. We hzve seen that the composition of functions defines a binary
operation on the set F(X) of all functicns from X to X. This binary operation is asscciative,
Iy, the identity map, is the identity in F(X).

Now consider the subset S(X) of F(X) given by
S(X) = (f e F(X)| fis bijective}.

Sofe S(X)iff f: X — X cxists. Remember that f o £ = flof= Ix. This alse shows that
e SX).

Now, forall f, g in $(X},

geDo(fog ) =Ix=ttTog ™ alg o, ic. gofe SO,

Thus, o is a binary operalion on $(X).

Let us check that (S(X), o) is a group.

1) oisasseciative since (fog)oh=fo(go h)su‘ f.g,h e S(X).
i) Iy is the identity element because f o Ix.=:f,;o flfv‘ Fe S(X).
iii) €!is the inverse of f, for any f e $(X).,

Thus, (S(X), ¢) is a group. It is calted the symmetric group on X.

If the set X is finite, say X = {I, 2. 3......n}. *hen we denote S(X) by S,. and each.f e S,is
culled a permutation on n symbois.

Suppose we wanl lo construct an element f in Sq. We can start by choosing £(1). Now, (1)
can be any onc of the nsymbols 1, 2, ..., n. Having chosen (1), we can clivose [(2} from
the set {1.2.......n) N {f(1)}, ie., in (0-D) ways, This is because fis 1-1. Inductively, after
cheosing f(i). we can choose [(i+1) in (n-i) ways. Thus, f can be chosendn (T % 2 % ..,.% n)
=n ! ways, i.c., S, conlains n! clements.

For our convenience. we represent £ ¢ S, by

] 2 n
( (L) 2y I{n} )
L 2 3 4 ’
Far example, ( s 4 3 | ]rcprcscnts the function [ : {1, 2,3, 4) = (1, 2,3, 4}
({1}=2.1(2) =4,{(3) =3, ((4) = |, The elements in the lop row cun be placed in any order

as long as the order of the elamen:s in the boitom row is changed accordingly.

PR . B SN

Lhus, [ . |also represents the sume function 1.
v 23

Ty this cRevcise now,

E 1) Consider 85, the sel 02 all permuaiions on 3 symbols. This has 3! (= 6} elements.

] . o . I 2 3
Cne is the idenlity function. 1. Another 15( -

). Can you list the other
2.1 3

four?

41
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' T Now, while solving E 14 ane of the elements you must have obained is f = [ 2 '3']
2 31
Here £(1) =2, f(2) =3.andf(3) = 1. Such a pen-nutauon iscalleda cycle In general we
have the following definition. )

Definition : We say that f & S is a cycle of length r il there are x,....., x,in .
X ={ 1.2 ..., n}such that f(x;) = x;,, for I Si<r-1, f(x;) = x, and () =t for
L# XY, o K In this case f is written as (x|.... X,).

Forcxamp]c byf=(2 45 10)e Sp,wemean f(2)=4.7(4}=5.7(5) = 10, f(10) =2
and f(j) =jforj=2,4,5, (0. :

12345678910
e, f= |
1435106780972

fe S fixes an clement xif ((x) = Note that, in the noiation of a cycle, we don’t mention the elements that are left fixed by the
x permutation. Similarly, the permutation

(12345

iIsthecycle(l 25 3 4)inSs.~
2 5 4—1 3) yele ( 343

Now let us see how we calculate the composmon of two permutations. Censider the
fol!owmg example in Ss.

1 2 3 4 5 I 2 3 4 5
aoﬁ = o
(25431)(534!2)
_ 1 2 3 4 5
'( aB(l) of(® o) of@) o) )
s 2 3 4 5
_( «s) oB) a4 o) a2 )
I 2 3 4 .5
= - : =@ 4.
( 1 4 3 2 5 )

since 1, 3 and 4 are left fixed.

The following exercises will give you some practice in computing the product of elements
in §,.

E 15) Caleulate (I 3)o (1 2)in 8.

E 16)  Wrile the inverses of thlc following in Sy :
a) (I 32)
by (1 32)

Show that ((E 2) o.(1 3 2}1-'=(1 2 o(1 3 2)'. (This shows lh-alin
Theorem 4(b) we can't wrile (ab)™' = a1 b))

And now let us alk of a group that you may be familiur with, \;vilhnut knowiny that it-is a

oraun
o W

253 Complex Numbers

-In this sub-section we will show that the sct of complex numbers forms a group with
“respect to addition. Some of you may nal be acquainted with same hasic properties of
complex numbers. We have placed these properties in the appendix to this unil.

Consider the sel € of all erdered pairs (x, yYol real numbers, fe.. we take C = R x R.
Define addition (+) and mulliplicatien (.} in € as foliows:

(X1, Y1) + (%2, ¥2) = (1 + X3,y + y2) and
] o ey (Ray) = (K Ka -y Yo X Yo+ Rayy)
42 . for - (x).y;)and (. yy)in C.




This gives us an algebraic sysu-.m (C.+ ) «catledtl:e syste.m of complex numbers. We must
remember that two complex numbers (x1. y)) and (x3, ¥3) are equa] iff Xy = x5 :Lnd

Y1 =Y

You can verify that + and . are commutative and associative.
Moreover,

)] (0, 0 is the additive identity.

i) for(x,y)in C.(-x, -y) is its additive inverse.,

iiiy (1,0 is the multiplicative identity.

iv) if(x,y)=(0,0}in C, then either x2>0ory?>Q.

Hence, x2 + y2> 0. Then

X i
(x. ). [xz +yr' xta sz

_ X (=y) =y X
—(x-xz_,_yz‘Y-xz_,_yz- x-xz_,_yz"'yxz_,_yz)
=(1,0
X -y - e e N
Thus, (xz v IR +-y'-’) 15 the multiplicative inverse of (x, y) in.C.

Thus, (C. +)is a grovp and (C", . ) is a group. { As usual, C" den’otﬁs,rhc Set of nen-zero
complex numbers.) .-

Now let us sce what we have covered in‘this.unit.

2.6 SUMMARY

In this unit we have

1)  discussed various types of binary operations. .

2} defined and given examples of groulﬁs. Ny

3) prow.;d and used the cancellation laws and laws of indices for group elements.

) discussed the group of integers modulo n, the symmetric group and the group of
complex numbers.

We have also provided an appendix in which we llSl certain basic facts about complex
numbers.

2.7 SOLUTIONS/ANSWERS

El) a x@y:y@x#x.ye R.
Therefore, @ is commulative.

XOyY) @ zr=(x+y-5) O 2 = (x+y-5)+z-5
= X+y+i—i0

X®(y Bz

Thercfore, @is wssocintive. oy
B is not closed on N siuce | & 1 & N,

b} + Is commutative, noi associstive, closed on N,

©) A is not cormmurative, associative or closed on N.

E2) 1) Theidentily clement wilh respect o @ is 5.

Suppos~ ¢ i< the identity element for »,

Grou;:us

In Dlock 3 you will see that {C+.9

is also o ring and a field.
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E3)

E 4)
ES)

E6)

E7)

E 8)

E9)

E 10)

- x R . .
Thenx «e=x=2(X+e)=x=De=- a2 whicl: uw~2nds on x. Therefore,

there is no fixed element ¢ in R for whichx «e=e » x =x % x € R. Therefore,
* has no idenlity element.

Similarly, A has no identity element.

b) The inverse of x with respect 10 3 is 10-x. Since there is no identity -for the
other operations, there is no question of obitining x-!.

@8y ={%. {0}, {1}, 10,1} }. f
So, the table is

n ¢ (0) N0 s
¢ ¢ ¢ ¢ . 9
{0} o () " (0}
(n ¢ ¢ {1 (1)
S ¢ .0y {1} © 8

Check that both of them satisfy Gl, G2 and G3.
(2) and {d) arc true,
(b) R™ is an infinite abelian group.

© (Z*,.) satisfies Gl and G2, but not G3. No integer. apart from %1, has a
_multiplicative inverse.

((ab)»(cd)) x(e. )

= (ac, be+d} «(e, )

= (ace, (be+d)e + f)
=(a, b) «({c,d) » (c. 1))

Thus, = satisfies G1'.
(a,b)«(1,0)=(a, bY¥(a,bYe G.

Therefore, G3' holds.
Therefore, (G,»} is a group.
ba=ca=(ba)a' =(ca)a = b=c,

Let x € G. Then gx = g = ge. So, by Theorem 3, x = ¢,
o G ={e).

{Z, -) is nat a group since G1 is not satisfied. : y
Foranya, be Z,a—(a-b)=b. 50, a-x = b has a solution for anya,be Z.

When n =0, the statementis clearly true.

Now, let n > 0. We will apply inductien on n. Fe- n = 1, the statement is e,
Now, assume that it is true for n-!, that is, (a™™ = gmfn-15,
Then, (:m]n = (nm}rr-l T = {....n'a)n-l' am, b}’ {b)

= um(n—l)_ am

= l.!an—I+I). by ()

= al"l'l."l_

So,(c)istrue® n>0and¥ me Z.

Now, et n < 0. Then (~n) > 0.




" @ = (@, by (2)
= [a™1, by the case n >0

= [a-mnl-!
=a™, by (a).
Thus, ¥ m, n e Z, (c) holds.
€10 + 0 1 2 j
g G l 3 3
T 2 3 o
2 2 3 0 1
3 3 0 1 2

0 ={... -10, -5, 0, 5, 10, 15,......}
T ={ i 9 =4, 1,6, L1, s )
2 ={ s . -8, -3, 2, 7./12, ............. }
3 ={ s =7, -2, 3, 3., 15, ............. }
4 ={ ey 6, -1, 4, 9, 14, .o, 3.

E 13) The operation table for".

] 2 ry
1 1 2 i
2 2 3 3

~ e

N 3 T :
3 Py 3 1

L -
It shows that . is an associative and commutative binary operation on Zg, 1is the

multiplicative identity and every element has an inverse.

Thus, (Z5, .) is an abelian group.

1
E 14) (

2 3 1
21)'1

E 15 I=(13),g =(12).

Then fq

-(
l

LI I

r
o

-

1

I

(
\
( @ ) f(3))
(5
\2

2
3

3 12
) (2 s

2 30N

fe(1) fe(2) fg(3)

\

)(123)

-
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E 16) a) Letf:(lg)_:(;_ ? ;) r—:=(? | ; 3‘_\”

just interchanging the rows.
=0 2). -

B (3 =2 3 0.

Now, (1 2) o (1 32):(; ; ?) _ -

3 2 I
Its i is =(1 3.
inverse i (l 2 3) (13
On the other hand, .

(1 2Y7o(1 3207 =(1 2)o(1 23)=(2 3)#(1 3).

APPENDIX : COMPLEX NUMBERS

Any complex number can be denoted by an ordered pair of real numbers (x.-y}. In fact, the
st of complex numbers is

C={(x,y),| x,ye R}

Another way of representing (x,y) € Cisx+iy, wherei= V1.
We call x the real part and y the imaginary part of x + 1y.

The two representations agree if we denote (x, 0) by x and (0, 1) by i . On'doing so we can

"write i :

x+iy =(x,0}+ (0, 1) (y,0)
=(x,0)+ (0, y)
=y :
andi? =(0,1)(0, 1) =(-1,0) =-1.
While working with complex numbers, we will sometimes use the notation x-+iy, and
sometimes the fact that the elements of C can be represented by points in R2,
You can sec that

(aq + iy + (k2 + iy = (L) + (X2 ¥2)

=(x;+ X2 ¥y FY2)
=(Xy+ X) + i {yy + ¥2). and
(x; +iyy) (xp+1iy2) =(x5. ¥1) (X2, ¥2)
= (X X3 — Y1¥2 Xi¥2 + X2¥1)
= (X Xp— Y 1y2) +1(x1y2+ Xay)-

Now, given a complex number, we wilt define its conjugate.

Definition : For a ccm;'alex number z = x + iy, the complex number x + i (—y) is called

the conjugate of z. It is also written as x — iy and is'denoted by z.

For z = x + iy, we list the following properties.
i)  z+zisarealnumber. Infac,z+Z=2%.
i) z.% =x*+y? anon-negative real number.

i) ¢, + 4y =2 +1z3,forany z;,z; € C. This is because

=0x) +x) -0y + ¥

= (x —iy)) + (%2~ 1¥2)
=E! +_Z—/‘I_. - °

(%1 + %3) + i Gy + y2)

iv) 2,23 = 2,.2;.foranyz, zz€ C.




Let s now sce another way of representing complcex numbers.

Geometric Representation of Complex Numbers

We have seen that a complex number z = x + iy is represenicd by the point (x. y) in the
planc. If O is the point (0,0) and P is (x, y) (sec Fig.3), then we know that the distancé

OP= ¥x2+ y? . This is called the modulus {or the absolute value) of the complex
number z and is denoted by | z |. Note that Yx2 + y* =Qiffx=0and y=0.

Now, let us denote| z | by r and the angle made by OP with the positive x-axis by 8. Then
B is called an argument of the non-zero complex number z. If © is an argument of z, then
0 + 2nn is also an argument of z for alt n € Z. However, there is a unique value of these
arguments which lies in the interval [-m, m]. It is called the principal argument of x+iy,
and is denoted by Arg (x + Iy).

From Fig.3 you can see that x =r cos, y = sind. That is,

z = (rcos®, rsin®) = r(cosB+i sind) = rel®,

This is called the polar form of the complex number (x+y).
. i0 o)

Now, if z; = 1'103.l land 2z, = r24:I 2, then
= il[el 2

21 =02 .

Thus, an argument of z; z; = nn argument of z;, + an argument of z,.

We can similarly show that if z, # 0,

Z
an argoment of ;L = an argument of z; — an argument of z,.
2

In particular, if @ is an argument of z (# 0), then (-8) is an argument of z-.
We end by stating one of the important theorems that deals with complex numbers.

De Moivre's Theorem : Il z =r (cos8 + i 5sinB) and n € N, then
z" =12 {cos n9 + i sin nB).

Groups

F S
Y
P(x.¥)
r
Y
Q"
0 x X
Fig. 3 : Geometric

representatlon of x + iy
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3.1 INTRODUCTION

You have studied the algebraic structures of integers, rational numbers, real numbers and,
finally, complex numbers. You have noticed that, notonly s Z < Q¢ R ¢ C, bui the
operations of addition and multiplication coincide in these sels.

In this unit you will study more examples of subsets of gro-ups which are groups in their
own right. Such structures are rightfully named subgroups. = Sec. 3.3 we will discuss some

of their properties also.

In Sec. 3.4 we will sce some cases in which we oblain a group from a few elements of the
group. In particular, we will study cases of groups that can be built up by a single element
of the group.

Do study this unit carefully because it consists of basic concepts which will be used again
and again in the rest of the course.

Objectives

After reading this unit, you should be able to

¢ definc subgroups and check if a subset of a given group is a subgroup or not;
o check il the intersection, union and produci of two subgroups is a subgroup;

o describe the smucture and properties of cyclic groups.

3.2 SUBGROUPS

You may have alrcady noted that the groups (Z,+), (Q.+) and (R,+) are contained in the
bigger group {C,+) of complex numbers, not just as subsets but as groups. All these are

. examples of subgroups, as you will see.

Definition : Let (G,*) be a group. A non-cmply subset H of G is calied a subgroup of G
if

D zebesHMabeHin

“ LN

Tih

., ¥ ig a bihary aneral’n an H,
iy (H.2)is iiself a group.
So, by dcfiﬁilion. (Z,+) is a subgroup of {Q.+), (R,+) and (C,+).

Now, if (H, #) is a subgroup of (G,*), can the identity element in (H,«) be dilierent [rom the
identity element in (G.+) ? Let us see. If b is the identily oi (H,+), thea, for any a @ H,
h#a=a%h=a However, ae H G.Thus, a*e=e * a=a, where e is the identity in G.
Therefore, h » a =c * a, ’

By right cancellation in (G,%), we geth=e¢. . .t

Thus. whenever (H, ) is a subgroup of (G,*),e € H.




Now you may like to ury the following exercise.

E 1) If(H, %) isasubgroup of (G,+),doesa~' € Hforeverya € H ?

é 1 and the discussion before it allows us to make the fellowing remark.
Remark 1; (H,#) is a subgroup of (G, #) if and only if

iy eeH, .

i} abeH=axbe H,

iiiy aesH=a'le WU

We would also like to make an imporiant remark about notation here.

Remark 2 : If (H.») is a subgroup of (G.*). we shall just say that H is a

subgroup of G, provided that there is no confusion about the binary operations. We will
also'denote this fact by H £ G. '

Now we discuss an important necessary and sufficient condition for a subset to be a
subgroup.

Theorem 1 : Let H be a non-empty subset of a group G. Then H is a subgroup of G iff
a,be H=ab'e H. -

Proof : Firstly, let us assume that H < G. Then, by Remark 1,a,be H= 3, ble H
= ab-le H. . ) :

Conversely, since H# ¢, 3 ae H. Butthen, 227! =c € H.

Again, foranyae H,ea”' =ate H.

Finally, if a, b e H, then a, b~ € H. Thus, 2 (b™*)"! =ab e H, i,
H is closed under the binary opetation of the group.

Therefore, by Remark 1, H is a subgroup. .

Let us look at seme examples of subgroups now, While going through these you may
realise the fact that a subgroup of an abelian group is abelian,

Example 1 : Consider the group (C', .}. Show that
S={ze C|jz| =1} isasubgroupof C .
Solution : S 2 &, since 1 € S. Also, forany z; , 23 € §,

L

2

-1 = al
|217-2 |“‘1!‘ o -‘Z:‘

Hence. 7; 7o-' € S. Therefore, by Theorem 1,S € C™.

Example 2: Consider G = M3 (C), the sel of all 2 x 3 matrices over C. Check that
(G.+) is an abelian group. Show that

s-{[0 2]

Solution : We deline addition on G Dy

a,b,ce C} is a subgroup of G.

llab \:Illpq r | fa+p b+aq c4+r ]
'L_dch l_siuJ dis ery o

o O

¥
0

o O

-
You can see it + is a binary operation on G. O :L

[ -2 ~b -c¢ o da b o]
s the inverse of e Q.
L -d -c —f 1_ d = [

Since,a+b =b+ i ¥ a be C.+isalso abelian

J is the addittve identity and

Therefore, (G,+) 15 an abelian group.

Subgrﬁups
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H5(G+4) &
Hewpand
a-be H¥2, be H.

50

Now, since O € S, § 2. Also, for

[O-ab][Odc S "
00 cllo o g|S orweseeta. .
[0 a b] [Ode]_ 0 a~-d b-e S
1looc] Joof]T|lo -0 c-f|}&™
S <G.

Example 3 : Consider the set of all invertible 3 x 3 matrices over R, GL,; (R). That is,
A € GLy(R) iff det (A) = 0. Show that SLy(R) = [A € GLy(R) | dera) =1} isa
subgroup of (GL3(R),). '
Solution : The 3x3 identity matrix is in SLy(R). Therefore, SLy(R) # ¢.
Now, for A,B € SL3(R),

; : 1

-1y = -1y - -
det (AB-1) =det(A) det(B-1) I—t.:Iet {A) det (B)

s ABl e SLyR) '
SL;(R) = GLy(R).
Try the following exercise now.

= 1, since det (A) =.1 and det (B) =1.

E 2} Show thatfor any group G, [c] and G are subgroups of G.
({e} is called the trivial subgroup.)

The next example is very important, and you may use it quite often.

Exempie 4 : Any non-trivial subgroup of (Z, +) is of the form mZ, where m € N and
mZ={mt |te 2} ={0, im, 2m, 3m,.....}.

Solution : We will first show that mZ is a subgroup of Z. Then we will show that if H
is a subgroup of Z, H = {0}, then H = mZ, for someme N.

Now,0 € mZ. Therefore, mZ ;e $. Also, for mr, ms € mZ, mr-ms = m(r-s) € mZ.
Therefore, mZ is a subgroup of Z.

Note that m is the least posltive integer in mZ.
Now, let H # {0} be a subgroup of Z and S = {i | i> 0,i€ H}.

Since H # {0}, there is a non-zero int:cgcr kinH Ik>0,thenk € S.Ifk <0, then
() e §, since {-X) e Hand (%) > 0.

Hence,S# 6.

Clearly, S ¢ N. Thus, by the well-ordering principle (Sec. 1.6.1) S has a least elemer’, say

s. That is, s is the least positive integer that belongs 1o H.

Now sZ ¢ H . Why 7 Well, consider any element st € sZ.
Ift =0, thenst=0¢€ H,
ITe>0,thenst=s+s+...+5 (times)e H

Ifi <0 then st ={s)+ (-8} + ...+ (—8) {~¢ dmes)e H.-
- A .
Therefore, ste W \/“ e 7. Tharis, s& 1.

Now, izt m € H. By the division algorithm {see Sec. 1.6.2), m =ns +r for some n.r € Z,
0 £ r -5, Thus, r = m—ns. But H is a subgroup of Z and m, ns € H. Thus.r € H. By
minimatity of s in S, we must have r = 0, L.e., m = ns. Thus, H ¢ sZ. ’

So we have proved that H=s7.

Before going 1o the next example, let us see what the nth roots of u .., v, thatis, for
which cornplex numbers z is 2 = . '




From the appendix to Unit 2, you know that the polar form of a non-zero complzx number
"ze Cisz =r(cosO +isind), wherer= |z| and 6 is an argument of z. Moreover, if 8, is
an argument of z; and 6, that of z. then 8, + 8, is an argument of z, z;. Using this we will
try to find the nth roots of I, wherene N.
Ifz =r{cosB +i sin®) is an nth root of 1, then z" = L.
_Thus, by De Moivre's theorem,
1l =z" =¢ {(cosnB +isin nd), that is, .
cos (0) +isin (0) =1" (cos n@ +i sin n6). [ § §
Equating the modulus of both the sides of (1), we getr® =1, ie, r=1. \
On comparing the arguments of both sides of (1), wesee that 0 + 2nk (ke Z) andnB are
arguments of the sarme complex number. Thus, nB can také any one of the values 2nk,

k € Z. Does this mean that as k ranges over Z and 8 ranges over %—k" we get distinct nth

roots of 17 Let us find out. Now, ¢os 22—1(' + 1 sin 2%‘( = cos g%m +15in 7—’_1':1& if and
L2nk 2rm . . .
only |f—n— -0 = 21t for some t € Z.. This will happen iff k = m+at, 1.e.,

K=m (mod n). Thus, corresponding to every Tin Z, we get an nth root of unity, =

cos?'n—m + isinz—:lc'[. 0 <1 <n:and these are all the nth roots of unity.

For example, ifn= 6, we get the 6th roots of | as Zg, Z, 2o, Z3. 24 and zy, where

zj= cos-zzsT£l +1isin Zgl j-=0,1,2,3,4,5 InFig. 1 you can see that all these lie on the

unit circle {L.e., the circle of radius one with centre (0,0)). They form the vertices of a regular
hexagon.

b4

X
Fig. L: 6th roots of unily
2 L 2w ' 3 (I
Now. let @ = cos ~ = 4 15in T'-.'[ hen alt the nth roots of | are 1, o, ®?, .......@"", since
j 2my . 2m] . . .
@ = cos —nl + 1 8in ?J for 0 £j<n-1(using De Moivre's theorem).
Le U, ={l, @ o, .. @ '}, The following exeicise shows you an interesting property

of the clements of U,

2 2
E3) KHn>land m:cos:—n+ 15in % then show that

1+ o+ + o+ ...+ 0! =0,

Subgroups

@ is the Groek leter onvep.
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Now we are it 8 posmon to obtain a finite subgroup of C
Example 5: Show that U < (C", ). _
Solution : Clearly, U, # ¢. Now, let @, (uj € U, .

Then, by the division algorithm, we can write i+j = qn 41 for q, reZ,0<r r < o1, But
then @', @ = @H =W = (1Y), K = cu’ € U,,. 5‘{‘9‘5 08 = 1. Thus, U, is closed u.ndcr
multiplication. '

Finally, if @' e U, then 0 < n-i € n—1 and wl. cn“"—(o” = I, i.e., @™ is the i inverse of T
' for all 1 £ i < n. Hence, U, is a subgroup ofC - -

Note that U, is & finlte group of order nand is a subgroup of an Infinlte

_group, C". So, for every natural number n we hive g finite subgrcn.p of order n of C*.

Before ending this section we will introduce you to-g subgroup that you will use off and on.

Definition : The centre of a group G, denoted by Z(G), is the set
ZiB)={ge G 1 xg=px¥xe G}

Thus, Z(G) is the set of those elements of G uuucorrunule with every element of G,

" For exa.mple if G is abelian, then Z(G) G.
* We will now show that Z(G) < G

Theorem 2 : The centre of any group G is-a subgroup of G.

Proof : Since £ € Z(G), Z(G) # ¢. Now,

ae Z(G) =>ax =xaMxe G, ) )
= x =a”!xa¥ x € G, pre-mulliplying by a-t,
=xal=alxMxe G, post-muluplymg by a‘
= a“ € Z(G).

Also, foranya be Z(G)andforanyxe G,

'(ab) x = afbx) = alxb) = (ax)b = (xalb=x (ab}

. ab € Z(G).

Thus, Z{G) is subgroup of G.

The following exercise will give you some practice in obtaining the centre of 2 group.

E4) Show thatZ(S;) = {I}.
(Hiat : Write the operation table for S53.)

Let us now discuss some properties of subgroups.

3.3 PROPERTIES OF SUBGROUPS

Let us start with showmg that Lhc relation ‘is a subgroup of" is wansitive. The proof is very
simple. -

Theorem 3 : Let G be a group, H be asubgroup of G and K be a subgroup of H, Thcn K

~ is a subgroup of G.
" Proof : Since K<H,K#d¢and able K¥a, be K. 'I'herefprc, K<G.

Let us look at subgroups of Z. in the context of Theorem 3.

Example 6: In Example 4 we lave scen that any subgroup of Z is of the form mZ Tor
some m & N. Let mZ and kZ De Lwo subgroups of Z. Show that mZ is a subgroup of K&
iff k| m.

Solution : We necd to show that'-mZ c k7 < kl m. Now mZ c kZ = me mZ ckZ

=mekZ=m=krforsomere Z='5/k|m.

Conversely, suppose k| m




Then, m =kr forsomer e Z. Now consider any n € mZ, and let t € Z such that i= mi,
Thenn=mt = (kr) | =kin) e kZ .

Hence, mZ c kZ.
Thus, mZ < kZ iff k I m,

Subgroups

Now, you may like 10 try the next cxercise.

E5)  Which subgroups of Z js 97 a subgroup of ?

We wilt now discuss the behaviour of subgroups under the operations of intersection and
h
union.

Theorem d : If H and K are lwo subgroups of a group G, then HN K is also a subgroup
of G.

Proof : Since ¢ € { and ce K, where ¢ is the identity of G,e € HN K.
Thus, HNK # ¢.

-

Now, leta, be HN K. By Theorem 1 , it is cnough to show that ab-! e | N K. Now, since
1,be H,ab-'e H. Similarly, since a. b e K, ab-l e K. Thus, ab'e HN k.
Hence, HNK is a subgroup of G,

The whole argument of Theorem 4 remains valid if we 1ake a family of subgroups instead of
ust Lwo subgroups. Hence, we have the following result,

Cheorem 4°: If {Hi}, is a family of subgroups of a group G, then ‘DI H; is also a
- 1

ubgroup of G.

low, do you think the unijon of two (or more) subgroups is again a subgroup? Consider the
¥0 subgroups 2Z and 3Z of Z. Let S = 27, U3Z. Now,3e 3ZCS,2e 27 < S, but
= 3-2 is neither in 2Z nor in 3Z. Hence, S is not a subgroup of (Z, +). Thys. if Aand B
‘¢ subgroups of G, AUB need nothe a subgroup of G. Bul, if A B, then AUB=Bisa

bgroup of G. The next exercise says that this is the only situation in which AUB isa
ibgroup of G. -

6) Lei A and B be two subgroups of a group G. Prove that AUB tsa subgroup of G iff
AcBorB cA. :
(Hint : Suppose 4 o B andB ¢ A Takeae A\Bandbe B\ A. The. show that

ab & AUB. Hence, AUB £ G. Note that proving this amounts to proving that
AUB=SG = AcBorBc Ay

‘L denotes tisnar a subgroup
af”.

- uUs now sce what we mean by the product of 1wo subsets of a group G.

finition : Lot G be g greup and A, B be non-empty subseis of G.
- product of A a:_l_d B is the set AR = { ab ] 1E A, be B)
example. (271 (37.) = { o) (G ] mne Z)

" |
={0mn| m.nz g !
=67

s example we Tind e rine Proshici of twu subgroups is a su bgroup. B is that aivays
Considel the group

={L O 2y 01 5.2 3023003 2} and s subgrovps H={[. 11 21} ane
{I. (1 3.

]

. . !
nember, (1 2} is the permutation ( ,

23]
3[)'

3
3 ]und (1 2 3) is the permulativn




Elementary Group Theary Nr_l'|w HEK ={I=1,1a (131 2)=1,¢12)a ([ 3)}
={L¢ 3 (L2003 2)}
HK is not a subgroup of G, since il is not even closed under composmon {Note thal
(13)e{12)=(2 3)e HK) '
So, when will the'produclt of twoe subgroups be a subgroup? Tie following result answers
this question.
Theorem 5 : Let H and K be subgroups of a group G. Then HK is a subgroup of G if and
only if HK = KH. T
Prool : Firstly, assume that HK £ G, We will show that HK = KH: Let hk € HK., Then
(&) '=k"h & HK. since HK < G.
Therefore, K'n = hy k| for some hy e H, k€ K. Butthen'hk = (k"' h")’I
=k7'k}' € KH. Thus, HK ¢ KH,
Now. we will show that KH ¢ HK. Let kh € KH. Then (khy' ="'k e HK. But
* HK < G. Therefore. ((kh)™)™' & HK. that is, kh € HK. Thus, KH € HK.
Hence, we have shown that HK = KH.
Converscly, assume that HK = KH. We have 1o prove that HK £ G, Since e = e? € HK, HK

0. Now leta, be HK Thena=hkand b=y k, forsome h,hj € Hand k, k1 e K.
Then ab” —(hk) (3 hi)=h &KL

Now, (kk, )hI &€ KH = HK. Therefore, 3 hak, € HK such that (kk‘l )h," = hyKs.
Then, ab™ = h{hyk,) = (hha)k, € HK.
_ Thus, by Theorem !, HK < G.

The following result is a nice corollary to Theorem 5.
Corollary : If H and K are subgroups of an abelian group G, then HK is a subgroup of G.

Try the following exercisc now.

E7) 1Is AB asubgroup of 84, where A={ L (1 4)} and B = {I, {1 2}}?

The nexl topic that we will take up is generating sets.

3.4 CYCLIC GROUPS

In this section we will bricQy discuss generating sets, and then wlk aboui cyclic groups in
detail.

Let G be any proup and S a subset of G. Consider the famiiy # of ali subgroups of G that
contain S, that is.

F={H|H<Gand S g H}.
We claim that F # 6. Why? Doesn™t G € F7 Now, by Theorem 47, HQ" H is a subgroup

Py

of G.
Note that

D Sc HQyH i

i () H is the smallest subgroup of G conwining S. (Because il K is a subgraup of G
Hey

conlaining 8. then K 7. Therefore. HHF Ho K}
=

These abservations lead us to the following definiton.

Definition : If S is 2 subset of a group G. then the smallest subgroup of G containing S

is called the subgroup generated by the set 5, and is written a~ <S>,

Thus, <§>= 0 {H | H<G. S C HY. |

If S = ¢, then <8> = {c}. |

If <S> = G. then we say that G is generated by the set S, and thar § is a sel of |
54 generators of G. ‘




If the set S is finite, we say thal G is finstely generaled. . Subgrou;

Before giving examples, we will give an aliernative way of deseribing <S>. This definition
is much easier o work with than the previous one.

Theorem 6 : If S is a non-empty subset of a group G, then

<S> = [a':' a"f ar;k | e Sforl €j<k ng, ..o € Z}.

Proof :Let A= {a,"! a,"2 ... 3,k Ze Sforl<isk n..n e Z}.
Since ay,... a3, € § ¢ <5> and <83 is a subgroup of G, a?i € <S>

¥i=1, ...k Therefore, a"l' anzz a'lk € <8 > ic, Ac <S>,

Now . let us see why <S> ¢ A. We will show that A is a subgroup containing S. Then, by
the definition of <S>, it will follow that <S> < A.

Since any ae Scan be writiecn asa=al, S C A,

Since S =, A=,

Nowletx,ye A.Then x =a," a, 2 ... a. %,

y=b""b "2 0™ 2 . be Sfor1<ick, | <j<r.

Then xy-! = {a':l aﬂzz a'lk} (b":l b’;z _____ b":' )~
n nl n. -m m
= (@ tl A5 e a;) (b, "... bl "Ye A

Thus, by Theorem |, A is a subgroup of G. Thus, A is a subgroup of G containing S. And
hence, <S> ¢ A.

This shows that <§> = A,

Note that, if { G, + ) is a group generated by S, then any element of G is of the form
npap+n;a; + ... * 0.3, wheie ay, a,....,a, € Sandn, ny, ... n, € Z.

For example, Z is penerated by the sel of odd integers § = { 1, £3, £5,...... }. Ler us see

why. Letme Z. Then m = 2"s where r 2 G and s € S. Thus, m € <S>, And kence,
<8> =%7.

Try the following exercises now. -

E&) Show that § = {1} generates Z.

E9) Show thata subset S of N gererates the group Z of all integers iff Lthere exist
Syewom S i S and 0y, ..., ng in Z such that s, + ... + msE =1,
(Hint : Apply Theorem 6.)

E10)  Show thatif S generates a sroupGand S« T o G, ihen <T> = G.

£ 10 shows that a group can have many gencraling seis. E 8 gives an example of a group
that is generated by anly one element, We give such a group a special name.

Definition : A group G is called a eyclic group if G =< {a} > for some 1 € G. We
usucily write < {a} » as < a >,

|
Note that < a >={a* |ng Z}.

A vnhoroaun H AF
Sornnaroun S ool i

&3

M

5P G A Calivd w eyeliv subgroup if itis a cvehie group. Thus,
<A > v neyele subgroup ol Soand 27 = <23 19 a eyche sabgroup of 2,

W wonld Bhe o make the folloe B LI R < fere,

ra

Remark 3: DK sGandae & tien < o = W This s because < @ » s the

smelest subgroup of G coninining «
i) All the clemertts of < > = { an | 1T A may or may not be distinet. For cxample, 1ak2
1=(1 e S

Then < (1 2) > = {L(1 2)}, since (0 0= 1,01 2)* = (1 2). and sa on.

L
h
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Now you can try the following simple exercises.

E I1) Show that if G # {c}. then G # < ¢ >. -

E 12} Showthat<a>=<a'>foranyae G.

Fig. 2: Felix Klein
(1849—1925)
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We will ﬁow prove a nice property of cyclic groups.
Theorem 7 : Every cyclic group is abelian.

Proof : LetG=<a>={a"lne Z}. Then, for any x, y in G, there exist m, n & Z such
that x = a™, y = a% But, then, xy = a™ a" = a™n = g0m = gn_am = yx Thus, xy = yx for all
x,y inG.

That is, G is abelian.

Noie that Thearem 7 says that every cyclic group is abelian. But this does not mean that
every abelian group is cyclic. Consider the following example.

Example 7 : Consider the set Ky = {c, a, b, ab} and the binary operation on Ky given by
the table,

. e a b ab
c ¢ a b ab
a a ¢ ab b
b b ab c 2
ab " ab b a e

The table shows that (K, .} is a group.

This group is called the Klein 4-group, afler the pioncering German group theorist Felix
Klein.

Show that K; is abelian but not cyclic,

Selution : From the table we can sce thal Ky is abelian. If it were cyclic, il would have to
be generated by ¢, a, b or ab. Now, <e > ={c} . Also,a! =a, a?=¢, a% = 3, and so on. -

Therefore, < a>={c,a}. Similaily, <b>={e,bland <ab> = { c, ab}.
Therefare, Ky can’t be generated by ¢, a, b or ab.
Thus, K. is nol cyelic.

Use Thearem 7 o solve Uhie (ollowing exercise.

E13) Show (hat Sy is not cy<lic.

Now let us look at ancther nice property of eyclic groups.
Theorem 8 : Any subgroup of a cyclic group is cyclic.

Frool : Lot G =< x > be 2 cyciic group ang 11 be a subgroup.
M= (e}, then Hl = < ¢ >, and henee, T is cyclic.

2o Thendine Zsweh thaia®C H.n=0. Stncc il isa subaroup.

(x"M~" = x"" e H. Therelore, thare exisls a positive integer m (Le., n or —n) such that
e H. Thus, theset S={t~= N | x*e H} is not cmply. By the well-ordering principle
(sec Sec, 1.6.1.) 5 has a least elernent, suy k. We will show that H = < x* > .

Fl

Now, <x¥ > < 11, since x* e H.

Conversely, let x" be an arbirrary clement in H. By the division algorithm n = mk + r where
mre Z, 0£r < k-1. But then x" = xmmk = xn_(x¥)m & [{ gince x, x* € H. Butk is the




least positive integer such that x* € H. Therefore, xf can be in H only if r = 0. And then, . Subgroups

n=mk and x" = (x*)" € < x¥>. Thus, H < < xb > Hence, H = < x¥ >, thatis, H is eyclic,
Using Theorem 8 we can immediately prove what we did in Example 4.

Now, Theorem 8 says that every subgroup of a cyclic group is cyctlic. But the converse is
not trye. That is, we can have groups whose proper subgroups are all cyclic,.without the
group being cyclic. We give such an example now.

Consider the group S;, of all permutations on 3 symbols, Iis proper subgroups are

S

A = <I> H is a proper subgroup of G if*
B = <(12> . HeG.

C <(13)>-

D = <@23>

"E = <(123)>

As you can see, all these are cyclic. But, by E 13 you know that S, iiself is nol cyclic,

.Now we state a corollary to Theorem 8. in which we write down the impartant point made
in'the proof of Theorem 8.

Corollary : Let H# {¢} be a subgroup of < a > Then H =< a" >, where n is the least
positive integer such that a" e H.

Try the following exercises now.

E 14)  Show that any non-abelian group must have a proper subgroup other than {e}.
; s -
E 15}  Obuin all the subgroups of 77 . which you know is <] >.

Lel us now see what we have done in this unit,

3.5 SUMMARY

In this unit we have covered the following points.

1) The definition and examples of Subgroups.

2)  The intersection of subgroups is a subgroup.

3} The union of two subgroups H and K is a subgroup il and only il H ¢ K or K = H.
4)  The product of two subproups H and K is 2 subgroup 11 and only if HK = KH.

5y The definiticn of a generating ser.

5) A cyclic group is abelian. but the converse need not oe rue.

7)) Any subgroup ol a ¢cyclic group is cyclic. but the converse need nol be true.

3.6 - SOLUTIONS/ANSWERS

E 1) Yoo, because T1is o tann toiie aen !’!\Ll!l_!
F2) feb= o Alsoer =e - 4ol by Thearen £ 1o} 2 G
Gozd Al foranvs < 04 2 - 3
ableGoabla G GeG
B3 Siner "=, fioer 2o
(l-t)y (l+@+w?+ - 'y =01
Sace ozl l+0+m +  +et ! =Q
L) From E 14 of Unit 2 recall the elements of Sy On wiiling the operation tabis {or

Sy you will find that oniy t commutes with every permutittion in S




Elementary Group Theory E5)  The divisors of 9 are 1,3and 9.

' ' Thus 9Z is a subgroup of Z, 3Z and itself only.

E 6) We know that if A ¢ B or B € A, then AUB is A or B, and hence, is a subgroup of
G. '
Conversely, we will assume that A ¢ B and B ¢ A, and conclude that AUB £ G.
Sincc A¢, B,dae Asuchthatae B.

SinceB¢ A,3be Bsuchthatb ¢ A.
Now, ifabe A, thenab=c, forsomec e A.
Thenb=2a"c € A, acontradiction, .. ab & A, Similarly,abe B. . ab € AUB.

Butae AUBand be AUB. So, AUB £G.

E7 Ai3.={l,(l4).{l 2),(124)}
But, ([ 2} (14)=(142)& AB. .. AB£3S,.

E 8) Forar}ynEZ,n=n.1E<{l}>..‘.Z=<{l}>.

£9)  Firstly, suppose Z=<8> Thenl € <S>. . 35, .Sy € S
and‘nh ...... n, € Z such that nys; + ... + 08 = 1.
- Conversely, suppose 3 sy, ... Sy € Sand ny, ..ony n eZ
such that n;$; + a8y + .ok M5 = L
Then, for any n € Z,n=nl= NNy &) + oo + NS, € <S>
Y A

E10) We know that G =< § >, Therefore, for any g € G,
3 s,. ..., 5 € S and ny,....,ny € Z such tha:
g = sln' Sk Since S T,5;€ T¥i=1, ..,k
-. by Theorem 6, we sce that G =<T >,

E1li) SinceG#{c},JazeinG. Sincea=e,axclforanyre Z.: ag <e>,
LGRrCe .

E12) Wewillshowthat<a>g<al>and<al >g<a>
Now, any element of <-a>isa"={a") " forne Z.
Late <aly L<a>gcals,
Similarly, <a'>gc <a>.
Lcar=<als
. E13) Siace S;is nol abelian (€.g., (1 3) e (I 2)# (1 2)> (13)), by
Theorem 7. 54 can’t be cyclic

El4y- LetGbea non—'lbcllan group. Then G # {¢}. Therefore, Jae G,a#c. Then
<a><G.G#<a>, since G is non-abelian. -, <2>§¢G.

E 15) Since Z, is cyclic, all its subgroups are cyclic.

Thus, its subgroups are Z, <2 >, < 3>and {0}.
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4.1 INTRODUCTION

In the previous urit we have discussed different subgroups. In this unit we witl see how a
subgroup can partition a group inte equivalence classes. To do this we need to deline the
concept of cosets.

In Sec. 4.3 we use cosets 1o prove a very useful result about the number of elements in a
subgroup. The beginnings of this result were made in a research paper on the solvability of
algebraic equations by the famous mathematician Lagrange. Today this elementary thcorem
ts known as Lagrange’s theorem, though Lagrange proved it for subgroups of S, only.

While studying Block 2 of (his course you will be using Lagrange’s theorem again and
again. So, make stre that you read this unit carefully. -

Objectives

After reading this unit, you should be able to

e form leftor righi cosets of a subgroup ;

® partilion a group into disjoint cosels of a subgroup ;
¢ prove and use Lagrange’s theorem.

42 COSETS

In Sec. 3.3 we defined the product of two subscts of a group. We will now look at the case
when one of the subsets consists of a single element only. In fact, we will [ook at the

situation H{x} = {hx | he H}, where H is a subgroup of a aroup G and x € G. We will
denete H{x} by Hx.

Definition : Let H be « subgroup of a yroup G. and lel x & G. We call ~i¢ set
Hx={hx | he H}

aright coset of H in G. The clement x is a representative of Hx,

We can similarty define the lefi coset

xH={xh | he H).

Noiwe that, if the group speration is +, then the right and {cft cosels of H in (G +) ron -t
by x = Game o

Hix = [ h+x 1 be Hland v+ H={x +h l he [} respectively,

Letus look at some examples. -

Example 1 2 Show that His worighi as well a5 2 lefl ¢nset of 1 subgroup H ina arous G,
Selution : Consider the right coset of K in G represented by e, the identity of G. Than
He={he{he H) ={h| heR}=H.

Similarly, eH = H.
Thus, H is a right as well as left coset of H in G. S
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on 3 osymbols,

.

_ Example 2 : What are the right cosets of 4Z in Z?

" Solution : Now H=4Z = { ...... 8,4, 0, 4. 8, 12, ...}

The right cosets of H are

H + 0 = H, using Example 1.
H+1={..;-11,-7. -3, 1,59 13, ...}
H+2={...-10,-6, -2, 2,6, 10, 14, ...}
H+3={.. -9-5-1.3, 711,15 ..} ;
H+4={...,-8-4.0.4,8,12, ...} =H v

Similarly, you can see that H+5 = H+1, H+6 = H+2, and so on.

You can also cheek that H-1 = H+3, H-2 = H+2,. H-3 = H+1, and 50 on.
Thus, the distinct right cosets are H, H+1, H+2 and H+3.

In general, the distinct right cosets of H (= nZ) in Z are H, H+1,
H+(n-1). Simila}ly. the distinct left cosets of H (=nZ) in Z are H, 1+H, 2+H, .....
(n-1) + H.

Before giving more examples of cosets, let us discuss some properiies of cosets.

Theorem 1 : Let H be a subgroup of a group G and let x, y € G.

Then

a) xe Hx . .

b) Hx=H& ke H

Q) Hx:l—[yc::»>r‘ € H.

Prool : a) Sincéx-——cx and e € H, we find that x € Hx. 4

b} Firstly, let us assumne that Hx = H. Then, since x € Hx, x e H.

Conversely, let us assume that x € H. We will show that Hx € H and H ¢ Hx. Now any
element of Hx is of the form hx, whereh € H. This is in H, since h € H and x € H. Thus,

Hx c H. Again, let h € H. Then h = (hx™') x € Hx, since hx~! e H. i
-~ HCHx. - |
. H=Hx

¢) Hx=Hy=Hxy'=Hyy'=He=H=xy'e H, by (b).

Conversely, xy ! £ H = Hxy ! =H = Hxy"'y = Hy = Hx = Hy.

Thus, we have proved (c).

The propertics lisied in Theorem 1 are not only true for right cosew. We make the following
observation.

Note : Along the lings of the proof of Theorem |, we can prove that if H is a subgroup of
G and x, y € G, then

1 rxe xH.
b) xH=Hexe H.

¢ xH=yHex'ye H.

et us look at a few more examples of cosels.
Cxample 3: LetG=S:={1. (1 2, (1 3), @3}, (1 23).(i 3 2)} and H Le the cyclic
subgroup of G gencraied by {1 2 3). Obtain the lefl cosets of Hin G
Solntion : Two ensels are
H={L(123)( 3} and
(L2XH = {021 2y (123),(12)=(132)}
={a22.@Hna3ny
For the other coscts you can apply 'Thcorcm' | to see that
(I 2H=(23)H=(1 3)H and
(123)H=H=(!32}H.




Thus, the distinct left cosets of H are H and (1 2)H.

Try the following exercise now.,

E 1) Obuain the left and right cosets of H = < (1 2) > in S;. Show that Hx # xH for some
Xe SJ.

Let us now look at the cosets of a very imponant group, the quaternion group.
Examplel4 : Consider the [ollowing set of § 2x?2 matrites over C,

Qg = {I, +A, +B, 4C}, where

T D RS I

You can check that the following relations hold between the elements of Qy:
P=1LA?=B>=C?=-],

"AB=C=-BA,BC=A=-CB,CA=B=-AC.

Therefore, Qg is a non-abelian group ulndcr matrix meltiplication.

Show that the subgroup H = < A > has only two distinct righl cosets in Q.

Solution : H=< A>={L A, A2, A%} = (I, A, -L. -A},
since A*=1, AS= A, and so on.

Therefore, HB = {B, C, -B, —C}, using the relations given above.
Using Theorem 1 {b), we see that

H=HI=HA = H(-I) = H{-A).

Using Theorem 1(c), we see that

HB = HC = H(-B) = H(-C).

Therefore, H has only two distinct right cosets in Qg Hand HB.

The following exercise will help you to understand Q;.

E2) Show thatK = {1, -1} is a subgroup of Q,. Obtzin all its right cosets in Qe

We will now show that each groun can be written as the unian of disjoint coseis of any of
its subgroups. For this we define a relation on the elements of .G.

Definition : Let H be a subgroup of a group G. We define a retation '~ on G by x~y iff
xy~t & H, where x, ¥ € G. Thus, from Theorc.n 1 we see thal x~y iff Hx = Hy.

We will prove that this relation is an equivalence relation (see Unit 1).

Theorem 2 : LetHbe a subgroup of 2 group G. Then the relation ~ defined by "x~y iff
xy~' € H'is an equivalence relation. The equivalence classcs are the right cosets of H in G,

Prool : We need to prove that ~ is reflexive, symumeiric and transitive.
Cirstly. forany x & G, xx"'=ee H. » x ~ .;(. that is, ~ is reflexive,
Secondly, il x ~ y for any X.y € G.then xy ' e H.
Xy ) =yx-' e H. Thus, y ~ x. That is. ~ is svmmelric.
Finally i x, v, 2 € G such that x = v and v ~ 2. then xwle Hand yo-la 8L
My yz Y =xiy\Wirtlsxcle H L~z
That is | ~ is ransitive.
Thus, ~ is an cquivalence relation.
The equivalence class detenmined by x € G is

|-"i|=[}’E_Giy-;x} =(ye G |xy'e H}.

Lagrange's Theorem
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Now. we wil! shaw that {x] = Hx. So, let ¥ € [x]. Then Hy = Hx, by Theorem 1. And since
y € Hy, ye Hx.

Therefore, [x] < Hx. . )

Now, consider any element hx of Hx. Then x(hx)-!' = xx-1h-'=h-l € H

Therefore, hx ~ x. That is, hx € [x]. This is true for any hx € Hx. Therefore, Hx < {x]. I
Thus, we have shown that (x] = - -

Using Theorem 2 and Theorem 1{d) of Unit 1, we can make the following remark.

Remark : If Hx and Hy are two right cosets of a subgroup H in G, then Hx = Hy or
Hx N Hy = ¢.

Note that what Theorem 2 and the remark above say is that any subgroup H of a group
G partitions G into disjoint righl cosets.

On exacily the same lines as above we can 's-Late that

i} any wo left cosets of H in G are identical or disjeint, and

ii) G is the disjoint union of the distinct left cosets of H in G.

So, for example, $; =< (1 23)>U(1 2) < (1 2 3) > (using Example 3).

You méy like to do the following exercises now.

E3) LetH be asubgroup of a group G. Show thal there is a one-10-one correspondence
between the elements of H and those of any right or left coset of H.

(Hint : Show lhat-.lhc mapping f : H > Hx : f(h) = hx is a bijection.)

E4) Write Z as a union of disjoint cosets of 5Z.

Using E 3 we can say that if H is a finite subgroup of a group G, then the number of

elements in every coset of H is the same as the number of elements in H.

We will use this fact to prove an elementary theorem about the number of cosets of a
subgroup of a finite group in the next section. ~ :

4.3 LAGRANGE’S THEOREM

In this section we wilt first define the order of a finite group, and then show that the order of
any subgroup divides the ord=r of the group.

So ler us start with a definition.

Definition : The order of a {initc group G is the number of clements in G. It is denoted
by o(G).

For cxample, 0(S3) = 6 and o(A3) = 3. Remember, Ay = {L, ([ 23}, (i 3 2)}!

You can also see that o(Z,} = n. And, from Scc. 2.5.2 you know that o{S;) =n!.

Now, lei G be a finite group and H be a subgroup of G. We define a function f between the
set of right cosets of H in G and the set of left cosets of Hin G by

f:{Hxl xe Gl {yH) ye G}: [ (Hx)=x'IL

Now uv E 5.

E5)  Check that [ is a hijection.

£ S allows us (o say liat there is a one-to-one correspondence between the right cosets and
the left cosels of H in G. Thus, the number of distinct right cosets of H in G
always equals the mumber of distinct left cosets of H in G.

Definition : Let H be a subgroup of a finite group G. We call the number of distinct
cosets of H in G the index of H in G, and denote it Dy |G - HI,




Thus, from Example 3 we sec that |S3 : A3| =2

Note that, if we take H = {¢}, then | G: {c} I = o{G), since {e}g = {g} ¥ g Gand {c}g
#{elgifg =g" )

Now let us look at the order of subgroups. In Sec. 3.4 you saw that the orders of the
subgroups of Sy are 1, 2. 3 and 6. All these divide o{S;) = 6. This fact is part of a
fundamental theorem about finite groups. Its beginnings appeared in a paper in [770, written
by the fimous French mathematician Lagragge. He proved the result for permutation groups

only. The general result was probably proved by the famous mathematician Evariste Galois
in 1830. .

Theorem 3 (Lagrange} : Let H be a subgroup of a finite group G. Then
o(G)=o(H) l G:H [»-. Thus. o(H) divices o{G) , and 1G : Hi divides o(G).

Proof : You know that we can write G as a union of disjoint right cosets of H in G. So, if
Hx,. Hx,. ..... Hx, arc all the distinct right cosets of H in G, we have .

G=Hx, UHxs U..UHX, (]}

a.nle:H =T

From E 3, we know that | Hx, | = | Hx, [ =... = | Hx,| = ofH).
Thus, the total number of elements in the union on the right hand side of (1} is
ofH) + o(H) + ...+ o(H) {r times} =r o(H).
Therefore, (1} says that o(G) =r o(H)
=oH) I G:HI.
You will s¢e the power of Lagrange’s theorem when we get down to oblaining all the
subgroups of 2 finile group.

For example. suppose we are asked to find all the subgroups of a group G of erder 35. Then
the only possible subgroups are those of order [, 5, 7 and 35. So, for example, we don't
need to waste time loeking for subgroups of order 2 or 4.

[n fact, we can prove quite a few nice results by using Lagrange's theorem. Let us prove
some results about the order of an element. But first, let us define this phrase.

Definition : Let G be a group and g € G. Then the order of g is the order of the cyclic
subgroup < g >, if < g > is {inite, We denote this finite number by o(g). If < g > is an
infinite subgroup of G, we say that g is of infinite order.

Now. let g € G have Fnite order, Then the set {e, g, g2, -..} is finite, since G is firite.
Therefore, all the powers of g can'l be distinct. Therefore, gf = g5 for some r > s, Then
go=candr-se N. Thus.the set {t e N | gt=c} is non<empty. So . by the well-

ordering principle it has a least element. Let n be the least positive integer such that gh = ¢.
Then ’

<g>= {e.g g3, ..., g}
Therefere, o{g) =of<g>)=n.
That is, o{g) is the leasl positive integer n such that g"= e.

{Note thatif g e (G. + ). then ofg) is the least positive integer n such thatng = e.)

Mimis riarsem i = = A il Al lmimite nmdas T e Lo oy ce a0 A AThewaiaa ZE A . ool abkaa
LAWY AL e e. = A L3 WAL LLERLLNEL WL, LRl U I e A, b - b = L UICLaunt, 11 b —_ b y HIIGLL
£77 = ¢, which shows that < g > 15 2 finite group.) We will use this fact while proving

Theorem 5.

Try the followmg cxercise now.

E 67 Whai are the ofders of
0

ay (12)= 35 b)le S, C)[ I

1 b —
O]EQS. dy 3¢ Z,, ey le R?

Now lelL us prove an importanl result about the order of 2n element.

Lagrang<"s Thearem

Fig I: Joseph Lovis Lagrange (1734
-1813)

For any finite set A, | Al
denoles the number of
elements in A,

ofg) = Liff g = e
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Theorem 4 : Let G be agroup and g € Gbeofordern. Then g™ =e for some m € N iff

n|m. .

Proof : We will ficst show that g™ =e = n | m. For this consider the set
S={reZ| gr=el.

Now, n € S. Also, if a, b € S, then g* = ¢ = p®. Hence, g =g?* (g%~ = c. Thercfore,
a-b e S.Thus, S < Z. . ’

So, from Example 4 of Uni-l 3, we sce that S = nZ. Remember, n is the least positive
integer in 51 . -

Now if g™ = ¢ for some m & N, then m & S = nZ. Therefore, n| m.

Now let us show thatn | m=> g™ =c. Since n | m, m=m for some te Z. Then g™ =
g™ = (p") = ¢! = ¢. Hence, the theorem is proved.

We will now use Theorem 4 to prove a result about the orders of elements ina E:yclic proup.
Theorem 5: Let G =<g> be a cyclic group.
a) ) If g is of infinite ofder then g™ is also of infinite order for every m € Z.
b) Ifo(g) =n, then
olgm = —F—

(r,m)

¥ m=1, .., n=-1. ((n,m) is the g.c.d. of n and m.)

Proof: (a) An clement is of infinitc order iff all its powers are distinct. We know that 2l!
the powers of g arc distinct. We have to show that all the nowers of g™ are distinct. I
possible, let (g™ = (g™)*. Then g™ =.g™. But then mt = mw, and hence, t =w. This
shows that the powers of g are all distinct, and hence 2™ is of infinite order.

b) Since o(g) = 0. G = [C4 By e , B21). < g™ >, being a subgroup of G, must be of

finite order. Thus, g™ is of finite order. Let o(g™) = t We will show thatt = o nrn) .
Now, g™ =(g™'=e=>n | tm, by Theorem 4.
Letd = (n, m). We can then write n = nd, m = myd, where (my,n;) = 1.

n

Thenn, 4= ()

Now,nltm=nl un,d::'n,d| lm|d=>n1 tm,.

But (n,m,) = i. Therefore, ny o AT 4 § |

Also, (gm)nI — gmld"'l = gm|r|= (gn)m| = cml =c.

Thus, by defirition of o{g™) and Theorem 4, we have

tln,. Y ¢
(1) and (2) show that
1= n-l = n '
(n.m)
ie., ofg") = .
{n.m)
" Using this result we know thato(4) in Zy, is (11'3 il 3.

The next exercise will give you some practice in using Theorem's.

E7y  Find the orders of -2_ 4, and 5 e Lz

The next exercise is a consequence of Lagrange's theorem.

E8) LetG beafinite group and x € G. Then, show that o{x) divides o(G). In particular, ]
show that x8® =¢, o

We use the resuli of E 8 to preve a simple but important result of finite group theory.




Theorem 6: Every group of prime order is cyclic. . . ) ] Lugrange's Theorem

Proof: Let G be a group of_pi-imc order p. Sinpcep# 1,3ae Gsuchthata 2 e. wa, by
E 8 and Theorem 4, ofa)| P. Therefore, o(a) = 1 or o(a} = p. Since a 2 ¢, o(a) = 2.

Thus, ofa) = p,i.c.,0(<a>) = p- So,<a><Gsuchthato(<a>) = otG).’ﬁcrefore.
<a>»=G@, thatis, G is cyclic.

Using Theorems 3 and 6, we can immediately say that ail the proper subgroups of 4 group of
order 35 are cyclic,

Now let us look at groups of composite order.

Theorem 7: If G is a finite group such that o(G) is neither 1 nor a prime, then G has non-
trivial proper subgroups.

Prool: If G is not cyelic, then any a e G, a % c, generates a proper non-trivial subgroup
<ao>,

Now, suppose G is cyclic, say G = < x >, where o(x} =mn {m, n # 1),

Then, (x™P = x™ = ¢, Thus, by Theorem 4, o{(x™) £ n < o{G).

Thus, <x"™> is a proper non-trivial subgroup of G.

Now, you can use Thearem 7 10 solve the following exercise.

E9) Obiain two non-mivial Pproper subgroups of Z.

We will now prove certzin important number theoretic results which (ollow from Lagrange's
theorem. Before going (urther, recall the definition of “'relatively prime"” from Sec. 1.6.2.

We first define the Euler phi-function, named after the Swiss mathematician Leonard Euler
{U707-1783).

Definition : We define the Euler phi-function ¢ : N = N as follows -
o{ly=1, and

6(n} = numoer of natural numbers < n and relatively prime to n fornz?2.

For example, ¢(2) = 1 and ¢(6) = 2 (since the only positive integers < 6 and relatively prime
106 are | and 3).

We will now prove a lemma, which will be needed to piove the theorem that follows it
This lemma also gives us examples of subgroups of Z, foreverynz2.

Lemma: 1: Let G = {f € L, ‘ {r,n) =1 } where nlé 2. Then (G.)isa group,
where rs = ¥ T. 5 e Z,. Further. o(G) = & (n).

Proof : We first check that G is closed under multiptication.

Now.T.5 € G = (rn) =land {(s,n) = | = (55, n) = 1.

= 15 € G. Therefore, . is a binary operatien on G.

Te G, and is the identily.

Now, forany T € G. (rn) = 1.

2arebn =1 for same a. b e 7 (by Theorem 8 of Unit 1)

=n I ar—|

= ar = 1 (o ny,

3 T=1.

=a=r""

Further, a0 & G. because if a and n have a commeon facter other than 1, then this factor will
divide ar + b = 1. But that ix not possible,

Thus. every element in G has an inverse.

Therefore, ({1, ) is a group.
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Elementary Group .Theory In fact, it is the group of the clements of Z | that have sultiplicative inverses,

Since G consists of all those T & Z_ such that r < n and (r, n) = 1, o(G) = ¢(n).

Lemma I and Lagrangc’s theorem immediately give us the following result due to the
mathematicians Euler and Pierre Fermal. :

Theerem 8 (Euler-Fermat) : Let a.€ N and n 2 2 such that (a,n) = 1.

Then, 2% = | {mod n).

Proof : Since a e Z_ and (a,n) =1, 7 € G (of Lemma 1). Since o(G) =-¢(n}. \-vc use E8
and find that &%= T.

Thus, a¥"t = 1 (mod n).

Now you can use Theorem 8 to solve the following exercises.

E10) What is the remainder left on dividing 3%7 by 237 (Note thal $(23) = 22, since each
of the numbers 1, 2, ..., 22 are relatively prime to 23.)

E 1.1} Jetae N and p be a prime. Show that a'=i {mod p). {This result is called
Fermat's little theorem, To prove it you will need to use the fact that
¢ = p-l}

You have seen how important Lagrange's theorem is. Now, is il true that if m |o(G), then G

has a subgroup of order m? If G is cyclic, il is true. {You can =ove this on the lines of the

proof of Theorem 7.} Bun, if G is not cyclic, the converse of Lagrange's theorem is not true.

In Unit 7 we will show you that the subgroup

A={L(123),(124),(132),(134),(142),(143),(234),(243),(1)(34.
1324 U0H2Y]

of S, has no subgroup of order G, though 6 | 12 = o(A,).

Now let us summarise what we have done in this unit.

4.4 SUMMARY

In this unit we have covered the fellowing paints.

1) The definition and examples of right and icft cosets ef a stbgroup,

2)  Two lcft {rght) cosets of a subgroup are disjoint or identical.

3) Any subgroup partitions a group into disjoint left {or right) cosets of the subgroup.

4} The definition of the order of a group and the arder of an element of a group.

5) The proof of Lagrange's theorem. which states that il H is a subgroup of a finite group G,
then o(G) = o(H) | G : HI. But, if m | o(G), then G necd not have a subgroup of order
o .

6) The following consequences of Lagrange's theorem:
i) Every group of prime order is cyclic.

i) 2% = | (mod n), wherea,ne N, (an) = landn>2

4.5 SOLUTIONS/ANSWERS

El) H=[L{ 2)}.
Lis left cosets are H, (1 2)H, (1 3}, (2 33H, (1 2 W, (1 3 2)H.
Now, (1 )H=H,(123)HH =1 3)H, (1 3 2)H=2 3)H.
Tlhus. the distinct lelt cosets of- H in S, are'H, (] 33, (2 3)H.
Similarly, the distinet right cosets of H in Sy are

65 _ H. H{1 .3)‘ H{2 3).




E2)

£3)

E4)

E 5)

E6)

E7)

E 8)

E®

E 10)

E1l

Now, (1 3)H = {(13), (£ 23)} and H(1 3) = {{1 3), (1 32))
SUNHAHA 3.
You can also see that (2 3)H # H(2 3).

Since ab~'€ K ¥ a,be K, we can apply Thegorem 1 of Unit 3 to say that K < Qs

Now, K =Ki = K{-I), KA = K(-A) = [A, -A],
KB =K(-B)=(B.-B}. KC=K(-C) = {C, - C}.

Let Hx be a cosel of H in G, Consider the function [ ; H — Hx : f(h) = hx.
Now, for b, i’ € H, hx = k' x = h = I, by cancellation.
Therefore, fis 1-1.

f is clearly surjective, Thus. f is a bijection.

" And hence, there is 2 one-to-one correspondence belween the elements of H and

those of Hx.
Similarly, the map £ : H — xH : f(h) = xh is a bijection.

Thus, the elements of H and xH are in one-to-one correspondence.

The distinct cosels of 5Z in Z are 5Z., SZ+1. 5Z+2, 5Z+3, 57+4.
S Z=5SZUSZH1USZ+2 U SZ+3 U 5Z+4.

fis well defined because Hx =Hy = xy'e H= (xy"'y' e H
="' x'eHax'H=y'H.

= f(Hx) = f(Hy).

fis 1-1 because f(Hx) = [(Hy) = x'H=y'H

=yx'e H=xy'e H = Hx = Hy.

f is surjective because any left coser of H in G is yH = f(Hy™).

'T'ﬁe.reforc. fis a bijection,

A (1)2L{U22=(12e(12)=L o 2)=2.

by I'=L o)=L |

g 2

d) 320,23=6=2,33=9=1,43=12=0. . 0(3)=4.
¢} Since < 1> =R is infinite. | is of infinilc order.

Zig =<1 >. Thus, using Theerem 5. we see that

18
(I8, 1)’

~0{2)=9,0()=9,0(3) = 18.

o(f)=o(r. 1) forany T € Z,a.

Since o{x) = o(< %X >) and o{< x >) { of{G), o{x) | o{G).

Thus, using Theorem 4, x™6) = ¢,

o{Zg) =8 =2x4,
2 € Zgsuch that 0(2) = 4. Then < 2 >5 Zg.
Similarly, 42 Zgsuchithaio(3 )~ 2. .. <8 » 5 24

an

We know that in Z,, (33020 =T |
thatis.3 =1 -3 =1

La_u _
=3 3 =3 = 27

T =227 (mod 23).

Thercfore, on dividing 347 by 23, the remainder we get is 27.

We get the result immediately by using Theorem 8 and the fact that o (pr=p-l.

Lagrange's Theorem.

&7
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SOME MORE GROUP THEORY

This block is a continuation of Block 1, where we discussed various groups and their
subgroups. In this block we slart by looking at a particular kind of subgroup, called normal
subgroup. In Unit 5 you will sec why these subgroups are importand,

In the second unit of this block we will introduce you to the concept of algebraically
indistinguishable systems. We say that such systems are isomorphic. This word was first used
in 1870 by the mathematician Camille Jordan, 1o describe two groups that are not equal but
have the same algebraic behaviour. Isomorphisms are special cases of homomerphisms, which
are functions belween groups that preserve the algebraic structure of their domains, In Unit 6
we will discuss homomorphisms, isomorphisms and the imponant Fundamental Theorem

of HomOmorphlsm

In Umt 7 we w:l[ sludy groups of permutations, a detailed study of material covered in

Sec. 2.5.2. Permutation groups give you a concrete basis for the abstract group theory that you
are studying. These groups are also important because of the fact that every group is
isomorphic 1o a permutation group, as you will sec.

In the last unit of this block we will study the algebraic structure of cerfain finite groups, in
particular, groups of order 1 to 10. To do so we will use certain results which were proved by
the mathematician Sylow. We will also need the concept of direct products of groups, which
~ we discuss in the unit.

At the end of the block you will find the programme netes of our video programme, ' Groups
of Symmelries®. [tdeals with some concepts of group theory that we have discussed in Block
1 and this block. You can vicw this programme at your study centre.

With this block we end the study of group theory. In the next Lwo blocks you will study other
algebraic sysiems, namely, rings and fields. You will see that these systems are also groups.
And hence, you will continue to use the concepts that you have studied in this block and the

prcVIOU.S one, :

After studying this block, you must attempt Assignment 1, which covers Blocks 1 and 2 of this
course,




Notations and S:,_rmbols

xHy
HAG
An

Sa

[xhy| h €H }
H is a normal subgroup of G

. alternating group on n symbols

symmelric group on n symbols

dihedral group of order 2n

quotient group of G by H

kernel of the homomorphism {

x' y™' xy, the commutator of x and y
commulator subgreup of G

is isomorphic to

group of automorphisms of G

group ol inner automorphisms of G

centre of G

an r-cycle

external dircet product of the groups G and G’
internal direct product of the subgroups Hand K

Also look at the notations given in Block 1.




UNIT.5 NORMAL SUBGROUPS

Structure

3.1 Introduction 5
Objectives

5.2 Normal Subgroups 5

33 Quoticat Groups 9

54 Summary 12

3.5 Solutions/Answers 12

5.1 INTRODUCTION

In Block 1 you studied subgroups and cosets. We start this unit by discussing 2 special class of
subgroups, called normal subgroups. You will see that the cosels of sush & subgroup form a

~ group with respect to a suitably defined operation. These groups are called quotient groups.
We will discuss them in some detail in Sec. 3.3,

Once you arc comfortable with normal subgroups and quotient groups, you will find it easier
to understand the concepts and results that are presented in the next unit. So, make sure that
you have met the following objectives before going to the next unit,

Objectives

Alter reading this unit, you should be able o
¢ venfy wiethicr a subgroup is normal or not,
® obtain a quoticnt group corresponding to a given normal subgroup.

3.2 "NORMAL SUBGROUPS

In E 1 of Unit 4 you saw that 2 left coset ol a subgroup H, aH, need not be the same as the
right coset Ha. But, thers are certain subgroups for which the right and l2& cosels represented
by the same element coincide. This type of subgroup is very impontant in group theory, and
we give il a special name.,

Definition : A subgroup N of a group G is called & normal subgroup of G if
Nx = xN¥ x €G, and we write thisas N AG.

For example, any group G has two normai subgroups, namely, fe} and G itself. Can vou see
why? Well {e}x = {x] = x{e}, forany x €G, 20d Gx = G = xG, forany x €G.

Let us consider another examiple.
Zxample 1 : Show that every subgroup ol Z is normal in Z.

Solution : From Examplz 4 of Unit 3, you know that il H is a subgroup of Z, then H = mZ,
for some m € Z. Now, for any z € Z,

Wtz =1, —3m=+y —2m 47 —m oz, mA g 2m oy,
=¥ i s=2miz—wmaz—one ) 2m R (ST IR COMMLLALVE)
=i

W a7

Example |is i special case of the fact that cvery subgroup of a commutative group s a

narmal subgroup. We will prove this fact laler {in Tlheorem 2).

Try the following exercise now.

[;‘-l) Show that A; A Sy (see Example 3 of Unit 43},
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g Hg=(g"'bg | h € H}

" Ha = Hbe<=> Hac = Hb& for any
8 b, cEG.

Let us now prove a resull that gives equivalent condilions for a subgroup to be normal.
Theorem 1:Let Hbea subéroup of a group G.The following statements are equivalent.
a) His normal in G.

b) g'Hg CH¥g€QG.

¢ g'Hg=H¥gEG.

Proof : We will show that (a) ==> (b) =% (c) = (a). This will show that the three
slatements are cquivalent.

(a} = (b): Sincc (a) is true, Hg = pH¥ g €G. We want 10 prove {b}. For this, consider
g Hglorg €G. Let g 'hg € ¢ 'Hg.

Since hg € Hg = gH, 3 h, € H such that hg = ghy.
s g'hg=g'gh = h EH.
. (b) holds.

(b) => (c) : Now, we know that (b) holds, i, for g €G, g "He C H. We want to show
that H C g *Hg. Let h € H. Then
h=che = (g'g)h(g"g) ,

— g-i (ghgl Lg - - . 3 Fe PR “1y-1 -1

=g {(g") " hg" | g €g 'Hgsince (g7) 'hg” €@ ) HE HCH

» HC g 'He
L g'He=H¥gEG.
(e} => (a): For anj g € G, we know that g"Hg = H.

~ glg”'Hg) = gH, that s, Hg = gH.
~ H A G, that i, (a) holds.

We would like Lo make the following remark about Theorem 1.

Remark : Theorem ! says that H A G<=> g 'Hg = HV" g €G. This does not mean that
g'hg=h¥heHandg€G.

For exampie, in E 1 you have shown that Ay A b; Therefere, by Theorem 1,
(12)" A1 2)= Ay Bu,(l 2713212y # (132). Infact, itis (1 23).

Try the following exercise now.

E2; Consider the subgroup SLx{(R} = { A€ GLAR)| det (A) = 1 } of GLi(R) {sce
Exampte 5 of Unil 2). Using the facts that

~det (AB) = det {A) det (B) and det (AT = dc[l(A) '

prove that SLx(R) 4 GL:(R).

135 cotunlly o gorollary o

\We now prove a simpie result hai we siaied atier Examplc 1.
Theorem L.

Theorem 2 : Bvery subpraup of a commoutative group is pormal.

Proof : Let G be an abeliun group, and B < G, Forany g € Gand h € H,
g'hg = (¢ 'ph=hEH. g 'HeCH. Thus, H 4 G. '

Theorem 2 says that if G is abelian, then all its subgroups arc normal. Unforunately, the
converse of this is not true. That is, there arc non-commutative groups whose.subgroups arc afl
normal. We will give you an example after doing Theorem 3. Let us first look at another
example of a normal subgroup. ’ .

Exm;nplc 2 : Consider the Kicin 4-group, K., piven in Example 7 of Unit 3. Show that both ils ‘

subgroups << a > and <t ~> arc normal.




Solution : Consider the table of- lhc operation gwcn in Example 7 of Unit 3. Note Lhat aand b
are of order 2. Theelore, a = 2™ and b = b™'. Also note that ba = ab.

Now, let H = < a > = {c, 2}. We will check that H A K., that is, ghg € H¥ g € K. and
h €H.

Now,g'eg = c €EHV g € K.

Furthcr,c ice=aCEHa'm=acH b ab‘-bab—aEHand(ab) a(ab)
=b'(a 'aa)o = bab = a € H.

~ H é K;. \
By a similar proof we can show that < b > A K..

In Example 2, both < a > and < b > are of index 2-in K.. We have the foltowing result
about such subgroups. .

Theorem 3 - Every subgroup of a group G of index 2 is normal in G,

Proof: Let N == G such that |G : N| = 2. Let the two right cosets of N be N and Nx, and the
two left cosets be N and yN. ] .

Now,G=NUyN.andx€G..‘-xCNorxeyN.

Since NN Nx = ¢, x @N. . x €yN. .- xN = yN.

To show that N A G, we need 10 show that Nx = xN.
Nowl’oranynENanG N U xN. Therefore, nx € N or nx € xN.
ButnxQNsmccx(;'c’N nx € xN.

Thus, Nx C xN,

By a similar argument .we can show that xN C N,

" Nx=xN,and N A G.

We will use this theorem in Unit 7 to show that, for any n = > 2, the aliernatiog group An is 2
normal subgroup of S,

In fact, if you go back to the end of Sec, 4.3, you can see that A« & S, since La.grangc 5
theorem implies that

o(S4)
S | = 2% = —_=
A= Ay T 1z

Now let us look at an example to show that the converse of Theorem 2 is nol true.

consider the qualernion group Q., which we discussed in Example 4 of Unit 4. It has the
‘ollowing 6 subgroups:

Hu‘.—“{l},H: =H,_I},Hz=_{I,—I,A,“A},H],:{I,_'I.B._B}.
Ho={L—1 C,—C},Hs = Qu.

You know that Ho and Hs are normal in Qs. Using Theorem 3, you can sce that Hy, Hy and
A4 are normal in Q.

3y actual multiplication you can sec that
PHg CHV g EQ0 S H A Q.
”'I.:".n‘ﬂﬁrf_— alb the \.l|1mr(_\||nc ol ﬁ. ara normal,
3ut, you know thal Q: is non-abelian (for instance, AB = — BA).

30 Tar we have given examples of normal subgroups. Let us lo«:\k at ap example of 2 subgroup
Rhat isn't normal.

ixample 3 : Show that the subgroup <C {1 2) > of 33 is not normal.

Solution : We have to find g €Sy such that g™'(1 2)g << (1 2) > .

Normal Subrgraups
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-
*3 T denotes 'is not 2 rocmal
sabgioup of.

Letustry g = (12 3).

Then, g /(122 = (321012 23)
=@E2NRH=03NE(1 >

Therefore, < (1 2) > is not norral in S).

Try the following cxercises now,

E3) Consider the group of afl 2 X 2 diagonal matrices over R*, with respect 1o
multiplication, How many of its subgroups are normal?

E4) Show that Z(G), the centre of G, is normal in G. (Remember that
LUG)={xEG|xg=gx¥ g€ G})

ES5) Show that < (23) > is not normal in S3.

In unit 3 we proved that il H = G and K = H, then K = G. That is, ' < ’isa lransilive
eelation. But *A" is nota transitive relation. Thatis, if H A N and N 4 G, it is nol necessary
that H A G. We'll give you an exampie tn Unit 7. Bug, corresponding o (Mt property of
subgroups given in Theerem 4 of Unit 3, we haye the following result

Theorem 4 ; Let H and K be normal subgroups of a group G. Then HNA K 4 G.

Proof : From Theorem 4 of Unit 3, you know that H N K = G. We have 1o show that
glxg CHOKY xeHNKandg€G

Now, letx EH N Kand g €G. Thenx CHand H A G. -~ ¢ 'xg €.
Similarly, ¢ xg €K, gxg EH N K.
Thus, HNK A G.

[n the [ollowing exercise we ask you 1o prove an imporiant propenty of normat subgroups.

E6) 2) ProvethatifH AGand K = G, ther HK = G.
{(Hint : Use Theorem 5 of Unit 3.)

b) Provethatif H AG,K A G, then HK A G.

Now consider an importanl group which is the product of two subgroups, of which enly one is

normal.

ECxample 4 : Let G be the group peneraled by
oy =y =¢xy =y sk
Lall=<x2>andk=<y>

Then show that K A G, H .d G and G = HK.

Solution : Note that the clements of G arg of the form X'y, where i =0, 1andj = 0,1, 2, 3.

- G = {c! x‘ x}’, x)r:‘ XYJ) )’l .‘f'!! :'IJ}'
5 |G K] = 2. Thus, by Theorem 3, K A G.

Note that we can't apply Theorem 2, since G is non-abelian {(as xy = y'xand y # ¥
Now letuss2ei[H & G

Consider ¥ 'xy. Now ¥ 'xy = XV7, becuse y X = xy.

\ - - o, . s
Hoaw' € H, then s = v or o = (Remember ofx) = 2,50 that » * = 5.
Nﬁl.l.r‘ \:x_': =g = \-: = b X

k ¥ :
= ' = v vy
. }r- = x

== ==, 4 conindiction,
Again xy” = x == ¥ = ¢, a contradiction.
RERNEY .
¥y 'xy = xy” & H, and hence, H 4 G.

Finally, from the dehnition of G vou sce that G = HK.




The group G isof order 8 and is called the dihedra} group, Dy. It is the group of symmetsics of Normal Subgroups
a-square, that is, iw ¢lements represent the different ways in which two copies of 2 square can .

be placed so that onc covers the other. A geometric interpretation of jts generators is the

following (see Fig. 1) :

Take y to be a rotation of the Euclidean plane about the origin through

" . . )
2 and x the reflection about the vertical axis.

F .
v
P
v

Q
<4
o)
~
O
pes

Fig. I : Geometric representation of the generators of Dy

We can generalise Dy (o the dihedral group
Din=<igy|x=¢y =¢xy=y'x)> forn>2

Try the following exercise now.

E7) Describe Ds and give its geometric interpretation.

Let us now utilise normal subgroups to form new algebraic structures.

5.3 QUOTIENT GROUPS T =

L
In this-section we will use a property of normal subgroups to create a new group. This group
is analogous to the concept of quotient spaces given in the Linear Algebra course.

Let H be a normal subgroup of a group G. Then gH = Hg for every g € G. Consider the
coliection of all cosels of H in G. (Note that since H A G, we need not wrile left cosel’ or .
‘right 25271 simply ‘cosel” is enough.) We denote this set by G/H. Now, for x, y € H, we have

{(Hx} {Hy) = H(xE)y, using associalivity,
= HHxy, us'ag normality of H,
= Hxy, since HH = H because K is a subgroup.

Now. we define the product of two cosets Hx and Hy and G/H by
{Hx)(Hy) = Hxy forall x, y in G.

Our definition seems to depend on the way in which we represent a coset. Let us explain this.
Suppose Cy and C; are two cosels, say C; = Hx and C» = Hy. Then C,C; = Hxy. But C,
and Cs can be wrilten in the form Hx and Hy in several ways. So, you may ask : Does C,Cs
depend en the paniculsr way of wiiilng Ty and 37

[n other words, if €y = Hx = Hx, and C: = Hy = Hy), then is C;C: = Hyv or is

CiCe = Hxy,? Actuaily, we will show you that Hxy = Hxiy), that is, the product of
rosets is well-delined, -

since Hx = Hx, and Hy = Hy,, xx,7 H,yy: ' € H.
S ) = Y = x ) x
= Xy )X (xx, ") EH, since xx, € H and H AG

£, (xy) ay)”' €H.
- Hxy = Hxyy,. - 9




Some More Group Theory

So, we have shown you that multiplication s a woll-defined binary oporation on G/H,

We will now show that (G/H,.} is & group,

Theorem S : Let H be a normal subgroup of & group G and G/H donoto the sct of all cosots
of H in G, Then G/H becomes & group under muhiplication defined by Hx.Hy = Hxy, x, y €G.
The coset H = He is the identity of G/H und the inverse of Hx is the coset Hx™!

Proof : We have already observed that the product of two cosets is a coset,”

This multiplication is also associative, since

((Hx) (Hy))(Hz) = (Hxy) (Hz)
= Hxyz, as the produc in G is associative,
= Hx (y2)

(Hx) (Hyz}

(Hx) (Hy) (Hz)) for x, v, 2 €G.

Now, if ¢ is the identity of G, then Hx. He = Hxe = Hx and He.Hx = Hex = Hx for every
x € G, Thus, He = H is the identity element of G/H.

Also, for any x € G, Hx Hx™' = Hxx' = He = Hx'x = Hx""Hx.
Thus, the inverse of Hx is Hx ',

So, we have proved that G/H, the set of all cosets of 8 normal subgroup H in G, forms a
group with respect Lo the multiplication defined by Hx.Hy = Hxy. This group is calted the -
quotient group (or facter group) of G by H.

Note that the order of the quolient group G/H is the index of H in G. Thus, by Lagrange’s
theorem you know that il G is a finite group, then

_©
oG/ =Sy

Also note that if (G, + ) is an abclian group and H = G, then H A G. Further, the opcraiion
on G/Hisdefinedby (H+ x} + (H+y)=H + {x +y)

Let us look at & few cxamples of gquaticnt groups.
Example 5 : Oblain the grovp G/H, where G = Syand H = Ay = (L, {1 2 3), (1 3 2}].

Solution : Firstly, note tiat Ay 4 Sy, since [Sy: A = 2.

From Example 3 of Unil 4 you know that G/H is a group of order 2 whose elements are H
and (1 2) K.

Example 6 : Show that the group Z./nZ is of order n.

Solution : The elements of Z/nZ arc of the forma + nZ = (3 + kn [k € Z).

Thus, the elements of Z/nZ are precisely the congruence classes modulo n, that is, the
clements of Z,, (see Sce. 2.5.1).

Thus, Z/nZ = [0,1,2,..., 0 =1 .

SofT/mZy =

Mara thar addiiian im 7 io>ie o
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Try these simple exercises now,

EB) Foruny group G, determine the quotient groups corresponding to e} and G.

E 9}  Show that the quotient group.of a ¢yclic group is cyclic,
(Hint : If G = < x >, then show that G/H = < Hx >))

N_ow, do G and G/H always have {he same algebrai. properues?

L]




.On salving the following exercises you will see that if G is abelian, then so is G/H; but the Narmal Subgroups
converse need not be true. That is, if G/H is abelian, G mey not be so. Thus, G and G/H -
need not have the same algebraic properties.

E 10) Show that if 2 group G is commutative, then so is G/H, forany H A G.

E 11) Teke the group D of Example 4. Show that De/K is abelian, even though Dy is
non-abelian,

You may be surprised 1o know that given a group G, we can always define & normal subéroup
H, such that G/R is abelian. This subgroup is the-commutator subgroup.

Definltlon : Let G be g group and x, y € G. Then x7'y™' xy is called the commutator of x
end y. It is denoted by [x, ¥]

The subgroup of G generated by the set of all commutators is called the commutator
subgroup of G. It is denoted by [G, G].

For example, if G (s 2 commutative group, then
Clylxy =xxy 'y =e¥ x, yEG. - [G, Gl = [e}.

T'ry this exercise now. . -

3 12) "Obuain {G, G), where G is cyclic,

Now, fet us prove the commutativity of the factor group corresponding to the commutator
ubgroup.

(heorem 6 : Let G be a group. Then [G, G] is & normal subgroup of G. Futhcr G/fG, G] is
ommiutative.

’roof : We must show thal, for any commatator x™'y"'xy and for any g € G,
(v 'y €1G, Gl

dow g ' (x"!y'xy)e = (87'xg)™" (27 ve) ™ (87'x8) (87'vg) E(G, Ul.
. [G.G) A G.

‘or the rest of the proof let us denote [G, G] by H, for convenience.
low, forx, y EG,
{xHy = HyHx<=> Hxy = Hyx<=> (xy} (yx)' € i

—xyx'y'eH

o

"hus, since xy x™' y' € H ¥ x, y € G, HxHy = HyHx V" x, y €G. Thatis, G/H is abelian. o
ayaly
lote that we have defined the quotient group G/H only if H A G. Butif H & G we an still =y !
efine G/H to be the set of all left (or right) cosets of H in G. Bul, in this case G/H will not be
group. The [ollowing excrcise will give you an example.

171y [y ol - I_Il -

13} For G = Gyand H = {1 2j >, show that the product of right cosets in G/H is nat
well defined,
(Hint : Show that (I 2 3) = H{2 3yand H(I 3 2) = H{l 3). but
H(123) (132y = H{23)(13))

i3 leads us to the l'oHov.iné; remmark.

emark : If H is a subgroup of G, then the product of cosets of H is defined only when
A G. This s because, if HxHy = Hxy ¥ x, vy € G, then, in particular,

x'Hx=Hx'x =He=H¥ x€G. B




Some More Group Theory

Therctore, lor any h € H, x™'hx =.ex 'hx EHx 'Hx = H.

Thatis, x '"Hx C Hforany X €G.
~ HAQG.

Let us now summarise what we have done in this unit.

54

SUMMARY - -

tn this unil we have brought out the [ollowing points.

I8

The definition and cxamples of a normal subgroup.

2. Every subgroup of an abelian group is normal.
3. Every subgroup of index 2 is normal.
4. 1i H and K are normal subgroups of a group G, then sois H M K,
5. The product of two normal subgroups is a normal subgroup.
6. IfH aNand N A G, then H need not be normal in G.
7. The definition and examples of a quoticat group,
8. 1[G is abchan, then every quolicnt group of G is abelian. The converse is not true.
9. The quoticnt group corresponding to the commutalor subgroup is commutative.
10. The set of left (or right) cosets of H in G is a group if and only if H A G.
5.5 SOLUTIONS/ANSWERS
El S={L(12,013),23)(23),32)}

Ay =(1(123),(132)]

~ You can check thal :

Ml=A= IA;. A]([ 2) = (1 2} A}, and 50 on.

S Ay A Sy
E2) Forany A € GLy(R)and B €SL; (R},

det(A™'BA) = dai(A™") dei{B) der(A)

l N _—
= mdct{z\), since de{B) =1
=1

.. AT'BA €SL:(R).

S SLa(R) A GLa(R).
E 3) All, since this group is abelian.
E4) Letgedand x € Z(G). Then

g'xg = g"'px, since x € Z(G)

=xE ZG)

e UURC UG EG,

L AUG) A G
E5) Since(l23)7 Q) 2H=(e<23)>, < 23> 8
E6) a) Tekeany clement hk € HK. Since H A G, k"'nk € H. Let k™'hk = i Then

hk = kh € K1L

~ hk €KHY hk € HK. . HK C KH.

Again, for any kh € KH, khk™ € H. Let khk™ = h;, Then kh = h:k € HK.
. kh € HK¥ kh €KH.

.. KH C HK.

=3




E?)

This, 12¢ have shown that HK = KH, © - - f . .~ - Normal Subgroups
L HK < G. : :

b) From (2) we know that HK < G. To show that HK 4 <G, consider g € G and
kk € HK. Then
g 'hkg = g"'h(gg™Yieg = (z"he}g "kg) € HK, since H a G, K AG.
. g"HKg C HK % g €G, : _
" HK A G. :

D, is generated by x and y, where x* = e, )[] =c¢and xy = y"x.
D5 = [C, MY .‘1’2: XY, Xy’}-

This is the group of symmetries of an equi!au:r:a! trangle. Its generators are x and Y,
where x corresponds 1o the reflection ahout the altitude through a fixed vertex and y
corresponds 1o a rotation about the centroid through 120° (see Fig, 2). -

1
|
1
1
1
r
1
i
1
‘-
]
!
T
1
H

E 8)

E 9}

E 10)

E 11}

E 12)
E 13)

Flg. 2 : Geperators of Dg

G/le)={{e]g] gEG }={{g}| g€G }
G/G = {Ggl g €GY = {G), since Gg = G¥egead.
So G/G consists of only one element, ‘namely, the identity.

Let G = < x > and G/H be a quotient group of G. Any element of G/H is of the
form Hx" = (Hx)"; since any element of G is of the form x", .. G/H =< Hx >.

For any two elements Hx and Hy in G/H,

(Hx) (Hy) = Hxy = Hyx, since G is abelizn
= (Hy) (Hx).

% G/His abelian.

Ds/K = {K, Kx}. You can check that this is abelian. You have already seen that
xy #% yx. .. D; is not abelian.

Since G is cyclic, it is abelian. - [G, G] = [e}

Now, (123)(132)=1,(23)(13)= (1 23).

~ H(123)(132)=HI=H = {I,(1 2)}, and
H(23)(13)=H(123)={(123), (2 3)}. .

So. H(123) = H(23)and H(132) = H(13), but H(1 23) (132) # H (2 3) (1 3).
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6.1 INTRODUCTION

So far in this course we have not discussed functions fram one group to another. You may
have wandered why we reviewed various aspects of functions in Unit 1. In this unit you will
sce why.

In Sec.6.2 we will discuss various properties of those functions between groups which preserve
Ihe algebraic structure of their domain groups. These functions are called group
homomorphisms, a term introduced by the mathematician Klein in 1893. This concept is
analogous to the concept of a vector space homomorphism, that you studied in the Linear
Algebra course.

In Sec.6.3 we will introduce you to a very important mathemiatical idea, an isomorphism. You
will see that an isomorphism is & bijective homomorphism. The importance of isomorphisms
lics in the fact that two groups are isomorphic if and only if they have exactly the same

" -algebraic prop-crues

In Sec.6.4 we will prove a very basu:: theorem of group theory, namely, the Fundamental .
Thedrem of Homomorphism. We will also pive some of its important consequences. !

_ Finally, in Sec.6:5 we will discuss aulomorphisms, which.are isomofphi.sms of a group onto

itself. We shall look at the group of inner automorphisms in paricular, This allows us to have
an insight into the structure ef the quotient group of G by its centre, for any group G.

Befar? starting this unit, we suggesl that you go through Sec.1.5 and Unit 5.

Objectives

After reading this unit, you should be able (o

& verify whether 4 function between groups is a homomorphism or not;
* abtain the kernel and image of any homomorphism;

®  check whether a function between groups is an isomorphism or not,
® state, prove and apply the Fundamental Theorem ol Homomorphism;
® prove that Inn G A Aut G and G/Z(G) = Inn G, for any group G.

6.2 HOMOMORPHISMS

Let us start our study of functions lrom one group 1o another with an example,

~—

Consider wne groups (Z, -y and ({1, — 1], IT we deline
. I i,if niscven
Z—1, — libyf{n) =
[ — 1, il nis odd,

then you can sec thal [(a + b) = f(a).0(b) ¥" 2, b€ Z. Whal we have just seen is an example
of a homomorphism, a function thal preserves the algebraic structure of its domain.




Defluitlon : Lel (G, ) and (Ga,01) be two groups, A mapping (; G| — G, is snid to be o
grolp homomorphism (or just a homomorphjsm), if _ T

f(x o) y) = f(x,:l « {{y}¥ x, y€G,.

Nole thal a homomofphism flrom G, to G carries the product x »; y in G, 1o the produci
f(x} o5 fy) in G.. :

Belore discussing examples, lel us define two seis related to o given homomaorphism,

L]
Definitton : Lel (Gy, o) ) and (G,, o, ) be two groupsand ; G, — G: be a homomorphisn.
Then we deline '

i} the Image of I to be the ser
Imf={i(x)] x €Gy).

ti) the kerne! of f 1o be the set
Kerf= {x €G] f(x) = ¢3), where ey is (he identity of G,

Note that Im £ C Gy, and Ker f = (fe2}) CG..
Now let us consider some ¢xarmples.

Example 1 : Consider the two groups (R, +) and (R*,.). Show that the map

expi (R, +) — (R*,.):exp(r) = ¢'is & group homomorphism. Also find Im exp and Ker exp.

Solutlon : For any 1), r; € R, we know that e"1""? = gt gfa1 |
“oexp(n + ) = cxp(r.).cxp(r_z).

Hence, exp is a homomorphism ffom the edditive group of real numbers. 1o the multiplicative
group of non-zero real numbers. .

Now, Im exp = {exp(r)| r€R} = (¢]+ €R).-
Also, Kerexp = [t ER[¢' = 1} ={0).:°

Note that exp takes the identity O of R to the identity 1 of R*, exp also carries the addinve
inverse - r of r to the multiplicative inverse of exp (r). ' '

Example 2 : Consider the groups (R, +) and (C, +) and define
f:{C,+)— (R, + by f(x + iy) = x, the real part of x -+ iy, Show that fis a
homomorphism, What are Im end Ker £ 7 ' T

Solutlon : Take any two elements a + iband ¢ +id in C, Then,
f(a +ib) + (¢ + id)) = ((a+cJ+i(b+d))=a+c=f(a+ib)+t‘(c+id)
Therefore, fis a group homomorphism. -
Imf={f(x+iy)|x,y€R}=[x]xER} =R,
So, [is a surjective function (see Scc.1.5).
Keef={x+iyec| I‘(x+iy)=0]={x+iy€C|x=0}

= [iy| y €R ), the set of purcly imeginary numbers.

Note that f carries (he additive identity of C to the addilive identity of R and { — z) 10 — f(z),
foranyz €.

The lollowing excreises will help you 1o sce if you have understood what we have covered so
ar.

C1)  Show that (: (R®,) -— (R, +): [(x) =inx, the natural logarithm of x, is 2 group
homemorphism, Find Ker [ ang Im f also.

12) Isf: {GLR),.) — (R™,): {(A}) = det(A) a homomorphism? If so, obtain Ker {and
Im T, '

n Examples 1 and 2 we observed tha the homomarphisms carried the identity to the identity

d the inverse to the inverse. In fact, these obseryations can be proved for any group
omomarphism, ‘" "V '

heorem 1: Let f'; (G, ) — (G, ;;J be a group homomorphism.

Group Homomorphtsme

The word *homomorphism” &
derived [rom the lwo Greck words -
‘homos', meaning 'link', and
‘morphe’, meaning 'form’,
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Some More Group Theory

Then

a) {(c|) = e1, where e is the idertity of G, and e; is the identity of G..

by - [(x™") = [f(x))"' forall x in G,

- Proofl ; (a) Let'x €Gi. Then we have ¢ « x =x, Hence,

[(x)=f{e1 »; x)=1[(e1) »: f(x). since { is 2 homomorphism. But
r(x) =grs2 f(x) in Ga.

Thus, f{e)) « (x)=e2 «: f{x).

So, by the nght cancellation law in G;, f{e)) =e..

(b) Now, lor any X €G,, [(x) «; (x Y= f(x «, x Y =[e}=ex

" Similarly, f{x™") w2 {x)=¢,.

Hence, f(x™") = [_f(x)]" ¥+ x €G.

Note that the converse of Theorem 1 is false. That is, 1f { : Gy — G is a [unction such that
f(e)) = ¢z 2nd [f(x)] = [(x""}¥ x €G,, then { need not be a homomorphlsm For example,
considerf: Z — Z: f(O) = 0 and

n+1¥n>0 .
f(n) = -

n—1%n<0 .
Since [{1 + 1) # (1) + {1}, fis not 2 homomorphism. But f{e,) = ¢; and
finy=~f{—a)¥neZ

Let us 160k at a few more examples of homomorphisms now. We can get one important ciass
of homomorphisms from quatient grougs.

" Example 3 : Let H A G. Consider the map p: G — G/H: p(x) = Hx. Show that pisa

homomorphism. (p is called the natural or canonical group homomorphism,} Also show that
p is onto, Whiat is Ker p?

Solution : For x, y € G, p{xy) = Hxy -= Hx Hy = p{x) p{y). Therefore, pis a
homomorphism, '

Now, Imp = [ p(x)| x €G} = { Hx| x € G } = G/H. Therefore, p is onto.
Kerp={x€G|px)=H} (Remcmbcr H is the idenlity of G/H.)

=(xEG|Hx=H} "

=[x EG|x €H ), by Theorem [ of Unit 4.
In this example you can sec that Ker p A G. You can also check that Theorem 1 is true here.

Before looking at more examples try the following exercises.

E 3) Defince the natural homomorphism p from S; 10 Sy/As. Docs (1 2) € Ker p? Does
(1 2) €Im p?

Ed) letS={z€ c| |z] = 1} (see Example 1 of Uit 3).
(f(x) = ™, where n is a fixed positive integer. (5 a

£.5) Let Gbeagroupand H A G. Show that there exists a group Gi and 2
hamomeoerehiem [0 G — Gy soch that Ker (= H,

{Hint : Docs Example 3 help?)

Another class of examples of homomorphisms concerns the inclusion map.

Example 4 : Let H be a subgroup of a group G. Show that the mapi: H — G, ith) = hisa
homomorphism. This funciion is called the inclusion map.

Solution : Since i(hih:) = hiha = ithy)i(ha) ¥ hy, ke < H, 1 is a group homomorphism.




Let us briefly book st the inclusion map in the context of symmetric grdups. Consider two . Group Homomorphl
naturz] numbers m and n, where m =5 n, .

Then, we can consider Sz =< S,, where any g € S, wrillen as a is the Grezk letter sigma.
1 2 .. m . '
( o(1) o(2) .. a(m)) , is considered to be the same as

1 2.2 m m+l..n . — +1<k<n.
(am a(2) - ofm) m—+1 ... n) ESmic o =korm =k =
Then we can define an inclusion map i : S — 8.

1234
For cmmplca underi: SJ - S‘l (1 2) gaes o (2 1 3 4 )

Try this exercite now.

E6) Whatare the kemel and image of the inclusion map i : 3Z — Z?

We 'will now prove some results about homomorphisms. Henceforth, for convenience, we
shall drop thenotation for the binary operation, and write a « b as ab.

Now let us look al the composition of two homomorphisms, Is it a homomorphism? Let us sec.”
Theorem 2 :1(: G, — G, and g : G; — G; arc two group homomorphisms, then the
compaosite mapg . [ : Gy — Gy is also a group homomaorphism,
Proof : Let x, y€G,. Then
B« Exy)=p(fxy))

=£(f(x)((y}, since f is a homomorphism.

=&{(x)) g(f(y)}, since g is a homomorphism.

=goMx)g . f(y)

Thes, g o { is 2 homomorphism,

Now, using Theorem 2, try and solve the fellowing exercise.

ET)  Letn €N, Show that the composition of [: Z — Z : f{x) = nx and
g:2Z — Z/nk:g(x) = X is 2 homomorphism. What are Ker(e o [) and Im(g .. 1)?

So fur you-ha\t seen that the kernel and image of 2 homomorphism are sets. In the examples
we Ieave discused so far you may have noticed that they are subgroups. We will now prove
thar the kernel of a homomorphism is a normal subgroup, and the image is a subgroup.

Theorem 3 : Let {: G, — G; be a group homomorphism. Then

28) Kerfis a normal subgroup of G,.

b) Imfis a sabgroup of G;.

Pro-a{.: a) Sinze f(es) = ¢, ¢) EKer [ - Ker f 5% ¢

Now if x, y € Ker f, then {(x) = caand {(y) = ¢.

C I =) = ) ()] = e

L EKers? .

The=zfore, by Theorem | of Unit 3. Kér I << Gy, Now_for anu
K=" vy = 167 (iy)

e
e

= (0] exl(y), since f{x) = &3 und by Theorem 1.

= -,
oRerf é G:.
b) Zm [ # . nince f(e1) € Im I )
New let xz, v: €Im £ Then Jxy, ¥1 € G such that f{x)) = x and f(y,) = ¥

S = ) iy ") = oy ) EIm f
TG o = €T

d
P
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Usirfg this result, from Example 2 we can immediately see that the set of purely imaginary
numbers 5 a normal subgreup of C. :

Let us also consider another example, which is 2 particular case of E 4 (whenn = 1}

Consider ¢ : {R; T} — (C*..) : &(x) = cosx + isin x, We have seen thal

H(x + y) = H(x)d(y), thal is, & is 2 grélp homomorphism. Now &{x) = 1 il x = 27 for
some n € Z. Thus, by Theorem 3, Ker ¢ = {2rn| n € L} is 2 normal subgroup of (R. +).
Note that this is cychic, and 2 is a generator.

Similarly, Im ¢ is a subgroup of C*". This consisis of all the complex numbers with absoluiz
value |, t.¢., the complex numbers on the circle with radius | unit and cenwre (0. ©).

You may have noticed that sometimes the kemnel of a homomorphism is {e} (as in Example
1), and sometimes it is a larpe subgroup (as in Example 2). Docs the size of the kernel indicate
anything? We will prove that a homomorphism is I-1 iff its kernel is {e).

Theorem 4: Letf: Gy — Gy bea grdup homomorphism. Then { is injective iff Ker f = (e},
where ¢; is the idenlity element of the group G..

Proof ; Firsily, assume that { is injective. Let x € Ker [ Then {{x}-= eu ie., f{x) = f{e)). But
is |-1. 4 x = 2.

Thus, Ker { = {e,}.

Conversely, suppose Ker [ = [¢,]). Let x, y € G, such that
[(x) = f(y)- Then f(xy™} = [(x) {(y™")
= [(x) [f))”" = e
Lxy EKerf={e L oxy = ciandx =y,
This siows that {is injective,

So, by using Theorem 4 and Example 4, we can immediately say thai any inclusion
i:H— Gisl-l,since Keri = {e}.

Let us consider znother example.

Example 5 : Consider the group T of translations of R* (Example 6, Unit 2), We define a
map ¢ : (R°, +) — (T,0) by ¢ (a, b) = [,». Show (hal ¢ & an onlo homomorphism,
which is also 1-1.

Solution : For (2, b), (¢, d) in R°, we have scen that
[a-:_:'u-u = fa,b o fc,.i

~ @, b) + {c, d)) = ¢(a, b) o &(c, ).
Thus, & is a homomorphism of groups.

Now, any clement of T is [y = ¢(a, b). Therefore, ¢ is surjective. We now show that é s
also mjective.

Let (a, b) € Ker ¢, Then é(a, b) = foyg,
i.en f,_h - [.0.0 '

o 1s(0,0) = o6 (0, 0},

e, (5, b)) =00

o Kerd = {(0,0))

Lodois -1

S0 we huve proved that s a homenonplism, which n bijective.

Trv the following exercise now,

E &)  Foranyn = |1, consider Z, and U, (the group of ath roots of sty discussed in
Example 5 of Unit 3). Let w denole an nth rooi of unity that zenzrates U.. Then

Co . I - AT
Vs =11, @, o, ... " '} Now, consider the map £ : Z, — U.: ;) = w’ Show that
Ii5 1 group homomorphism. Is I 1-17 s { surjective?

And now let us look at a very useful property of a ciwumorahism that is surjective




Theorem §: If £ : G\ ~— G, is an onto group homomorphism: and S is a subset thal generates Group Homomarphysms
" Gy, then K(S) generales G». ' .

Proof : We know thal

G =<S>={x/Ix,?.. Xa™ | mEN, x, €S, 1, € Z [or all i). We will show that
G: = < f(S) >. .' '

Let x € G-. Since [ is surjective, there exists ¥ €Gisuch that i(y) = «x. Since YyE€Gy,
=x;"1..0 %™, for some m € N,where x, ESandr €2, 1 << m .

Thus, x = {{y) = f(x" .. X' @)

= ([(x))F . (X)), since fis a homomorphism.
= x & <[(S} >, since [(x) € {(S) for everyi=1,2 .
Thus. G: = < {(S) >,

In the following exercise we preseat an important property of cyclic groups which you can
prove by using Theorem 5. ‘

E9) Show that the homomorphic image of a cxclic group is cyclic. i.e.. il G is 2 cyclic
groupand [: G — G'isa homomorphism. then (G} is cyclic.

Once you have solved E 9, you can immediately say that any quotient group of a eyclic
group is.cyclic.

So far you have seen examples of various kinds of hemomorphisms—injective, surjectjve and
bijective. Let us now look at bijective homomormphisms in particular,

6.3 ISOMORPHISMS

In this section we will discuss homomorphisms that are |-] and onto. We start with some
definitions,

Definitions : Let G, and G- be rwo groups. A homomérphism [: Gt — G is called an
i_sornorphism if [is -1 and onio,

In this casc we say that the Eroup G, is isomorphic {o the group G, or Gy and G;are The word “komorphisms' 15 derived
isurnorp]u'c. We denoie this fact by G = G.. from Ithc Greek word “isos* meaning
‘equal’,

An isomorphism of a group G onto itsel{ is cailed an automorphism of G, For example, the
ideatity funtion I : G — G - [a(X) = x5 an automorphisnt,

Let us took at another example of an isomorphism.

2 b
Example 6 : Consider the sct G = ! [_ ; J a,bER J
Then G is a group with respect Lo matrix addition,

1 b Do . .
b = a 7T pas an isomorphism,
- a .

Show thatf: G — C - ([

Solutien : Let us first verify that (s a bomamarphism. Now for BOY 1WO elemenis

r di -
[0 biand_] C lin G,
—d C_‘

Toa by [ ¢ d}y_ a+c b+dl o
fu_b EJ"'[_d CJ)_r([_'(b‘i'd)a*i-cD:(aTc)Tl(b_!-d)

= (2 + ib) + (c + id)

A

Therefore, f is a homomorphism. e
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emer=([_ leenol={[-5 ]

Therefore, by Theorem 4, fis 1-1.

Finally, since Im { = C, [is surjective.

Therefore, { is an isomorphism.

We would like to make an important remark now.

Remark : if G; and G» ar¢ isomorphic groups, they must have the same algebraic structure
and satisfy the same algebraic properties. For example, any group isomorphic 10 2 finile group
must be finite and of the same order, Thus, (wo isomorphic groups are algebraically
indistinguishable systems. .

The following result is one of the consequences of isomorphic groups being algebraically alike.

Theorem 6 : I[{: G — H is a group isomorphism and x € G. then < x > = < [{x) >,
Therelore,

1) if xis of finit¢ arder, then o{x} = off(x}).
iy if x is of inlinile order, so is f(x).

Proofl : [l we resirici [ Lo any subgroup'K of G, we have the function ]y : K — [(K), Since
is bijective, so is its restriction flw. - K= {{K) for any subgroup K of G In particular, for any
XEG x> =f<x>y= <I'(x)> by E9.

Now if x has finite order, then o{x) = o{<C x =) = o{< {{x) 2>} = o{f(x}), proving (i)-

To prove (ii} assume that x is of infinitc order. Then << x 2> is an infinite group,
Therefore, << f(x) > isan infinite group, and hence, [(x) is of infinite order. So, ave have
proved (ii}.

Try the following exercises now,

E 10) Show thal Z = rZ, for a fixed integer n.
(Hint ; Consider {: (Z, +) — (rZ, +): (k) = nI\]

EIN Isi;Z — Z:[(x) = 0 a homomorphism? an isomorphism?

The next two exercises involve geacral properties of an isumorphism. E 12 is the isomorphism
analogue of Theorem 2. E 13 gives us another example to support the fact that isomorphic
groups have the same algebraic propertics.

E12) ¢: G — Hand 8: H — K arc two isomorphisms ol groups, then show that 8o b
is an isomorphism of G onto K.

E13) If{:G — Hisan isomorphism of groups and G is abelian, then show that H is also
abelian. )

So far we have seen exampies of isomorphic groups. Now consider the foiiowing exangie.
Example 7 : Show that (R=.) is aot isomorphic to (C7.).

Solution : Suppose they are isomorphic, and [: €' — R* is an isomorphism. Then

o{i) = o)), by Theorem 6. Now ofiy = 4.~ o(f(i))y = 4

However, the arder ol any real number different [rom £ 1 is infinite: and of 1) = 1,
of — )= 2

So we reach a contradiction, Therefore, our supposition must be wrong. That is, R and C”
are not isomorphic.




Try these exercises now. -

E 14) Show that(C" ) is not isomorphic to (R, 4 ).
E15) IsZ=Z/nZ, foranyn ¥ 1?7

You must have noticed that the definition of an isombrphismjusm says that the ma:p is

bijective, i.c., the inverse map exists. It does not 1eli us any propertics of the inverse. The neat
- result does so. -

Theorem 7:11{: G, ~— G, is an isomorphism of groups, then 1™ : G, — G 15 also an

isomorphism.

Proof: From Unit 1 you know that [ is bijective. So, we only need o show that {7 is a
homomerphism. Let ', b" €G> and a=f"" (2), b=I" (b’). Then f{a)=4"2nd (h="b"
Therefore, [(ab) = {a} {(b) =a’b". On applying {™*, we get '

(7 (@) =ab=0" @} ™' (b"). Thus,

[ @p)=1" @) " ) for all 2", b’ €G-

Hence, f™' is an isomorphism.
From Example 5 and Theorem 7 we can immedialely say that
¢ T — R': g7 () = (a, b) is an isomorphism.

Theorem 7 says that il Gy == Gy, then G; = G,, We will be using this result quite often (e.g.,
while proving Theorem 9)

Let us now {ook at a very important theorem in group theory. In Block 3 you wilt study its
anzlogue in ring theory and in the Linear Algebra course you have already studied its
analogue for linear Lransformations.

6.4 THE ISOMORPHISM THEOREMS

In this section we shall prove some results about the relationship belween homomorphisms
and quotient groups. The first result is the Fundamentat Theorem of Homemorphism lor
groups. [t is called ‘fundamental’ beeause a lot of group theory depends upon this resuin. This
resuit is also called the first isomorphism theorem.

Theorem 8 (Fundamental Theorem ol Homomorphism) Let Gy and G; be two groups
and f: Gy — G; bea group homomorphism, Then
Gi/Ker F = [m f,

In panicular, if { is onto, then G,/Ker f = G..

Proof : Let Ker f = H. Note that H A Gy. Let us define the function
¥ G/H—Im £: ¢ (Hx) = f(x). .

At first glance it seems that the definition of ¢ depends on the coser representative, But we will
show that il x, y € G such that Hx = Hy, then (Hx) = G(Hy}. This will prove that G is 2
well-defined function.

e

U= Ker f = i{xy™") — vz, the identity of G-
Yl = e =) = ((y)
== i Hx) = (Hw

Therefore, ¥ is a well-defined function.

Naw, let us check that (% is 2 homomorphism. For [1x, Hv = G,/H,
w((Hx)(Uy)) = ¢(lixy)

= f{xy)

= [(x) f(y), since f is a homomorphism.

= Y(Hx) Y(Hy)

Therefore, ¢ is a group homomorphism,

Group Homomorphiems
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Next, let us sce whether  is bijective or not.

Now, y(Hx) = vi(Hy) for Hx, Hy in G\/H
= f(x) = {{y)

=> {0 ()] = ¢

= f(xy ) = ¢

= xy" €Ker[=H,

= Hx = Hy

Thus, ¢ is I-1.

Also, any element ol Im [ is f(x) = {Hx), where x € G).
S Imyy=Imf

So, we have proved that  is bijective, and hence, an isomorphism. Thus, Gi/Ker f = Im f.
Now, if { is sugective, Im £ = Ga. Thus, in this case Gi/Ker { = Gy,

The situation in Theorem § can be shown in the following diagram.

G, { > In =G,

G/Ker
Here, p is the natural homomorphism (see Example 3).

_The diagram says that if you first apply p, and then ¢, to the clements of Gy, it is the same as

appiying f to them. That is,
o p= f.

Also, note that Theorem 8 says that two ¢lements of G, have the same image under £ iff they
belong lo the same coset of Ker

Let us look at a few examples.

One of the simplest situations we can consider is I : G — G. On applying Theorem 8 here,
we see that G/{e} = G. We will be using this identification of G/{e} and G quite often.

Now fer some non-tnivial examples.
Example 8 : Prove that C/R = R.

Solution : Define {: C— R : {{z + ib) = b. Then [ is 2 homomorphism, Ker { = R and
Im [ = R. Therefore, on applying Theorem 8 we sec that C/R = R.

1,if n is even

Example 9 : Consider [:Z — ({l, — [},}: [{p) =} _ L ifnis odd

At the beginning of Sec.6.2, you saw that f is a homomorphism. Cbtain Ker { and Im . What
does Theorem 8 say in lhis case? .

Salatian ' Let 7 and 7. denat the sat ‘af aven and add integers, respectively. Then

Kerf={nGZ|(mM=1)= 7.
Imt={mnCZl={L —1}
Thus, by Theorem §, Z/Z. = {1, — 1}

This also tells us that of Z/Z.) = 2. The two coseis of Z. in Z are Z.and 7.

P ZoZoj =[]~ 1}

Example 10 : Show thal GLy(R)/SLx(R) = R”, where
SLi(R) = {A € GLa(R)} det (A) = | }

Solution ; We know that the function .
f: GLa(R) — R*: [(A) = det (A} is z homomornhism. Now, Ker { = SL(R).




. G H hi
Also, Im f = R*, since any r ER" can be written as det ([ ro J) ) Foup Homomorphisms

01
Thus, using Theorem §, GLy(R)/SLYR) = R,

Try the (ollowing exercises now.

L 16) Consider the sitvation in Example 1. Show that (R, + )} = (R*,), the group of
positive real nuprbers.

E 17) Let Uy be the muliiplide«s-» group of dth rools of unity.
Define [:Z — U {{n) = i", Use Theorem 8 to show that Z, == U (i=v— 1)

Now we will use the Fundamental Theorem of Homomorphism to prove a very imporiant
result which classifies alf cyclic groups.

Theorem 9 : Any cyclic group is isomorphic (0 (Z, +) or (Z,, +).
Proof: Le(G = <x >bea cyclic group, Deline
(:Z—G:fn)=x" .

{'is a homomorphism because

f(n +m)=x""=x"_x™ = [(n) f{m).

Also nole that Im { = G.

Now, we have two possibilitics for Ker [— Ker [ = {0} or Ker I # {0}.
Case I (Ker [ = {03} : In this case fis ]-1. Therefore, [ is an isomorphism. Therefore, by
Theorem 7, ' is an isomorphism. That is, G = (Z, +). -

Case2 (Ker f # {0)) : Since Ker { < Z, from Example 4 of Unit 3 we know ihat Ker f = nZ,
for some n €N, Therefore, by the Fundamental Theorem of Homomeorphism, Z/nZ = G,

LG =Z/nZ = (L, )

Over here note that since < x > == Zn, 0(x} = n. So, a finite cyclic group is isomorphic to Z,
where n is the order of the group.

Using Theorem 9 we know that all cyclic groups of order 4 are isomorphic, since they are all
isemorphic to Z.. Similarly, all infinite cyclic groups are isomorphic.

And now you can prove the following nice result,

- 1
E 18) LetS be the circle group{z€C ! {z2]=1) Show that R/L =§,
(Hint: Define [R —§ - f{x) = ¢™™". Show that f is an onto homomomhism and
Ker[=»Z) ’

We will now prove the second isomorphism Iheorem with the belp of the Fundamental
Theorem of Homemorphism, It is concerned with intersections and products of subgroups. To

prove the theorem you will need the results given in the following exercise. So why not do this
exercise first! : '

E19) LetGbea group, H < Gand K A G. Then
2) HAOK A H-and

by A = G osuch that KC A then K A

Now let us discuss ilie thearem.

Theorem 10; I H and K are subgroups of 2 group G, with X normat in G, then
H/(H N K) = (HK)/K. '
Proof : We must firsi verify that the quotient groups H/(H N Ky and (HK)/K are well-
defined. From E 19 you know that H A K 3 H. From E 6 of Unit 5 you know that

HK = G. Again, from E 19 you know that K A HK. Thus the given quotient groups are
meaningful. ' 23
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Now, what we wanl to do is to (ind an oato homomorphism {: H — (HK)/K with kemel
H N K. Then we can apply the Fundamental Theorem of Homomorphlsm and get the
result, We define £: H — (HK)/K @ [(h) = hK.

Now, for x, y € H,

fixy) = xyK = (xK) GK) = {(x) [(y)-
Therelore, f is a homomorphism,
Iml=[fh)|heHj=[hK[hEH]

We will show that Im f = (HK)/K. Now, take any element hK € Im [ Since h € H. h € HK.
" hK € (HKY/K. ~ [m [ € (HK3/K. On.the other hand, any element ol (HKY/K is

hkK = hK, since k € K.

© hkK €im [ - (HK)YK C ImL.

~ Im [ = {HK)/K.

Finally, Ker f = {h €H| i) =K} = {h€HIhK = K}
={hEH[hCK)
=HNK.
Thus, on applying the Fundamenta) Theorem, we ge1 H / (HNK)=HK) /K
We would like 1o make a remark here.
Remark : If H and K are subgroups of {G. Y. then Theorem 10 ays that
(H + K)/K = H/HM K.

Now you can use Theorem 10 1o solve the [llowing CREICISES.

E20) Let Hand K be subgroups of a finite group G. and H 4 G. Show that
o(H) o{K)

olHK) = Sm A K)

E 21) Show that 3Z/12Z = Z..
(Hint : Take H = 3Z, K = 42).

And now lor Lhe third isomorphism theorem. This is also a coroliary to Theorem §.
Theorem 11 : Let H and K be norma! subgroups of a group G such that K ¢ H. Then
(G/KY/(H/K) = G/H.

Proof ; We will define & homomorphism from G/K onto G/H, whose keroel will tura out 1o
be H/K.

C0n51dcr [.G/K— G/H: f(I\m) = Hax. { is well - defined because Kx = K) torx. y€G
=>xy ' €EKCH => xy' €H = Hx = Hy = {(Kx} = {(Ky)

Now we leave the rest of the proal to you {see the [ollowing exercise).
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6.5 AUTOMORPHISMS

In this seclion we will Grst show that the set of all automorphisms of a group lorms a group.
Then we shall define 2 special subgroup of Lhis group.

Let G be a group. Consider




AwG = (f:G — G| fis 2n isomorphisin ),

- You have already seen that the idcnr.ify map Ic € Aul G. From E 12 you know that Aut G is
closed under the binary operation of composition. Also, Theorem 7 says that if € Aut G,

thea (™' € Aut G. We summarise this discussion in the following theorem.

Theorem 12 : Le1 G be a group. Then Aut G, the set of automorphisms of G, is a group.

Let,us look at an-example of Aut G,

Example 11 : Show that Aut Z_.:-- Z,

Solution : Ler [ : Z — Z be ag automorphism. Let (1) = n. We will show thatn = 1
or — [.Sincefisontoand 1 €Z, I m £ Z such that ffm)=1,ie, ml{1)= I,ie..‘mn =],

“a=lorn=—1].
Thus, there are enly two elements in Aut Z,Iand — ],
SeAMZ =< -1 >=Z,

Now, given an clement of a group G. we will define an autorforphism of G comesponding 10

1.

Consider a fixed etement g € G. Define
:G—G:(x)=gmg™.
We will show that f; is an automorphism of G.

1} {;isa homomorphism : If x, y € G, then

i (x¥) = g(xy) g ,
= gx{e) yg ', where e is the identity of G.

=@ 88
= (gxg ){gyg')
= £dx) f(y)-
iy feis 1-1 :Forx,y € G; [(x) = f{y) = pxg”' = gvg™ => x = y, by the
<ancellation laws in G. - =
i), fcis onto : If y €G, then
y=(eel)yigg"
=glg ygle

= feg 'yg) €lm .

Thus, [ is anlaulori"x.orphism ol G. We give this avtomorphism a special name.

Definition : [ is called an inner automorphism of G induced by the element g in G. The

subset of Aut G consisting of all inner automarphism of G is denoted by Inn G~

For example. consider S;. Let us compute (1. ;{1 3) and f: (1 2. where g = (1 2). Note

thate' = (I ) =g,

Now, (1) = galeg™ =1,
KIN=120312)=23).
U2 =10 2H12n=0132.

The following exercise will give you some practice in obtaining inner automorphisms.

E 23) Obtain the image of {; € Inn G, where

i
a) G=GL1(R}:1ndg=|[_U |

oo

by G=2Zandg=13.

) G=Z/5Zandg=1.

You will now see that Inn G is a normal subgroup of Aut G.
Theorem 13: Let G be a group. Then Inn G isa normal subgroup of Aut G.

Prool: Inn G is non-empty. because I = 1. € Inn G. where ¢ ic the identity in

Group Homomorphism
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Now, let us sce il"t‘; o lEInn G for g, hEG.
For any xE€G, [ o hx)={(hxh™") . 3 \
=g(hxh™) g’
= (gh) x (gh)™"
= fn(x)

Thu.s,‘ fn =y o T, i.¢., Inn G is closed under composition. Also .= i belongs Lo Inn G.
Now, for [;€Inn G, 3 f;* Efon G such that
[ o (g =Tgg" = [c=la. Similarly, g o [,=Ic.

Thus, [+ =(f,)"". That is, every element of [in G has an inverse in lon G.

“This proves that Tnn G is a subgroup of Aut G.

Now, to prove that Ton G A Aut G, let $EAut G and f, Elnn G. Then, for any x&€G

3" 2o p(x)=6" o Iy (X))

=¢ (gd{x)g")

=¢7" (@) ¢ &'

=¢" @ C@N

=1 4@ (X). (Note that ¢ (£) €G.)
L afie ¢ = (g EInn GV HEAULG and f,€Inn G.
~1onG A AuG.

Now for some exercises! From E 23 you may have already ot a hint of the usefui result that
we give in E 24 '

-

E 24) Show that a group G is commutative iff Inn G = {lg}.
E25) Show that if x €G such that f{(x) = x¥ g €G, thea < x> A G.

Now we will prove an interesting result which relates the cosets of the ceatre of 2 group G to
lnn G. Recall that the eentre of G, Z{G) = {xEG | xg = gx¥ g €G }.

Theorem (4 : Let G be a group. Then G/Z(G) = Inn G.

Proof : As usual, we will use the powerful Fundamental Theorem of Homomorphism tu
prave this reselt.

Wedefine ;G — AuwG: f{gy=f.

Firstly, [ s a homomorphism because for g, h-€ G,
i{gh) = [
= [ o £ (see proof of Theorem 13)

:l'(g)af(h)
Next, Imf=[[]gEG}=IanG.

Finally, Kerf = {g€G|=1c]
=[gEG|(x)=x¥xEG}
={p€EG|gxg” =xVxEG)
={pEG|gx=xg V¥ x€EG}
= Z(G).

Therefore, by the Fundamentat Theorem,
G/Z{G) = Inn G.

Now you can us¢c Theorem 14 to solve the next exercisc.

E 26} Show that 53 = Inn S

Now let us sec what we have done in this unit. - !




6.6

SUMMARY

In this unit we nave covered the following points,

1.

The definition and example of a group homomorphism.

2. Letf: Gy — G be a group homomorphism, Then Ke|) = e3,
(o] =1x"), Im <G, Ker £ & G.
3. A homomorphism is -1 ifT its kernel is the trivial subgroup.
4. The definition and examples of a group isomorphism.
5. Two groups are isomorphic iff they have exacily the same algebraic structure.
6. The composition of group homomorphisms (isomorphisms) is a group homomorphism
(isomorphism).
7. - The proof of 1he Fundamental Theorem of Homomorphism, which says that if
f: Gy = G;is.z2 group homomorphism, ther Gi/Ker f = [m .
8. Any infinite cyclic group is isomorphic t0 (Z, + ). Any finitc cydic group of order n is
isomorphic to (Z,, +).
9. LetGbeagroup, H=G,K 4 G. Then H/(H N K) = (HK)/K.
10. Let G beagroup, H AG,K 4 G, K C H. Then {(G/K)/(H/K) = G/H.
1. The set of automorphisms of a group G, Aut G, is a group with respect to the
composition of [unctions,
12, 1Ion G A Awt G, forany group G.
13. G/Z(G) = Inn G, for any group G.
6.7 SOLUTIONS/ANSWERS
E1)} Foranyx,y €R* f(xy)=In(xy) =Inx + lny.
~ {is a homomorphism,
Kerf=|xeR"|fx)=0)=1{1).
Imf={i(x)| xER" }={ilnx|x&R"}.
E2) Torany A, B EGLyR),
{(AB) = del (AB) = det(A) det(B) = f(A) ((B)
- Fis 2 homomorphism. .
Ker f={ACGGLI(R}HA) =1} ={AEGL(R}| der{a) = 1)
= SLi(R), the special linear group of order 3.
Im (= {dei{A)| A €GL, (R) )
. r 0 ¢
= RY(because forany ( ER™, AA =0 | 0] EGLy(R) such that det (A) = ¢
0 0 1
E3) p:$)— Si/Ayip(x) = Awx '
Note that Ay = {1, {1 23),(132) .
\Tnu-'l.fn_... — =i ~far
LTk nj B Y o Y p
Imp=1Ax[x€5 )~ (12)&Lnp.
Ed)  Foranyx, v LR i by = ot
=™ = (x}. f(y)
- [1s 2 homomorphism,
m.'f—{‘ ZR{i(x) = }:{\tltgc"“-: 1}
=[xER]an2-’-‘Z}=-—:~Z.
E5)  From Exampte 3, we know that if we 1ake Gy = G/H and wke { to be the nawral

homomorphism from G onto G/H, then Ker f = H

Group Hammrm%qm




Some More Graup Theory E6) i:3Z-—2Z:i(3n) = 3n.
Keri={3n|3n=0}={0)
Imi = 3Z.

E7) . gel:Z— Z/nZ: gelix)=nx=0.
Then, forany x, yEZ
gefix+y)=0=0+0=golx)+gs[(y).
~ g lisa homomorphism,

Ker(goN=Z,Im(g-N=]01.

E8) Foranyr,s €Z.
f(F+3)=1(fF 5 = = oo =)
~ [is a homomorphism.
fis 1-1 because
(fI)y=1 = u' =1
=> r| o{w) = n (see Unit 4)
= 7=0
Kerf= [0!
fis sulje,clwc because any element of Ul1 isw for0<r=n—1and o =I[(F)

E9) LetG=<x>>and{:G — G’ bea homemorphism. Then f: G — f(G) is an onto
homomarphism. )
Therefare, by Theorem 5, {(G) = < [(x} >, ie., (G} is cyclic.

E 10) a) The function {: Z — nZ : f(k) = nk is a well-defined function.
Now, f{(m + k) = a(m + k) = nm + nk = fim) + (k)Y m k€l
~ fis 2 homomorphism.

Kerf={0}. = fisl-1.
Imf =nZ. - fissugecive.
" [is an isomorphism and Z == nZ.

E 11) fisa homomorphism, but not]-1. . fis not an isomorphism.

E 12) By Theorem 2, & o & is 3 homomorphism. Now lel xEKer (8.0 ¢}
Then, (6 s ¢) (x) =0 == 8(d(x)) =0
== h{x)=0.since G 5 1-1.
=>x=0,since ¢ is 1-1.
CKer (e )={0L & flegisi-l
Finally, lake any k-€K. Then k = 0(h), for some h < H, since 1 is onto.
Now, h = ¢(g). for some g €G, since & is onto.

L k=0 dig) L f o ¢ is anlo.
" 0 o ¢ is an isomorphism.

E 13) Leta,b€H. Ther 3x, y € Gsuch that~ = f{x), h = [(y)
Now ab = [(x) [(y) = {xy).
= {yx), since G is abelian.
= [(y) {x)
= ba.
" H is apelian,

E14) Suppose C* = Rand [: C" — R is an isomorphism. Then o{((()) = 4. But, apart
from 0, every cloment of (R, +) is of infinite order: and o) = 1. 8o, we reach 2
contradiclion.

.. C* and R arc not isomorphic.
E 15) Since Z is infinitz and Z/nZ is finite, the lwo groups can’l be isomorphic.
E16) Imexp={c|rER}=R -

Kerexp={0}
28 Thus, by the Fundamental Theorem of Homomorphism, R = R'




E17) Us={1,i 57} =1z 1, 2t

E 18)

E 19)

E 20)

E 21)

E 22)

E 23

f is a homomorphism, Ker { = {n]i"=1 }= 4Z
Imf=U.
~TSAL = U,

In Uit § we have seen that Z/47 is the same as Z,,.
s Za=U.
l'(x + y) = c}rri(p)-} = cz:ixlc‘.'ni)' — [(J()[()'}.

~

-~ ['is a homomorphism.
Now any element of S is of the form cos & + isin @

0 ] ]
—cosZr—z*‘—-l-lsan:r > f(E]
-~ f{is onto, ‘

Also, Ker f = {xER| ¢ =1}
=[xER|[cos2mx +isin2mx =1}
=Zsincecos +ism8=1ifGE2Z.

Therefore, by the Fundamental Theorem of Homomorphism, R/Z = §.

1) You know that H M K < H. Now, leth€Hand x EH N K.
Thcnh'thH since h, x € .

Also, h™'xh €K, sincex @K and K A G.

g h"xhCHﬂK HNK AH

b)Since K = G,K < A Also, foranya €A,2 €G,
Therefore, since K A G, a'Ka=K ~ K A A

By Theorem 10, (HK)/H == K/(H N K).

CoHK) _ oK) _ o) o)
o) el NK e X = SRR

Let H = 3Z, K = 4Z. By Theorem 10 we know that (H -+ K)/K = H/(H N K).
Now H + K = 3Z-+ 4Z = Z. (Usc E 9 of Unit 3 and the fact that | = 4 — 3,)
Also H Tk = 3Z N 4Z = 12Z(since x €3Z N 4Ziff 31 x and 4[x).

Thus, by Theorem 10, Z/4Z, == 32./127Z.

You also know that Z/4Z = Z,,

L 3L/N2L = L.

Forany Kx, Kyin G/K,
{(Kx)(Ky,) = {(Kxy) = Hxy = (Hx) (Hy) = {Kx)(Ky).
~ [is a homomorphism.

Now, any clement of G/H is of the form Hx. And

Hx=[(Kx)&Im{ ~ Im{=G/H.

Finally, Ker { = { KxEG/K | f{Kx) = H |
=[KxeG/K|Hx=H}
=[Kx€G/K] xEH }

= H/K
Thereflore, by Theorem 8, (G/K)/(H/K) = G/H.
a b bl .
) L GLAR) — GLy(R) : [, H 2 =E[“ e
djj |_C CIJ
0
0

a2 1] o
£ L

Group Hdmomofplﬂsz
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E 24)

E 25)

E 26)

b} fi:z2 —Z:f()=g+x+(—p=x
=1 L f(Z) =1

¢) Here too, since G is abelian, ; = 1. )

Firstly assume that G is abelian. Then, for any f; € Inn G,
() =pgxg' =pg'x=x¥xEG.

r‘ = [g.

S InnG={Ig).

Conversely, assume that Inn G = {Ig].
Then, forany x, y€ G, L(y) = ¥.
= xyx | =y = xy = yx.

Thercfore, any two clements of G commute with cach other. That is, G is abelian.

Toshow thatg™' < x > g = < x >¥ g €G, it is enough to show that
g 'xg €< x >% g €G. Now, for any g € G, we are given that

fg' (x) = x.

= g'x(g")" =x

= gxg=x.

Lplx»g=<x> L <x>AG.

We know that 8;/Z(S;) = Inn Sy,
But, Z(Sy) = {1 }. - Sy = Iun S.
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7.1 INTRODUCTION

[in this unit we discuss, in detail, 2 group thal you studied in Sec. 2.5.2. This is the
symmetric group. As you have ofien seen in previous units, the symmetric group S.. as well
2s its subgroups, have provided vs with a lot of examples. The symmielric groups and their
subgroups are called permuta‘ion grouns. [t was (he study of permutation groups and
groups of lransformations that gave the foundation Lo group theary.

In this unil we will present all the information about permutation groups that you have
studied so {ar, as well " some mare. We will discuss the structure of permutations, and
look at even permutations in particular. We will show that the set of even permutalions is &
group called the alternating group. We will finally prove a result by the mathematician
Cayley, which says that every group is isomorphic to 2 permutation group. This result is
what makes permultation groups o importanl.

We advise you 1o read this unit carefully, because it gives you a concrele basis for studying
and understanding the theory of groups We also sugeest that you go through Sec. 2.5.2
again, before tackling this unit.

Objectives

Afier reading this unit, you should be able 10

® cxpress any permulation in S, as a product ol disjoint C)’CICS'

®  find out whether an ¢clement of S.. is odd or cven; ol
@ prove Lthat the altemating greup of degree o is normal in S, and is of order PR ;
¢ prove and use Cayley's theorem.

7.2 SYMMETRIC GROUP

From Sec. 2,5.2, you know thal a permulation on a yen- empty - sel X is a bijeclive function
from X onle X. We denole the set of all permutations on X by S(X).

Let us recall some facts from Sec. 2.5.2.

Suppose N is a finite s¢t having n elements. For simplicity, we 1ake these elements o be

Lo20o ..o Then, we denote the set of 2ll permutations on these n symools by §
MWerepreseni any 2 S, a 2-hine form as

i bl P

URR I S () [
Now there are o possibitities for ({1, anmely, 120000000 Onee () nas been specified,
dhere are (00 1) possibilities for [{2). namedy, {1, 2... ., a} \ [{UD]. This is becnse 1 s

-1 Thus, there are n{n — 1) choices for (1) and (2}, Continuing in this manner. we see
that there are ! different ways tn which f can be defined. Therefore, S, has n! clements.

Now, let us lock at Lhe algebraic structure of S(X} for any set X. The composition of
permutalions is a binary eperation on S(X). To help you regain practice in compuung the
composmon of permutations, consider an example.

31
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1 2 3 4 : 1 2 ‘3' 4
Letf = . = i
. [2 4 1 3 )andg (4 1 3 2 ]bcmS.:.

Then, to get fop we first apply g and.then apply .
- fog (1) = gel)) = f(4) = 3.
log (2) = f(g(2)) = (1) = 2.
p 3y =1{g3N =103 = 1.
fog (4) = [(g(4)) = (D) = 4.
. ( 1 2 3 4 )
.- fug -
. 3 21 4

We show this process diagrammatically in Fig, .

foft r —

E- 1 £-

Fig. 1:{1243) o{142}in S,

Now, let us go back 1o S(X), for any set X. We have nroved the following result in

Sec. 2.5.2. -

Theorem 1: Let X be a non-empty sel. Then the system (S(X), o) forms a group, called the
symmelric group of X. '

Thus, S, is a group ol erder n!. We call S, the symmetric group of degree n. Note thai il
{€Snthen

(= f(ly 2y ... f(m
| 2 ... n )

Now, with the experience that you have gained in previous units, iry the following exercise.

L 1) Show that (S, ) is # non-commutative group for o = 3.

o 1 2 3 I 2 3 .
{Hint : Check lhat( 2 31 )and ( 3 9 1 )dontcommutc.)

At this point we would like o make a remark.about our lerminclogy and nolation.

Remark : From now on we will refer to the composition of permultations as multiplication
ol permutations, We will also drop the composition sign. Thus, we will write fa g as {p.

The two-line nolation that we have used for a permultation is rather cumbersome. In the
next section we will sce how to usc a shorler notation.

7.3 CYCLIC DECOMPOSITION

[ this section we will fiest see how (6 wite peemutaitons convenlently, us ¢ modugr of

cactes, el us fieal see wlat o cvele s,

I T
Consider the permutation { = ( X K ' 5 ) Choose any one ol the symbols, say 1.
- 1 “ -
Now, we write down a telt hand bracket followed by 1@ (I
Since { maps 1 (o 3, we write 3 after | : (13 -
Since ( maps 3 o 4, we write 4 after 3 - (134
Since [ maps 4 to 2, we write 2 after 4 : (1342
Since f maps 2 to | (the symbol we started with), we close the brackets alter the symbol

(1342




Thus, we write [ = (13 4 2} This means that f maps cach symbol to the symbol on its
right, except for the final symbo[ in the brackets, which is mapped to the {irst.

Il we had chosen 3 as our starting symbol we would have obtained the expression (3421) ]
for {. However, this means exactly the same as (I 3 4 2), because both denote the

permutation which we have represented diagrammatically in Fig. 2.

Such a permutation is called a d-cycle, or a cycle of length 4. Fig. 2 can give you an

indication as to why we give this name.

Let us give a definition now.
Definition : A permutation [ € 8, is called an r-cycle {or eycle of length r} if there arc r

distinct integers iy, iz, iy, - . ., ir lying between '] and n such that

r(ll} = i:, f(lz} = EJJ ey f(lr"l) = ir‘ r([r) = iI-

and (k) =k ¥ k€& [iy, iz, . ... i) 2
Then, wewrite f = {i, 1> ... .. ir).

In particular, 2-cycles are called transpositions.For example, the permutation
{=(23) €8;is a transposition. Here f(1) = 1, {2) = 3 and (3) = 2.

Later in this seclion you will sec that transpositions play a very important role in the lhcory
of permutations,

Now consider any 1<cycle (i) iz S,. It is simply the identity permutation

1 2 ..... .
= ( 1 2 E), since it maps i to i and the other (n — 1) symbols 1o themselves.
Let us sec some examples of cycles in Ss. (1 2 3} is the 3-cycle that 1akes 1 to 2, 2 to 3 and
3 to 1. There are also 3 transpositions ir Ss, namely, (1 2), (1 3) 2ad (273).

The following excrcise will help you to see if you've understood what a cycle is.

E2) Write down 2 tmnspositions, 2 3-cycles and a 5-cycle in Ss.

Now, can we cxpress any permutation as a cycle? No. Consider the following example from
Ss. Let g be the permutation delined by

I-2 3 4 5

3541 2
If we starl with the symbol 1 and apply the proceduse for oblaining a cycle to g, we obtain
(13 4) aftcr three steps. Becauss g maps 4 1o 1, we close the brackets, even Lhough we have
not yel written down al! the symbols. Now we simply choose another symbol that has not
appeared so far, say 2, and start the procegs of wriling a cycle agaio. Thus, we obtain
anather cycle (2 5). Now, ail the symbo]s are exhausted.

Sg=(134)(25).

We call this expression for g a product of a 3-cycle and a transpositon. Ia Fig. 3 we
represent g by a diagram which shows the 3-cycle and the 2-cycle clearly.

/.
r
[
'

7 2
/ \
.‘/

Fig. 3: (134} (25)
Because ol the arbitrary choice of symbol at the beginning of each cycle, there are many
ways of cxpressing g, For example,
g= (413325 = @534)=(52)(341).

Thal is, we can wrile the product of the separaie cycles in any order, and the choice of the
sturting element within cach cycle is arbitrary.

Permutation Groups

A

v
Y

Fig.2:(1342)
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So, you sce that g can’t be written as a cycle; it is a product of disjoint cycles.

Delinition : We call two cycles disjoint if they have no symbol in common. Thus, dlSJOlnl
cycles move disjoint sets of clements. (Note that { € S, moves a symbol i if f(i) =% i, Wesay
that { fixes i if f(i) = 1.)

So, for cxamp[e; the cydles (I 2) and (3 4) in S, are disjoint. But (l 2} and (1 4) are not
disjoint, since they both move 1.

Note that if [ and g are disjoint, then fg=="pf, since f and g move disjoint s.‘cls'o_f symbals.

Now [et us'examine one more cxample. Let h be the permutation in S5 defined by
1 2 3 45
4 2 3 51
Foltowing our previous rulcs, we obtain
h=(145)(2)3) .
because cach of the symbols 2 and 3 is [eft unchanged by h. By convention, we don't

h=

* include the I-cycles (2) and (3) in the expression for h uniess we wish to emphasize them,

since they just represent the identity permutation. Thus, we simply write h = (145).

. I you have understood our discussion so far, you will be able to solve the following

CXCICISES.

E3)  Express cach of the following permutations as products of disjoint cycles in the
manner demoastrated above,

a)'l2345]
5 4 21 3

b1I23-45678'
Yls a7 21365
S (12348
A I

E4) Do thecycles (1 3) and.(1 5 4) commute? Why?

What you have seen in E 3 is true in general-We state the following-result.
Theorem 2 ; Every permutation f € S, { % [, can-be expressed as a product of disjoint
cycles.

Tiie proof of this statement is ledious. It is the same process that you have applied in E 3.
Su we shall not do it here.

Now we will give you some exerciscs in which we give some interesting properties of
permutations,

£ 5)  Show that every pcrmulaiion inS.isacycleifl n < 4,

L&) I[f ={lit2.. . .0) €85, then show that
= P i)

E7r Iz an r-cvele, then shaw that s =i, "=land "= Life-"1
AU T =0 i e () = 00 () =05, 7 ) = 1

And now lel us sec ow we can write a cycle as a producl of transpositions. Cansider the
eycle {1534 2 ia Ss. You can check that this is the same as the product
{1 2) (L 43 (1 3) (15). Note that these transpositions arc nol disjoint. In facl, all of them

move the element 1.

The same process that we have just used is true for any cycle. That is, any r- cycle
(itiz...... i) cant be written as (i) 0) (4 i-d) . . . . . (i1 iz), a product of {ranspositions.




Note that, since the transpositions aren’t disjoint, they need not commute. Permutation Groups

Try the following cxercise now.

E 8) Express the following cycles as products of lranspositioﬁs;
a) (I'35), b)(531), ¢) (24523).

Now we will use Theorem 2 10 state a result which shows why transpositions are so
important in the theory of permutations,

Theorem 3 : Every pemmutation in S, {n = 2) can be writlen as a product of transpositions.

Proof : The proof is really very simple. By Theorem 2 every permutation, apart from 1, is a
product of disjoint cycles. Also, you have just seen that every cycle is a product of
transpositions. Hence, every permutation, apart from I, is a product of iranspositions.

Also, [ = (1 2) (I 2). Thus, I is also a product of transpositions. So, the theorem is proved.

Let.us sce how Theorem 3 works in practice. The permutation in E 3(a) is (1 5324). This
is the same as (1 4) (I 2) (1 3) (1 5).

2 3 4 56
36 41 2 5
=U34)265)=14)(13)(25)(26).

Similarly, the permutation (

Now you can try your hand at this process,

E9)  Write the permutation in E 3(h) asa product of transpositions,

E 10} Show that(12.... M=1223)..... {5 10).

The decomposition given in Theorem 3 leads us to a subg-roup of S, that we will now.
discuss, -

7.4 ALTERNATING GROUP

You have seen that a permutation in S, can be wrilten as a product of transpositions. From
E 10 you can sec that the factors in 1he product are nol uniquely determined. But all such
represeatations have one thing in common—if a permutation in S, is the product of an odd
aumber of transpositions in one such representation, then il will be a product of an odd
number of transpositions in any such representation. Similarly, il { €S, isa produgl of an
sven number of Lranspositions in one representation, then [ s a product aof an even number
3 transpositions in any such representation. To see this [act we need the concept of the
ignature or sign -function. '

Definition : The signature of { € S, {n = 2) is delined to be -

. n {1 — (i
sign f = Il —u
Li=| !
| r
ror example. for [ = (1 23y s, ' o T s a-
_ (3 — i) @) - /) I3) - [(2)
sign f = ———+ . 2T :
- 2—1 3—1 312
32 [ -2 F L — 3]
2 (52 (52
S G S R 1
dimilarly, Ir={(12)c8S, tiea
on o [(2) -~y 3~ KD §(3) - (2
sign { = - -
& 27— | 3 -1 3 —2
,"1—2‘\(3—-2] 3—-1
- - — |= =1
l 1 2 |
lencelorth, whenever we wlk of sign f, we shall assume that f € S, for some n = 2.
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Try this simple- exercisc now.

E [1) What is the signature of [ € §,?

Have you noticed that the signature defines a function
sign : S, — Z? We will now show that this function is a homomorphism.

Theorem 4 : Let f, g €8, Then sign (fog) = (sign ) (sign g).

Proof : By definition,

sign {08 =10 M
I]l J—!
i<j

— g feG) —feG) 80— g(i)
W g0 — 8@ oo §Ti
Now, as i and j take all possible pairs of distinct values {rom 1 to n, so do g(i) and g(j),
since g is a bijeclion. .

L e _ o
1< g(i) — ()

= osign (fog) = (sign [} (sign g).

Now we will show that Im (sign) = {I, — L4

Theorem 5 : 2} If 1 €8, is a transposition, then signt = - 1.

by signf=lor—1¥{fES,
¢) Im (sign) = {1, — L}

Proof: 2} Lett = (pq), wherep < q.

Now, only one factor of sign t involves both p and g, namely,
g —~Wp) _p—a_

-1
q—ep Q0P
Every lactor of sign [ thal doesn't centain p or g equals 1, since
W -y _i—j
O 17 i+
i—j i—j

The remaining factors contain either p or q. but not both. Thcsc can be paired together to
form one of the following products.

) —Wpy W) —ug) _i—qi—p

a - : - =1,ili>q,
i—p 1—q i—plil—gq
1)) — 1(p) t(q) = i i— — .
=) Q=@ _17ap— U iy,
1—p q—1 I—pgq—1
tp} — uD tg) — i —ip—i .
()W @ _a-ip=i oo
p—t qQ—1! p—tg—i
Taking (he values of all the faclors of sign t, we sce that sign t = — |,
hy [ ae i — C ey T qmme o PP P I . . -
D)ol one 0F auloidnn JWE Kndw ihat L = LIL2 o oo L WU AOLILG LTENSEHISLLIONS
t, . ...t in S,
g signf =simn{un .. .. 0
= {sign 4} {sign i) . ... sign (t } by Theorem 4.

= (— 1Y, by (a) above.
Ssignf =Tlor — 1.

¢) We know that Im sign) C (I, — 1).

We also know that sign t =—{, for any transposition t; and sign 1 = 1.
coty — 11 C Tm (sipn).

S Im (sign) = {1, — 1).

Now, we are in a position (o prove what w. said at the beginning of this section.




Theorem 6 : Let f €5, and et

f=ut.... =1 1" ..t

be two factorisations of f into a product of transpositions. Then either both r and s arc even
integers, or both are odd integers.

Proof : We apply the function
sign:S.— (1, —ljwf=ul.... t.
By Theorem 5 we see that
sngn [ == (sign 1)} (sign t2) . Csignt} = (— 1)r
csign (L7 L .. W)Y = (- 1) subslllmmg Wt .t for
lhalui (— I) .‘(— .
This can only happen I both s and r arc even, or both are odd

So, we have shown thatfor{ € S, the number of [actors occurrmg n any {aclorisation of f
inte transpositions is always even or always odd. Therefore, the following definition is
meaningful.

Definilion : A permutation [ € S, is called even if it can be written as a product of an even
number of transposition. [ is called odd il it can be represented as a product of an odd
number of transpositions.

For example, (! 2) € S; is an odd permutation. In fact, any transposition is an odd
permutation. On the other hand, any 3-cycle js an even permutation, since

(jb =30k EN-

Now, see if you've understeod whalt odd and even permutations are.

E 12) Which of the permutation in E § and E 9 are odd?
E 13} If, g €8, are odd, then is (o g odd 100?
E 14} Is the identity permutation odd or even?

Now, we define an important subset of S,, namely,
A, = {{ €S, ]| liseven}.

I
We'll show that A, A 8., and that o(A.) = % sforn = 2.

) . n!
Theorem 7 : Theset A, of even permutations in S, [orms a normat subgroup of S, of order 5

Proof : Consider the signature function,
sign: 8, — {l, — 1}
Note that {1, — 1} is a group with respect 1o multiplication. Now Theorem 4 says that sign
is a proup homomorphism and Theorem 5 says that Im {sign} ={1, — 1]. Let us obtain
Ker (sign}.
Ker (sign) = {[ €8S, | sign{ = 1}
= [[€385, | [iseven]
= A..
LA A S
Further, by the Fundamental Thearem of Homomorphism
Se/a =1, — 1L
S oS A = 2 thal iy, (?—(L:‘—i— =2

Note that this [ht.orc.m suys that the number of even permutations in S, equals the
number of odd permutztions in S,

Theorem 7 leads us to the following defipition.

Definition : /., the group of even permutations in Sy, is calle¢ the alternating group of
degree n.

‘Permutation Groups

sign [ = Lill { is even.
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Let us look at an example thet you have already seen In previous unll, A;. Now, Ii}:eorcm_
7 says that oA,) = %!-:: 3. Since (123) =(13)(12), (12 3) € Ay, Similarly, o

(13 2)c A, Of course, I € A,
SAy={1,(123),(132)

A fact that we hove used in the example above is that an r-cycle Is odq If rls even, and
even if r Is odd. This is because (2 .o o i) = i)l lr-|)'. vooo (iyha), o product of
{r = 1) transpositions, Use this fact to do the following exercise.

E 15) Writc down all the elements of A..

Now, fore rﬁomcnl. let us go buck to Unit 4 and Lagrange's theorem. This theorem says
that the order of the subgroup of a finite group divides the order of the group. We also sajg

that if n {0(G), then G need not have & subgroup of order n. Now that you know what A,
looks like, we are in a pasition to Hllustrate this statement,

We will show that A« has no subgroup of order 6, cven though 6 | o (Ad). Suppose such a
subgroup H exists. Then o{H) = 6,0(A) = 12, ~ |AitH| =2 4 H & Ay (sce Theorem
3, Unit 5). Now, Ai/H iz a group of order 2, Therefors, by E & of Unit 4,

(l-lg;i)2 = H ¥ g & As. (Remember H s the identity of A./H,)

T EHW¥gEA, :

Now,(123)€Au (123 =(13)en.

Stmilarly, (1 3 2)' = (1 2 3) & H, By the same reasoning (1 4 2), (124), (14 3), (1 3 ),
(23 4),(243) are also distinet elementof H, Of course, [ € Y.~

Thus, H contains at [east 9 elements, - o

~O(H) 2 9, This contradicts our assumption that o(H) = 6,

Therefore, Ay has no subgroup of order 6. )

We use A, to provide another exemple 100, (See how useful Ac isl) In Uni1 § we'd said thag
i HAN 2nd NAG, then H need not be normal in G, Well, here's the exampte, ’

. Consider the subset V. = {1, (1 2) (3 4), (1 4) (23), (1 3) (2 4)} of A,

E 16) Check that (V., ) is 2 normal subgroup of A..

Now, let H = {1, {1 2) (3 4)]. Then H is & subgroup of index 2in V. = H A V..
So, HAV, Vi AuButH g A, Why? Well, (1 2 3) € A is such that

(123" (12 (34)(123)=(13)(24)€H.

And now let us see why permutation groups are go important in group theory.

7.5 CAYLEY’S THEOREM

Most finite groups that first appeared in mathematics were groups of permutations. I was
the English mathematician Cayley who first reatised that every granp hae the alosbeaic
Siriciire of a subgroup ol S(X), for some set X, In this seotion we will discuss Cayley's
result end some of its applications,

Theorem § (Cayley) i Any group G is isomorphic to a subgroup of the symmetric group
3(G).

Proof :.For a € G, we define the lelt multiplication functjon
fi:G—Gifx) =ax

fuis 1-1, since

ix) =6y = AX=ay = x=y¥xyeaG

[ is onto, since any x € G is f, (a™'x).

~ L €5(G) Yacg..

(Note that S(G) is tke symmetric group on the set G.)

‘ ——. ..




Now we detine a function £: G — §(G) : f(a) = (.. - Permutation Groupa
We will show that f is an injective homomorphism, For this we nole that :
(fuofe) (x) = L {bx) = abx = fis (x) ¥a, b EG. :
~ f{ab) = fiy = f,ofs = f(a)of(b) ¥a, b EG.
That is, [ is a homomorphism,
Now, Kerf ={ae G| 1, =g}

=ECG|L(x)=x¥xEG)

=eG|lax =x¥x€G)

= [e].
Thus, by the Fundamental Thearem of Homomorphism, |
G/Ker f = Im { < §(G), .

that is, G is isomorphic 1o 2 subgroup of S(G).

As an example of Cayley's theorem, we will show you that the Klein 4-group K. (ref.
Example 7, Unit 3) is isomorphic to the subgroup V, of Si. The multiplication table for K,

15
c a b c
c [ A b c
[} L ¢ o b
b b c ¢ a
[= c b A [

E17) Check thatf. =1, f; = (er) (b c).' fb”=- (cb)(ac),fe=(ec)(ab)

On solving E 17 you can ses that

Ko={I, {ea) (bc), (e b)(ac), (e c)(ab)}. Now, Just replace the symbols ¢, a, b, c by 1, 2,
3,4 and you 'l] get V..

S Ko= Vo

Try the following exercise now.

E 18) Obuain the subgroup of S, to which Za is isomorphic, Is Z, -\ -

So, let us see what we have done in this unil.

7.6  SUMMARY

In this unit we have discussed the following points,
1. The symmetric group S(X), lor any set X, and the group S,, in particular.

2. The definitions and some properties of cycles and transpositions.

L

Any nun-identity permutaton in S, can be expressed as a disjoint product of cycles,

L

Any permutation in S, (n 2 2) can be wrilten a5 2 preduct of transpositions.
3. The homemorphism sign : S, — [I, — L], n= 2
6. Qdd and even permutations.
- . . n!
7.7 Ay, the set of even permutations in S, is a normal subgroup of S,, of order 5 for

2

v

n

8. Any group is isomarphic to a permutation group. 39
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SOLUTIONS/ANSWERS

E1)

_ 1 2 3 1 2 3 ) _( 12
S‘"“’(zsl)”(szl 113
1 23 I ) ( 2 )
( 3 2 1 ] ° ( 1 :
these two permutations don t commute.
> 8, is non-abelian.

* In Unit 6 (after Example 4) we showed how 8y =S, ¥ n = 3.

E 2)

E 3}

E &)

E>5)

E6)

ET

E 8)

E9)

E 10}

E1)

E 12)

5 S, will be non-abelian .V n=3

There can be several answers.

Qur answer is (1 2),{24),(1 3 §), (123),(25143)

a) (15324)
b) (1 85)(24)(376)
) (14)(25)

No. Because .
{12345 \_
uausa—(s S )Tu;4mﬂm
{12 34 _
(154)(13)—(3 2 o1 )~(1‘354).

You know that alt the elements of Sy, S: and S are cycles. So, if n < 4, every
permutation is z cycle in S..

Conversely, we will show that if n = 4, then there is 2 permutation in Sn which is
not a cycle. Take the element (1 2) (3 4). Tth is an element of S, ¥n =4, but it is
not a cycle. _— e

lSincc(h il- . --ir) (i: ir—l P i;f i],) = [=(i: ir—I e s i: i’-) (l1 i'2 ML if):

.. el e .
(hiz...,iy =0t ....020).

Letf=(i1iz.... i), ‘
Then f(is) = ix, {(iz) = s, ... -, r(ir.) =i {0 = 1.
LY = [, PG = (i) = i4. L FE) =) =0
Slmﬂarly, ff()=i ¥k=2,. T
=1
Also, fors<r, f (iD= ~0#L
Loff)=r. :

2) (15)(13)
b) (51) (5 3)
) 2NE25HQ2H

(I5(13EHE6ET)

For any three symbois (, j and k,
(G =1ij.

Then, if mis yet anather symbol,
7%k m)=(jkm), and soon:
S22y 010
=(]23)(34) {9

= ( 2 34)....91

= 10)
o IG) — I nooj—
sign[ =TI M: I J.—i:l_
=1 J-—l i_jflj-[

iy i«f

The permutations in E 8(c) and E 9 are odd.



E13)

E 14)
E 15)

E 16)

E 17)

L 18)

sign (f} = sign (g) = — I.
Sosign (fog) = (D (—1) = 1.
<. fog is even. ‘ ‘ E

sign [ = 1. .. [ is even.
\ 4!
We know that ofAs) = > = 12! Now [ € A Then, all the 3-cycles are in A,

Theyare (123),(132),(124),(t42),(134),(14 3),(234),(243).
Then we have all the possible disjoint products of two transpositions. They are
(12)(34),(13)@E2),(14)23)°

So we have obtained all the 12 clements of A,

By actual multiplication you can see that V. is closed with respect 1o o, 2od each
clement of Vi is its own inverse.

SV AL

Again, by actual multiplication, you can see that

flefeVi¥fEAiandg eV,

SV A Al

(x)=ex=x¥xecK, ~f. =1

NDW, rl (v‘.‘.) =a, l'.(a) =&, rl(b) =g f.(C) =b.
~fhi={ca)(bc).

Similarly, fs = (e b) (ac)and [. = (¢ cylab).

We know that Z, = < | > and o(1)= 4. Therefore, the subgroup of S, iSUHIOrphfc to
Z. must be cyclic of order 4. ’
It is generated by the permuration fi.

.Nowfi(x)=1+4+ x¥x€EZ.

~ fi = (123 4), whichis the same as (1 2 3 4},
- Zg = <(1 2 3 4)>, which is certainly not isomorphic 1o A..

Permutation Groups
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8.1 INTRODUCTION

By now you arc familier with various finite and infinite groups and their subgroups, In this |
ucit we witl pay speciel attention to certain finite groups and discuss their structures, For
example, you will se¢ that any group of order 6 is cyclic or is isomorphic to S;.

To be able to describe the structure of a finite group we need some knowledge of a direct

- product of groups, In Sec. 8.2 we will discuss externaf ar interna! direct products,

In Sec. 8.3 we discuss the uses of certain results obtained by the famous mathematician
Sylow (1832-1918). These theorems, as well a5 a then. e by Cauchy, ; allow us to
determine various subgroups of some finite groups.

Finally, in Sec. 8.4, we use the knowledge gained in Sec. 8.2 and Sec. 8.3 to describe the
structures of several finite groups, In particular, we discuss groups of order less than or
equal to 10.

With this unit we wind up our discussion of group theory, In the next block you will stant
studying ring theory. Ofcoursc, you will kecp using what you have learnt in the first two
blocks, because every ring is 2 group also, as you will see.

Objectives

After reading this unit, you should be nble to

© construct the direct product of a finite oumber of groups;

® check if a group is a direct product of its subgroups;

@ use Sylow's theorems to obw.m the possible subgroups and structures of finite groups;

@ classify groups of order p, p or pq, where p and q are primes such that p > g and
qfp— 1

8.2 DIRECT PRODUCT OF GROUPS

In this section we will discuss a very important method of constructing new groups by using
given groups as building blocks, We will first see how two groiips can be combined to form
e third group. Then we will see how wo subgroups of a group can be combined 1 form
another subgroup.

8.2.1 External Direct Product

[n this sub-section we will construct 2 new group from twe or more groups that we zlrcady
have,

Let (G, »1) and (G>, +2) be two groups, Consider their Cartesian product fsee Sec. 1.3)
G=GXG:={xyIxEG,yEG).

Can we define a binary operation on G by using the opcrat:ons on Gi and Gi? Let us try
the obvious method, namely, componcrtwise multiplication. That is, we define the
operalion « on G by-(a, b) » (¢, d)=(a # ¢, b =,d)¥ a, cEG, b, d€G..



The way we have defined « ensures (hat it is a binnry operation,

To check that (G, « ) isa group, you reed to solve the following exercise.

E 1) Show that the binary operation « on G is assoclative. Find its identity element and
tha (nverse of any clemont (x, ¥) in G,

So, you have proved that G =G, X G: is n group with respect to » We call G the external
dircet praduct of (G, «) and (G, «).

For example R* is 1he exteenal direct praduct of R wilh itselr.
Another example is the direel product (Z, +) X (R*, .) in which the operation is gwen by

(m, x}» (0, y}=(m-+n xy)
We can also define the external direct product of 3, 4 or more groups on the same lines,

Definltion @ Let (G, w1), (Gy, 1), . ... + (G, #0) be n groups. Their external direet produci
is the group (G, +), where

G=G,KXG>..,.. X G, oand

(%1, x:, . x}"()l ------ })‘_(X! ‘IYI n "y.---.xn'n)’n)-v-xhyiEGh

Thus, R" is the external direet product of n capics of R.

We would like to make a remark about notation now,

Remark 1 : Henceforth, we will assume that all the operations », <1 . .., », are
multiplication, unless mentioned otherwise. Thus, the operation on

G=G XG:x%,..,,. X G, will be given by

(nll ----- 1l ﬂn}-(bl, ..... ,bn)
= {aby, azby, .., b)) ¥ b EG,.

Now Iry the following exercise.

E2) Showthat GiXG; = G2 X Gy, for any two groups G, and Ga.

.

Because of E 2 we can speak of the direct product ol 2 (or n) groups without bothering
aboul their order,

Now, let G be the external direct product G: X Ga. Consider the projection map

i GIAGr—Grim{xy)=x
Thcn m1 is a group homemorphism, since
71 ({0, B) (¢, d)) = (ac, bd )
ac
mi(a, b) i (¢, d)
™1 is also onto, because any X € G, is = (x ca)
Now, let us look a1 Ker .
Ker mi = [(, Y EGIXG: | mi (¥ = ¢}

=[{er, V)1 v E€G:) = [e.) X G-

{.'-.i >'G‘ 3 C.J vG‘
Blso, by the Fundamenta! Theorem of Homomorphism (G X Gy 1/ ([er} X Ga) = G,
Ve can similarly prove that G, » fei} & G, X Gy and (G X G /(G {e2)) = Ga.

In the following excrcises we give you gencral facts aboul exernal direct products of
groups.

E3)  Show that Gi x Gy is the product of its normal subgroups H = G, X (e} and K =

{ed) xG..
Also show tnu. (G el D (e @ G:) = (e, &)

" Finlte Groups
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The direct product of finite cyclic

groups is cyclic ilf their orders are
relatively prime.

E4)' Prove that Z(G, XG;) = Z(G1) X Z(Gy), where Z(G) denotes the centrc‘of G (sec

Theorem 2 of Unit 3).

ES) LetAandBbe cyclic groups of order m and n, rcspectivc[y. where {(m, n) = 1.
Prove that A X B is cyclic of order mn.
(Hint: Define (1 Z — Z, X Z,: [(ry=(r + mZ, r + nZ). Then apply the
Fundamental Theorem of Homomorphism to show that Zy X Z, = Zp,.

So, far we have seen the construction of G, X Ga from two groups G, and Gz Now we will
sce under what conditions we can express a group as a direcl product of ils subgroups.

8.2.2 Internal Direct Product

Let us begin by recalling from Unit 5 that if H and K are normal subgroups of a group G,
then HK is a normal subgroup of G. We are interested in the case when HK is the whole of
G. We have the following definition.

Definition : Let H and X be normal subgroups of a group G. We call G the internal direct
product of H and K if

G = HK and HN K = (e}
We write this fact a5 G = H X K.

For example, let us consider the familiar Klein 4-group

K«={c, a, b, ab}, wherc a’ = ¢, b’ = ¢ and ab = ba,
LetH=<a>aund K=<b> Then HNK = {e}. Also, K. =HK.
 Ke=HXEK,

Notcthat H=Z, and K == Z, . Ki=Z; X Z..

=10, 5} and K = [0, 2, & 6, 8). This is because

1) Zio=H + X, since any element of Z)o is the sum of an elemenl of H and an element
of K, and

iy HNK= (0.

" Now, can an cxternal dircet product also be an internal direct product? Well, go back to

E 3. What does it say? It says that the external product of G, X Gg is the internal product
{Gu X {e2]) X ({ea} X Ga).

We would like to make a remark here.

Remark 2 : Let H and K be normal subgroups of a group G. Then the internal direct
product of H and K is isomorphic to the external direct product of H and K. Therefore,
when we talk of an iolernal direcl product of subgroups we can drop the word internal, and
just say ‘direct product of subgroups': ) .

Let us now extend the definition of the internal direct product of two subgroups to that of
severzl subgroups. .

Delinilion : A group G is the infernal direct product of its normal subgroups

Hi, Hy, . ..., H.if

) G=HHy..... H,, and
i HNH.. ... oo Hoy e Ho=1{e}Vi=1,...

-y AL

For example, loak at the group G generated by (g, b, ¢, where a=e=b=¢ and
ab = ba, ac = c¢a, be = cb. This is the internal dircct product of <X 2 >, <Ib > and < ¢ >
Thalis G =Z; X Z; X Za

Now, can every group be written as an internal direct product of two or morc of its proper
normal subgrouns? Consider Z. Suppase Z = H X K, where H, K are subgroups of 7.,

+ From Example 4 of Unit 3 you know that H=<m > and K = < n > [or some m,

n € Z. Then mn € H M K. But if H X K is a direct product, H N K = {0}. So, we reach a
contradiction. Therefore, Z can't be written as an internal direct product of 1wo subgroups.

By the same reasoning we can say that Z can't be exprcssc(:i as Hy X H, X
where i<Z Wi =1,2,....,n '



When a group s an internal direct product of its subgroups, it satislies the following
thearem. '

Theorem 1 : Let a group G be the inlernal direel product of its subgroups H and K. Then
a} cach x € G can be uniquely expressed asx = hk, whereh € H, k¥ € K; and
b) hk =kh¥heEH keK

Prool : a) We know that G = HK. Therefore, if x € G, then x = hk, for some

h € H, k € K. Now suppose x = hk, also, where hy € H and ky € K. Then hk = hk,.
~hith = kK" Now h,"'h € H. : :

Also,sincely "' h=kk' €KX, B EK. 2 i EHNMK = [e),

S by ' = e, which implics that h = hy,

Similarly, k, k™' = ¢, so that k; = k. . _
Thus, the representation of x as the product of an element of H and an element of K is
unique,

b) The best way lo show that two clements x and y commule is to show that their
commutator X'y xy is identity. So, let h € H and k € K and consider b™%™'hk. Since
KaGh's'hekK,

~ h'k 'Rk EK.

By similar reasoning, h™'k'hk € H. ~ 7'k 'hk EH N K = (e},

 h7'k"'hk = ¢, that is, hk = kh.

Try the [ollowing exercise now,

L 6) Let Hand K be normal subgroups of G which satisfy {a) of Theorem 1. Then show
that G = H X K.

Now let us louk al the refationship between internal direct produats and quotient groups.

Theorem 2 : Let H and K be normal subgroups of a group G such that G = H X K. The
G/H = K and G/K = H. .

Proof : We will use Theorem 8 of Unit 6 1o prove this result. “
Now G = HK and H N K = {e). Therefore,

G/H = HK/H = K/HN K = K/{c} = K.
We can similarly prove that G/K = H.

We now give a result which immediately lollows from Theorem 2 and which will be used
in Sec. 84,

Theorem 3 : Let G be a finite group and H and K be its subgroups such that G = H X K.
Then o(G) = o(H) ofK).

We lease the prool w you (see the following CXETCIse).

E 7y Use Theorem 2 1o prove Theorem 3,

And now let us discuss some basic results about the structure of any finite eroup.

8.3 SYLOW THEOREMS

i Uni s we proved Lageange’s theorem, wiich saxs that the order ol a subgroup of o finjie
froup _dn':dus the order of the group. We also sud that it G is a finite cyelic groug and

m | ofG), thes G has a sibgivup of vrider m. But i1 G s nat cyclic, Loy slatement need not be
true, as you have secn in the previous unit. In this context, in 1845 the niithematician
Cauchy proved the following useful result,

Theorem 4 : If a ~-ime p divides the order of a (injte group G, then G comains an element
of seder p.

Finite Groups
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The proof of this result involves a knowledge of group theory that is beyond the scope of
this course. Therefore, we omit it. An immediate consequence of this result is the (ollowing,

Theorem 5 : Ii a prime p divides the order of 2 finite group G, then G contains a subgroup
of order p.

Prool : Just take the cyclic subgroup generaled by an element of order p. This element
exists because of Theorem 4.

So, by Theorem 5 we know that any group of order 30 will have a subgroup of arder 2, a
subgroup of order 3 and a subgroup of order 5. In 1872 Ludwig Sylow, a Norwegian
malhemalician, proved a remarkabie extension of Cauchy’s resuls. This result, called the
first Sylow theorem, has turned out to be the basis of finite group theory. Using this result
we can say, lor example, that any group of order 100 has subgroups of order 2, 4, 5 and 25.
Lzt us sce what this powerflul theorara is.

Theorem 6 (First Sylow Theorem) ; Let G be a finite group such that o (G) = p*m, where p is
a prime, n = 1 and (p, m) = 1. Then G contains a subgroup of order pk ¥k=1,...,n

We shali not prove Lhis result or the next two Sylow (heorems cither. Bul, alter stating all -
these results we shalt show how useful] they are,

The next thearem iovolves the concepts of conjugacy and Sylow p-subgroups which we
now define,

Definition : Two subgroups H and K of a group G arc conjugate in G if 3 g € G such that
K = g 'Hg, and then K is called a conjugate of H in G.

Can you do the following exercise now?

E8) Show that.H 4G iff the only conjugate of H in G is H itself.

Now we define Sylow p-subgroups.

Definition : Let G be a finile group and p be a prime such that p™ | o(G) but p™ ¥ o(G), for
some n = 1. Then 2 subgroup of G of order p" is called 2 Sylow p-subgroup of G.

So, il o(G) = p"m, {p, m) = 1, then a subgroup of G of order p" is a Sylow p-subgroup.
Thearem 6 says that this subgroup always exists. But, a group may have more than one
Sylow p-subgroup. The nexr result tells us how (wa Sylow p-subgroups of a group are
related.

Theorem 7 (Second Sylow Theorem) + Let G be a group such that o(G) == p™m,
{p, m) = 1, p a prime. Then any two Sylow p-subgroups of G are conjugate in G.

And now let us sec how many Sylow p-subgroups a group can have.

Theorem 8 (Third Sylow Theorem) : Let G be a group ol order p'm, where (_p. m) =1
and p is a prime. Then n,, the number of distinct Sylow p-subgroups of G, is given by
n, = 1 + kp for some k = 0. And [urther, n, | o(G).

We would like to make a remark about the actual use of Theorem 8.

[ B Y Y

Remark 3:Th d 53 f3cc Sco. 2500 -‘{ L b Aadses nne
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na | o{G), using theorem 9 of Unit 1 we find that 1, o This Iact
passitefities for e s you will see in the following exanples.

pa us to cui dowon die

Ixample 1 : Show thatany group of order 15 is cyclic.

Solution : Lot G be a group of order 15 = 3 X 5. Theorem 6 says that G has 2 Sylow 3-
subgroup. Theorem 3 says that the number of such subgroups must divide 13 and must be
congruent 0 i(mod 3). In facl, by Remark 3 the number of such subgroups must divide 5
and must be congrucnt to 1(mod 3). Thus, the only possibility is 1. Therelore, G has a
unique Sylow 3-subgroup, say H. Hence, by Theorem 7 and E 8 we know that H A G.
Since H is of prime order, it is ¢cyclic,



Similatly, we know that G has a subgroup of order 3, The total number of suthsubgroups
is 1, 6 or 11 and must divide 3. Thus, the cnly possibility is 1. So G has a unique subgroup -
of arder 5, say K. Then K A G and K is cyclic. :

Now, letuslookat HN K. Let: x EH N K, Then x €Handx €K

= ofx) | o{(H) and o(x) | o(K) (by E 8 of Unit 4}, i.c., o{x) | 3 and o{x) ] 5.
Jo(x)=1. & x=c Thatis, HMN K = {¢]. Also,

oy olK) _ . _

=222 = [5=oG).
oK) = ) o(G)
.G =HK.
S0,G=HXK=Zy X Zs=1Zj; byEJ.

Example 2 : Show that a group G of order 30 either has a normal subgroup of order 5 or a
normal subgroup of order 3.

Solution : Since 30 =2 X 3 X 5, G Lus a Sylow 2-subgroup, a Sylow 3-subgroup and a

Sylow 5-subgroup. The number of Sylow 5-subgroéups is of the form 1 -+ 5k and-divides 6
(by Remark 3). Therefore, it can be 1 or 6, If it is 1, then the Sylow S-subgroup is normal

in G,

On the other hand. suppose the number of Sylow 3-subgroups is 6. Each of these subgroups

are distinct cyclic groups of order 5, the only common clement being e. Thus, together they contain
24 + I = 25 elements of the group. So, we are left with 5 elements of the group which gre

of order 2 or 3. Now, the number of Sylow 3-subgroups can be t or 10. We can't have 10

Sylow 3-subgroups, because we only have at mast 5 elements of the group which ase of

order 3. So, if the group has 6 Sylow 5-subgroups, then it has only 1 Sylow 3-subgroup.

This will be rormal in G.

Try the following exercises now.

E9) Show that every group of order 20 has a proper normal noa-trivial subgroup.

E 10) Determine all the Sylow p-subgroups of Z.4, where p varies over ail the primes
dividing 24. ; -

E 11) Show that a group G of order 255 (= 3 X 5 X 17) has cither 1 or 51 Sylow 5-
subgroups. How many Sylow 3-subgroups can it have?

Now let us use the powerful Sylow theorems to classify groups of order 1 to 10, In the
process we will show you the algebraic structure of several types of finite groups.

8.4 GROUPS OF ORDER 1 TQ 10

In this section we will apply the results of the previous section to study some finite groups.
In particular, we will list ali the groups of order L to 10, upto isomorphism.

We slart with proving a very useful result.
Theorem 9 : Let G be a group such that o{G) = pg, where p, g are primes such that p > g
and g {'p — 1. Then G is cyclic.

Prool : Let P be a Sylow p-subgroup and Q be a Sylow q-subgroup of G. Then o(P) = p
and o{Q) = q. Now, any group of prime orderis cychig, so P = < x > and Q= <y >
{u: some x, y € G. By the third Sylow thcotem, ihic aumber n, of subgroups of order p can
be 1,1 5 p, T - 2p, ..., and it must divide q. But p > q. Therefore, the oaly possibility
for ngis 1, Thus, there exists only one Sylow p-subgroup, t.c., P. Further, by Sylaw's second
theorem P A G

Again, the number of distinet Sylow g-subgroups of G is 6, = | -+ kq [or some k, and

f, | p. Since pis a prime, its oaly [actors are | and p. =~ 0y = | or ng = p. Now il

1 + kq = p, then gf p — 1. Bui we started by assuming that @ 4 p — 1, So we reach a
contradiction. Thus, ng = | 15 the only possibility, Thus, the Sylow g-subgroup Q is normal
in G.

JFinfte Groups
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Now.we-want to show that G = P X Q. For this, let s consider P 1 Q. The order of any
element of P M Q must divide p as well as q, and heace it must divide (p, q) = 1.

~ POQ={c}. - o(PQ) = ofP) o(Q) = pg = 0o(G). - G =PQ.

Sowelindthat G=PX Q=Z,XZ,=Z, byES.

Therefore, G is cyclic of order Pg-

Using Theorem 9, we can immediately say that any group of order 15 is cyclic ;
(Example ). Similacly, if o(G) = 35, then G'is cyclic. .

Now ifg| p — I, then docs o{G) = pq imply that G is cyclic? Well, consider Ss. You
know that 0(51) = 6 = 2.3, bul Sy Is not cyclic. In fact, we have the [ellowing resull.

Theorem 10 : Let G bea group such that o(G) = 2p, where p is an odd prime. Then cither
G is cyclic or G is isomorphic to the dihedrai group Dy, of order 2p.

(Recalt that Dy = <fx,y|x"=c =y and yx = x"y} > )

Proof : Asin Lhe prool of Theorem 9, there exists a subgroup P = < x > of order p with
P A Gand a subgroupQ = <y > of order 2, since p > 2, Since 2,p=1,

PNQ =[e]. - o(PQ) = o(G).

. G =PQ.

Now, two cascs arise, namely, when Q A G and when Q 4 G.

fQAG thenG=PXQ Andthen G = < xy>.

- [fQ is not normal in G, then G must be non-abelian.

(Remember that cvery subgroup of an abelian group is nonaal.)
Lxy Fya. Sy lxy # % _

Now,since P= <Ix> AG,y'xy €P. . Y 'y = x', tor some

r=2,....,p— 1L

Therefore, y“xy* = y™(y xy)y = ¥'x'y = (s 'xy) = 1y =
=> x = x", since ofy) = 2.

=>x¥l=g,

But o(x} = p. Therelore, by Theorem 4 of Unit 4, ol =", pH{r—Dfr+ D
= plir—Dorp|r+ 1. Bu2=<rp—1 - p=rl,

ie,r=p— l. So wesee that

yixy=x"=x"=x"

S0, G=PQ=<lt,ylx"=¢, v =c, v'xy = vV > whichis exzctly the saomwe

algebraic structure as that of Dy,

LG =D =e kL yay Ny L )

You can see the utility of Theorem 10 in the following cxample.

Lxample 3 : What are the possible algebraic structures of 2 group of order 67

Sotution : Let G be a group of order 6. Then, by Theorem 10, G = Zs or G = D¢, Of
course, in E 7 of Unit 5, you must have alrezdy noted that $; = De. So, if G is nut evchic,
then G = Sy, You may like 1o try the following excreise now.

[ .

P12} Show hatil G s e group of ordar 19, then G = Ziw or G =

M, drom Theoie 0 of Ui 4, we know thai i o(G) s a primie, then o cvcie The
arcvps of ordess 2,3, Sand 7 are cvelic, This fact, together with Esample 3and 10§ 2,
sllows us to classify uli groups whone orders wre 1,2, 3, 3,6, 7 or 10, What zboutl the
stiuclure wf gioups ol order 4 =2 27 and 9 - 377 Suck groups are covered oy the Mnltowing
result,

Theorern 112 WG is a group of ordar p, jr @ prime, then G is abelian.

We will ot prove this result, since it preol is beyond (he scope of this course, But, using
this theorem, we can casily classily groups of order P |



Theorem 12 : Let G be a group such that o(G) = pl, whete p is 2 prime. Then cither G 1s ‘ . Finite Groups
cyclic or G = Z; X Z,, a dircct product of two cyclic groups of order p.

Proof : Suppose G has an_clchcnl aoforderp’. Then G = < a >,

On the other hand, suppose G has no element of order pz. Then, forany x €EG, ofx) = 1 or
o(x} = p (using Lagrange's Theorem).

letx €@, x¥eand H= <x> . 8incex # ¢, o(H) # 1

~ o(H) = p. |
Therefore, 3 y € G such that y € H. Then, by the same reasoning, K = <y > is of order
p- Both H and K are normal in G, since G is abelian (by Theorem 11},

We want to show that G = H X K. For this, consider H NV K. Now H N K < H,

“ o(H N K} ofH) =p. . oHNK) =1 oro(HNK) = p.

Ifo(H M K) = p, then HN K = H, and by similar reasoning, H M K = K. But then,
H =K.~ y€H, a contradiction. ’

L o(HNK)=1,ic, HNK = {e).

So,H A G,K A G,HNMK = {e) and o(HK) = p* = o(G).

S G=HXK=2,X1Z,.

Now, try the following exercise.

E 13) Whatare the passible algebraic structures of groups of order 4 and 97

So far we have shown the algebraic structure of all groups of order | 1o 10, except groups

of order 8. Now we will list (without praof) the classification of groups of arder 8.

If G is an abelian group of order 8, then

i) G == Zs, the cyclic group or order §, or

i) G = ZsXZs, 0F - ‘ : L

)y G=12Z, X T2 XZ.. : i -

{ G is 2 non-abelian group of order 8, then

i) G = Qj, the quaternion group discussed in Example 4 of Unit 4, or
i) G = D, the dihedral group discussed in Example 4 of Unit 5.

So, we have scen what the algebraic structure of any group of order 1, 2, ... ., 10 must be,
We have said that this classification is upto isomorphism. So, for example, any group of
order 10 is isomorphic to Z 5 or Dyg. It need not be equal to _ither of them.

Let us now sununarise what we have done in this unis

8.5 SUMMARY

In this unit we have discussed the following points.

l. The delinition and examples of external direct products of groups,

2. The definition and examples of internal direct oroducts of normal suhgronns

3

iT{m,n) =1, then'Z, X 2, = Z. .

G ofH W K) = ofHYofK).

3. The statement and application of Svlow’s theorams, which state that:
et Gbea ﬁnilc‘group of order p"m, where pis 2 prime and p Ao Then
t) G contains a subgroup of order p* ¥k =1, ..., n;
it) any two Sylow p-subgroups arc conjugate in G;
i) 1he number of distnct Sylow p-subgroups of G is congruent to | {mod p) and
divides o{G) (in fact, it divides m). '

6. Let o(G) = pg, p a prime, p >> q, g 4 p— L. Then G is ¢cyclic. - 49 J




Some More Group Theo:,

7. “Let o(G) ='p%, paprime. Then = o '

1) Gisabelian.
i) GiscyclicorG=Z, X Z,

8. The clas;iﬁcation of groups of order-1 to 10, which we give in:the following table.

o{G) Algebraic structure

H (] -
2 Z,
3 Z,
4 ZiocrZy X Z;

- Zs
6 Zoox 5,
7 Zy
B Zoor iy X Zoor Zy X Zy X Z; (il G &5 abelian)

QuorDy (if G is noo-abelian)

9 LoawZy X1
0 Zigor Do

8.6 SOLUTIONS/ANSWERS

E-1) = isassociative : Let (a), b}, (az ), (a3, b} EG.
Use the fact that « and «; ar¢ associative o prove (hal
({21, b1) = (a2, b2)) = (a5, b3} =(a), b) * ({82, b2 « (@3, b))
The identity element of G is (e, e3), where ¢; wud 2 are the identities in G\ and G,
respeclively.

The inverse of (x,)EGIs &y .

E2) Definef: G X Gs — Gz X Gy :f(a, b) = (b, ). - ‘
Then fis 1-1, surjective and a homomorphism. That is, f is an isomerphism.
G[ XG= Gz X G:.

E3) Wenced to show that any element of G; X Gz is of the form bk, where h € H and

k © K.
Now, any element of G, X Gy is (x, ¥) = (x, ¢2) (&1, ¥) and (x, ¢2) € H, (e, y) €K,
S Gy X G = HK.

Now, lelus look at HN K. Let (x, Yy EHN K.
Since {(x, ) €H,y = ¢:. Since (x, y) €K, x = ¢,
(X, Y) = (C:, {',2). ~HNK= {(01, C:)}.

E4d) Now,{x,Y) EZ(G X G). } .
<> (n,y) @b =&Y ¥aE b EG XG
<=> (xa, yb) = (ax, by) ¥2a €G;, b €G:

<> xa=ax¥aE€G and yb = by ¥b EG:

> x€Z(G)and y€Z(Gy)
<> (%, ¥) €2G) X 2G2)

il

£33 LetA= <x> andB= <y2>, whereo(x) =m,oly) = n.
Then A = Zgand B = Z,.
Il we prove that Z. X 7. = 7. then we will have proved that A XX B = 7. that
is, A X D is cyclic of order mn, ’
So, let us prove thatil (m, n) = 1, then Zi.. = Z, X Z,,
Define {078 — Z, X2, 00 = (e mZ ¢ +al)
(Remember that Z, = Z/sZ, for any s EN. ]
Now, { is 2 homomorphism because
[{r +s) = {{r + s) -+ wmZ, (r - 8) |- nZ)
={r +mZ -+ L)+ (s + mZ,s + nZ)
= fir) + ((s).
Kerf = {r€Z|r&€mZNnZ}
(fEZ)rCmnZ}
mnZ.




E 6)

E?7)
E 38)

E®

E 10)

E11)

E 12)
E13)

Finally, we will show thal { is surjective. Now, take any element - Finite Grougs
(u+ mZ, v+ nZ) €Z, X Z,. Since {(m, n) = 1, 3 5,t €Z such that

ms ++ nl = 1 (see Sec. 1.6). Using this equation we sce that

f(u(l — ms) + v(1 — o)) = {u+ mZ, v 4 nZ).

Tnus, [ is surjective.

Now, we apply the Fundamental Theorem of Homomorphism and find that

Z/Ker [ = Im [, that is, Z/mnZ == Z,, X Z,, that is, Zmp = L X Z,.

~ A X Bis cyclic of order mn.

We know that cach x € G can be expressed as hk, whereh € Hand k € K.

. G = HK. .

Weneed toshow thatI' MK = ‘el Laetx € H N K.

Thenx € Hand x @K, - xe € HK and ex € HK,

So, x has two representations, xc and ex, as a product of an clement of H and an
clement of K. But we have assumed that each clement must have anly one such
representation. So the two representations xe and ex must coincide, that is,
x=e - HNK={e.
» G=HXK.

G=HXK =>G/H=K => o(G/H) = o(K) = o(G)/o(H) = o(K).
== o(G) = o(H) o(K).

hl

HAG <= g'Hg=HV¥gEG <= the only conjugate of H in G is H.

Let G be a group of order 20, Since 20 = 2° X 5, G has a Sylow 5-subgroup. The
number of such subgroups is congruent to 1{mod 5) and divides 4, Thus, the
number is 1. Therefore, the Sylow 5-subgroup of G is norma! in G, and is the
required subgroup.

o(Z2) = 24 =2 X 3.

" Zzi has a Sylow 2-subgroup and a Sylow 3-subgroup. The number of Sylow 2-
subgroups is 1 or 3 and the number of Sylow 3-subgroups is 1 or 4, Now, if Zy, has
only | Sylow 2-subgroup, this accounts [or 8 clements of the group. So, we arc left
with 16 elements of order 3. But this is not possible because we can only have at
most 4 distinet Sylow 3-subgroups (i.e., 8 elements of order 3). So, we reach a
contradiction. "

" Zp¢ must bave 3 Sylow 2-subgroups. And then it will have only [ Sylow
3-subgroup. These are all the Sylow p-subgroups of Zaa.

255=3 X §X17=353X51,

The number of Sylow 5-subgroups is congruent 1o 1{mod 5) and must divide 51,
Thus, it is 1 or 51.

Since 255 = 3 X 85, the number of Sylow 3-subgroups that G can have is
congrucnt 1o 1{mod 3) and must divide 85. Thus, it 15 ] or §3.

We can apply Theerem 10 here.

Applying Theorem 12, we see that
i) o(G) =4 = G=ZiorG=17>X Za
ll) O(G)=9 == G =Zsyor G =173 X Zs.

wn
—




VIDEO PROGRAMME NOTES (MTE-06)

Groups of Symmetries -
(To be viewed after studying Block 2)

Content Coordinator: Dr. Parvin Sinclair ) Producer:  Sunil Das
School of Sciences Communication Division
IGNQU - IGNOU

A symmetry of an object is a movement that brings the objeci jnlo superposition with itself. In this programme

we look at the symmetries of various two-and three-dimensional geomelrical objects. We use them as examples
to concretise cerlain concepls of group theory that you have studied in the first two blocks of this course.

During the programme you will sce that the set of all symmetries of an object forms a group, whieh is the group
of symmetries (or the symmetry group) of the object. It tums out that this group is a permutation group.

An object can have rotatjonal as well as refleclion symmetrics. In the programme you will see that the set of
rotational symmetries is a subgroup of the group of symmetrics of the object. In particular, you will see that

1) the group of rotational symmetries of a regular n-sided polygon is the dihedral group

D, = {xy|2=c y =¢ xy=yki}),
where ¢ is the ideatity of the group.

if) tbe group of rotationat symmetrics of a2 regular tetrahedron is A,, and the group of all its Symmctries
is 8,
Fl

ii1) the ‘group of rotational symmetrics of a cube is S,.

_iv) the group of rolational symmetries of a rew:lar octahedron is S,, since a cube and regular octahedron
are the duals of each other.

During the programme we have given you lhe follawing actlvities to do after vlewing the programme.
1) Check that the composition of symmetrics of an object is an asso-mauvc vperation.

2) Obtain the proup of symmelries of a snow crystal.
{(Tint: As we have said in the programme, this is the same as the group of symmelries of a regular
hexagon. You need to check, that this groupis D ,. Note that a 5-cycle can’t be a symmc!.ry of a'hexagon,
because ey symmelry that moves S verices must move all 6 vertices.)

3) - Find the group of rotational symmetries of a methane molecule.
(Hint: The molccule’s struclure is tetrahedral, with toe hydrogen atoms at the vertices and the carbon
-atom inside the telrahedron, at an equal distance from each of the vertices.)

4) ©  Find all the 24 rotational symmetrics o . cube.
(Io the programme we have shown you that these symmetrics are elements of S, S, or S, depending
on whether we are observing the permutali »:s of its diagonals, its faces or its vertices.)
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BLOCK 3 ELEMENTARY RING THEGRY

Pussy.said to the Owl, ‘You elegant fowl!
How charmingly sweel you sing! ]

O ler us be married! Too long we have arried:
But what shall we do for a ring?" .

From 'The Owl and The Pusspcar’ by Edward Lear.

In the first two blocks of this course we acquainted vou with various asreits of proup theory.
In the three. units of this black, we will introduce you to another algebraic structure, It consists
of a set along with two binary operations defined on it. We will call such a system a ring il it
satisfies certain axioms that we state in Unit 9.

The notien of a ring is due 1o the malhemalicians Richard Dedekind {[831-1916) dnd .
Leopold Kronecker (1823-1891). Kronccker called such a syslem an ‘order’. The famous
David Hilbert introduced the term ‘ring” in 1897. The current definition of an abstract ring
appears (o be due 10 Emmy Noether, who used it cxlensively in her paper published in 1921,

As you go through the block you will see that a ring is an abelian group with some exira
properties. You will realise that we can very naturally generalise many of the concepts of
group theory to ring theory. Thus, whatever you_have studied about groups will help vou to
study this block, and the next one.

Our exposition of ring theory will follow the path that we used for acquainling you with -
group theory. We will start by defining different types of rings. Then we shall introduce you lo
subrings (the analogue of subgroups) and ideais (the analogue of normal subgroups). As in
Unit 5, this will lead us 1o quoticnt rings, the analogue of quotient groups, ke the last unit of
this block we shall discuss ring homomorphisms and isomorphisms. You will discover that the
exuemely vseful isomorphism Lhicorems for groups can be carried over 1o rings. This helps'us
greatly in analysing the structure of rings. '

-
As tn the previous blocks, we shall help you 1o digest the material by exposing you 1o plenty
of examples and exerciscs. The exercises arc as imporlant as the rest of the materia! in the unit;
so please attempl them as and when you come across them, and move further only after
solving them, -




Notations and Symbols

a =b(modn) aiscongruent io b modulo n.

(%) set of all subscisof X.

AAB {ANB) U (B\AY

R/I quoticnt ring of R by L.
<a> princip:al ideal gencrated by a.

S TR P ideal generated by A, vy 2n.
Kerf - kernel of the homomorphism f,

= is isomorphic 10
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UNIT 9 _RINGS .

Structure ]
9.1 Introduction : . } 5
Objectives ’ -
9.2 Whatis a Ring? ' 5
9.3 Elementary Propertics . ; 10
9.4 . Two Types of Rings ' 12
9.5 Summary 14
9.6 Solutions/Answers ) 14

9.1 INTRODUCTION

With this unit we start the study of algebraic sysiems with two binary operations satisfying
certain properties. Z, Q and R arc examples of such a system, which we shall call a ring.

Now, you know that both addition and multiplication are binary operations on Z. Further, Z
is an abelian group under addition. Though il is nol a group under multiplication,
multiplication is associative. Also, addition and muhiplication are related by the distributive
laws '

a(b + ¢} = ab + ac, and (2 + b)c = ac + ke

for all integers a, b and c. We generalise these very properties of the binary operations to
deline a ring in geaeral. This definition is duc to the famous algebraist Emmy Nocther.

-After defining rings we hall give several examples of rings. We shall also give some propertics
of rings that follow from the definition itself. Finally, we shall discuss certain types of rings thal .
are obtained when we impose more restrictions on the “multiplication” in the ring.

As the contents suggest, this nit lays the foundation for the rest of this course_So make sure
1hat you have attained the following objectives before going to the next unit,

Objectives ' - LT

B . . Fig. 1 : Emmy Noether (1882-1535

After reading this unit, you should be able to ® my Noedler (188 I

¢ definc and give examples of rings;

® derive some elemente. y properties of rings fiom the defining axioms of a ring;

® deline and give examples of commutative rings, rings with identity and commutative rings
wilh identity.

9.2 WHATIS A RING?

You are familiar with Z, the sei of integers. You also know thal it is a group with respect 1o
addition. Is it a group with respect to multiplication toe? No. But multiplication is associative
and distributes over addition. These properiics of addition and multiplication of integers aliow
us to say'that the system (Z, +, 315 a ring. Bul what do we mean by a ring?

Definition . A non-empty set R together with nwo binary operations. usually called addilion
(denoted by A=) and multiplication (denoted by ), s called a ring if the following axioms are
satisfied -

RI)ad+b=0-1fralla bin R, Le., addition is comnutative.

YT byt e o) foralla booin R, e, addition is associative

!

[E%

R

()

) There cxists an clement (denoted by 3) of R such that
a+0=2—"0+aflorallainR,ic, R has an additive identity.

R 4) ForcachainR, thercexists X in Rsuchlhata + x =0 = & + 4. ic. cvery element of
R has an addwive inverse.

R5) (a.b)c = atb c¢)forall a, b, ¢in R, ic. multiplication is assaciative;




* Blementiary Ring Theary

The underlylng cct of wring (R, +.

is the scz R

3

R6) afb+c}=a.b+a.c and
(adbe=a.c+b.c .
foralia, b,cin R, . -
t.e., multiplication distributes over addition from the [efi as well as the right,

The axioms R1-R4 say that (R, +) is an abelian geoup. The axiom RS says (hat
multiplication is associative. Hence, we can say that the system (R. +. .} is a ring i

i) (R, +}is an abelian group,
u}  (R..)isasemigroup, and

iif) foralla.b,cinR,a.(b+c}=a.b+a.c.and{a+B).c=a\c+l$.c.

From Unil 2 you know that the addition identity Q is unique; and each element a of R has a
unique additive inverse {(denoted by — a). We call the element 0 the zero element of the ring. -

By convention, we wrile a — b for a +( — b).

Let us look al some examples of rings now. You have alrcady seen that Z is a ring. What
about the seis Q and R? Do (Q, +, .) and (R, +, -) salisfy Lhe axioms RI-R6? They do.
Therelore, Lhese systems are rings.

The [ollowing example provides us with another sct of cxamples of rings,
Example 1: Show that (nZ, +, .) is a ring, where n € Z.

Solution : You know that nZ = { am| m € Z } is an abelian group with respect o addition.
You alse know that multiplication, in nZ is associative and distributes over addition from the
tight gs well as the lefi. Thus, nZ is a ring under the usual addition znd multiplication.

So far the examples thal we have considered have been infinite rings, that 15, their underlying
sets have been infinite sets. Now let us lock at a finite ring, that is. a ing (R, 4. .) where R is
a frnite set. Our cxample is the set Z, that you studied ip Unit 2 (Sec. 2.5.1). Let us brieflly
recall the construction of Z,, the sel of residue classes modulo o,

[l'a and b are integers, we say thal a is congruent o b moculo n if a — b is divisible by n; i
symbols, a = b (mod n) il n| {a — b). The relation ‘congrucnce modulo 0’ is an equivalence
relation in Z. The equivalence class containing the integer a is
a={b&Z]a—bisdivisible by n }

=la+tmn|mCZ}.

[tis called the congruence class of a modulo n or the residue cfass of a modulo . The sel
ol all equivalence classes is denoted by Z.. So

z:\ = { 6. T, i)'. .,..,;1 - I }

We define addition and muliiplication of clinses I 1erms of their representatises by
2+ b=3a -+ band

ab=ab ¥abecz.

In Sec. 2.5.1 you have seen thit these operauons are-well defined in Z-. To help you regain
some praclice in adding and multiplying in Z., consider the following Cayley tables for Z..

Addition in Zs Multiplication in Zs
I
8,0 7 71 7 3i{o]ls & 0 © 0
SRR T S v6 1 1 3
IR A T R T 2 16 1 5T 5
B
3.4 0 1 7 3 ilo 13 3 7

Now let us go back w0 looking for a finiie ring.
Example 2 : Show that {Z., +, .) is a fing.

Solution : You already knww that (Z,,, +) is an abelian group, and that multiplication is
associalive in Z,.. Now we nec o see il the axiom R6 is sauisfied.




For any

=afbtc) =ab-+ac =ab +ac
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(
Thus, alb +c) =ab +ac.

Similarly, (a + b).c =ac + b ¥ a,b,cE€Z,
So, (Z,, +, .) satisfies the axioms R1-R6. Therefore, it is a ring.

Try this cxercise now.

El) Write out the Caylcs" tablgs for addition and multiplication in Z£, the sel of ron-zera
clements of Ze. Is (Z*, +, .) a ring? Why?

Now let us look al a ring whose underlying sel is a subset of C.

Example 3 : Consider the sel

Z+iZ=[m + in| mand narc integers }, where i’ = — |,

We define "4+ and " in Z + iZ 10 be the usual addition and multiplication of complex
numbers. Thus, lor'm + inands -+ itin Z 4 iZ,

(m+in) + (s +it) =(m + ) + i(n + 1), and

(m+imy.(s+iy= (rns — o) + i(mt + ns).

Verify that Z + iZ is a nng under this addition and multiplication. { This ring is called the ring
of Gaussian integers, afler the mathematician Carl Friedrich Gauss.)

Solution : Check that (Z + iZ, +) 1s a subgroup of {C, +). Thus, the axioms R{-R4 arc
satishied. You can also check that

((a+ib).(c+ id).(m +in)=(a+ib).{(c +id). (m + in))
Yatibctidm+in€z +1iZ.

This shows that RS is also satisfied.

Finally, you can check that the right distributive law holds, i.e.,
((a +ib) + (¢ +id)). (m +%in) = (a + ib) . {m + in} + (¢ + id) . (m = in) for any
at+ibc+id,m-+tingZ +iZ.

Similarly, you can check that the left distributive law holds. Thus, (Z + (Z, +, ) is a ring,

The next example is related to Example 8 of Unit 2. The operations that we consider in it are
not the usual addition and mulliplication.

Example 4 : Let X be a noa-cmpty set, 2 (X) be the collecti~n of all :,ubsu.s of X
and A denote the symmerric diflerence opezration. Show that ( 2 (X), A, M} is a ring,

Solution : For any two subscis A and B of X,
AAB=(A\B)L(BA)

In Example 8 of Unit 2 we showed that ( 2 (X), &) is an abelian group. You also know
that M is associative. Now lel us sce if M distributes over 3.

Let A} B, C £ £ (X). Then

ANBAC)=AN[B\C)U(C\B)

[A N B\O) U [A N (C, BY, since N distribules aver U. '

(A BNAN O U A D CNA N BY), since ™ distribules over
complementation.

=AM A AN,

1]

30, tive feit distributive iw molds.

AR B A i A = A7 & O since 0 s conmtative, -
=(ANMB AT
=S(BOAACT b

Therelore, tire right distributive law holds also.
Therelore, { 2 (X). X MY is a ring.

So far you have seen examples of rings in which both the epzrations delined on the ring have : :
been commuiative. This is not so in th nea examplie . ) 7




Hementary Ring Theory Example 5 : Consider the sal .

. ar ap
Mx(R) = ”: ) J
- an  an

Show that M:(R) is a ring with respect to addition and multiplication of matrices.

d71, 312, a1 and azs are real numbers

Sofution : Just as we have solved Example 2 of Unit 3, yéu can check that (Mz(R), +)is an
abelian group. You can also verify the associative property for multiplication. (Also see
Example 5 of Unit 2.) We now show that A.(B+ C) = A.B+ A.C for A, B, Cin My(R).

an an b bn Cu Cn

o ) EHE )
a a:: by ba Len e
4

a
a

i

M|
nooan b 4 ¢n b;; + i’
Zl: iy a_-;J [b:. +ecn b+ c;:J )
(b +cu) + anlby + cu)  an(bi: + ci2) + aja(bar + c2)
L:.(b“ + c) + aaby + ) 33‘(b.'3 + ci2) + axba + c;:)]

4 @ibn + aha) + (anc + anca) (aubiz + anb) + (@nci 4 ancs:) :I
- aanbin T anby) F @ncn Fanen) (@nbiz + anba) + (anci + anc:)

i

[ﬂubn +anby anbn + 31:b:1] [auc” + aj:ca C anen + aul:::J

anbyy T apby anbi: 4+ anba aycy F ancy  anci: + anpc:

ES RN TR bir b dr; an it Cr2
. + . :
aun an | gba bz dxn  an Cn Cu

=A.B+A.C

i

Inthe same way we can oblaia the other distributive law,ic,(A+ B).C=A.C+ B.CV A,
B, C € My(R).

Thus, Ma(R) is a ring under matrix addition and multiplication.

Note that multiplication over My(R) is not commutative. So, we can't say that the left
distributive law implics the right distributive law in this case.

Try the following excicizes now.

E2) Show that the sa1 Q + \/?Q ={p+V2q|pgEQ)isaring with respect 10
addition and multiplication of real numbers.

z 0]
E}) LR = { 0 i a, bare real numbers }.Show that R is a ring under matrix
. L0 b
addition and multiplication.
fa 0 o .
Ed} LeR = a, bare real numbers) . Prove that R is a ring under matrix
b 0 .

addition and multiplication:

ESt Whyis ( 2(X). U, N)nota ring?

Letus now look ait rings whose elemeats are functions.

Exampic 6 : Consider the class of all continuous real valued functions delined on the closed
interval {9, 1}, We denote this by {0, 1], 1T and g are two continuous functions on [0, 1], we
define I+ g and [p s

(f—g)(x) = [(x) - g(x) (Lc., pointwise addition)
and (f.g) (x) = f{x). g(xt (i.c, pointwise multiplication)
for cvery x € [0, 1. From the Caleutus course you know that the function { + g and fg arc
defined andd continuous on [0, 1}, ie., if fand g € Ci0, 1] thenboth § + g and (.gare in
.8 C[0. 1]. Skow that C0. 1] is a ring with respect v + and




/
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Solutio:: : Since addilion in R is associative and commutative, so is addition in C[0, I]. The. : Rlogs
additive idertity of C[0,.1] is the zero function. The additive inverse of EEC[0,-1]is (— ),

where (— 0){x) = — I’(x‘)“ﬂ!L X €[0, I}-See Fig. 2 for 2 visual interpretation of {— f). Thus,

(€{0, 1), +} is an abelian group. Again, since multiplication in R is associative, s is '\

.mattiplication in C[0, 1}. . '

Now et us see if the axiom R6 holds.
Toprove f.(g + h) = f.g + {.h, we consider (F (& + h)) (x) for aby x in [0, 1]. . f

Now (F. (g -+ h)) (x) = f(x) (g + h) (x) '
=1(x) (g(x} + h(x)) ) o
= [(x)g(x) & f(x) h(x). since . distributes over -+ in R. i o
=) (x) + (I.h) (9 - © SNy
= (f.g + {.h)(x) R

Hence, f.(g + h) =f.g + f.h. . . -

Since multiplication is commutative in CI0, 1], the other distributive law also holds, 'Thus. Ré6 -
is teue for C[O, 1]. Therefore, (C[0, 1), +, ) isa ring. ‘ '

This ring is called the ring of continuous funciions on [0, 1].

: Fig 2: The graphs of { and (— )
The nexl cxample also deals with functions. aver |0, 1].

Example 7 : Let (A, +) be an abelian group. The set of all endomorphisms of A is An eadomarphism of a group G is 2
homomorphism from G into G.

End A = [f:A—-A|f(a+b) =f(a)+fb)y*abeca ]

For {, g € End A, we define f + g and Mgas

((+ g) (a) = f(a) + g(a), and J e (1)

(f-g) (2) = fug(a) = Mga) v a € A

Show that (End A, +, )isa ring. {This ring is cailed the endomorp_ﬁhm ring of A.)
Solution : Let us first check that + and | defined by {1} are binary operations on End A.

Forallg, be A, ~ ~
(f-i-g](a+b)=f(n+b}+g(a+b)
= (f(a) + /(b)) + (g(a) + g(bY)
= (fa) + g(a)) + (f(b) + (b))
=(f+g)(a) + (I + g) (b), and
{l.g)(a +b) = f(gla + b))
= f(gla) + g(b))
= f(g(a)) + f(g(b)
={f.2)(a) + (f.g) (b)
Thus, f + g and (g &€ End A.

Now let us see i (End A, +, .} satisfies R1—Rs.

Since + in the abelian group A is associative and commutative, so is + in End A. The zcro
homomorphism on A is the zero element in End A. (= ) is the additive inverse of [ € End A.
Thus, (End A, +) is an abelian group.

You also know that the compasition of functions is an associative operation in End A

Finally, to chieek R6 we look qr £ (2 + h) forany T, g. h € End A. Now for any a C A,
S iy s lie - by ah
= fafe) 4 Wa)
() - fhia
LR RET R R TREY
=(lg = . hy(ay
g Ty o= foe = I"_{'h:

We can similarly prove (hat F+gj.h=1h+ z_h,

Thus, RE-R0 are true (or End A

Henee, (Ind A, +. )i a rng.

Note that . is not commurative since f.8 need not be equal o guf for f, 2 CLEnd A

Vouwmay ke 10ty these evercines now
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E6) Let X be 2 non-empty set and (R, +, .) be any ring. Define the set Map(X R)tobe
the set of all functions from X to R. That i i,

Map (X, R} ={Il[: X—R].
Define + and . in Map (X, R) by pointwise addition and mulllphcauon Show that
{Map (X, R), +, .}isa nng

E7) Show that the set R of real numbers is 2 ring under addition and muitiplication given
bya®b=a+b+landa®b=2a.b+a+b
for all a, b € R, where + and . denote Lhe usual addition and multiplication of rea!
numbers.

On solving E 7 you must have rezlised that a given set can be an underlying set of many
different rings.

Now, let us look at the Cartesian product of rings,

Example 8 : Let (A, +, ) and (B, @ , [J ) be two rings. Show that their Cartesian product
A X Bis a ring with respect to ® and * delined by

(2,0} @ (2, b)=(a+2a, b &b and

(@, b)={ab)=(a.a, b0 b}

for 2ll (a, b), (&, b") in A X B.

Solution : We have defined the addition and multiplication in A X B componentwise. The

_zero element of A X Bis (0, 0}. The additive inverse of (a, b) is (— a, B b}, where @ b

denotes the inverse of b with respect to B .

Since the multiplications in A and B are associative, » is associative in A X B. Again, using
the fact that R6 holds for A and B, we can show that R6 holds for A X B. Thus,
(AXB, @ «)isaring

If you have understood this example, you wiil be able to do the next exercise.

E8) Write down the addition and multiplication tables for Z; X Z,.

Belore going [urther we would like 1o make a remark about notational conventions. In the
case of groups, we decided to use the notation G for (G, «) for convenience. Here too, in
future, we shall use the notation R for (R, +, ) for convenience. Thus, we shall assume

that -+ and . are known We shall also denote the product of two ring elements a and b by ab
instcad of a . b.

So now let us begin studying various propertics of rings.

9.3 ELEMENTARY PROPERTIES

In this section we will prove some simple bul important properties of rings which are
immediate consequences of the definition of a ring. As we go along you must not forges that

for any ring R, (R, +) &5 an abelian group. Hence the results obtained for groups in the carlicr

units are applicable 10 the abelian group (R, +). In particular,
ij ihWCZCToC
i) the cancellation law holds for addinon,

e VM oabh el Rates o s b

As we have mentoned eaclicr, we will write o — hlur s — (— by and ab lor a. 0. where
. hZ R,

So let us stale some properties . fich fatlow from the axiom R&, mainly,
Theorem I : Lel R be a ring. Then, {or any 2, b, ¢ € R,

) al=0 =0 ‘ §

1 a(— b} = {~- alb = — (ab).




HI) (—a)(— .b} = ah,
iv) a(b—c¢)=ab —ac,and
v)‘ (b—cla=ba — =

Prool:i) Now,0 +0=290
= a0+ 0)=ad
= al + a0 = a0, applying the distributive law.
= al -+ 0, since O is the additive identily.
= a0 = 0, by the cancellation law for (R, +).

Using-the other distribulive law, we can similarly show that Oa ==
Thus, a = 0 = Qa foralla €R.

it}  From the definition of additive inverse, we know that b + {— b= 0
Now, 0 = a0, from (i) above.
ab + (—b}),as0=b + (— b).
- = ab - a(— b), by distributivity. :
Now, ab + [— (ab)] = O and ab + a(— b) = 0. Bul*you know that the additive
inverse of an element is unique.

Hence, we get — (ab) = a{— b).

lo the same manner, using the fact that a + (— a) = 0, we get — (ab) = {— a)b.
Thus, a(— b} ={(— a)b = — (ab) lor all 2, b ER.

ii) Fora, b&R,
{— a) {(— b} = — (2(— b)), [rom (ii) above.
a{— (— b)), from (i) above,
ab, since b is the additive inverse of (— b).

]

iv)" Fora,b,cER,
alb—c)=ab+ (—c)
= ab + a(— c}, by distributivity.
ab -+ (— (ac)), from {ii) above. .z
= ab — ac, .

]

We can similarly prove (v).
Try this exercisc now.

E9) Show thal { 0 } is a ring with respect to the usual addition and multiplication, {This is
called the trivial ring.,

Also show tkat if any singleton is a ring, the singleton must be | 0 .

E 10} Prove that the oaly ring R in which the twa operations are equal (ie., 2 + b = ab§*
a, b € R) is the trivial ring.

Now let us look at the sum and the product of threz or mare elements of x ring. We defing
them recursively, as we did in the case of groups (sec Uml 2).

Mk isan mlwcr (k = 2) such that the sm ol k elements in a ring R s defined, we define the
sum oof (k + 1) clements a-. as ., 4.0 in R waken in thar order, as

i Lo a —fao- L '-'1-':-.’:.-

fn e same way ik as o positive integdr sudlt that e prodict of bt B el

wedeline the produst e ok = ivelements o 0 o (aben it erdor o
A L IR o
As we did lor groups. we can abtoa laws of indices 1 e case of nags alse with respedt o

both = and .. In lact, we byae e following esuis lor v ring R

(1) 1w and nare posiove wtegers and a = R, then
av.a" =" ang
(am)r — u.:—---

() [['mand n are arbitrcy integers and 0. b < R, then
{n T ml = na -+ nu

Rings -



Elementary Rlng Theary

{nm)a = n{ma) = m{nz;,

n(e + b) = na + nb,

m(ab) = {ma)b.= a(mb), and
{ma) {rb) = mn (ab) = (mna)b.

(ili) 1f ay, a2, .y 22 by, o b2 €R then
(ar + .. Ta)(bi + ..+ by
= 8|b| + o + E.|tln + a:bl + ..+ szn + ..+ amb| + + a:\bn.

Try this simple cxercisc now.

E1l} IfRisaring and a, b €R such That ab = ba, then use inductien enn € N to derive
the binomial expansion .
(a+b)=a"+"Ca""'b+ .. + "Ca""b" L "Ca-1b™ " 4",
r!

n T ———
where "Cy = i = 0l

There are several other properties of rings that we will be discussing throughout this bleck. For
now let us look closely at two types of rings, which are classified according to the bchawour of
the multiplication deflined on them,

9.4 TWO TYPES OF RINGS

The d=finition of a ring guarantees that the binary operation multiplicatien is assqciali';'c and,
along with +, satisfies (he distributive laws. Nothing more is said about the properties of

rw “iplication. Il we place restrictions on this operation we get several types of rings. Let us
tnte ~duce you to 1wo of them now,

Definition : We say (hat a ring (R, -+, .} is commulative if . is commutative, i.c., if ab = ba
foralla, b TR ’

For example, Z, Q and R are commulative rings.

Definition : We say (hat a ring (R, T, .} is 2 ring with identity (or with unity) if R has an
identily element with respect to multiplication, ie., il there exists an clement € in R such that
ac =e¢a =aforallagR,

Can vou think of such a ring? Aren't Z, Q and B cxamples of a ring with idenlity?

Try this quickie before we go to our nexi delinition,

E 12} Prove that if a ring R has 2n {dentity element with respeet to meliiplication, then it is
unique, {We denotz ihis unique identity element in a ring with identity by the symbol

L.)

Now lel us combine the previous Iwo definitions.

Definition : We say that a ring (R, -, .1 15 2 commutative ring with unity, if it is 2
comumative ring and has the mullellc:lmc identty element 1.

Chioe, the s 20 Q) Woand C e ol commutanive rings with unity. The mteger |15 the
ilpicative Wdently m oo these rin s

MW e N commuiative reags e lesioere not rings woath idenuty. For example, 22, the
G v ameneeao cenuinuitve. Bud b o no muitplicative ileatits.

St sl we can find nines wazhy identies which aee not commutative, For example, MR
F. _ 1
) PN
has the unit clemeni Lo J|

<ol s ngt commutative. For mstancy,

| ‘ IOI];md [!-—-EHi ”.Ih -
|

N
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Thus, AB # BA,

E 14} Show that the ring in E 7 is 2 commutative ring with idenlity.

E15) Show that the set of matrices { [i ::‘

xXER ] is 2 commualive ring with unity.

E 16) Let R be z Boalean ring (e, 2’ =avac R). Showsthata = — a+ a.£ R. Hence

show that R must b commurative,

Now we st yive an important example of a noncommutative ring with identity. This is the -
ring of real quaternions. [t was first described by the Irish mathematiciar William Rowan
Hamili <0 1-13-18635). It plays an imponant role in geometry, number theory and the study

of mecnemes

.

Frampic 9 Lec Il ={a+bi+¢+~dk|abedCR bowhere i i bare symbels that
Wiy = — ] T,i"—_-k:.ij:l-::-ji."k:i': BRI =] — — ik

We define addition and multplication 1o H b

v g o+ dk) ={a, b+ TN

g vayy — (b o+ bi —fe+ )~ d — dok and

woeobD g = by e — o € + diX) = {awy ~— bb; - oo oy

Tty 7 obay ody —de)i + {ac, = bd, +¢ca, + dbj =+ feds f bey — by = daik

(This multipication may seem compiicatl. But it is not so. It is simply performed as for
polynomials, keeping the telationships beiween I j and k in mind.)

Nhes that b ring.

Rings



Elementary Rlng Theory - Solution :-Note that | £ 1, = i, £ j, £ k ] is the proup Q» (Example 4, Unit 4}.

Now, you can verify that (H, +) is an abelian group in which the additive idenuty is
0 =0 + 0i + 0j -+ Ok, multiplication in H is associative, the distributive laws hold and
[ =t + 0i + 0j + Okis the unity in H. '

Do you agree that His nol a comnutative ring? You will il you remember that ij #* ji, for
example.

So far, in this unit we have discussed various types of rings. We have seen examples of
commutative and non-commutative rings. Though non-commutative rings are very imporiant,
for the sake of simplicity we shafl only deal with commutative rings henceforth. Thus, [rom
now on. for us a ring will always mean a commulative ring. We would like you o
cemember that both -+ and . are commutative in a commulative ring.

Now, Jet us summarise what we have done in this unit.

9.5 SUMMARY

In this unit we discussed the following points.
1) Definition and examples ol a ring.

2) Some properties of a ring like
. ' a.0=0=0._a,
a(~b) = — (@) = (- 2)b,
(—a) (— b) = ab,
a{t —c¢) = ab — acg,
(b ~cla=ba—ca
¥ a, b, cinaring R.

3) The laws of indices for zddition and multiplication, and the generalised distributive law.
4) Commutalive rings, tings with unity and commutative rings with unily.

Henceforth, we will always assume that a ring means 2 commulative ring, unlcss otherwise

mentioned. .

9.6 SOLUTIONS/ANSWERS ' )

E 1) Addition in Zs" Muliiplication in Z¢*

. S
R TlT 2 . 1§

B s 51 3 1 6 3 3

ilf 5 0 T2 s 8 3 6 3

ijls 8 vz 3 AT
5 |I § 1 31 3 1 s s 3 3 . J

From the tables you can see that neither addition nor multiphication are binary
operations in Zi. since 0 § Zs. Thus, (Zs, +,.)can't be a ring.

Vifa defing addiion and multiptication in G + J2Qby

a4+ \f—fb) A (e v”?d} =(a+C) T \f? {b - d}, and

a1 JTD) . (c T = e T 20 V2 (ad bV a b, d S Q.

rn
]

Sipee 4[5 assoctative and commtet- in R, the same holds for - w

Q -+ +/2Q 0= 0+ /2. 0is the additive identity and (-~ a) + J2(—b)is
the adlisive inverse ol a + v 2b.

Since multiptication in R is associative, RS holds aiso. Since multipication
distributes over addition in R, it does so in Q + 2 Q as well. Thus,

(Q ++/2Q, +,)isaring.

E3; + and.are well defiied binary operations on R. R1, R2, S and R6 hold since the
14 " h L
same propertics arc frue fu Ma(R) (Example 5),



Ed)
E 5)

E 6)

ET

E8)

Thc zero Flcmcm is g g] The gdditive inverse of[_é EJis[ _; _ g] B

Thus, R is a ring.
+ and . are binary operations on R. You can check that (R, +, .) satisfics R1-R&.

U and M are well defined binary operations on §2 (X). Let us check which of the
axioms R1-R& is not satisfied by ( 2 (X), U, M). Since \UJ is abelian, R1 is satisfied.
Since U is associative, R2 is satisfied.

Also, forany AC X, AU ¢ = A. Thus, ¢ is the identity with respect to L.
Thus, R3 is satisficd, -

Now, forany AC X, A % ¢, there is no BC X such that A U B = .
Thus, R4 is nol satishied. Hence, ( §2 (X}, W, M) is not a ring,

Since R satisfics R1, R2, RS and R6, so does Map (X, R). The zero clement is
0:X — R:0(x) = 0. The additive inverse of {: X — R is (— f:X—R
Thus, (Map (X, R}, +, Jisa ring.

Fistly, @ and O are well defined binary operations on

R, Next, let us check if (R, DO} satislies R1-R6 ¥ a,b ceR.

Rl:a®@b=a+b+1=b+a+]1=b@a.

R2:a@b)®@c=(@+b+ 1})@®c=a+b+14+c+]
=a+thbtec+N+1=a@(b®c)

R3:a@(—D=a—1+1=a¥ 1R Thus(— 1) is the identity with respect to @

Ri:a@(—a—-2y=a+ (—a— 2+ 1=—1.Thus, —a — 2is the inverse of a
with respect w0 @ .

RS:(aOb)Oc={ab+a+b)®c=(ab+n-'r-.b)c+(:1b+a+b)+c
=abe+b+e)rat+(bec+b+o)
=a@bOc).

R6:a®@b@c)=a®@m+c+ l‘.-=a{b+c+[j+:a:i;(b+c+l]
S@btatbyr@ata+tet |
=a0n®(@a@adc.

Thus, (R, @, @} isa ring.
Z;Z{G.TI.ZJ={G.T.§|
S Ly X Zy = {(0.0), (0.1, (0, 2), (T. 0y (T.T)(T, 3.0

Thus, the tables are

|! - 0. 0) 0 1 (0. 2 (1.0 (. n (0.2)

RO T T

BNCAY 0. 1) (0.2) 0.0y (.0 (2 (.0

| (0.3 0. 2 {0.0) 0. 1) (.2 (.01 an

L (.6 Lo Al @ wh o

NTAT L (1. 2) (1.0 (0. 1) (0. 3y (0. 0

Y | L (.0) i1 (0.3 {0, 0 (0. 1)

_ 2.0 an 2 T (. T
OL | mb 6L 63 wh én 65 |

@ Py ah @l da oah @n

LN B N R I

AT 401 0.1 (0. 3 (1.0) Y 0.3 |

LY 00y (0. %) ©.1 1.0) 1.2 T '

—

Ring
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E9)

E 10)

Eil)

E 13)

" E i4)

E15)

E 16)

Note that - and . are binary operations on (0}. The properties R1-R6 are trivialty
salisfied.

Now, suppose a singleton [a} is a ring. Then this must contain the additive identity 0.
Thus, {a] = {0].

We know thata+0=a% a €R. Sincea + 0 = 1.0, we find that

2.0 = a* a € R. But, by Theorem I we know thata.0 = 0. Thus,a = 0 V" a € R,

That is, R = {0}.

Since (a + by =a' + b, the statement is true for n = |, Assume that the equality is

“true for n = m, ig.,

a+b)"=a"+"C,a"'b + ..+ "Cpaab™" + b

Now,(a + b)™ =(a+ b)(a + b) a+ b}(\"" "Cia™t b

=§ mCLa™tt et + l "Cya™ i b, by disteibutivity.

=@+ "°Ca™' b+ "C2a™" b + .. +"Crab”)

+ ("Cya™b + "Cia™"' b? 4+ ... + "Cp-rab™ + b7
D ("C A+ "C) 2™ b F o+ (PG + FCL) 2B L+ b

=a""' + ™' 2™ b+ L+ 0 2™ 1 L+ ™I, ab”™ ™
(since "Cy + "Cht = ™'Cy) *

fi

Thus, the cquality is true for n = m -+ 1 also.
Hence, by the priaciple of induction, it is true for all n. -

Lel ¢ and ¢’ be nwo mulliplicative identity elements of R. Thi.n
e = c.c,since ¢ is amultiplicative idenity.

= ¢, since ¢ is 2 multiplicative identity.
Thus, e = ¢, i.e., the multiplicative identity of R is unigue.

Forn = 1,nZ = Z is a commulative ring wilh identity [.

2 n > 1.nZ iscommultative, but without identity.

Z. is commutative with identily 1.

Z + iZ is commutative with identty | + 1

£ (X) is commutative with identity X, since . N - A ACK
C[0, 1] is commutalive with identity 1 : {0, [j— R~ + - !

End A is not commatative, It has idenfity Ty i A -~ A 1.y

Sincea @b =bQ@a¥ a, bER, ©iscommutative +iso,a = 0=a¥ a
Thus, 0 is the muluplicative identity.

m
~

You musl first check that the set satisfics R1-RO.

0
Note that ,:0

0 .
0 J is the additive identity.

Then you should check that AB = BA for any two elements A and B. Thus, the ring 1~

lative. It has identi 1/2 1/2
commulative. [ has wdentiny .
_ 172 122
Foranva &R, 2 =a.
In particular. (2a) =22 —> 43" =23 == Ja =22 = 23 =0

= a = — 4

Now, floranya.beRa - bER

L@Tbhy=a+b =a'+ah -besb =a=+b
= a+abthith=3a>hosncer —aadb =k
F=ab = —ha

= ab = ba, since - bn = .

Thus, R is commulative.
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10.1 INTRODUCTION

In this unit'we will study various concepls in ring theory corresponding 10 some of those that
we discussed in group theory. We start with the notion of a subring, which corcesponds to that
of a subgroup, as you may have guessed alrcady.

Then we take a close look at a special kind of subring, called an ideal, You wilt sce that the
ideals in a ring play the role of normal subgroups in a group. That is, they belp us to define a
notion in ring theory comesponding to-that of 2 quetient group, namely, a quotient ring.

After defining quotical rings, we will look at several examples of such rings. But you will oaly
be able to realise the importance of quotient rings in the fulure units,

We hope that you will be able to-meet the following objectives of this unit, because only then
will you be comfortable in the future units of this course.

Objectives

After reading this unit you should be able to

give examples of subrings and ideals of some familiar rings;
check whether a subset of a ring is a subring or not;-

check whether a subset of a ring 1s an ideal or not;

define and give examples of quotient rings.

10.2 SUBRINGS

[a Lot 3 we inroduced you Lo the coneept of subgroups of a group. [n this section we will
introduce you (o an analogous notion [or rings, Remember that for us a ring means a
commutalive rinp,

In the previous unit you saw that, nol only is Z C Q, but Z and Q are rings with respect o
the same operations. This shows that Z is a subring of Q, as you will now realise.

Definition : Let (R, 4.y be o ring and S be a subset of R, We say that § is a subring of R, if
(5. ) isitsell a ding, i, S is a rog with respect to the operations on R,
For example, asing Example T of Unit 9 we cun say that 27 the st of even integers, is a

subring ol 4

Bty giving more exampics, let as analuse the delimimnn of g subring, The delinitior savs ot
A subrag oby g Roasa s walh respeet o e operahions on [ Now, e distributive,
cemnntalive and assocalive faws lold good n R, Therefore, they hold good in any subse: of
R alsa, Se 10 prove that s subset S of R is o ring we don'l need ta check all the 6 axiome
RI-RO for S. 101y enough 1o check that

i) Sis closed under both -+ and . .
i 0~S and

iy foreacha - S -0 7 N
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If S salisfies these three conditions, then S is a subring of R. 5o we have an allcrna'live
delinition for a subring.

Definition : Let S be a subset of a ring (R, +,.). S is called a subring of R if
) Sisclosed under + and ., ic.,a + b,a.B &S whenever », b ES,

iy 0€S,and

i) forcacha €S, —a€s.

Even this definition can be improved upon. For this, recall [rom Unit 3 that (S, +) = (R, +)
ila —b €8 whenever a, b € S. This observation altows us to give a set of conditions for a
subset (o be a subring, which are casy to veriy.

Theorem I : Let S be a non-cmpty subset of (R, -+, .). Then S is a subring of R if and only-if
a) x — y €S x, y €5;and
b) xy €SV x,yES.

Prool : We need to show that S is a subring of R according to our deflinition iff S sa:isfies (a)
and (b). Now, S is a subring of R ilf (S, +) < (R, +) and S is closed under mulupllcalmn
i.e., il (a) and {b) hold. .

So, we have proved the theorem.

This theorem allows us a neat way of showing that a subset is 2 subring.

Let us look at some examples.

~We have already noted that Z is a subring of Q.-In fact, you can use Theorem 1 to check that
Z is subring o[ R, C 2nd Z + iZ tgo. You can akso verify that Q is a subnng of R, C and

Q+V2Q=ta+V28la, BEQ)

The following exercise will give you some more examples of subrings. ‘

E 1) Show that R is asubring of C, Z +iZ is a subring of C and Q + +/ 2 Q is & subring
" of R

Now, lel us look at some examples of subrings other than the sets of numbers.

Example 1 : Consider Zs, the ring of integers modulo 6. Show, that 3Zs = § 30,31, ....35}
is a subring of Zs. -

Solution : Firstly, do vou agree that 3Zs = {0, 3 ]? Remember that 6 = 0,9 = 3, and so on.

Also,0 —3=—3 =3 Thus,x ~ yE3Zs V¥ X, y € 3Zs. Youcan also verify that xy €3Zs
¥ X,y € 3Zs Thus, by Theorem 1, 3Zs is a subring of Ze.

Example 2 : Consider the ring §2 (X) given in Example 4 of Unit 9. Show that
S =1, XJisasubring of §& (X). .

Solution: Nolethat A A A = ¢V AC P X)) - A=—Ain £ (X).
Now, to apply Theorem 1 we first note thal 5 is non-empty.

Next,d A =SS5 XNAXN=¢CSs"

S AN TXNES AN T AESXNYX =XCS AN X =4S
Ihus, by Theorsm 1. S is a subring of & (X).

Tee p roinnmi avoroios now

£ Tet AQ X A# ¢ Showthat 5 = { & A, AS. X Vis a subring of £ (X).

E 2 shows that [or each proper subset of X we act a subring of {2 (X). Thus, 2 ring can have |
scveral subrings. Let us consider two subrings of the ring Z°.

Example 3 : Show thatS =7 (n,0) }| n € Z | isa wwbrug of Z X Z. Also show (it
D={(nn)n<Z}isasubringol Z X Z.



Solution : You can recall the ring structure of Z° from Example 8 of Unit 9, Both S and D are
non-cmpty. Both of them satisfy (2) aed (b) of Theorem 1. Thus, S and D are both subrings of

We would like to makea remark here which is based on the examples of subrings that you
have seen so far, :

Remark : i} If R is a ring with identity, a subring of R may or may-not be with idenlity. For
cxample, the ring Z has identity I, but its subring nZ (n =2} is without identily.

- ii) The identity of a subring, if it exists, may not coincide with the identity of the ring, For
example, the identity of the ring Z X Z is (1, [). But the identity of its subring Z X [0} is
(1,0} '

Try the following exercise now,

E 3) ShowmhalS=[[ ]

a 0
0 b
. a 0
LN (N

If yes, then is the unit element the same as that of R?

1,bEZ } is a subring of

a,bER } Does.S have a unil element?

Now et us Jook at an example which throws up several subrings of any ring.

Example 4 : Let R be aring and a € R. Show that the seL aR = fax| x €R }is a subring of
R. :

Solution : Since R 3% ¢, aR = ¢. Now, lor any two elements ax and ay of aR,
ax —ay = a(x — y)€akR and (ax) (ay) = a(xay) €aR.
* Thus, by Theorem 1, aR is a subring of R.

Using Example 4 we can immediately say that mZ. is a subring of Z, ¥ m € Z,. This also
shows us a fact that we have already seen : nZ is a subring of Z¥ nE€ Z.

Try Lhese exercises now.

E4) For any ring R, show thal {0} and R are i subrings.
L 5) Show that if Aisasubring of Band B iz a subring of C, then A is u subring of C.

L6)  Give an example of a subset of Z which is nol a stbring.

E5 is very useful. For instance, E1 and E3 tll s thal Q -+ ~/ 2Q isa subsing of C.

Now let us look al somz propertics of subrings. From Unit 3 vou know that the intersection of
two or more subgroups is a subgraup. The follow ing result savs that the same is true for
subrings. )

Theorem 2@ Ler S and 8- e subtings of ooaime B Then S, OV S s alo 2 subning of R
Prool:Since 0 €S and 0L S0 e S M N TR - T

Now et v 228 7S, Then vov = 8, a0 Yo T by Theorem Bn vand a aie

in Sy asavell asin Sy fe. thev tiv S, 0 S
Thus, S, N S, ika subring of {2,

On the samie lines as the prool above we can prne that the intersection of any family of
subrings of a ring R is a subring of R.

Now censider the union of subriags of a ring o vou think it will be subrinz? Consider the
lollowing exercise. . ] N

Subrings and Ideals
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E7) You know that Z -+ iZ and Q arc subrings of C. Is their union a subsing of C.? Why?

Now let us ook at the Cartesian product of subrings.

Theorem 3 @ Let S and S: be subrings of the rings R, and R, respectively. Then 5 X Sris 2
subring of I}y X Ra, :

Prool : Since §) and S: are subrings of R, and Ry, Si#=dandS:# .~ S XSG, # ¢

Now, let (a, b) and (2", b')ES, X S,. Thena, 2’ €S,and b. b" €S, As S; and S are
subrings,a — a',a.a"€S,and b — b, b b’ €8,

(We arc using + and . for bolh R, and R here, for convenience.) Henee,

(a,by— (@, b)y=(@—a,b—b)ES X §5;zand

{a,b).(a", b)) = (aa", bb) €5, X 5.
Thus, by Theorem 1, S; X S» is a subring of Ry X Rz,

You can use this result to sofve the following exercise.

E8) Obtain twe proper non-trvial subrings of Z X R (i.e., subrings which are neither zero
nor the whole ring). oo

Let us now discuss an important class of subrings.

10.3 IDEALS

In Block 2 you studied nosmal subgroups and the role that they play in group theory. You saw
that the most imporant reason for the existence of normal subgroups is that they allow us to
define quotient groups. In ring theory we would like 10 define a similar concept, a quotient
ring- In this section we will discuss a class of subrings that will help us to do so. Thése subrings
are called ideals. Whilc exploring algebraic number theory, the 19th cenlufy mathematicians
Dedekind, Kronecker and others dcvciopcd this cancepl. Let us see how we can use it to
deline a quoticnt ring.

Consider a ring (I, +,.) and a subring [ of R. As (R, +)is an abelian group, the subgroup,
is normal in (R, 4-), and hence the scl R/1={a+1|2a€R },ofallcosetsof [ in R, isa
group undcr the binary operation + given by

+Dh4b+h=@+b I v (1)
foralia —'r I, b + [ 2R/L We wish to deflinc . on R/T so as (o make R/@ a ring. You may
think that the most natural way Lo do so is to define
@iD.b+h=ab+reatlbi1ER e ()

But, is this well defined? Not always. For instance, consider the subring Z of R and the sel of
coselsof Zin R.Now,since l =1 —0€ZL 1 +Z=0=+ 1.

Therefore, we must have ) .
(VI 42 2 D0 Dhie ST 20 s Lie V2 EL

But this iv o conteadiction. Thus, cur definflon of mudiic™ a0 is molsehid for the set RAZ
ut, i i volid Tor A0 we add some vondition - 1 What shoald i o condiilans be? To
answer this. assume that the multiplication in s well delined.

Theo, (0~ 5.0 ~DY=r. 0+ 1 =0-+1 :Ifora.llr\CR

Now, you know thufx Zthenx = 1 =0 4 1 =1L

As we have assumizd that - i< well defined, we gat

(r 4 I] (x + =+ L. 0+D)=0+ lwheneverr= R, x =L
e o+ 1= Lwhenover reR, x €L

_Thus, rx € 1, wheneverr < - x el



So, il , is well defined we see that the subrmg I mauist saus[y the additional condition that Subrings snd |q.:;_

X €l wheneverreRand x €1,

In Scc. 10.4 we will prove that this extra condition on I is enough [o make the operation . a
well defined one and (R/1, +, .} a ring. In this section we will consider the subrings [ of R on
which we imposc the condition

I E [ wheneverrERand x €1,

Definition : We call a non-cmpty subscl T of a ring (R, +, .) an ideal of R if
i) a—b&ifloralla.bel, and
i) rag€lforalir€Randacl.

Over here we would like to remark thal we are always assuming that our rings are
commuiative. [n the case of non-commutative rings the definition of an ideal is partially
maodilied as (ollows.

A non-empty subsct [ of a non-commutative ring R is an idca! i
) a—b&IlVabe I and
i} raEIandarElVaGI,rER._

Now let us go back 10 commutative rings. From the definition we sce that a subring [ of a
ring Risanideal of Rifi ra € [ rERandaEI.

Let us consider some examples, In E 4 you saw that for any ring R, the set [0} is a subring. In
fact, itis an ideal of R called the trivial ideal of K. Other ideals, if they exist, arc known as
non-trivial ideals of R,

You can also verily that every ring is an ideal of iwsell. Il an idea! [ of a ring R is such that
[ = R, then s called 2 proper ideal of R.

" Tor example. if n #2 0, [, then the subring nZ = {am | m € Z }isa proper non-trivial ideal
of Z. This is because for any z € Z and nm € nZ, 2{nm) = n(zm) € nZ.

Try this exercise now.

L9 Showthat{0,3)and [ J, Z @} arc proper ideals of Z,.

Now let us conside. some more examples of ideals.

Example 5 : Let N be an ifinite set. Consider I, the class of ail finite subseis of X. Show that [
is 20 deal of £2(X).

Solution : [ = {A] A is a finite subset of X | Note that

1} &< [ Le. the zero element cl'JO(X] isin L.

W A—B=A+(—B= --Boas B = — Bm2)
=A XD

Thus if AL Z Lthen A - Bis again 2 [nite subset of X, and hence A — B < |

ne AR — AT B Noew, whenover Aoz tnste sabset of X oand B any elemeni of 42X,
AT s a e subsei of X Thus, A S fand B € £2(X) == ARE

Henee, Tis an ideat of ¥208

Exampie 60 Lot Nobe asetand Y b non-empty subset of N, Show that
D=0 AT 0800 07 Y = o s an idead of 2 1N,

In particular, i v the Y = sl wiiere vais o fived element of X, the
F= 1A 020X siZA ) san ideal of §2 (X).

Solution : Firstly, & < 1.
Secondlv. ™ A, B Z 1
(A—-BNY=/AABNY = (\:’\‘[’}._‘.{Bﬂ‘f]—d.ld;—d: sothat A — B <=,
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* Finally, [or A €12and B €. §7(X),

ABNY.=(ANBNY=(ANY)NB=¢NB= ¢‘ so that AB € 1.
Thus, | is an ideal of §2 (X).

Example 7 1 nsider Lhe ri'ng C[0, 1] given in Example 6 of Unit 9.
LetM = 1t C[0, 111 f(172) = 0 ). Show that M is an ideal of C[0, 1].

Solution : The zero clement 0 is defined by 0(x) = 0 [or all x €[0, 1], Since 0(1/2) =0
geM. '

Also, i( [, g € M, thei (f — g) (1/2) = [(1/2) — g(i/2) =0 — 0 = 0.

So,[—g EM.

Next, il [€ M and g €C[0, 1] then (fg) (1/2) = [(1/2) g (1/2) = 0 g(1/2) = 0,50 g EM.
Thus, M is an ideal of C[0, 1]. '

When“you study Unit 11, you will sce that M is the kernel of thc homomorphism
¢ Cl0, 1) - R: ¢ (O =1(1/2). )

Now you can try an exercise that js a genesalisation of Example 7.

- E10Y Leia €[0, 17. Show that the st

= {[€C[0, 1]| (a) = 0 } is an ideal of C[0, 1].

[n thé next exercise we ask you to look at the subring in Ex.ziple 4.

E 11) LetR bea ring and a € R, Show that Ra is an ideal of R,

Now that you've soI\cd E 11, solving E 9 is a matter of s:-unds! Let us see il E 11 can be
peneralised.

Example 8 - For any ring R and a,, 2 €R, show thal
Ra; + Ra: = | xiay + x:a:| xi, x: @ R ] is an ideat ol R.

Solutien : Firstly, G = Qa, + 0a.. ~ 0 €Ra, + Ra..
Next, (xa) + xan) — (yiar + yaa)
= (x; — yna + (x: — y)a: €Ray + Rax ¥ xy, xa, yn ¥ R

Finali,, for r € R and 2, + x: € Ray v Ras,
Byl 4 oads) = rxaay + rxaar € Ray + Rag,
Thus, Ry 4 Ra-is an deal of R

1as method of obiainmg ideals can be extended o give ideals of the form
Va2t o T Xaaat x, € R for fixed elements ay. -y 3a of R. Such weals crop up
agsin and again in ring theory. We give them a special name.

Definition : Let 1. ..., 3, be given cherrems of a ring R, Then the ideal generaled by

TR L . -

Ri 4+ Rae + o 4 R = {62 + 02 4 0+ X3 5 ER Jaw o, w0 are called the
aene seators of this ideai.

WVos alao denote s fde] by <2 2y, 2y, e, 87 2
i })

R T A
e AIIW R LR -

a

Voroan -0 L tie ideal we eetis caticd o prinvipal ideat. Thas, i
- el deal of R In the nexi bluck you w {ll be using principal wdeals quite @ ot

Lodn eatLoise O PRna tdeids,

U0y Lot I be o oring with ideniiny. Show thw << = = R

L 13} Find the principal ideals of Z,u generated by 3 and 3.

Nesw we look at a special ideal of a ring. But, to do 50 we need Lo give a dclimtion.

"



Definition : An clement a of a ring R is called nilpotent if there exists a positive integer n such -Subrings and Idex’
that 2" = 0.

* For example, 3 and 6 are nilpotent clements of Zy, since 3° = 3 = T and 6 = 36 = 0. Also,
in any ring R, 0 is a nilpotent ¢lement. -

Now consider \he following example.

Example 9 : Let R be a ring. Show that the sct-of nilpatent elements of R is an ideal of R.
This ideal is called the nil radical of R.

Solution: Let N = { a € R a” = 0 for some positive integer n }. Then 0 € N.
Also, tfa, b €N, then 2" = 0 and b™ = 0 for seme positive integers m and n.
Now, (a — b)™" =m%‘ MW a'(— b)™ " (see E 11 of Unit 9).

Foreachr =0, 1,....m + n, ¢ither r Z norm -+ 0 — r 2 m, and hence, either 2* = O or

b™"" = 0. Thus, the tem a"b™ ™" = 0. So(a — b)™" = 0.
Thus,a — b € N whenever 2, b €N.

Finally, ifa €N, a" = 0 for some posilive integer n, and bence, for any
reR, {ar)" =at"= 0, ic,ar EN.

So, N s an ideal of R.

Let us see what the nil radicals of some familiar rings are. For the rings
Z, Q, R or C, N = {0}, since the power of any non-zero element of these rings is non-zero.

For Z, N = (0,7 ).

Try the following exercises now.

E 14) Find the nil radicals of Zs and £ (X).

E 15} LetRbcaringanda € R. Show thatl =§{r €R|ra =01 isan ideal of R.
(This ideal is called the annihilator of a.)

By now you fmust be [(amiliar with the concept of ideals. Let us now obtain some resulls
about ideals.

Theorem 4 : Let R be a ring with identity 1, [f T is an idealof R and | €1, then [ = I,

Prool : We know that [ C R, We want1o prove that R C L Letr £ R. Since | & and [is an
ideal ol R.r = 1.1 £ [.So, RC |. Henee I = R.

Using this resull we can immediately say thal Z is not an ideal of Q. Docs this also ell us
whether Q 15 an ideal of R or not? Certainty.Since | © @ and Q # R, Q can't be an ideal of
R.

Now let us shift our auention to the algebra of ideals. In the previous section we proved that
the intersection of subrings is a subring. We will tiow show thal the intersection of ideals 1 an
ideal. We will also show that the sum of ideals is an ideal and a suitably defined product of
adeads s an ideal,

Theorem 500l Fand J are {deals of 2 ring R, then
i 1L
by L fJ:[Zl"t‘bi;lEIﬂIl!dbEJf.:md

¢t U= {x&@Rjxisalinite sumaby + ... 4 anbm, where s, =1 and b, < J :
are ideals ol R,

Proof - a} From Theoram 2 you know that [ M J is a subring of R. Now, ifa= 1 M J_then
¢ € [anda & J Therefore, ax € land a CJlorallx inR.Soax €11 Jforalla S Jand —

xR Thus. T Jis an ideal of R, 27
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b)F1rstly.0—0+0m_l+J A4+ T, -

Secondly, il x, yel + J, lhcnx =a +biandy = a: + bz lor some a,, a;Eland

by, b: €J.

Sox—y=(m t+tb)—(a:+b)= (a1 —a;) +{bh — byl + ]

Finally, let x & + Jand r€ER. Then.x =a + b forsome a€l and b ~J. Now
xe=(a+byr=ar+br€l+ J,asa&limplicsar€l and b€ J impies br&J for all rER.
Thus, [ + J is an idecal of R.

c) Firstly, [J # ¢, sincel # ¢ and J 7 .

Next, let x, y €1J. Then x = ayby + ... + ambn and

y =a"b) + ..+ a'Wbaforsome ay, ..., 8m a1, @ Eland by, o, by, 0, -, DR E,
ox = y.={ab o agbe) — (@00 o a%b)

- a.bq + ..+ a,bn + (“ a |)b 1 + .. .+ (— 2 n)b'n

which is a finile sum of clements of the i'orm sbwitha€land bel.

So,x — yELL

Finally, let x €1J say x = ab, + ... + 2.b, with a, €l and b, €. Then, forany r €R
Xr = (abr + .. T oabar = albr) + + an(bar),

which is a finite sum of elements of the formab witha €land bE L
‘(Nete that by eJ- == br&Jforallrin R.)

Thus, 1J is an ideal of R.

_ Over here, we would like to remark that il we define IJ = { ab| a €1, b €J |, then 1T need

nol even be a subrng, leave alone being an idcal. This is because if x, y EIJ thea with this
“definition of 13 it is not necessary that x — y €11,

Lel us now look at the relationship between the ideals obtained in Theorem 5. Let us first look
-at the following particuar situation :
R=Z7Z,1=2ZandJ = 10Z Then I N-J = ], smchCI Also, any clcmcnlof[ + Jisof
the form x = 2n + 10m, where n, m€Z. Thus, x = 2(n + 5m) €2Z. On the other band
'2z=1g1+J.Thus,1+J=<2, 10> =<2
« Similarly, you can see that [J = < 20 >,
Netethat JCINICICI+ L
" In fact, these inclusions are true for any I and J (see E 16). We show the relationship in Fig. 1.

R .

[+

et ay

i)

Fie,

{ = Fhe kleal hierarchs!

£ 16) If Land J are ideals of a ring R, ther show that

D WCINIZICi+]
and JCINICICT+ T,

by I + Jis the smellest ideal containing both the ideals [ and J. i.e. il A is an ideal of
[2 vontzining hath | and J. then A must contain T +



c) 101 3is the largest ideal that is contained in both I and J; Subrings and [deals

d) ifl€Rand [ +J =R, then IJ = [ N J, i.e, il the top two ofFlg I are equal,
then so are the lowest two.

Let us now go back to what we said at the beginning of this section—the importance of ideals.

10.4 QUOTIENT RINGS

In Unit 5 you have studied quotient groups. You know that given a normal subgroup N of a
group G, the set of all cosets of N is a group and is called the quoticnt group associated with
the normal subgroup N. Using ideals, we will now define a similar concept for rings. At the
beginning of Sec. 10.3 we said that if (R, +, .) is a ring and [ is a subring of R such that
(R/L, -+, .} is a ring, where + and . arc defined by

x+D+y+DH=x-+y)+ Iand

(x+FD.y+D=xy+Iv¥x+Ly+IER/]

then the subring I shoultd satisfy the extra condilion that rx €1 whencver r €R and x €1, ic, |
should be an ideal. We now show that if I satisfies this extra condition ther the operalions that
we have defined on R/I are well defined.

From group theory we know that (R/1, +) is an abelian group, So we only need to check
that . is well defined, 1€, if

at+ti=a+Lb+1=0b"+Ithenab+[=2ab" + 1.

Now,sincca-+I=a"4[,a —a'€l

Leta —a" = x Similarly, b — b" €L sayb — " = v.

Thenab=(a+x) (b"+y)=aD +(xb+a’y +xy).

~ab —a'b &l since x =1, )’EI and T s an deal of [(

Cab+I1=ab + [

Thus, . is well delined on R/1.

Now our aim is to prove the following result.

Theorem 6 : Let R be a ring and I be an ideal in R. Then R/L s a ring with respect to
addiion and multiplication defined by

- =y +1=&+y)+ 1, and

=N 6 - =xy+1¥x yER

Proof : As we have noted earlier, (R/1, +) is an abelian group So, to prove that R/isaiiag
we only need to check that . is commutative, associative and distributive over —

Now,
0 Lcommuaive{a ~D.(b+H=ab+I=ba+1=(b~+1I).(a-+I)forall
a-Lb+1€R/L

iy associalive: vV a b, cER
(fa+D b+ ct+Dh=@+1L@c—-1

== (ab‘lc + 1
= afhey - 1
It (b 1) (e~ IH
w) Wstnbutive law:Leta + Lt - 1= R/ Then
@+ Db+ 1) +c+ 1)) =1~ ! [b “c) ]
—ath ey |
= (ab + ac) « |

= (ab + ) + {ac + L)
=fa+[b4+-DH+@=De+Dh

Thus, R/1 is a ring.

1t < ring is called the quottent ring of R by the jdeal 1. B lircadas R modole ¥

ur'Romod I
Letus look ai some examples. We start with the example that gave nse 1o the terminoloay
Romod TN

12
fA
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Example 10 : Let R = £ and [ ='nZ. Whatis R/I?

Solution : In Sec. 10.3 you have seen that nZ isan ideal of Z. From Unit 2 you know thal
Z/0Z = {nZ,1+ nZ,..,(n— 1)+ nZ).
=1{0,T, ..., n— [}, the same as the sct of cquivalence classes modulo n.

So, R/Lis the fing Za.

Now let us look at an ideal of Z,, where n = 8.

~ Example 11 : Let R-= Zs. Show that L = {0, 3 ] is an ideal of R. Construcl the Cayley tables

for + and.in R/L

Solution : 1 = 4R, and hence is an ideal of R. From group theory you know that the number -

of etements in R/I = o(R/1} = %: .g_ =

You can segthat these elemegls are o _
0+[={0,4},1+I={l,§],2+l={2,6},3+l={“,7}. -

The Cayley tables for + and . in R/T are

+ O+F0  T+1  3+1 3414 . 0+1 141 2+1 31
o4+1 | G+1 THI T+ 341 o+1 | o+1 641 0=1 0+l
T+1l T+1 2+0 341 0+l T+1 ] 0+1 1+0 241 3+l
T+10 | Z+1 340 0+1 NI 21| 651 T4t 0= 241
T+1 | 340 O+ THT 241 340 ] a+1 341 241 bl

Try this exercise now.

E 17) Show thatif R isa ring with identity, then R/ is a ring with identity for any ideal T of
R. .

E 18) IfR isarng with identity 1 and is an ideal of R containing 1, then what does R/l
look like?

E 19) Let N be the nil radical of R. Show that R/N has no non-zcro nilpotent elements.

You will realiss the utility and importance of quotient rings afler we discuss hormomorphisns
in the next unit; and when we discuss polyromial rings (Block 4).

Now let us briefly summarise what we have done in this unit,

10.5 SUMMARY

In this unit we have discussed the following points, with the assumption thal all rings are
commutative.

.  The definition and examples of a subring.

2. The proof and use of ihe fact that 2 non-emply subs2l S ol a ring R is a subring of R il
x — yESand vy 2 SV K y €5

3. The intersection of suorings of a ring is a subring of the ring

The Cartesian product of subrings is 2 subring of the Cartesizn product of the
corresponding rings.

EaN

The definition and examples of an ideal.

The definition of an ideal generated by n clements.

~oe W

The set of ni'notent elements in a ring is a0 ideal of the ring.
. £ g




8, [Iflisan ideal of a ring R with identity and L€, then [ = R.
9. If[and J are ideals of a ring R, then TN J, 1 + J and 1J are also deals of R. -

10. Ttgc-dcﬁnilion and examples of a guotient ring.

10.6 SOLUTIONS/ANSWERS

El}

E?2)

£3)

E4)

E 5)

E 6)

E7)

E 8)

E9)

Eth

E 12)

Xy ER, x — yER and xy €R. Thus, R is a subring of C. Similarly, you can
check the other two cases. )

Clearly, S is nonempty.

Also, forany x, yES, x —y=xA(—y)=x 4y

(as pointed out in Example 2).

You can check that x A y €8V x, yES.

Also, for any x, yES, x.y = x M y €S, as you can check.
Thus, S is a subring of & (X).

g b 0 d

a—¢ 0 ac 0
A—C—{ 0 b_d]cSandAC—[O bd:\ES.

Firstly, S 7 ¢. Sccondly, for any A = {a O}and C= {‘: 0} inS.

Thus, S is a subring of R.

1 0
The vnit clememt of S = [0 1 ]= the unit element of R,

Both {0} and R are non-¢mpty and satisly (a) and {b) of Theorem 1.

Since A is a subring of B, A 7= ¢ and ¥ x, yE A, x — y €A and xy € A, Here the
addition and mulliplicatibn are those defined on B. But these are the same as those
defined on C since B is a subring of C. Thus, A satisfies Theorem 1, and hence is a
subring of C.

There arc several examples. We take (1}, In fac, any finite subset of Z, apart [rom (0,

will do. -

-

) t .
1 +1and ?arc clements of the union.

1

But 1.!—z~?=—?-‘--%1§Z+1ZUQ.Thus,thZUlenotasubnngol'C.

2Z X R, 3Z X {0} are 1wo among infinitely many examples.

Note that the two scts are 3Z. and 2Zs. From Example 4 you know that they are
subrings.of Zs. Now, by clement wise multiplicationyou can check that -

X €3Zs¥ r ¢ Z, and x €3 Z. (For inslance, 5.3 = [5 = 3€324.)

You can similarly sce that rx& 72, ¥ r€Z x €2 7.

Thus, 3Z: and 2Zs are idcals of Ze.

s 7t sinee 0 S0,
Leclh ==~ egya) = ffa) -glay =0 —=={—pcl.
FElge ClOOT] == () ) Wadefwd - Opfny =0 = <L,

" 1,15 20 ideal of CJ0, IL

Raisa sub}ing of R (see Example $).
Also, for riz R and <z "_ Ra,

r(xa) = (rx)a < Ra.

* Rais an ideal of R.

Ve nead to show that R C < | >,

We know that < 1 > C R W
r=rl & <1 > Thus, RC <1 >,

Now, for any r&R,
STR=L1>

I

Subrngs end Ideal

LE



Fiomentary Ricg Theoey

IJ
[#s]

E 13)

E 14)

E 15)

E 16)

E 17)

E 18)

E 19)

32, = {3x|x€7 } =10,3.6,9,12, T5, 18, 71, 74, 27 }
=1{0,3,6,5,25,8,1, 4,7}

_ TZw

572,=1{0,5%

Let the nil radical of Z; be N. Then § €N,

T & Nsince T" =T # G forall n.

=0 = JeN.

T#0¥ 0 - jQN. ;
Similarly, you can check that §, § €N and 5, 7&N. L
“N=1{0,2,3,6} :
Forany ACG f(X),A"=ANAN._ .. NA=AY¥n

Thus, A" = ¢ iff A = ¢. Thus, the nil radical of £ (X)is [ ¢ }.

Firstly, I #= ¢ since 0 €L |
Secondly, r,s€]l = p=0= sa = ({f—sa=0 =r—se€l i
Finally, r€landx €R :(rx)a—x(ra) W=0 = el

Thus, [ is an ideal of R,

a) Foranya€land b &), abEfand ab EJ.
Thus, ab& I N J. Since I N J is an ideal, any finite sum of such clements will also
bein [ M J. Thus, JCIM I
Cleatly, INJClandINJCJ.
Also, [C T+ I, JC T+ Jis obvious.

b) Let A be an ideal of R containing I as well as s, Viien certainly I + J C A, Thus,
{(b) is proved.

c) Lel B be an ideal of R such that B C land B CJ. Then certainly, BC I N ). Thus,
(c) is proved.

d) We want to show that 1N J C [J.
Letx€I M J. Then x €l and x €.
Sincel€ER =13+, 1=i+4], forsomclE[andJEJ
Cx=xl=xitd =i+ g ELL
Thus, INJICIJ.

[ + Lis the identily of R/L

I'rom Theorem 4, you know that T = R.
L RA={0).

Let x + NER/N be a nilpotent element.

T (x - N)" =} for some positive inicger n.
= x" S N for some postive integer n.

= (x")" = 0 [or some positive intcger m.

== x"" = 0 [or some posilive inlcger nm.

— x&N

= x + N =0 + N, the zero elcment of R/N.
Thus, R/N has no non-zero nitpolent elements.
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11.1 INTRODUCTION

In Unit 6 you studied about functions between groups thal preserve the binary operation.
You also saw how useful they were for studyving the structere of a group. In this unit we
witl discuss [unctions between rings which preserve the 1wo binary operations. Such
functions are called ring homomorphisms. You will see how homomorphisms allow us to
investigate the algebraic nature of a ring.

[f'a homomorphism is a bijection. it is called an isomorphism. The role of isormorphisms in
ring theory, as in group theory, is Lo identily algebraically identical systems. That is why
they are imporiant. We will discuss them also.

Finally, we will show you the interrelationship between ring homomorphisms, ideals and
quotient rings.

-Objectives

Alter reading this unit, you should be able o

@ check whether a function is a ring hamomorphism or not;
oblain the kerncl and image of any homomiorphism;

give examples of ring homomorphisms and isomorphisms:
prove and use some propertics of 2 ring homomorphism.
state, prove and apply the Fundamental Theorem of Homomorphism for rings.

i1.2 HOMOMORPHISMS

-+nielugous Lo the notion of a group homomorpiism, we have the CONCEP: of . fing
Eomomorphism. Recall that a group homomaorphism preserves the group o 1 ion of in
domain. So it is natural (o expect a ring homomorphism to preserve the ring ~iructure of s
domain. Consider Lhe following definilion.

Definition : Let (Ry, +,. ) and (R-, +. ) be two rings and (1 By — R be a map. We say
tkat [is a ring homomorphism if

I(x = 0) = fta) ~ fib), and

fir oy = fta)y . () foratl o, bin I,

Nale dutthe ~— and | accurring on the left hand sides of the cquations in the deliniton

aboue e delied v R wiale the - ond coceareinn an the riehit hand sides are delined an

Seodsan o e R, - s I|r1:1|\=[:1=\ri"-515\!‘.‘- i

e amage of asum s the sum of the noaees, and

o the image ofa product s the product of the imapes

Yhus, the ring homomorphism T s also a group homomorphiin from (R, 4) into (Rs, +).

Fest o we did e Unit 6, before piving some examples of homomorphisms let us define the
seinel dnd image of 8 hamomerphism. As is 1o be expected, these delinitions are anatogous to
siespanding ones in Unit 6, '




Elementary Ring Theory Definition : Let Ry and R: be two rings and {: Ry — R: be a ring homomorphism: Then
: ‘ we deline

i) the image of f1obe the set Ilm £ = f(x) | x € Ry}.
ii) the kernel ol f 1o be the set Ker [ = §{x € Ry | [(x} = 0.

Note that km [ C Rz and Ker [ C R).

IlIm { = R, [1s called an epimorphism or an onto homomorphism, and then R is called
the homomorphic image of R,.

Now let us look at some examples.

Example 1 : Let R be a ring. Show: thal the idenlity map ik is a ring homomorphism. What
are Ker [y 2nd Im [&?

Solution : Let x. y € R, Then

Iw(x + yv) = %+ y = Lu(x) + Ix(y), and

le(xy) = xy = lu(x) Iu(y)

Thus, Te(xy) = xy = In(x)} lu(y).

Thus, Iy is a ring homomorphism.

Kerly =[x €R | [x{x) = 0]

=[xER | x=0}
= {0}

Imtp = [[u(x)| x ER}
= |x | x &R}
= R.

Thus, [y 15 a susjection, and hence an epimorphism.

Example 2 : Let s € N. Show that the map(: Z — Z. given by fm)=Tlorallm € Z isa
nomomorphism, Oblain Ker { and [m [ also.
Solution : Foranym,n € Z,

ffm+n)=m+n =m+ n=fm)+ ((n), and

flmn) = mn = m 7= [(m) [{n).

Therefore, { 15 2 ring homomorphism.

Now, Kerf = [mE€Z | f{m) = 0}
=im€Zl|m=0} .
=[m&Z| m=0(mods)}
= sZ.

imf{ ={f{m) | me&l}

showing that {15 an epimorphism.

Exampfle 3 : Consider the map {: Za — Zy @ {{n (mod 6)) = n{mod 3}. Show that [ s a cing
Lomomaorphism. What is Ker 7

Selution : Firstly, forany n, m @ Z,

[(a{mod 6) ~ m(mod §)) = [({n + m) (mod 6)}) = (n + m) (med 3)

n (mod 3) + m{mod 3)

ftn {mod 6)) + {(m{mod 6))

Il

You can similarly show that

finimod 6} . m{mod ¢} = [{nimed 6)) . (m{mod §)).

Thus. {15 a ring homomorphisa

Kee f = tnfmed 61 n = 0(muod 330 = Infmod 6Y | n € 32}

P 30 B denoting mad 00

Belure aisusaing any more exanples, we would ke o make o remark abou wranmotoey,

le § aH s the o Thonmamer el for rg hamomorphism” You Lo
reinsiior sno we alaeded thie s the Case at group 'rmmomorphisnn
N [OD SonE e eI
&
LIPS isasubringoefanng B, then 8 fisell s a ring with the same + und . of R.

Show that the incluston map 10 S - R < itx) = x is a homomorphism. What are
30 Kervand fmi?



'"E2) Let R and R: be two rings. Define £: Ry ~ Rz @ f(x) = 0. Show that [ is a
homomorphism. Also obtair Ker f and Im {. (This funclion is called the trivial
homomorphism.)

E3) Isf:Z—2Z:((x) = 2x a homomorphism? Why?

Note that using E 1 we know that {: Z~ Q (or R,or Cor Z + iZ) given by [(n) = nisa
homomnzphism.

Now let us loak at some more examples,

Exahple 4 : Consider the ring C{0, 1] of all real valued contin uous functions defined on the
closed interval [0, 1]. . . _ '

Define ¢ : C[0, 1] — R : &{f) = {(1/2). Show that & is a homomorphism.

Solution : Letfand g € C[0Q, 1]

Then ([ + ) (x) = f{x} + g(x) and

(g} (x) = {{x) g(x) forall x € C[0, 1}

Now, ¢(f + g) = (I + &) (1/72) = {(1/2) + g(1/2) = &([) + &(g}, and

: i L
¢(fg) = (fg) (1/2) = 1) e(5 ) = (D) &(g).

Thus, ¢ is 2 homemorphism.

Example 5 : Consider the ring R = {[3 g ]

a3, bhER ] under matrix addition and

multiplication. Show'that the map [: Z — R: [(n) = [ 3 S ]is 2 homomorphism.

Solution : Note that [(n) = nl, where 1 is the identity matrix of order 2, Now you can
check that f(n + m) = [(n) + {{m) and Knm) = {n) {(m) ¥ n, m € Z. Thus, {is a
homomorphism.

Example 6 : Consider the ring £ (X) of Example 4 of Unit 9.
Let Y be a non-empty subset of X. .
Define [: £ (X} — 2 (Y) by {A) = AN Yforall A in £ (X). Show that [isa
homomorphism. Does Y° € Ker {2 What is Im £? =
Solution : For any A and B in £ (X),
f(A A B)= {({A\ B} U {(B\ A)
=({(A\B)U (BA A NY))
= {(A\B) N Y) U(B\A) N Y)
(ANYINB N YNUB N YINA N YY)
(HAYNEB) U (1(B) \1(A))
= {(A) A [{B), and
ftanme = AMBNY
(ANB MY NY)
(AN Y)N (B M Y), since N is associative and commutaljve,
= {(A) M {({B).
So, {is a ring homomorphism from 2 {X) into §2 (Y).
Now, the zero clemen of §2 (Y)is & . Therefore,
RKerl={A€C POIANY = &1 =~ ¥ =Ker f.
We will show that f is sufjective.
Now, Im f = |3 SY AR ey .
Thuas, iIm 2 87613 1o show that QY)Y Zim fooake o 0 £210Y;.
Then B2 2 (Xvand {(By = 3 ™ y = B Ths B~ Iy f
Therefore, Im 7 = @ (v,
Thus, M on onte Bemuemorphian

Il

Il

Mhe Tollowing evergses waij FICNOU i Moers Coam e G BOanOmerngy s,

Edr Lei Aond B bu o e

fngs N thatthe prossection map
PiA A B~ Arpiaiy)=w g homoumerphism, What are Ker pand {m p!
LSy [s[Z + 22 —7 V2L Mo 2k =y - \'Ebu hontomorphism?

£6) Show thatthe nuap & - ) . R
itomo pliam,

RO S 0L ) s

Ring Homomerphlsms

& iveadled the
evzluation map at

. |
the puinl y = —
2



Flementary Ring Theory

1J

Having discussed many examples, let us obtain some basic results about ring
. N r
homemorphisms.

11.3 PROPERTIES OF HOMOMORPHISMS

Let us start by listing some properties that show how a homomorphism preserves the
structure of its domain. The following resuit is only = restatement of Theorem 1 of Unit 6.

Theorem 1 : Let [ : Ry — R be a homomorphism from a ring R, into a ring R». Then
a) f(0)y=0, '

b) f(—x)=—f{x)¥x ER,, and

¢} fix—y)=Mx)~f{y)¥x,y ER.

Proof ; Since [ is a group homomorphism from (R:, + } to (Ry. + ), we can apply
Theorem 1 of Unit 6 to get the result.

In the following exercise we ask you Lo prove another. property of homomorphisms.

E7) Lecf:R,—~ R;bean onio ring homomorphism. [f R, is with identity 1, show that
R: is with ideatity f(1). ’

_Now, let us lock at direct-and inverse images of subrings under homomorphisms. (See Sce.

1.5 for the definition of an inverse image.)

Theorem 2 : Let f: Ry — R be a ring homomorphism. Then
a} if S is a subring of Ry, f(8) is a subring of Ry;
b) if T is a subring of Ry, £'(T) is a subring of R.

Proof : We will prove (b) and leave the proof of (a) 10 you (sce E 8). Let us use Theorem |
of Unit 10.

Firstly, since T # ¢, {7 (TY # & . Next, teta, b € (T). Then i), Kb) € T.
= f(a) — [(b) ETand Ka) (b) € T
= fia—b)ETandflab) €T
=>a—b&r(Mandab € (T
=>"("'(T}is a subring.
To complete the prool of Theorem 2, try E 8,

E8) Prove(a)of Theorem 2.

Now, it is natural (o0 expect an analogue of Theorem 2 for ideals. Bul consider the inclusion
i:Z — R:i(x) = x. You know that 2Z is an ideal of Z. But is i(2Z) (i.c., 2Z) an ideal ol

1 ! 1 '
R? No. For example, 2 € 2Z, 74' C I, bul 2.71— =5 Q 27, Thus, the homomorphic

image of an ileal need not be an ideal, But, alt is not lost. We have the fnllowing resubt

Theorem 3 : Let §: Ry — R be o ring homomaorphism.
ay I fis surjective and Toaaideat of Ry, then [0 is an ideal of R,.
DY I Disan ident ol B then T s an ddeal of Ryoand Ker T Yl

Prool : Here we wiil prove (a) and leave (bY @ you (see k9

[Firstly, since §1s 2 subring of Ry, [{1) 15 a subning of R

Secondly, take any Loy € (1) and r € R Sioce {is sugective .3 s 2 R osuch that fivi
Then

rl(x) = f(s) [(x) = [(>vy - dily since sy € L,

Thus, [(1} 15 an ideal ol -

Tao finish the proofl tre |4



"E9)  Prove (b) of Theorem 3. : - )

Now, consider an epimorphism f: R — S and an ideal [ in R. By Theorem 3 you know that
(T} is an idcal of § and £7'([(1)} is an ideal of R. How are I and f"(f(l)) related? Clearly,

L€ 17%(E(1)). Can (7 (f(D) contain elements of R\ [? Remember that Ker { C {7'(f(1)) also. Thus,
I+ Ker £ C ((()). In fact, [ + Ker [ = £((D). Let us see why.

Let x € ('(KD)). Then f(x) € f(I). Therefore, f(x) = {(y) for some y €L Then
f{x —y)=0. . :

s x—yEKerfie,xCy+4 Kerf CI+ Kerf,

LKD) €U+ Ker b

Thus, '(f(1)) = 1 + Ker f-

This tells.us that if Kee T C I, then

{"FD) = [ (since Kerf C 1 == I 4 Ker f = I}

Now you may like to do an casy excreise.

E10) Letf:R — S bean onto ring homomorphism. Show that if J is an ideal of S, then
(') = J.

Our discussion so far is leading us to the following theorem.

Theorem 4 : Letf: R — S be an onto ring homomorphism. Then
a) ifLisan ideal in R containing Ker f, [ = Y1y

b) _themapping | — (D) defines a one-to-one correspondence between the st of ideals of R
containing Ker [ and the set of ideals of .

Proofl : We have proved (2} in the discussion above. Let us prove (b) now,
Let A be the set of ideals of R containing Ker [, and B he the set of ideals of S,
Definegp: A —B: oD = KI).
We want to show that ¢ s onc-one and onto.
disonto: IfJ EB thenf™ (J)EA and Ker {C [ (J} by Theorem 3.
Now ¢ ((7'(I)) = ((f"'(7)) = 3, using E 10.
¢ is one-one : If I, and I, are ideals in R containing Ker f, then
&) = ¢(l) = (L) =1(I)
= [71(1)) = £7'(f(1)
=1, = I, by {a).

Thus, ¢ is bijective,

Use this result for solving the following exercises.

E 11) Find the kernel of the homomorphism
FPZ—Zn:lz)=12
Also find the ideals of Z,,.

E 12) Show that the homomarphism : 72 — 7 % 7. f(n) = {(n, n) is not onto. Find an ideal
in Z X Z which is no of the form (1), where [is an ideal of Z.

And now et us look closely a1 the sets Ker fangd 1 owlere Fis a ring nomomnrplusm, In
Unit 6 we proved tatif 4, — G- is a group homomorphism then Ker fis o normal
subgroup of Gy and [m [is a subgroup of Ga. We have an analogous result for ring

1omomorphisms, which you may have already realised from the examples vou have studied o
ar.

[heorem 5: Let {: R, — R.bea ring homomorphisny. Then .
) Ker [is an ideal of R,.

1) Im fis a subringof R,

Ring Homoma: phisms
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An injective homomaorphism is called
a monomorphism.

34

Proof : a) Since {0) is an ideal of Rz, by Theorem 3(b) we know that { *({0}) is an idcal of

‘R.. But (7'({0}) ='Ker L

Thus, we have shown that Ker Fis an ideal of R..

b) Since Ry is a subring of Ry, {(R,) is a subring of Ry, by Theorem 2(a). Thus, Imfis a
subring of Ra.

This result is very useful for showing that certain sets are ideals. For example, from Theorem 5

.and Example 3 you can immediately say that { 0, 3 } is an ideal of Zs. As we go along you
. will see mare examples of this use of Theorem 5.

Let us look a little more closely at the kernel of 2 homomorphism. In fact, let us prove a result
analogous (o Theorem 4 of Unit 6.

Theorem 6 : Let £ : Ry — R; be a homomorphism. Then { is injective iff Ker f = {0},

Proof : [ is injective iff { is an infective group homomorphism from (Ry, +) into {Ry, +). This
is true iff Ker £ = {0}, by Theorem 4 of Unit 6. So, our result is proved.

Using Theorem 6, solve the following exercise.

E 13) Which of the homomorphisms in Examples [-6 are 1-1?

So far we have seen that given a ring homomorphism f: R — S, we can obtain an ideal of R,
namely, Ker £. Now, given an ideal { of a ring R.can we define a homemorphism f so that
Kerf=1?

The following theorem answers this question. Before going to the theorem recall the definition
of quoticnt rings from Unit 10.

Theorem 7 : I[ [ is an ideal of a ring R, then there exists a ring homomorphism f: R — R/I
whose kernel is L. : oo

Proof: Letusdefine {: R — R/lbyf(a) =a + Iforalla ER. Letussecif fisa
homomorphism. For this take any a, b € R. Then
ffa+by=(a+b)+1=(a+1)+®+D =)+ i(b), and

fab) = ab + [ =(a + ) (b + 1) = [(a) (b).

Thus, { is a homomeorphism.

Further, Ker [={a€R[fa) =0+ 1]={a€R|a+ =1}
=fa€R|a€l])=1

Thus, the theorem is proved.

Also note that the homomorphism f is onto.

We call the homomorphism defined in the proof above the canonical (or natural)
homamorphism from R onto R/L

Try this simple exercise now.

E 14) Lel S beasubring of a ring R. Can we always definc a ring homomarphism whose
domain is R and kernel is 37 Why?

Now let us look at .he behaviour of the compasition ol homomorphisms. We are sure you find
the following resuit quite unsurprising.

Theorem 8 : Let Ry, Ry and Ry be ringsand {1 Ry -+ Ry, and g: R: — R, bering
homomorphisms. Then their composition gof: Ry — Ry given by (gof) (x) = g({x)) for all
x € Ity is a ring homomorphism.

The proof of this resuli & on the same lines as the proof of the corresponding result in Unit 6.
We lcave it Lo you (sce the fallowing exercise). :



- - - T Ring Homorn;orphisl
E 5) Prove Theorem 8. . - i
E 16) 1In the sitvation of Theorem § prove that

a) tfgefis 1 — I, thensois [,

b} if gof is onto, then so is g.

E17) Use Theorem 8 to show that the function b : Z X Z — Z, defined by k{(n, m}) = m is
a homomorphism. b

Now let us see what the ring analogue ol a group isomorphism is.

11.4 THE ISOMORPHISM THEQREMS

In.Unit 6 we discussed group isomorphisms and various results involving them. In this seclion
we will do the same thing for rings. So, let us start by delining a ring isomorphism.

Definition : Let Ry and R; be two rings. A function [: R, — R. is called a ring isomorphism
(or simply an isomorphism) il

i) {is a ring homomorphism,

i) [ist—1,and

i) fis onto.

Thus, a homemorphism that is bijective is an isomorphism.

An isomorphism of a ring R onto itself is called an automorphism of R.

I[f: Ry — R is an isomorphism, we say that R, is isomorphic to Ry, and denote it by
R| = R.:. -

Ovwer here we would like to make the following remark.

Remark : Two rings are isomorphic if and only i[ they are algebraically identical. That s,
isomorphic rings must have exactly the same algebraic properties. Thus, if R, is a ring with
ideality then it cannot be isomorphic to a ring without identity. Simarly, if the only ideals of
Ry are {0} and itsell, then any ring isomorphic to R, must have this property oo.

Try the following exercises now. They wilt help you in becoming more familiar with
somorphisms.

E 18) Which of the following functions are ring isomorphisms?
yl:Z—R:fin)=n
by f:Z — 5Z : (n) = 5n
¢) I:C~ C:liz) = 7, the complax conjugate of z.
E1%) Letw:R: — R:be a rine somerphisim. Than ™« Ry — R, is 2 wall deflined function Re=— RLHETR = R
sinee & is bijective, Show that &7 is also an Bomorplism.

L4

L 200 Shaw that the composizion of isomorphisme 15 an isomnrphism

And now, led us go back to Unit 6 Tor 2 moment, Over there we proved ine Fundzmeniai
Theorein of omomorphism {or groups, according 1o which the homomorphic image of a
group G is isomorphic to a quotient group of G. Now we will prove a similar result lor rings,
namely, the first 1somorphism thearem or the Fundamental Theorem of Hemomorphism for
rings.

Theveem 9 (The Fundamental Theorem of Homomorphism) : Let f:R~Shbea ring
ivontomarphisn. Then R/Xer f = tm [ In particular, il {is surjective, then R/Ker f = S. 15



Elementary Ring Theory i’rool‘ +Firstly, note that R/Ker fis a well definsd quotient ring since Ker [ is an ideal-o[ R.
. For convenience, [et us put Ker { = L Let us define
i RA—Sby g{x + 1) =1(x)

As in the case of Theorem 8 of Unit 6, we need lo check that ¢ is well deﬁ_ncdl, e, if
x+ [ =y+ [then ¢(x + 1) = Wy + D).

Now,x +l=y+1 =>x—y&EIl=Kerl =2 f(x —y)=0 = f(x) = Ky)
=> y(x + 1) = gy + 1),

Thus, 4 is well defined.

Now let us see whether 3 is an isomorphism or not.

i) ¢ is a homomorphism : Lel x, y € R. Then
WE D+ D) =dx+y+D=1x+y) =M} +[(y)
= ¢(x + 1) + y{y + 1}, and
W((x + Dy + D) = gixy + 1) = ixy) = () (y)
= glx + 1) Yy + B

Thus, ¥ is 2 ring homOmorphlsm

i} Imy =Iml:Since Y(x + D= [(x) EIm{% x €R, Im & C Im [. Also, any elemeiit
of Im £ is of the form f(x) = ¥{x + I} for some x € R, Thus, Im £ C Im .
So,Imy =Imf .
i) #is1 — | :To show this let x, y € R such that
y(x + 1) = gly + I} Then [(x) = [y),
sothatf(x —y) = 0,ie,x —y<&Ker[= L
ie,x+1=y4+L
Thus, ?,J is 1 — [

S0, we havc shown thnl R/Ker[=Imf.
Thus, if  is onto, then Im £ = S and R/Ker [ = S,

Nole that this result says that { is the compdsition o n.where 1 is the canonical
homomorphism 7 : R — R/I: n(a) = a - L This can be dizgrammatically shown as

R =S

Lot us look at some examples of the use of the Fundamental Thearem. |

Consider p: Z— Z=:p(n) = n.pisan epimorphism and Kerp = (r| n = 0in Z» } = mZ.
Therefore, Z/mZ = Z.
(Nole that we have often uscd the facl that Z/mZ. and Z, are the same,)

As another cxampie, consider the prejection map

p:R: X Ry — Ry:p(a, by = a, where Ry and R; are rings. Then p 15 onto and iis kernel 15
fr by bE P }. which is isomorphic to R..

Therefore, (Ry 2 B/ R: == 1.

Ty this exercise naw.

C21) What does the Fundamental Theorem of Homomorphism sayv in each of the Examples
lwé?

Let us now apply Theorem 9 to prove that any ring homomorphism [rom a ring Ronto Z is -

uniquely determined: by its kernel. That is, we can’t have two different ring homomorphisms

from R onto Z with the same kernel. (Note thal this is not srue for group homomorphisms. In

fact, you know that Iz and — Iz are distinct homomorphisms from Z onto its. lf with the same
36 kerael, (0}.) To prove this statement we need tie [ollowing result.



" ‘Lheorem 10 : The only nen-trivial ring homomorphism from Z into itself is Iz ' Rlag Homowarphisms

Proof : Let f: Z — Z be a non-trivial homemorphism. Let n be a positive intcgcr-. Then
n=1+1-+.. + 1 (n times). Therclore,
f(n) = f(1) + &1) + ... + K1) (n times) = n {(1}.

On the other hand, if n.is a negative integer, then —n is a positive integer. Therefore,
f(—n) = (—n) f(1), i.e, — f(n) = — nf(1), sirce { is a homomorphism, Thus, {(n) = n f(1) in

this case 100. .
. Also [(0) = 0 = 0f(1}.
Thus, f(n) = nf(l) ¥n&€Z. . (1)

Now, since { is 2 non-trivial homomorphism, [{{m} # 0 for some m € Z,
Then, f{m) = f{m.1) = f{m) f(1).

Caneelling {[(m) on both sides we get [{1) = 1.

Therefore, [rom (1) we sec that

[my=n¥neZie,[=1Ia

This theozem has an important corollary.

Corollary Let R be a ring LSOlTlOl'pth to Z. If f and g are two isomorphisms from R onto Z,
thenf=g.

Proof : The composition fog™! is an isomorphism from Z.onto itsell, Therefore, by
Theorem 10, fog_l =Izie, =g

We are now in a position to prove the following resull.

Theorem 11 : Let R be a ring and [aud g be hamomorphisms from R onto Z such that
Kerf=Kerg. Thenf=g.

Proof ; By Theorem @ we have isomorphisms .
Gr:R/Kee { —~ Z and o : R/Kerg — Z.

Since Ker [ = Ker g, r and 47 are isomorphisms of the same ring onto Z. Thus by the
corollary above, Y = .
Also, the canonical maps nr: R — R/Kerfand n,: R — R/Ker g are the same since
Kcr f=Kerg.

. f= l,lroT,lr J’l"-"‘]l'_

We will now give you a chance to prove-two applications of Theorem 9! They are analogous
te Theorem [0 end 11 of Unit 6.

. E22) (Second isomorphism theorem) Let S be a subring and { be an ideal of a ring R. Fhow
that (S + /1 =S/(S N1

E 23) (Third isomorphism theorem) Let I and J be ideals of a ring R such that J C 1. Show
that 1/] is an 1deal of the ring R/J and that
(R/J)/(1/3) = R/L

Let us halt our discussion of hemomorphisms here and brielly recall what we have done in
this unit. Of course, we have not finished with these [uncticns. We will be going back Lo them
aain and agawm iy the luture voils,

11.5 SUMMARY

In this unit we have covered the following points.

1. The delinition of a ring homomorphlsm its kernel and its image, along with several
examples.

2. The direci or inverse image of a subring under 3 homomorphism is a subring. . 57
7
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3. If [: R — S is'a ring homomorphism, then -
i) Im[is asubring of S,
i) Ker [is an ideal of R,
. i) £7'(])is an ideal of R for every ideal T of S.
iv) if [ is surjeclive, then (D) is an ideal of S.
A homomorphism is injective iff its kernel is {0},
The composilion of homomorphisms is a homomorphism. : !

The definition and examples of a ring isomurbhism.

IR ST S

The proof and applications of the Fundamental Theorem of Homomorphism which says
that if f: R — S is a.ring homomorphism, then R/Ker [ == Im f.

11.6 SOLUTIONS/ANSWERS

El} Forxy€S,
ix +yy=x+y=i{x) + i(y), and
i(xy) = xy = i(x} i{y)
"+ i 1s 2 homomorphism.
Keri=fx&S5]|ix) =01 =10}
Imi=[i(x}){x€£S5}=8

E2) Foranyx, y ERLfx +y)=0=0+0=[x} + ), and
. [(xy) =0=10.0=1{x).Ky). - [is2homomorphism.
Kcrf=[xER||[(x)=Oi=R|
Imf=[0}

E3) {2.3)=16) =12 Buf2).(3)=4.6=24
Thus, (2.3)  (2) {(3).
S fis not a homomorphism.

Ed4} Forany(a,b) (cdy€ A XB,
pl{a,b} +{c.d) =pla+c,b+d)y=2a+c=pab)+ p,d),
p({a, b}{c, d)) = p(ac, bd) = ac = p(a, b} p(c, d).
Kerp=Il(a,b)EAXB|a=0]}={0} XB,
Imp=|pla.b)l(a.b}EAXB}={z|(a D)EAXB}=A

L35)  Yes, you can chack il

E6) ForlgECl0. 1)
S+ =+ 0 {{+g)(1)
= (0. {(1)) + ({0}, g(1))
= o) + &{g) and .
¢(fg) = (f2(0). fa(1) = ([0}, 2(0)} (K1), g(1))
= &) &(g). -

- & is a homomorphism,

E7) Letx & RaSinee (s surjective. 3 v € Ry such that {(r) = x. Since
.l =00t = (.
Thus, (1) = x. This s true for any x £ R
S fE 1y s the identity of R,

C8)  Again use Thearem | of Unit 10,
S = = S oy,

iy Leta’ b 208y Thend a, b & Ssuchthat o) = o' ) = &
Now ' — 0 = tta) - [b) = [(a — b) €{(S).sincea — b S5 and
a'h’ =iy ftb) = [y < [(S), since ab € 8.
LiS) s a sebring of R

E9)  Since [isasubang of Ry, (7'(1) is a subring of R\ Now, leta € f () and r € R..
We want to show that ar € £7'(8).
Sincca €Dty £1. & Ka) () = L, ic.



E 10)

E 10}

E 12)

E 13)
E 14)

E 15)

E 16)

E17)

-E 18)

£ 19)

E 20)

E 21)

f(ar) €L farefl [I} . Ring Homomorphis:
Thus, [7'() is an ideal of R,. - .

Also, if x € Ker f, then {(x) = 0 € L.

L €17,

~ Ker fC17'(D).

Let x € (™" (N)). Thep x = {(y), where y € f7'(J), ie., Ky) €], ie, x €L
Thus, [((7'(1) C J.

Now, lel x E J. Smcc fis surjective, 3 y € R such thal f{y) = x.

Then y € [7'(x) C £,

- x = {{y) € f({”'(3)).

Thus, J C [(("'(J)).

Hence the result is proved.

Keef=[n€Z|n=0(mod 12) } = 12Z.

Now, you know that any ideal of Z is a subgroup of Z, and hence must be of the form
nZ, n € N. Thus, the ideals of Z containing Ker { are all those nZ such that n| 12, ie,
Z,2Z,3Z, 427, 6Z, 12Z. Thus, by Theorem 4(b) the ideals of Zyz are

21, 2113, 3Z13, 311,621, and {0).

For example, (0, 1) & Im f.
For any ideal [ of Z, f(I) = 1 X I. Thus, the ideal Z X {0} of Z X Z is not of the form
{(1}, for any ideal I of Z.

The homomorphisms in Examples 1 end 5.

No. For cxample, take the subring Z of Q. Since Z is nol an ideal of Q, it can’t be the

- kernel of any homomarphism from Q to another ring.

Foranyx, y € R.,-

gllx Ty) = glf(x -+ y)) = g(fx) + Ky))
= gol(x) + gef(y), and

gef{xy} = g(f(xy)) = g(f(x) {(y))
= gl(x) g~f{(y).

Thus, gol.is a homomorphism,

a)xEKcrf = {x) =0 == gof(x) =0 =>x =0, sincegefis | — 1.
Kerf‘{O]
- lisl—1.

b} Let x € Ry, Since gofis onto 3 v € R, such thal gl(y) = x, L, g{l(y)) = x. Thus,
g is onro,

h is the composite of the projection mapp: Z X Z = Z: p{n, m) = m and the map
f:Z—Z::[{r) ="r. Both p and f are ring homomorphisms.
~his a ring lomomorphism.

a} ' is not onto, and hence, not an isomorphism.

b) ['is not a homomorphism.

¢) See the appendix of Unit 2 for properties of elements of C.

Then you czan casily prove that [ is an isomarphisn.

Lety, y € Roand 7)) = 1, &7'(3) = 5 Thew £ = {r) and v — afs). Therefore,
by =) b Gs) = B 5 s) and 3 = dlisy,

SN R vy = s = g 4 oy and

O xy) =15 = () &)

Thus. ¢"' is a homomorphism.

You already know that it is bijective. Thus, &' & o samaorphisn.

Let [ Ry — R:and g : Ry — R; be ring isomorphisms. From Theorem 8 you know
that g=I'is a homomorphism. For the rest, proceed as you did in E 12 of Unit 6.

Example 1 : R = R. 3-6
Example 2 : What we have just dane above, namely, L/sL =7, . : !
Example 3:Z/[0,3 =2, . : ’



E 22)

E 23)

Example 4 ;: Ker¢p ="{ T € ([0, 1]| 1'(-%—) =0}

im ¢ = R (because given any r € R we can define the constant function

L

{::[0, 1] — R:f{x) =r. Then fr( 2

) = r. Thus, r = ¢(1) € [m ¢.)
Example 5:Z=[nlln€Z)
Example 6: 82 (X)/Ker [ = £ (Y).

Since [is an ideal of R and C S + 1, it is an ideal of S + 1.
Thus, (S 4 [)/1is & well delined ring.

Define {:S—(S+ I)/1:(x)=x + L

Then, you can check that f{x + y) = {(x) + f(y), and

fxy) =)y ¥x, y ES.

As you did in Theorem 10 of Unit 6, you can check thal { is surjective and
Kerf = SO L Thus, S/(SNT) = (S + I)/L
Define f: RZJ—=R/:fr + )=+ L

As you did in' Theorern 11 of Unit 6, you can check that fis wel defined, { is
surjective and Ker { = 1/].

Thus, 1/J is an ideal of R/J and (R/J)/(I/J) = R/L
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INTEGRAL DOMAINS AND FIELDS

In this block we will continise our discussion on ring theory. We will siart by introducing
you to two special types of rings, namely, integral domains and fields. Then we will discuss
their properties in some detail.

In the second unit of this bleck we shall discuss rings whose elements may be (amiliar to
you, namely, polynomials in one variable, “We will discuss various properties of
polynomials over any integral domain.or fic 4. Apart from its mathematical interest, the
theory of polynomials over a field has = 2ral applicalicns. In fact, because of this, lincar
and quadratic polynomials over Q we:e deait wilh in considerable deprn by the ancient Indian
mathematicians Aryabliata I, Sridlar, Bhaskara 11 and others. Nowadays. this theory is used
in coding theory and in mathematical modelling of problems from the social sciences and the
physical sciences.

In the third unit of this ceurse we introduce you to three kinds of integral domains, the best
known examples of which are Z and polynomial rings over a ficld. The domains arc
Euclidean domains, principal ideal domains and unique (actorisation domains. We will
discuss some of their properties in detail and show you how these domains are refated.

Finally, in the last unit of this course we shall look at those polynamials over Q which do
nol have any proper factors. Using such polynomials we can get field extensions of Q. In
this unit we will also discuss these and other field extensions, as well as subficlds. Then we
will look at finite fields and their properties. These fields play an imporiant role in coding
theory.

With this block we come to the end of the course. Alter you [inish studying it, please do’
the second assignment of the course, which deals with Block 3 and Lhis block.



Notation and Symbols
co.n

£ X

Z,

char R

' II{E.. <A

R[x]

deg f(x)

max {a, , ..., a,)
alb

a J’ b

g.cd

(2

lc.m

ring of continuous functions frem [J.1] 10 R

set of all subsers of X
fing of integers modulo n
characteristic of a ring R

principal ideal of R generated by a

ring of polynomials in one variable over R

degree of the polynomial f(x)

Lthe maximum among the integers a, .. 4,
adividesb

a does not divide b

greatest common divisor

thegedofaand b

lowest common multiple

Also loak at the nolations given in the previous blocks.



UNIT 12 THE BASICS ,

Structure
12.1  Introduction ) 5
Obpectives .

i2.2 Integral Domains ' . -5
12.3  Fields 9
12.4  Prime and Maximal Ideals L}
12.5 Field of Quotients - 14
12,6 Summary 17
[2.7 Solulions/Answers 17

12.1 INTRODUCTION

In Unit 9 we introduced you 1o rings, and then o special rings whose speciality lay in the
praperties of their mulliplication. In this unit we will introduce you Lo yet another type of
ring. namely, an inegral domain. You will sec that an integral domain is a ring with
identity in which the product of two non-zero clements is again a non-zero element. We will
discuss various properties of sucl rings.

Next, we will look al rings like Q, R, C, and ZP {where p is a prime number). In these
rings the non-zero clements form an abelian group under multiplication. Such rings are
calied fields. These structures are very useful, one reason being that we can “divide”.in them.

Related to integral domains and fields are certain special ideals called prime ideals and
maximal ideals. In this unit we will also discuss them and their corresponding quotient
rings.

Finally, we shall sce how to construct the smallest field that contains a given integral
domain. This is essentially the way that Q is constructed from Z. We call such a field the
field of quotients of the corresponding integral domain,

In this unit we have tried to introduce you to & lot of new cancepls. You may need some
time to grasp them. Don't worry, Take as much time as _-ou need. But by the time you
finish it, make sure that you have attained the following objectives, Only then will you be
comfortable in the remaining units of ihis course.

Objeclives
After reading h!  unit.you should be able to

¢ check whether an algebraic sysiem is an integral domain or not;
¢ obtain the characterstic of any ring;

¢ check whether an algebraic syslem is a ficld or not; '

e define and identify prime ideals and maximal ideals;

& prove and use simple propenties ol inlepral domains and fields:

e cansmcl ar idannire the Gald ol anariam Coanmime

Arrad sl el odew
Guiciing Ay W

| et
L U r L.
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Tou know that the produci of two nan-zero inkegers is i non-eero inlegei . .. il fL o = 7

stich that m = 3, n # 0, then mn = ¢, Now conside- ¢ ring 7., -We find that 2 = 0 and
; £ Ly .

=

520.yel 2.3 =0. So. we find that the product of the non-zeta elements 2 and

R T

In £, is 7era.
As you will soon realise, this shaws lhat 2 (and 3} iy a zero divisor. i.c.. 0 is divisible v 2
{and 3.

ra



Integral Domains and Fields So, let us see what a zero divisor is.

Definition: A non-zero element a in a ring R is called a zero divisor in R if there exists
a non-zero element b in R such that ab = 0.

(Note that b will be a zero divisor 1eo!)

Now do you agree that 2 is a zero divisor in Z,? What about 3 in-Z,? Since 3.x = 0 for every
non-zero x in Z,. 3 is not a zero divisor in Z,.

Our short discussion may help you 1o do 1hié following cxercise.

E1) Leine Nandm|n, | <m < n. Then show that m is a zero divisor in Zn-

Now let us look at an example of a zero divisor in C]0,1]. Consider the function
fe C[0,1] given by

1A
n

L
y=4%"2+0 1/2

0,1/2<x<g1

X

Letus define g: [0.1] — R by

0,0z x g 1/2

X)) =
) - 201/ x £ 1

Then g e C[0,1), g #0and (fg) (x)= 0¥ x € [0,1). Thus, fg is the zero function. Hence, f
15 a zero divisor in C[O,1]. '

For anothier example. consider the Cariesian product of two non-trivial rings A and B. For
cvery a = 0in A, (a.0) is a zero divisor in A % B. This is because, for any b= 0in B,
(a.0)10. by = (DM,

Now let us look at the ring 2 (X}, where X is a set with at [east two elements. Each non-
empty proper subset A of X is a zero divisor because A A= A n AC= ¢, the zero element.
of @ (X).

) ) Try these exercises now.

E2v  Listall the zero divisors in 7.

3y Tor which rings with unity will 1 be a zero divisor?

4} LetR bearning and a e R be a zero divisor. Then show that every eler ent of the
principal ideal Ra is a zero divisar,

Let us now ralk of a type of ring thal is without zero divisars.

Definition: We call a non-zere ring R an integral dowain if

Rz aeih idantiny, and
B Mha cserodivisors,
Frnsoon ovegral domain s o nen-zero rng with identity in which the product of two non-

LU0 CL CMSNTS B8 3 NON-ZeTo clemcnl.

Several authors often shosen tie This Sand ol ring gots its name from the set of intzgers. one of its best known examples.
;T“f;'ll;gm' domains”to ‘domains”. ier enginples of domains that immediately come 10 mind are Q. R and C. What about
‘1l do 5o w0, . ) . . . .
C[O0. 117 You have already seen that it has zere divisors. Thus C[0,1] is nolL a domain.

The saxtresult gives us an important elass of exampies of integral demains.

6 Thesrem | : Z, is an integral domain iff p is a prime number.



Proof : Firstly, let us assume that p is = prime number. Then you know that Zp i5 a non-
zero ring with identity, Let us see if it has zero divisors. For this, suppposci. be Zp '
satisfy a b = 0. Then ab = 0, ic. p[ab. Since pis a prime number, using E 25 of Unit 1
we see thatp aor p|b. Thus, a = G or b = 0. What we have shown is that if 2 # 0 and

b 6, thena b0, Thus, Z.p is without zero divisors, and henece, is a domain.

Conversely. we will show that if p is not a prime, then Zp is not a domain. So, suppose p
is not a prime. If p = 1. then Z, is the trivial ring, which is not a domain.

Il'p is a composite number and m | p, then by E i you know thatm e Zp is a zero divisor.
Thus, Zj, has zero divisors. Hence, it is not a domain.

Try this exercise now.

-

£5)  Which of the following rings are not domains? Why?
2,,2:,.2Z.Z+iZ,RxR,0).

Now consider 2 ring R. We know that the cancellation law for addition holds in R, i.c.,
vhenever a+b = a+c in R, then b = ¢. But, does ab = ac imply b = ¢? It need not. For
:xample, 0.1 =G.2in Z but | = 2. So, if 2 =0, ab = ac need not imply b =c. But,ifa# 0
ind ab = ac, is it true that b = c? We will prove that this is true for integral domains.

Cheorem 2: A ring R has no zero divisors if and only if the cancellation law for
nultiplication holds in R (i.c., ilfa,b.c € R such that a#0and ab=ac,then b =c¢))

'roof: Lei us {irst assume that R contains no zero divisars. Assume that a,b,c € R suck

hat a = 0 and ab = ac. Then atb—c)=ab-2c=0. Asa#0, and R has no zcro divisors, we
ctb-c=0,ie.,b=c.

hus;ifab=acanda=0.thenb =c.

‘onversely, assume that the cancellation law for multiplication holds in R. Let a @ R such
12la# 0, Suppose ab = 0 for some b e R. Thenab =0 = a0, Using the cancellation taw for
wltiplication, we get b = 0. So, a is ot a zerg divisor. i.e., R hasno zero divisors.

Ising this theorem we can immediately say that the cancetlation law holds for
wiltiplication in an integral domain. |

‘ow. you can usc this property ol domains to solve the following cxercises.

6)  In a domain, show that the only solutions of the equation x* = x are x = 0 and « -

Ty Prove that Qis the oniy nilpotent element {see Example 9 of Unit 10) in a

domatin,

ow let us inroduce a number associated with an integral domain: tn fact, with AnY ring.

o this Izt us took at Z. Tirst, We know tha Nm0Y xe Lo Innac 8x = O aid

"s= Gabwiur NV X 2 4.

ey the least element of e sl e Njm - 0 T4 7

i Thes shusos thu 2 g e
aracteristic of Zi, as you wili sec now,

Minition: Lei R be a ning, The toast posttive

inteper nosuch thatna =07 o e ¥ ig
lled the characteristic of 1

I ihere is no posilive integer n such that nx= 0 = v £ R
mowe say that the characteristic of R is zero.
¢ denote the characteristic of the ring R by char IR

wean seethatchar £, = nand char 7 = 0.

A
fo
b

The Basics

18 R is without zcro divisors ir

BbeR ab=0
\

=a=00r




Intesral Domains ond Ficlds

The following exercises will give you some practice in obtaining the characteristic of a ring.

E8) Showthatchar §2(X} =2, where X is a non-empty set,

E®) Lel R beadng.and char R = m. What is cliar (R x R)?

Now let us look at 2 nice result for integral domains. It heips in considerably reducing ocur
labour when we want to obtain the characteristic of a domain.

Theorem 3: Lel m be a positive integer and R be an integral domain. Then the following
condilions ar¢ cquivalent.

a ml=0.
b) ma=0forallae R.

) ma=0forsomea=z0inR.

" Proof: We will nrove (a) = (b) = (¢} = (a).

(a) = (b) : We know thatm 1 = 0.
Thus, forany a € R,ma=m (la)= (ml} ('z'.) =0a=0,1.c., (b) holds.
(b) = () : If ma=0¥ae R, then it is cerainly true for some a 2 0 in R.

c=(a):letma=0fersomecaz20inR. ThenO=ma=m (la) =(ml) a. Asa=0and
R is without zcro divisors, we get mi = 0.

What Theorem -3"tells us is that to find the characteristic of a domain we only
need to look at the set (n.l | ne N}.

Let us look at some examples,

i) charQ=0,sincenl=0loranyne N.
ii) - Similarly, char R =0 and char C =0,

iii): You have already seea that char Z,, = n. Thus, for any positive inieger n, there exists a
ring with characteristic n.

Now let us look at a peculianty of the characieristic of a domain.

. Theorem 4 : The characteristic of an integral domain is either zero or 2 prime number.

Proof: Let R be o domain. We will prove that if the characteristic of R is not zero. then i
is a prime number. So suppose-char R = m, where m # 0. Se m is ihe lcast positive inieger
such that m.l = 0. We wili show that m is a priine number by supposing that it is not. and
then proving 1hal our supposition is wrong.

Sosuppoese m=st, whereste Nt <s<mandl <t<m Thenml=0= (st}.1 =0
= (s.1) (L. 1) = 0. As R is without zero divisors, we get st =0 or 1.1 = 6. Bul, s and 1 arc
less thun m. So, we reach n contradiction to the fact that m = char R. Therefore, our
assnmiption that m = s, where 12 s <y [ < L<m is wrong Thus, the only factors of m

are | oanid iteell Thatl i niie a i\r;n-\,- mirbar
arg Loanaatssil, ThRabig, mog aonnnne pummber,

You van now wse your knowledye of characiernistics W solve the fullowing excercises.

Ei)  Let R bean integra! domain of characteristic p. Prove that

W fash = a4 bPand
(a-byr=a"—b*foralla, b= R,
) the subset [aFlae R isa subring of R.
<) the mepo: R -y R: g (a) = s is aring monomorpnism.

d) il R is ¢ hinile inegrat doman, thes ¢ i5 an isomorphism.




EI LJ.‘.[ R be aring with unity 1 and char R =m. Deﬁnc f Z — R: I'(n) =n. I Shsw
- othatfisa homomorphlsm Whiat is Kerf?

E I_2-)“ _Fmd the charactcnsuc of Z3 X Zs. Use this ring as an example (o show why
" “Theorems 3 and 4 arc only true for integral domains.

We will now see what algebraic structure we get afier we impose certain restrictions on the
multiplication of a domain. If you have gone through our course Linear Algebra, you will
..lready be familiar with the algebraic system that we are going to discuss, namely, a ficld.

12.3 ' FIELD -

Let (R, +,.) be aring. We know that (R, +) is an abelian group. We also know that the
operalien . is commutative and associative. But (R,.) is not-an abelian group. Actually, even
if R has identity, (R,.) will never be a group since there is no élement a € R suoh that

a0 = 1. But can {(R\{0],.) be a group? It can, in some ca.scs.lFor example, from Unit 2 you
know that Q* and R* are groups with respect to muitiplicafton, This allows us to say that
Q and R are fields, a lerm we will now define.

Definition: A nng (R +, .} is called-a field if (R\[0},.) is 4r abelian group.

Thus for a system (R +.)tobe a ﬁeld it must satisfy the ring axioms R 1o R6 as well as
the follawing axioms.

iy .is cornmuLatwe.
iiy Rhas 1dan1ty (wruch we denote by l) and 1 #O and

uu) every non- zero clement x in R has a multiplicative inverse, which we denote by x-.

Just as 2 matter of informalion we would like 10 tel! you that a ring that saLisﬁcs only (i)
and (iil) above, is calicd & division ring or a skew field of a non-commutative! _
field. Suth rings-are very unponant in thc study of algebra, but we will not be dlSCUSSlng
them in this course.

Let us:go back fo fields now. The notion of 2 field cvolved during the, 19theentury through
the research of the German mathernaticians Richard Dedekind and Leopold Kronecker in
algebraic nu_mbcr-lhcoqﬁ Dedekind used the German word Korper, which means field, for this
concept. This is why you will often find tho: ¢ {ield is denoted by K.

As yq!.:; ma)f hzi;.jc rcaﬁﬁcd, f:\‘.;q of the bt hnown cxamiples of ficlﬁs are R and C. These
were the fields that Dedekind coside:.d. Yet another examnple of a field 15 the following ring.

Example 1: Show that Q + Y20 = [a+ Y2b |2, be Q] is a field.

Solution : From Unit 9 you know that F = Q + \r’.EQ is a commutative ring with
identity 1 + V2. 0.

Now, leta + \G.b e a non-zero element of F. Then either a # 0 or b 2 0. Now, using the
rationalisation process, we see that

. NG N
(3+\[§b) = llr_ = a-N 2b = l’l,,\'}“}_? -
arv2p  @ev2p) (.o @2
S I P i)
al-pt v a2 2 I

. . - . |- . .
ENote that 22- 203 = 0, gince V2 1y not eatiena! and cithera = 0 or b 2.0.)

Thus, every nos-zere clement ias o mult pluml.L. inverse, Therefore, Q + ¥ 200 15 a Treid.

Cun you think ol an example ¢l a ring that is not a field? Does every non-zero wleger bave
multiplicative inverse in Z? No. Thus, Z 1 noi a eld.

By now you have scen several exampies of fislds, Have 1o observed that i af them hay.
to e integral domains also? This is not o cowmcidence In Gl we huve L oo ng e

-
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[ntcgral Domaias and Ficlds

A ficld whose underlying set is linite
i called a finiie fictd.

“T'heorem 5: Every field is an intcgral domain.

Proof: Let F be a field. Then F 2 {0) and 1 € F. We need 1o see if-F has zero divisors. So,
letaand b be elements of Fsuch thatab=0and a# 0. As 2 = 0 and F is a ficld, a1 exists,
Hence,b=1.b=(a"la)b=a"T (ab)=a~1 0= 0. Hence,ifa#0 and ab=0, we get b= 0,
i.c., F has no zero divisors. Thus, F 1s a domain.

Now you try these excreises!

E [3) Which of the following rings arc not ficlds?
22,2, 7,QxQ
E 14) Will s subring of a field be a field? Why?

Theorem 5 may immediately prompt you to ask if every aomain is a ficld. You have already
seen that Z is a domain but'not a ficld. But if we restrict ourselves 1o firite domains, we find
that they are fields.

Thearem 6: Every finite Integral domain is a field, -

Proof: LetR = (ag=0,a,= 1,2,....,a5) bea ﬁnilc domain. Then R is commiutative alsa.
To show that R is a field we must show that every non-zero element of R has a
multiplicative inverse,

S0, let 2 = aj be a non-zero clement of R {i.c., i # 0}. Consider the clements aay, ..., aa,, For
every j# 0, 2% 0; and since a # 0, we get aa; = 0.

Hence, the sot {aa,, ..., aap} € {a,, ....a,}.

Also, aa,, aa,,..., aa, arc all distinct elements of the set {a, ...
aj = a, using the cancellation law for multiplication.

- 2n}. Since 22 = aag =

Thus, {7 ..., aq,) = {a].....a,]).

In panicular, 2, = aaj, i.e., | =aaj for some j. Thus, a is invertible in R. Hence every non-
zero elemient of R has a multiplicative inverse. Thus, R is a field.

Using.this result we can now prove a theerem which generates several examples of finile
[telds.

Theorem 7 ¢ Z,, is a fiald if and only if n is a prime numbsr.

Proafl : From Thorem | you know that Zj; is a domain if and only if n is a prin.. number.
You also l:now that Z), has only n elements, Now we can apply Theorem 6 1o ablain the
resuil.

Theorem 7 unicashes a load of examples of ficlds : Z,, 4, £, £, and so on. Locoking at

these examples, and other cxamples of fields. can you say anything aboul the chiaracteristic
ol a Nield? In fact, using Theorems 4 and 5 we can say that,

Theorem 8: Vhe characteristic of a ficld is eilher zero or a prime number.

So far e examples of finite fields that y2u: have seen have consisted of p elements, for

sapie prime p. In the fellowing exercise we give you an example of a finiie field for which
this 15 0ot sa.

Ei5)Let R = {0.1al+a) Define + and . in R as given in the followine Cayley tabies,

i + i_“U ' i . Tea i . 0 ! ! lrl
E B ‘C:-.“ - 4} i a l1a ] 0 T 'k-]__ ’ -[;-“ __D_ .
1 1 ! 0 1!—.1 a and | ’ ‘_._TJ_ H—]._H“- ) 1 T '|+: _-:i
a l+a -.-"-U i 1 1 U A L +a L :
]
L tia 1+a 2 | b] 1#a 0 L+ | ___:_E

S wthat Ris o ficld. Find the characteristie 27 this Nedd.




Let us now lbok at an-interesting conditicn-for a rmg to be a field. - : - _ The Bawu-

‘Theorem 9:letRbea ring with identity. 'I'hcn R is a ficld if and only if R and [0} are |
the only. ideals ofR .

Proof Lct us first a:ssurnc hat R is a field. Let I be an ideal of R. If I {0}, there cxists.a
non-zero element x € L Asx#0and R is a field, xy = 1 for some y € R. Since x € T and I
is an ideal, xy € I, ie., le L

Thus, by Theorem 4 of Unit 10, I = R. So, the only ideals of R are {0} and R.

Convcrscly, assume that R and (0} are the only ideals of R. Now, let a # 0 be an element of
R.-Then you know that the set Ra = [ra|r € R} is a non-zero idcal of R. Therefore, Ra =
Now, 1 € R = Ra. Therefore, 1 = ba for some b € R, i.c., a1 exists. Thus, every non-zero
.element of R ‘has a multiplicative i inverse. Therefore, R is a field. :

This result is very useful. You-wilt be applying it again and again in the rest of the units of .
this block. '

Usmg “Theorem 9, we can obtain some interesting facts about field homomorphisms
(ie. ring homomorphlsms from one ﬁcld to another). We give them 1o you in the form of -
an exercise,

E16) Letf:F — K be a field homomorphism. Show that either [ is the zero mﬁp or{
is 1-1.

E17) Let R be a ring isomorphic to a.field F. Show that R must bt a figld,

E 17 again goes to show that isomorphic algebraic structures must be algebraically identical.

Now that we have discussed dgmains and fields, el us look at certain ideals of a ring, with
respect to which the quotient rings are domains or fields,

12.4 PRIME AND MAXIMAL IDEALS

In Z we know that if p is a prime number and p divides thé product of two integers a and b,
then either p divides a or p divides b. In other words, if ab € pZ, then cithera € pZ or
b € pZ. Because of this propery wz say that pZ is a prime ideal, a term we will define now.

Definition: A proper ideal P of 2 ring R is called a prime idean of R if whenever
abe Pfora,be R, theneitherae Porbe P.

You can sce that {0} is a prime Keal of 7 because zbe {0) = a & 10) or b e (0}, where
abe Z.

Another example of a prime ideal is

Example 2: Let R be an integral domain. Show that I = ((0.x} | x € R} is a prime ideal of
R x R.

Solution : Ficstly, you know that [ is nn ideai of R x R. Next, it is a proper idcal since
IR xR. Now, let us check if [ is a prime ideal or pol. For this let (a;,b). (a,.b )e L I

such that (a;,b)) {a,,b,} €. Then (a,n,b b,) =(0x}forsome x & R 1.=, 0, [L =0
nran =10 cinr-n B icadomain, Tharaforn, 6 Iy % Tomefmn b v T Thoe 1o Al
ora, = U sinee Bosa gemain, Therefore, (8.8 ¢ Tor{ay, 5,5 © Lo Thus, §is 2 prime kdeal,
Try the following eaercises now. They will help vou pet used o prime wivals,

E 18) Show that the setI= {fe C[0.1] [ () =0} isa prinie wieal of CM01].

E 19) Show that a dng R with identity is an integral domain if and only if the zero ideal
{0] is a prime idzal ol R.

Now we will prove the relationship between integral domains 2o prime ideals. il



Integral Damains and Fields Theorem 10 : An ideai P of a ring R with identity is a prime ideal of R if and only 1flhc
quoticnt ring R/P is an integral domain.

Proof : Let us first assume that P is a prime ideal of R. Since R has identity, so has R/P.
Now, let a+P and b+P be in R/P such that (a+P) {b+P) = P, the zero element of R/P. Then
abtP =P, i.c.,abe [ AsTisaprime ideal of R eithera e Porb e P. So either a+P = P
or b+P = P.

Thus. B/P has no zero divisors.
Hence, R/P is an integral domain.

Conversely, assume that R/P is an integral domain. Let a.b € R such that ab & P. Then
ab+ P = Pin R/P, ie., (a+P) (b+P) = P in R/P. As R/P is an integral domain, cither
a+P =Porb+P =P, i.c., cithera € P or b € P. This shows that P is a prime ideal of R.

Using Theorem 10 and Theorem | we can say that an ideal mZ of Z is prime iff mis a
prime number. Can we generalise this relationship belween prime numbers and prime ideals
in Z to any integral domain? To answer this [et us first ry and suitably gcncrahsc the
concepts of divisibility and prime clements.

Definition : In aring R, we say that at element a divides an clement b (and denote it by
alb)if b=raforsomere R, In this case we also say thata is a faclor ol b, ora isa
divisor of b,

Thus, 3 divides 6 in Z., since 3.2 = 6.
- Now lel us sec what a prime element is,

Definitic;n 1 A non-zero clement p of an integral domain R is called a prime element if

1)  pdoes not have a2 multiplicative inverse, and

i1} whenever a, b e Rand p|ab;thenplaorplb.

Can you say what the prime elements of Z arc? They are precisely the prime numbers and
their negatives.

Now thal we know what a prime clement is, let us see if we can relate prime ideals and
prime elements in an integral domain.

Theorem 11 : Let R be an integral domain. A non-zero element p € R is a prime element
if and only if Rp is a prime ideal of R,

Proof : Ler us first assume that p is a prime clement in R. Since p does not have a
multiplicative taver.e, 1 € Rp. Thus, Rp s a proper ideai of R. Now let a, b & R such that
abe Rp. Then ab = rp for somere R

= plab

v R boaonaltiphicstise foverse iff

= plaorp]| b.since p is a prime clement,
K= R,

=a=xporb=uxplorsomexe R.

=ac Rporbz Bp.

FThusabo Bp=eitherac Rporb e RQpliel Bpisaprimzideal ol R
Conversely, aanume that Bp bsooprume wheal, Then Rp = R Thos L2 Re. and hence. p doex

o

pticative inverse. Now seppase jpdivides ab where oo B Then oo =m
forsome re i abe Rp.

oL Ve a i

As Rpis e primwe eleziiewthiara @ Rpoor e Bp Henceoenher plaar p ' Thas pisy

a

PYBNC cicinent it R,

Theerem T s very useful For checking whether an ciement is i prime clement or not, or for !
finding ovt wiwn o principal ideal is u primz ideal. For example, now we can use B 19 10 sty

- tat s o prone Cheneat of RtT R is i domain.,



Prme ldcals have several useful propertics. [n the fellowing exercises we ask you (o provc
some of them.

E20) Letf:R — S be a ring ¢pimorphism with kernel N, Show that
a) ifJisaprime idealin S, then f™ (J) is a prime ideal in R.
by iflisa prime ideal in R containing N, then f(Iyis a prime ideal in S.

a)‘ the map g between the set of prime ideals of R that contain N and the set of all
prime ideals of S given by ¢ (I) = I) is a bijection.

.E 21) HI, :;.nd I; are idcals of a ring such that neither I, nor I, contains Lh.c other, then show
that the ideal I, N1, is not prime. .

Now consider the ideal 2Z in Z. Suppose the ideal nZ in Z is such that 2Z ¢, nZ C Z. Then
nj2.nn=%lorn=42, ~ nZ =7 ornZ = 2Z.

This shows that no ideal can lie between 2Z and Z. That is, 2Z is maximal among the
proper ideals of Z that contain it. So we say that it is a “"maximal ideal”. Let us define this
expression.

Definition : A proper ideal M of a ring R is czlled 2 maximal ideal if whenever X i
an ideal ofR suchthat M I ¢ R theneitherI=MorI=R.

Thus, 2 proper ideal M is'a maximal 1dcal if there is no proper ideal of R which contains it.
An example that comes to mind immediately is the zero'ideal in any field F. This is -
maximat because you know that the only other ideal of Fis E itsclt'"

To gencralc more examplcs of mammal ideals, we can use the following characterisation of
such ideals.

Theorem 12: Let R be a ring with identity. An ideal M in R is maximal if and only if
R/M is a field. .

Proof: Let us first assiume that M is a maximat ideal of R, We want to prove that R/M is a
field. For this, it is enough to prove that R/M has no non-zero proper ideals (see

: Theorcm 9). So, let I be an ideal of /M. Consider the canonical homomorphism .

71 :R = RM 1 (r) =1+ M. Then, (o Theorem 3 of Unit' 11, you kriow that 1! (Ij is
an ideal of R containing M, the kemel of 1. Since M is 2 maximal ideal of R, f~1(I) = M or

T7'(1) =R. Therefore, [ = (1~ (1)) is either (M) or T|(R). Thatis, [ =-{ 0} or 1 = R/M.
where 0 = 0+M = M. Thus, R/M is = ficld.

Converscly, let M be an ideal of R such that R/M is a field. Then the or{h ideals of R/M e

{0] and R/M. Let T be an ideal of B conlammg \«i Then, as above, n{l) = (0} o
() = R/M. : N

~ ="My is M or R. Therefore, M is a maximal ideal of R.
Mow look at the following consequence of Theorem 12 (and a few otlier thecrems i00).
Coroliary : Every maximal ideal of a ring with identity is a prime ideal.

We ask you to prove it in the following cxercise.

£ 22 Ivove the coiollury piven above,

Now. the corollary is 2 one-way stalemaent. What about the converse? That is, is every prime
ideat maximal? What about the zero ideal in Z7 Since Z 1s a domain but not a field and

L= Z/0}. Z/10] is a domain but not a field. Thus. {0} is a prime ideal but not a maximal
tdeat of 7.

Now let us use Theorem 12 19 got some examples of maximal ideals.
Lxample 3:"Show that an ideal mZ of Z is maximal iff m is a prime number.

Solution : From Theorem 7 you know that Z, is a field ilf m is a primic nuniber, You

Tke Hasles



Integral Domains and Fields

alse know that Z/mZ = Zq,. Thus, by E 17, Z/mZ is a-ficld iff m is prime, Herice, by
Theorem [2,mZ is maximal in Z ilf m is a prime number,

Example 4: Show that EZ,Z is 2 maximal ideat of Z,,, whercas | 6.2.-5} is nor.

Solution : You know that Z,, = Z/12Z and EZu =2Z/12Z. Thus, by E 23 of Unit 11,
IEZH =(ZALYQREL/ZLY = ZLL = Z,. which is a{ield. Therefore,

.g.g. 1_0} is maximal in Z,.

we see that Z,

EZD={6. 2.

(%]

-9

Now, (048] =42, ¢ 2Z,, ¢ Zy

Therefore, { 5.35] is not maximal in Z,,

Try the following exercises now.

E24) Use Example 4 of Unit l-l to prove (hat the'ideal {[ € C[O.I]]f(%) = 0] i1s maximal
in C[C,1].

So, let us see whai we have done in this section. We firsl introduced you to a special ideal of
a ring, called a prime ideal. Iis specizlity lies in the fact that tie quolient ring carresponding
to il is an integral domain,

Then we discussed a special kind of prime idzal, i.¢., 2 maximal ideal. Why do we consider
such an ideal doubly special? Because, the quotient ring corresponding to it is a field. and a
field is a very handy algebraic structure to deal with,

Now, if we restrict our atlention to domains, can you Lhink of any other method of abtaining
a ficld from a domain? In the next section we look at such a method,

12.5 FIELD OF QUOTIENTS

. . . a
Consider Z and Q. You know that every clement of (3 is of th : form b where a € Z and

b Z . Actually, we can also denote % by the ordered pair (a.b) ¢ Z x Z*. Now, in QQ we

know that

- T - " ey
ili ad = be. Let us put a similar relation en the elements of Z X 72 .

[« L]

il
b
Now, we also know that the operations on € are given by

+(_:__ad+bc_md:-lg
T bd T b'd

=

C

fop
o
o R

v .%e Q.

b=l B
=%

Keeping these in mind we can define eperations on Z x Z7. Then we can suitably define an
ciuivalence relation on Z X Z* (o get a field isomorphic o Q.

We can pencralise tus procedure (0 oblam 2 fhield rom any mtegral doman, So, 1ake an
integral domain R Tet K be the following set of ordered pairs:

K e=jabljabe Randb 2 0j
We define a relation ~ in K by
(a.b) ~ (cd) il ad = ¢,
We claim that ~ is an equivalence relation. Let us sce il s s 5o
iy (a.b)~{ab) ¥ {abte K.since R is commuative. Thus. ~ is reflexive.

it Let (a.b). {c.d) & K such that (a.b) ~ (c.d). Then ad = be, v 2., ¢b = di. Therelore,
(c.d1.~ (a,p). Thus,~ is sy metric.



iii} Finally, et ¢a,b). (c.d), (u'.y) € K such that (a,b) ~ (c.d) and (c.d) ~ (u.v ). Tﬁ;:-.'n‘ad =bc -

and cv = du. Therefore, (ad) v = (bc)v = bdu, i.c., avd = bud. Thus, by the cancellation law
for mulliplication (which is valid for a domain}, we get av = bu, i.e., (a,b) ~ (u,v). Thus, ~
_is gansitive.

Hence, ~ is an equivalence relation.

Let us denote the cquwalcncc class that contains (a,b). by [a.b]. 'I'hus
[a.b] = {(c.d) lede R, d#Oandad be ).

Let F be the set of all equivalence classes of K with respecr o ~.

Lei us define +and . in F as- follows. (It might help you to keep int mind lhc'rqlcs for adding
and multiplying rational numbers.)

[a,b] + [¢,d] = [ad+bx:,bd] and
[a,b] . [ed] = [ac,bd].
[}
Do you thiek + and . are binary pperations on F?

Note that b# 0 and d # 0 in the integral domain R imply bd = 0. So, the right-hand sides of

the equations given above are well defined equivaience classes. Thus, the sum and product of -

two elements in F is again an elcment in F.
We must make sure that these operations are well defined.

So, let [a,b] ={a’,b"] and [c.d] = [¢"d’]. We have to show that [a,b] + [¢,d] = [2",b] + [¢"d].
i.c., fad+bebd] = {a'd+b'e’,b'd’]., .

Now , (ad+bc) b'd"— (a'd" + b'c’) bd
= ab'dd’ + cd'bb - a'bdd — c'dbly’
=(ab’ —a'b)dd’ + (cd’ — c'd) b’
= (0) dd’ + (O)bY’, sincsi {a,b) ~ (a,b) and (c.d) ~ (" d"). _
=0. :
Hence, [ad+be,bd] =[a"d’ + b'c’,b'd’]. i.c., + is well defined.
Now, let us show that [a,b} . e d] = [a".b"] . [¢"d'],
iLe, [ac,td] = [a'¢" b'd.
Consider {ac) (b'd") ~ (bd) (3¢
= ab'\d’ ~ba’de” = ba’cd” — ba” ¢d”, since ab’ = ba’” and ed’ = de’
=0
Therefore, [ac,bd] = [a’e’ b'd’|. Hence. . is weli defined.
We will now prove that F is a ficld.
1} +is associalive : For [a.b], [ed], [uv] e F,
({2.b1 + [c.d)y + [u.w] = [ad+be,bd] 4- [u.v]
= [(ad+beiv + ubd, xdv]
= {ady + bfcv+ud), bdv]
—{ab] + icvruddv]
= (ab] + ([ed] +[uv])
iy 4 s commﬁ:a:ive lor [ab]. fedl = F
ia.0] 4 [e.d] = [ad+be,bd] = [cbeda.db] = [c.d] + [a.b]
iii) [0,1} is the additive identity for F : For {a,b] € F.
(] + [ab] =[0.b+La, Lb] =[ab] -

- The Busllcs



Integral Domains and Fields iv) The additive inverse of [a,b] € ¥ is {-a,b] :
[a.b] + [-a,b] = [ab-ab,b?] = [0,b%] = [0.1], since 0.1 = 0.b%

We would like you to prove the rest of the requirements for F to be a field (see ihe following
exercise).

E25) Show that . in F is associative, commutative, distributive over +, and [1,1] is the
multiplicative identity for F,

So we have put our heads togelher and proved that F is a {ield.
.Now, let us define [ R — [ : f{a) = [a.1]. We want to show (hat f is 2 monomerphism.
Firstiy. for a; be R,

[(a+b) = {a+b,1] = [a,1] + [b,[].

* = f(a) + (B}, and

f(ab) = [ab,1] = [a,1]. [b.{]) ={(a) . £(b).

Thus, { is a ring homomerphism.

Nexi, let a,b € R such that f(a) = f(b). Then {a.1] = [b.1], i.e., 2 = b. Therefore, { is 1-1.
Thus, f is 2 monomorphism,

So, Im f = f(R} is a subring of F which ts 1somorphic to R.

As you know, isomoerphic structures are algebraically identical.

So, we can identify R with f(R3, and think of R as a subring of F. Now, any clement of F is
of the form .

[ab] = [2, 1) [L,b)={a,1] [b,1]! = f(a) f(b)~). where b # 0. Thus, ideatifying x € R with
{(x) € f(R), we can say that dny clement of F is of the form ab~!, wherea,be R, b 0.

All that we have discussed in this section adds up to the proof of the following theorem,

Aring & embedded in 2ring Sif Theorem L3 : Let R be an jntegral domain. Then R can be embedded in a field F such that

:‘j;“ ¢ o rinemonomemhism from - gvery clement of F has the form ab™ fora,be R, b= 0,

The field F whose existence ave have just proved is called the field of quotients {or the
field of fractions) of R,

Thus, Q is the field of quolients of Z. What is the ficld of quotients of R? The following
theorem answers this guestion.

Theorem 14 : If f; R — K is a menomorphism of an integral domain R inte a field X,
then there exisls 2 monomorphism

g:F— K :g([a.l]) = [(a), where F is the field of quoticnts of R.

We will not prove this result here, since it is @ litte wechnteal. Bul let us look at this
theorem closely. I says that the-Teld of guotients of nn intepral domain is the
smallest field containing it. Thus, the ficki of quotients of any field is the field itself.
So. the ficld of quoticis of Ris R and of Z is Z . where p 1s a prime number.

Try these gxerciscs now.

E26) Is R the ficld of quotients of Z + ¥2Z2 Or. is it C? Or. is it Q+Y 207 Why?

C27) At what stage of the construction of the ficld IF in Tleorem 13 was it crucial to
assume that R is a domain?

16 Let us now wind up this unit wilh 8 summary of what we have done in il
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.6 SUMMARY

The

In this unit we have covered-the following points.

1. Thedefinition and examples of an integral domain.
2. The definition and cxaml.:nlcs of a field.
3. Evc-ry ficld is a domain.
4. A finite domain is a field. A
5. The characteristic of any domain erficld is cither zero or a prime number.
6. - The definition and examples of prime and maximal ideals.
7. The preof and use of the fact that a proper ideal I of aring R with identity is prime (or
maximal) iff R/ is an idtegral domain (or a ficld).
8. Every maximal ideal is a prime ideai.
2. Anclement p of an integral domain R is prime iff the principal ideal pR is a prime ideal
of R. ‘
10. Z isa ﬁcld iff n is a prime number,
11. The construction of the field of quoticnts of an integral domain,
127 SOLUTIONS/ANSWERS ’
E1) Letn=mr, wherere N
Thcrlr?t?:ﬁ:ﬁmZn. . <
'Sincc l<m<nm =0. Similarly, r + C.
Thus m & Z, is a zerd divisor.
E2) % hasno zero divisors,
E3) Fornone, since 1.x =x #0 % #0 in the ung,
E4) Letb#0beinR such that ab=0. Ti.cn, [or any re R, (ra)b = r(ab) = 0 Thus,
every element of Ra is a zero divisor.
ES) Zsince 2isa zero divisor.
2Z,since | ¢ 2Z.
R x R, since (1.0 is 1 zero divisor.
[0]. since a demain must be non-zero.
E6) xl=x=x(x-1})=0=x=0o0rx—1 =0
=x=(orx =1,
L7 Let R beadomainand x s R be nilpotent
Then a8 =0 for same n o N Sinee ! hos oo 7ore dis isors, thia angehics e x = 0
ES8)  Wewunt 1o show thal 2A=p V A oL and that 2is ihe feast such naturad number.
Firstly, for any A - X,
TA=AAAS(ANAIUANAY =0
Also, since X # 0, 1.X # 0. Thus, char g (X) # I.
- char g2(X)=12.
E9) I,;:t char (Rx R)y=n Weknow that iy =0 ¥ ra R,

Basics
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Now, let (£,s) be any clement of R X R.

Then mir,s) = (mr.ms) = (0,0}, since r.s € R.
Thus, n £ m. -

On the other hand, il r e R, then (r,0) € R xR
< n(r0) =(0.0).

i.e., (nr,0) = (0.0

ie.,nr=u.

This is trye for any r € R,

(1)

am<n e (2)

Thus, (1) and (2) show that m = n, i.c., char R = char (R x R}
E10) @ By the binomial cxpansion {E L | of Unit 9),

(atb)P =2 + "C, P 1b+ .. ... PUGHIN LaUry -~

pt 3

Since p!"C_ Va=1i.,..,p-1."Cx=0VxeRand Vo= L...p-L

*hus, "C, 2" b=0=....=2"C_, ab”"
s (atb)l =2 + b
You can similarly show that (a-b)f =a" -0,
b} LetS={a"lue R}
Firstly, S'= 0.
Secondly, let e, € S. Then e = 2, =t forsomea,be R.
Then a—p = (-t e Sand aff = (ab)’ e S. A
Thus, S is,a subring of R.
9 patb) = (a+b)’ =a” + b7 = o(a) + o(b),
plab) = (ab)’ = 26" = () o(b).
Thus, ¢ is a ring homomorphism,
g is =1 because
pla) = g{b)= A=b' = (a—b)r‘ ={, lrom (a).
= u—b = 0, since R is without zero divisers.
=a=b.
d)} We have to show that il R 13 finite then ¢ is surjective.
Let R have n elements. Since o is 1-1, Im p also has n elements.
Also Imo c R. Thus. Imo = K.
nuoe, s sonechive
11y You can easily show that s nay homuomorpiisi.
Kerf={ne Z {oi=0]
= m7,, since char R =m.
E12) cher (2, 7,) = l.c.m. of char Z; amd cha Z,=12
Thus. the cinaracteristic ol Z, X Z, is neither 0 nor a prime.
Note that Z, X Z, is not a domain, since it has several zero divisors.

Now lel us see why Theorem 3 is not valid for Zy x Z,.

Tuhe (1.ih € Z, % Z,. Then 3( 1.0) =(0.0) e Z,XZ,.



E 13)

E i4)
E 15)

E [6)

E17)

E 18}

E19)

C 20

But 3 (T.T} # (6._6). Thus, Theorem 3{a) and Theerem 3(¢) are not cquivalent in thig The
case. .

2Z since 2 € 27 is not invedible in 22,

Zy, since it is not a domain.

Q x Q. since it is not a domain.

No. For example, Z is a subring of Q, Q is a ficld, but Z is nol.

From the 1ables you can see that R is commutative with identity and €VCry non-zero
element has an inverse. Thus, R is a field.

Also 2x =0V x'¢ R'and 1.x = 0 for some x € R.
Thus, char R = 2.

Ker [is an ideal of F. Thus, by Thearem 9,
Ker[= {0} or Ker f=F.

If Ker = (0}, then £ is 1-1.

If Ker {=F, then f = 0.

Letg: F— R be an isomorphism. Then o{1) is the identity of Im # = R. Atso,
since F is commutative, so is R. Now, let r € R, r+0 Sincegisonto,dac F
such that g(a) =r. Since r # 0, a# 0. Since Fis a {icld, Ib ¢ F such that ab = 1.

Then g(ab) = g(1), i.e.. (b)) = p(!), i.e..rhas a multiplicative inverse,
Thus, R is a ficld.

Firstly, I'is an ideal of C[0,1]

(becausefge I=f-ge [, and _ _
TeC0lfe IS Tfel) ' L
Sccondly, since any non-zero constant furction is in

C{0. 1]\L 1is 4 proper ideal.

Finally, tet fg € I. Then f(0) g{0) =0 in R. Since R is a damain, we must have
f(0)=0o0rg(®=0,ic.f=Torge L

Thus, 1 is a prime ideal of C[Q,1].

R is a ring with identity. Thus, we need to show that R is-withoul zero divisers iff
(0] is a prime ideal in R.

Now, {0} is a prime ideal in R

iffabe {0] =ac [0)orbe [0)fora, be R'
iffab=0=a=00rb=0

iff R is without zero divisors.

So, we have shown what we wanted 10 show.,

@) TFrom Theorem 3 of Unit |1, you know that £ =% (J} is an ideal of R, Since {is

Surfactiveand J =« § (-1 D

fin

Now letab “ Fosuch ihat ab
= l{ab) = 1.

= [{a)((bye]

= f(a}e Jorf(b) e J, since J is 2 prime ideal.
= aef!'Norbe -t

Thus, £-1(J) is a primic ideal in R.

Basics



Integral Domains and Ficlds b) Firstly, since f is onto, you know that f(I) is an idzdl of S. Also, since 1 @ I and
[ =T (from Theorem 4 of Unit [1), [(1) & (1), Thus, f() = S.

Finally, fet x.y & S such that xy € f(I).
SinceS=Imf,JabeR sucl; that x = f{a) and y = f{b).
Then f(ab) = xy & (I}, i.c..abe £~ () = L.
~aelorbe Liec,xe ([} ory & {(I).
Thus, {(I} is a prime idcal of S.
¢ gisl-l:ag()=a(ly)=11) =D
= @) =1=1

¢ is onto : Let J be a prime ideal of 8. Then f':(J) is a prime ideal of R and
g (LN = (') = I {(rom Unit 1 1), Thus, J & Im ¢,

E21) Letxe [N, andy € I,\I - Thenxy € I, and xy & I, since I, and 1, -arc idea’s,
cxyelNL Butxe [INTandy e [N L.
Thus, I, N I, is not prime.

E22) Mis maximal in R
= R/M is a ficld, by Theorem 12
= R/M is a domiain, by Theorem 5

= M is prime in R, by Theorem 10

E23) (0.2468} =22 and Zy/ 2Z,y T Z,, 2 ficld.

Thus, as in Example 4, {0,2,4,6 8] is maximal in Zo
E 24) In Unit 11 we have shown that this tdeal in the kemel of the onto homomorphism
g:Cl0I]» R:eg)= f(_}
= Cl0iKerg = R, a ficld.
Thus, Ker g is maximal in C[0.1].

E 25} You can prove all these properties by using the correspending properties of R.

i . . :\.+b\’_2 5
E 26) Any clement of the (icld of ¢ 2otients F is of the form — where c+dV 2 2 0,

cHdy 2
abcde Z.
i3 i ;
Now, E0Y2 _ @b 2y caV2) _ rac 24 +¥2 ( ) e @ +V20
V2 ei-2d* el -

Thus, Fc Q-+ \GQ.

C

Also, any element of € + N 7Q is B + \E *I abede Zobhz20d=00

il - add l”“\‘f:' d+h l’:
Now, i +V2 %é -LLE&I‘ =_ A4S *lf"—; with ad. be. hd = 7

¢ > ¢ b d+0V 2

i foc
Thus, - +%v2-e [,

b d

Hence, @ + '\GQ c F
Thus, F=Q + \GQ.

E 27} If Ris not a domain, the rizhiiion ~ need not be transitive, and hence, Fis not
20 defined.
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13.1 INTRODUCTION

In the past you must have come across cxpressions of the form x+1, x2+2x+1, and so on.
These are examples of polynomials. You have also dealt with polynomials in the course
Linear Algebra. In this unil we will discuss sets whose clements are polynomials of the type
dg+ap+ L+ axh o where a4, A, are clements of a ring R. You wili see that this

sel, deneted by R [x], is a ring also.

Yeu may wonder why we are talking of polynomial rings in a block on domains-and‘ficlds,
The reason for this is that we wunl to focus on a particular case, namely, R [x]; where R is a
domair. This will tum oul 10 be a domain also, with a lot bf useful-properties. In particular,
the ring of polynomials aver 2 field salisfies a division atgorithm, which is similar to the
one satisfied by Z (see Sec. 1.6.2). We will prove this property and use it to show how
many roots any pelynomizl over a field can have.

In the next twe units we will continue to work with polynomials and polynomial rings. So
read this unit carefully and make sure that you have achieved the following objectives.
Objectives - ~

After reading this unit, you should be able 1o -

e identify polynomials over a given ring;

e prove and use the fact that R [x], the set of polynomiials éver 2 ring R, is u ring;

= rclate certain propertics of R{x] w thosg ol R:

o prove and use the division algorithm for F[x), where F is a field.

13.2 RING OF POLYNOMIALS

As we huve said above, you may already be familiar with expressions of the ivpe | + x,

2+ 3x +4x7, 5-(, and so on. These are examples of polynomials over the ring Z. Do these
exampies suggest Lo you what a polynonial over any ring B is ? Let 's hope thal your
definition agrees with the foltowing one.

Definition : A polynomial over 2 ring R in the indeterminate x is an expression of the

{form
:l".';‘:” +a,xb+ ;["\1 4+ ;u_"\:n .
where i bs o mon-neuative intever s o P

While discussing polvnomials we will ehawree the following comvedtions. We will

3]

i wrlte 0 us §owe tha we will wriie @ fon o 1"

T i
) write x' s,
) write XM instead of 1.x% (i.¢., when d, = Ln
iv) omit terms of the type 0.x™,

Thus. the polynomial 2 + 3x? — 1.a%is 2x% 0 4 3x2 & (~1)x, | : -
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Henceforth, whenever we use the word polynomial, we will mean a polynomial in the

. ; n

indeterminate x. We will also be using the shorter notation 2 a, x' for the- polynomial
i=0

3 +a X + ... +a X" ) ' -

Let us consider a few more basic definitions related (o a polyntmial,

Definition : Let aj +a, x+ ... +a_x" be a polynoﬁial over a ring R, Each of a, ., ,
;.. 3, is a cocfficient of this polynomial. If a0, we call a_ the leading coefficient

of this polynonual.

Ifa,=0=a,=..=3a .wegetihe constanl peivnomial, 2, . Thus, every clement,of B
is 2 constant polynomial.

In particular, the constant polynomial O is the zero polynomial.
It has no leading cocHicient.

Now, there is a natural way of associating a non-negative integer with any non-zero
polynomial.

Definition : Let a5 + 3, x + ... + 2, x" be a polynomial over a ring R, where a #0.
Then we call the integer n the degree of this polynomial. and we write

.
deg (2, ax)=n,ifq,#0.
=0

We define the degree of the zero polynomial te be —es, Thus, deg 0 = —ca.
Let us consider some examples. .
i} 3x? +4x + 5 is a poiynomial of degree 2, whose coefficicnts belong 1o the ring of

integers Z. Its leading coefficient is 3.

i) x2+2x%+ 6x + 8 is a polynomial of degree 4, with cocfficients in Z and leading
coefficient 2. (Note that this polynomial can be rewritten as 8 + 6x + xZ 4+ 2x4)

iiiy LetRbeardngandre R, r=0. Then ris a polynomial of degree 0, with leading
coefficient 1.

Before piving more examples we would like (o set up some notalion.

Notation : We will denote the set of alt polynomials over a ring R by R[x]. (Please note
the use of the square brackets [ 1. Do not use any other kind of brackets because R [x] and
R {x) denotc different sels.)

Thus. R[x] =1 £ a;x'[{a,e RYi=0 1l.... n, wherenz 0, neZ }
=0 ]

i
We will alsa often denote a polynomial 8, + 2, x + ... + 3, x" by [{x), p (x). q(x), clc.
Thus, an example of an element from Z, [x}is f(x)= 3 x2 + 3 x + 1.

Here deg f(x) = 2, and the ieading cocfficient of f(x) is 2.

To check your undersianding of what we have said so [2r, you can Iry these exercises now.

.\

E I {dentify the polynomials {rom the following expressions. Which of these arc
clements of Z{x] ?

W o xCexdexteTex+t

2 i
h) S+ —+x+x
2ox

c) \th-\@x+‘f§
| U EV S

d) l+2x+3x +4x

) x4 2%+ 3R

fy -5.



E2) Determine the degree and the leading coefficicut of mé'-folid'ﬁdﬁ'g:pblfhénﬁﬂs mh [x].

a) \[Ex+7

b)  1-Tx3+4+3x

o 1+x?+xt+0x5
PooLla, Ll

&) ‘3x+sx +7.x-

¢ 0.

] B
Now, for any ring R, we would like to see if we can define operations on the set R [x} so
that it becomes 2 ting. For Lhis purpose we define the operations of addition and
multiplication of polynomlals.

Definition : Let {(x) = aj+ alxq: .. +a, x"and g (xj =by+ by x+.. + b x™ be two
polynomials in R {x]. Let us assume that m 2 n: Then their sum f(x) + g(x) is given by

1(x) + g{x) = (25 + by) + (g, +b)>~+ + (@ by) XP+ b X2 4o b X

= E (zg+b)x' wh-.rca] ¢ fori>n.
1=0

For example, consider the two poly'nomials p(x}, q(x)in Z{x] givcn by
PRI=1+2x+3x2, g(x) =4 + 5x + 7x°

ME) +a(x) = (I+8) + (45)x + (3+0) X2+ T3 =5 + Tx 4+ 3x2+ T2,

Note that p (x) + q (x) & Z [x] and that -

deg (p(x)+q(x)) = 3 = max(deg p(x), deg a{x)).

From the definition given abové, it seems that deg (f(x}+g(x)) = max (deg f (x). dez g (=)).
But this is not always the case. For example, consider p(x) =1 + x2 and q (x) 2 + 3x—x2
in Z [x]

Then p(x) +q(x) (1+2)+ (0-1-3)x + (- 1):«1 = 3:3;;- ER —,M )
Here dog (p(x) +q (X)) = 1 < max {deg p{x}. deg q(x). _ -
So, what we can say is that . .

deg (1(x} + g(x) < -

max {deg f(x), deg g(x)
Y {x), 2(0) = R {x]. '
Now tet us define the product of polynomials.

Definition : If fix)= ao +ax+..+a x"and g} =by + b x+. +b_xT are two
polynomials in R [x], we dct'nc their producl f(x). g{x} by

T(x}. glx) =g+ ¢px o+ + 0 X™,

WHOTC € =aby+a b+ . 40,0 Vi=01,. ., m+n.
he

S0 ity =Glori>nand b, = 0dori>m.

As an llectration, det us multiply the following polynomials in 74{x]

PIXPS L -5+ 00 gy =2+ 5% & 7xE
Herezp =y =—-hay,=0,2;=2,hy=2. b, =5, h, = 7.
5
Thus. platqix) = X ¢ x!, where
i=0
Cp=2pt =2,

C, = &b, +a,h, =13,

45

Polynomial

Rings
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Two polynomials
fix)=ag +a, x +. .42 z"
and g(x) = by+b x4+ .,
+ b x™ are equal if

24

C=ab, +ab, +agb, =2, )

€y = by + 8,b, + 8,b, +2b; = 3 (since b, =0).

Cq=a3by+azb, +2b, +2)by + ayb, = 10 (since a, = 0= b,).

€5 =sbg +a,b, + a3b, + ;b +a,b, + a, b, = 14 (since a=0=b,). .
So p(x). Q(x) = 2 + 3x +2x2 - 3x? +10x% + 14x5.
Note that p(x). q(x) € Z[x]., and deg (p(x) q{x)) =S =degp (x) + deg q (x).
As another example, consider

p(x)= I+ ﬁx, q(x) =2+3¢ Zs [x].
Then, p(x). q(x) = 2 + 4x + Ix2 + 653 =2 + 4x + Ix2.

Here, deg (p(x). q(x)) =2 < deg p (x) + deg q (x) (sincedegp(x) =1, degq (x)=2).

Tn the next section we will show you that

deg ({(x) g(x}) < deg f(x) + deg g(x)

Now try the following exercise. [t will give you some practice in adding and muiliplying
polynomials,

E3) Calculate
) (24387 +4x%) + Sx + Y in Z {x).
b) (6 + 2x3) + (1-2x + 5x%) in Z, (x).
|.:) G +x) (1 +2x +x3) in Z[x).
& (l+x) (i' + 25+ %) in Z, (x]

¢ (2+x+x2)Gx+x)inZ[x]

By now you must have got used to addition and multiplication of polynomials, We would
like to prove that for any ring R, R [x] is a ring with respect to these operations, For this
we must note that by definition, + and . are binary operations over R {x}.

Naw lci us prove the following thearem. it is true for any ring, commutative or not,
Theorem [ : If R is a ring, then so is R [x], where x is an indeterminate.
Proof : We rced to establish the «xioms Rl - R6 of Unit 9 lor (B[x]). + ..}
i) Addition is commutative : We need ta show that

P (x) + 4 (x) = ¢ () + p(x} for any-p (x) . q (x) € R (x].

Letp(x) = ag +4yX + . +2.x% and

qx) =by+ by x+. 4 I:.m,\““bc in R{x].

Then, p (%) + g(x) = Co+ €t o,

where ¢; = + b and t = man (i),

Similarly,

q(x)+p[x):d0+d! r+.oLed xS

where d; = b; + 4, S =max (n.m) = .

Since addition is commutatirg in R, c=d;viz20

So we have

P(x)+ q(x) = q{x} + pix).



ii) Addition is associalive : Again! by using the associativity of addition in R, we can

i)

iv)

v)

vi)

show that ifj) (x), q{x). s(x) € R{x], then

(p(x) + g )] +s (x)=p{x)+ {g(x) +s{x) ].

Additive identity : The zero pelynomial is the additive identity in R [x]. This is because,

foranyp(x)=a,4 2, x+ ... +ax"e R [x],
B+p(x)=(0+ag) + (0 +2) x + ...+ (0 +2a) x*
)

=g+ a4kt taxt’

=p (0

Additive invérse : For p (x) = ay + a,x +... + a x" € R[x]. consider the polynomial
—plx) = —a, —a;x —... — a_x", — q; being the additive inverse of a; in R. Then

PO+ {(-—px)) =(@g—-ap)+ (2, ~2, Y X+ ... +{u, ~2a)x"
=0+0.x+0x*+ ... +0.x"
=0.
Therefore. — p (-x) is the additive inverse of p (x).
Muitiplicalion is associative :
L{:E.p(x} =5+, X+ ... +2x",
q{x)=by+b, x+..+b_x™,
ad 1{x)=d,+d, x+...+dx", bein R [x]
'Fh(fn
p(xX)-g(x}=cy+c %+ ... +cx* where s = m4n and
c = él_bo +a,_,b +... +3,b Yk=0l..s
There{ere,
{(px)a)}t(x)=¢y+e x+ ... +ex,
where U= 5 +r = m+n+r and
e =cdgte  d+ . Fod
= (g + ... Fagh ) g+ bp +. 4 by ) 0+ aghyd,.
Similarly. we can show that the cocfficient of x¥ (for any k = (1) in p{x) [q (x) (%))
is a,byd, + 8, (b,dy + byd,) + ...+ 3G (bydg + b, &) + ... + bgd, )
= ¢ |, by using the properties of + and . in K.
Hence, (p(x). q(x}]. {x) = p(x). {g (x). 1(x) )
Multiptication distributes over addilion :
Let  p(x) =ag+a, x+...+axm
e} =ho+h w4 b
ol el =d 4 d;ad .00 d xmbein R
The coefMicient of x% in p (x). (Q(x) = £ {x)) is
co=a (by+dy+a (b +dy+ v +3,(b +d 1
And tie coelficient of x* in p(x) g (x} 4 p {x) LX) is
(@Dg+a_ Dyt ok aghy) + (dytad, + .. +ady).
= 3 (bptdg) +a_ (brd+ .. +3,(b +d)=¢,

This is rue ¥ k > 0. .

1.4
A

Pol}'nnmi:;l Rings
By
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_ Hence, p (x). {q (x) + L(x) ) = p (x): q(x) + p (x). L{x).

Similarly, we can prove that
{q(x) +1(x) }. p(x) =q(x) . p(x) + 1(x). p(x)
Thus, R [x] is a ring.

Note that the definitions and theorem in this section are true for any ring. We have not
restricted ourselves 1o commutative rings, But, the case that we are really interested in is
when R is a domain. In the next section we will progress towards this case.

13.3 SOME PROPERT_IES OF RI[X]

In-the previous section you must have realised the-intimate rclatienship between the
operations on a ring R and the operations on R [x]. The next theorem reinforces this fact,

Theorem 2 :letRbea ring.

a If R is commutative, so is R [x).
b) IfR has identity, so does R [x].

Proof : a) Letp(X) =25+ a, x+ ... + 2,x" apd

q{x}=by+b x +...+b x™beinR [x].

Then p(x).qQ(x)=cy+¢ X+ ... +cx" whergs=m + nand
G =abp+a, by +...+agb,

=ba, +b_a +... +ba_; + bya,, since both addition and multiplication
are commuiative in R.

= coefficient of x* in g (x) p{x).
Thus, for every i = 0 the coefficients of xi in p{x} q{x} and q(x) p-(x) are equal
Hence, p (x) q(x) = q(x) p(x).

b) We know thal R has identity 1, We will prove thal the constant polynomiﬁl lis
the identity of R [x]. Take any

pix)=a,+a x+ - taxte R[x].

Thea l.p(X)=cy+c,x+ ...+ c X" (since deg | = 0),
where ¢, =a . T +a | 0+ L. 0+ .+ 0=2
Thus. 1. p (x) = p (x).

Similarly, p (x).] = pi(x}.

This shows that ! is the identity of R [x}.

In the following exercise we.ask you to check if the converse of Theorem 2 is (rue.

E4) If R is aring such that R {x] is commurative and has wdenlity. then
y 3

&) s R commututive ?

b} dous R have identity ?

Now let us explicitly st a result which will help in showing us that R is 2 donsr 7
R {x]is & dumain, This result follows Just froin the definition of wultiphcauton of
polynomiuls.

Theorem 3 : Let R be a ring and f (x} and g (x) be lwo non-zero clements of R [x]. Then
deg {[{x) g (X)) < deg f{x} + deg g (x),

with equality if R is an integral doman



Proof : Let -f (X)=ay+a, x PR a;lx"'. ar-I #0, o ""'I-'?"'- e =l;§lfndiajn! =:ﬁlngi
and g (x) =by+b; x + .. + b _x™, b #0. - T
Thendeg f (x) =n,deg g (x) =m. We .know that
fFO. g =cpte x + ... + o, x ™0

wheré ¢, =aby+a, b, +... + a5b,.

b

Sincea ,a ... ...andb .. are all zero,

m+l? Yme2t
N

Crta = 4D -

Now, if R is without zero divisars, then ab . # 0, sincea, 20

and b_ # 0. Thus, in this casc, a

deg (f(x) g (x)) = deg {(x) + deg g (x).

On the other hand, if R has zero divisors, it can happen that dpbm =0.in thi's case,
dég (f(x) g (x)) < 1:n+n =deg f(x} + deg g(x).

Thus, our theorem is proved.

The fc;llowing result-follows immediately from Theorem 3.

Theorem 4: R (x] is an integral domain <=> R is an integral domain.

Proof : From Theorem 2 and E 4 we know that R is a commutative ring with iéle:;l_i_ty_iff
R [x] is a commutative ring with identity. Thus, to prove this theorem we need to prove that
R’is without zero divisors iff R, [x] is without zero divisors. .

So let us first assume that R is without zcro divisors.
Letp (x)=ag+a; X+ ... + a,x" and q(x) =by+ b, x + ... + b_xm
be in R [x}, where a, ¢ 0 and b,, # 0. - - ot T

Then, in Theorem 3 we have seen that deg(px)q(xP=m+n=0, (l*'f-' .

Thus, p (x) q.(x} #0

Thus, R {x] is without zero divisors. . ' T
Conversely, let us assume that R [x] is without zero divisors. D;L a and b be non-zero
clemeats of R, Then they are non-zero elements of R (x] atso, Therefore, ab = 0. Thus, R is

without zero divisor-. So, we have proved the theorem,

Sce if you can solve the following exv-=ises now,

E 5) Which of tie following polynomial rings are free from zéro divisors 7
a} Rix], where R = a+b '\{3| abe Z)
b) Z, [x)
¢y Z[x]
d) Rlx], where R = C [0.1)
E 6) LetR be adonuin Show that shar B = ohar R

E 7 LetRand S ke commutative rings and [ R — S be a ring homomorphism, Show
that the map

o:R{x] +S[x]: Q(aﬂ+alx+...+:1nx“)=f(aa)+f(a,)x+...+f(an)x“isa

homomorpiiuin:

Now, you hzve szen’that many -properties of the ting R carry overto R’ [x].Thus, if Fisa
Teld, we should expect F [x] o be a field also. But.this is not s¢. F [x] can never be a field.



-Integrel Domains and Fields This is because any polynomial of positive degree in F |x| does not have a multiplicative

inverse. Let us see why.

Letf (x) € F(x]and deg { {x) =n > () Supposc ¢ (x) & [F 1x]| such that

f_txj g{x)=1.Then '

0 =deg § = deg ([{x) g (x)) = deg {(x) 4 deg g (x). since F [x] is a domain.
=n+dege(x)=n>0.

We reach a contradiction.

Thus, F [x] cannot be a ficld,

But there are several very interesting properties of F x|, which are similar 1o those of Z, the
se1 of integers. In the next seclion.we shall discuss the propertics of division in F [x]). You
will see how similar they are to the propertics of Z that we have discussed in Sec. 1.6.2.

13.4 THE DIVISION ALGORITHM

In Sec. 1.6.2 we discussed various properties of divisibility in Z. In particular, we proved
lihe diviston algerithm for integers. We will npw do the same for polynomials over a field F.

Theorem 5 (Division Algorithm).: Let F be a field. Let f(x) and g{x) be two
pelynomials in I [x], with g(x) = 0. Then -

a)  there cxisttwo polynomials q(x) and r {x} in F [x] such [hml
[ (x)=q(x) g (x)+r1(x). where d'c'g 1(x) < deg g {x).
b) the polynomials q (x) and r (x) are unigue.
Proof : a) If deg f (x) < deg g (x), we can choose q (x) = 0.
Then f (x) = g(x) + f {x}, where deg {(x) <deg g {x).
Now, let us assume that deg f(x) = deg g (x).
‘*\Z.cl f[(x) =gy +ax +... +2,x" a, #0,and

gxy=by+b x+ .. +b x™ b_#0. withn>m,
We shall apply the principle of induction {see Sec. 1.6.1) on deg f(x), i.e.. n,
If n =0, then m =0, since g(x) # 0. Now
f{x) = &y, p{x) = by, and hence
f(x) = (8 byHy by + 0= q (x) & (x) + r (x). where g(x) = agb,™ and r{x) =0.
Thus,
{x) = g{x) g{x) + T (%), where deg r{x} < deg g(x).

So the algorithm is true when n = 0. Let us assume that the algorithm is valid for all
pelynomials ol degree < n — | and y to establish that it is true (or f(x). Consider the
polynomiat

([ () =Mx)—-ab " A prx)
[ ooy ) Ay de e =l o B TP P | LT IS —t o
= “\‘1(, | .1.1 X1 E'ln.\“; =R b“,-\. g bi" i, 'T"'nbln bm'\ i
‘Thus, the coefficient of x™ in T, (X} is zero; and hence,
deg [[(x) £ 01,

By the induction hypothesis, there existq, {x) and r {x} in

F[x] such that [} (x) = q, (x) g(x) + r{x}, where deg r(x) < dc:-g a(x).

2]
by

Substitwting the value of {,(x). we ger



. f(x)-a b, "' X" g(x) =‘i1,(x),g(a'~)+r(x). : - Palynomia:

ic., f(x)= {a“bm'-I X", (x)} glx)Er(x)
= (X0 E(RH10). where () = 2,y K74, (X)

and deg r{x) < deg g(x). .
Therefore, the algorithm is true for f(x), and hence, for all polynomials in F[x).
b) No':f lct us show that g(x) and r(x} are uniquc-[y determincd. ‘

If passible, let

f{x) = q,(x) g(x)+1,{x), where deg r,(x} < deg g(x}.

ard

f(x) .r-qz(x‘) 2(x)+r,(x), where deg ry(x) < deg g(x).
Then

' q,{X) g(xHr,(x) = gy(x) g(x)+1,(x), so that

(9,(x) ~ 0,(x)} 8(6) = ,() ~ 1, () : R ()

ﬁow if g, (x) # g4(x). ther deg {q,(x) - q,(x) ] 20,s0 that
deg [{q,(x} - q,(x}} g(x)] 2 deg g(x).
On the other hand, deg (r,(x) - r,(x) } <deg g(x), since
deg 1,(x) < deg g(x} and deg r (x) < deg g(x).

But this contradicis eq_iation (1}. Hence, Equation (1) will remain valid only if
q,(x) ~q5(x) =0, And then r,(x) - 1;(x} = C,
i.e.._ q,(x) = gx{x) and r,(x) = 1,(x). . =
Thus, we have pr'ovcd the uniqueness of q(:.() and r(x) 1n the expression f(x) = ﬁ(x} B{xH1(x).

Here q(x) is called the quotlent and r(x) is called the remainder obrained on dividing f(x)
by g{x)-

Now, what happens if we take g(x) of Theorem 5 10 be a linear polynomial? We pet the
remainder theorem. Before proving it let us set up some nol_ion.
- S

Netation : Let R be a ring and f{x) & Rfx]. Let
f(x) = 0y +a,x+. 42, X"
Then, for any r € R, we define
i{r) = ay+ar+.. +a1° € R,
that is, €(r) is the valuc of ((x) obtained by substituting r for x.
Thus, if 1(x) = 1+x+x> & Z[x], then
2y =42+ =7 and f{0) = 14040 = 1.
L& 63 ROW PIOVvE the teiander Heorént, wWhaich 15 a Cololiary 10 e divsion aiganti.

Theorem 6 (Remainder Theoren): Let Fobe a field. If Kx) = F{x]and b e . ihen

there cxists & unique polynomial g{xy 2 Fix) suchihat fOod = (n-b) gl b

Proof: Let g(x) = x-b. Then, applying the division aigorithm 1o f(x} and g{x). we can fi~4
unique q(x) and r(x) in F{x], such that

f(x) = q{x) g(x)+r(x)
= Q(x) (x-b)+1{x), where deg r(x) < deg g(x)'= 1.

Sifee deg r{x) < I, r (x) is' an element of_F. say a.

Rings



P
" Integral Domains and Fields

So, {{x) = (x—t.») q(x)+a,
Substituting b for x. we get
f(b) =(b-b) q(b) +a

=0.qb)ta~=a
Thus, &t = {{b).
Therefore, fix) = (x—b) q(x)+(b).
Note that deg f(x) = dcg(x—i))+dc.:g q(x) = l4+deg ().
Therefore, deg q(x) = deg {(x)—E.
Let us apply the division algorithm in a few situations now.
Example I : Express x*+x3+5x2 — x as

(x*+x+1) g(x)+1(x) in Q[x].

Solution : We will apply loag division of polynomials to solve this problem.
xt+ 4

x24x+1V x2x34+5x2—x

x44x34x?
4x°- x

4x3+4x+4
—-5x-4,

Now, since the degree of the remainder —5x— 4 is less than deg (x2+x+1), we stop the
process, We get .

xe0345x2 — x = (xM4x+1) (x24H4) — (5x+4).
Here the quotient is x>+4 and the remainder is — (Sx+4).

Now you can try some exercises,

E 8) Express fas gq+r, where deg 1 < degrg. in each of the following cases.

a) T=x%1, g =xinQfx]
by [=x¥+ 287 -+l g=x+1 in Z, [x].
g f=x'- 1L, g=x-1inR[x].
E %) Youknow thatif pqe Z.q # 0, then g can be writien as the sum of an integer and a

,oom .
fraction E with |m < |q]. What'is the analogous property for elements of F[x}?

Now, L2t us sz¢ what happens when the remainder in the expression f = qe+ris zero.

13.5 ROOTS OF POLYNOMIALS

in Sec. 12.4 you have seen when'we can say that an clement in a ring divides another -
clem=nt. Let us recall the definition in the context of F(x]. where F is a feld.

Denuilion: Let 1{x) and g{x) be in F[x], where F is 2 leld and g(x) # 0. Wc say that g{x)
divides [(x)lor g(x) is a factor of f{x), or f(x) is divisible by g(x)) if there exists
q{x} e 1¥{x]} such thai

(%) = q{x) g(x).



We write g(x) | £(x) for *g(x) d.i-vides x), énd g(x) 4 [(x) for.‘g(x) does not.divide f(x)". ; Polysomial Ring.

Now, if f{x) € F[x] and,g(.x-) € F[x], where g(x} = 0, then does Theorem 5 éay whc'n-
8(x) [ Kx)? It does: We find that g(x) | f(x} if r(x) = 0 in Theorem S.

In the following exercise we make an tmportant, similar statement. You can prove it by
applying Theorem 6.

L3

E10) LetFbeafield and f(x) e Fix] with deg f(x)2 1. Lea & E.
I Show that {(x) is divisible by x-a iff f(a) = 0.

This exercise leads us to the following definition.

Definition : Let F be a field and f(x) e F[x]). We say that an element a € Fis 4 root
{or zero) of f(x) if f(a) =0,

For example, 1 is a root of x2-1 & R[x], since 12-1 = Q.

Similarly, —1 is a root of f(x) = x3+x2+% X+ % € Q [x], since

‘ 1
f(—1) =—1+1 -3+ =0.

b | —

Note that, in E 10 you have proved the following criterion for an.element to be a root of a
polynomial ;

Let F be a field and f (x)'e F{x). Then a € F is a root of f(x) if and.only if
{x~-a)|f(x).

We can generalise this criterion to define a root of multiplicity m of a polynomial in Fix].
Definition : Let F be a field and f(x) € F(x] We say thata € F is a root of
multiplicity m (where m is a positive-integer) of - -

f(x) if (x - &)™ | fi(x), but (x-a)™* J £(x).

For example, 3 is a root of multiplicity 2 of the petynomial (x—3)2 (x+2) e Q[x); and (-2)
is a root of mulliplicity 1 of this polynomial. ’

Now, is it easy to obtain all the rools of a given polynomial? Any lincar polynomial ax+b
€ F(x] will have only one rool, namely, ~a-'b. This is because ax+b = 0 iff x = —a~lb,

In the case of a quadraric polynoinial ax?+bx+c e F[x]. you know that iis two roots are
obtained by applying the quadratic formula

-bz Vb2 4ac

2a

X =

For palynomials of higher degree we may be able o obtain some rools by trial and crror.
For example, consider f(x) = x5-2x+1] e R(x]). Then, we try omt x = | and find [(1} = 0. So.
we find that | is a zero of f(x). But this method doesn't give us all the reois of {{x).

Now you can try these exercives,

E11)  Find the rools of the following polynomials, along with (heir multiplicity,
D fx)=sx? 2
(x]—zx ~2x+3e Qix)
b) fx)=x+x+1eZx]

a f(x)= x4+2—x-"—'.-2 K—T,E Zs(x]|
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1.0

E12y LetFbeafield anq ae F. Define a function
6 :F[x] = F: 0 (((x)) = Ka).

This {unction is the evaluation at a.
Show that .

ay ¢ isan onto ring homomorphism,

by ¢ib)=b¥be F

¢} Kerd =<x--a~

-So, what does the ffundamental Theorem of Hemomarphism say in this case?

As we have jusl scen, it is not easy (o find alf the roots of a given polynomial. But, we can
give a definite result about the number of roots of a polynomial,

Theorem 7: Let f(x) be a non-zcro pelynomial of degree n over a field F.-Then f(x) has at
most 0 rools in F.

Praof : If n = 0, then [(x) is a non-zero constant polynomial.
Thus. 1t has no roots, and hence, it has at most O ( = n) rools in F.

So, let us assume thai n = 1, We will use the principle of induction on n. If deg f(x) = 1.
then

f(x) =ag+a;x, where a2 € Fanda, #0.
So f(x) has only one roct, namely, (—nl" a5).

Now assume Lhat the theorem is true for all polynomials in F[x] of degree < n, We will
show that the number of roots of f(x) < n.

If f(x) has no root in F. then the number of roots of f{x) in F is § € n, So, suppose f(x) has
arcota c F.

Then [(x) = (x—a) p(x). wherz deg Ig(x] =n-1.

Hence, by the induction hypothesis g(x) has at most n-1 rools in F, say a,......a |- Now,
gisarootof gy > gla)=0=1{a}=(a-2)o(a)=0
= isargolor i) ¥i= ... n-1.

Thus. each root of g(x) is 4 root of [(x1.

Now.be Fisarootef f(x)iff fib) = 0.ic., iff (b-a)y 21 =0, ie.. il ba=0orgb) =0,
since F is an integrai domain. Thus. b is a root of (%1 ifi =2 or bis a rcot of g(x), So. the
anly roots ef f(x) are a aid ay. ... 4,y Tiws, 7)Y has al the most n rools, and so. the
theorem is true for n. -

Henece. the theorem s irue for adln 2 1.

Using this resuit we know that, far example. X'~ @ 31y can’thave moce than 3 roots

in Q.

[0 Theorem 7 we have not spoken aboul the 1oots beis
Theerem 7 is that

. distinet. But an ovvious carbliary of

it {{x) £ F[x] is of degree n, then (ix) has at most n distinct rools in ¥l
We will use this result 10 prove the following useful thzorem.

Thearem R : Let (%) and a(x) be two non-7era polyromials of degree n over the ficld F. if
there exist n+1 distinet elements 3.k, 0 Fosuch thai Moy = glag) Yi=zti,....on+i, then

Mx) = gix).

e



Proof : Consider the poiynomial h(x) = f(x} — g(x) Polymamial . Rings
Then deg h{x) < n, but it has n+! distinct roots a;, ....a,_,,.

This.is impessible, unless h{x) =0, i.c., f{x) = g(x).

We will now give you an example 10 show you that Theorem 7 {and hence Theorem 8) need
not be true for polynomials over a general ring.

Example 2 : Prose that x7 + Sx e Zg [x] has more roots than its degree. (Note that Z.is
not a field.)

Solution : Since the ring is finite, it is easy for us to tun through alf its elements and
check which of them are roots of

f(x)=x3+35 x.
So. by substitution we'find that
(@) =0 = (1) = £(2) = {(3) = {(4) = £(5).
In fact, every element of Z is a zero of f(x). Thus, {(x) has 6 zeras, while deg f(x) = 3.

Try Ihese exercises now.,

E 13) Letp be a prime number. Consider xP-' -1 ¢ Zp[x]. Use the fact that Zp is a group

of order p 1o show 1hat every non-zero ¢lement of Zp is a root of xP1 -1,
Thus. show that xP =1 = (x - 1} (x = 2) ... (x-p—1).

E 14) The polynomial x*+ 4 can be factored into linear factors in Z [x].

Find this factorisation.

So far, we have been saying that a polynomial of degree n over F has at most n roots in F.

1t can happen that the polynomial has no toot in ¥. For example, consider the polynomial
x2+1 @ R[x]. From Theorem 7 you know that it can have 2 roots in R, at the most. But as you
know, this has no reots in R {it bas two roots. 1 and -1, in C).

We can find many other exameples of such polynomials in R[x]. w'e call such poiynomials
irreducible over R. We shall discuss them in da1ait in the n2al 1wo units.

Now lat us end this unit by seeing what we have covered in it

13.6 SUMMARY

In this v we have covered the following points.

I The dcl'inili(m and examptes of polyromials over o ning.

2y Thenng stiucture of Rix| wheree R is a ring.

S Roiva commmunative ring with dentity i 1 x| 1~ 0 commutative ning with idennny
0 Bk lserrad domain ifTR{s 1 an inegrad domaln,

51 The division algorithm 1 F(x], where s 3 fields which states that if fine, giv = Flx.
g0x) = O, then there exist unigue gixd. rfx) @ FIx) with §a = givy mixg o and
dag r{x) < deg g(x},

0) ae Fisaroot of f(x) e-F[x] iff (x-a)]{(x).

71 Anen-zero polynomial of degree r o cer a field F ean have ot il - most 1 roais
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13.7 SOLUTIONS/ANSWERS-:

ED

E2)

E3J)

E 4}

EJj)
E 6}

E7)

The polynomials are (a}, (c), (d), (f}.

(b) and (e) are nel polynomials since they involve negative and fractional powers of
X

(a-) and (f) are in Z[x].

The degreesare 1, 3, 4, 3, —o, respeclively. The leading coefficicnts of the first four
are \E =7, 1, ,l!-, respectively. 0 has no leading coefficient.

D) 2+543xM(4+1)x3 = 245x43x 24553

b) (6+1) — 2x+2x245x3 = -2x+2x245%?, since 7= 0.
) 143x+3x24x3

d) T+x3, since 3= 0.

€) 10x+5x*+7x3+x54x5

Every clement of R is an element of R[x). Therefore, multiplication in R is also
commtutative.

Also, the identity of R[x]).is an element of R, and hence is the identity of R.
(aYard (b}

We know that R[x] is a domain. Let char R = n. By Theorem 3 of Unit 12 we know
that n is the least positive integer such that n.l = 0. Since 1 is also the idemity of
R[x],"the same theorem of Unit 12 tetls us that char R[x] = n = char R.

Let p(x) = agta,x+...+a,x", q(x) = bytb,x+...+b_x™ e R{x].

. t
Then ¢ (p(x)+q(x))=¢ ( E:O (a;+b)x1), where t = max (m.n)
1=

L
=X f(ai+bi)xi
i=0

1
= L [f(a+(b)]x
i=0

L t
= X f(a,)x'+ I f(p
i=0 i=
=¢ (p(x))+ ¢ (q(x)}. since f(a;) =0 = f(b;)

whenever a;,=0, b;=0.

m+n
Also & (p(x)qx) =& ( L ¢xi). where ¢ = aby+a, b+, _+agh,
i=0

m-+n
= L f(Ci) Ki
i=0

m+n .
= I [f(a;) f(bg) + Haj_ ) {hyy+ ... + fag) f(b)] <\

i=0
since f is a ring homemoiphism,
=0 (p(x)) ¢ (q(x)).

Thus, ¢y u ring homomarphism,



ES8)

E9)

E 10}

E L1)

E12)

2) f=xpg+l,q=x,r=I. . Pplynomial 'Rin,a:s

x24x—-2 :
b) x+1 V 4 2x2x+T

x3+x?

Thus, f={x*+ x-2) g + 0, since 3=0.

Q) f=(x2+x+1)g+0

Let1(x), g(x) € F{x], with g(x) # 0. By Theorem 5, f(x) = e(x) q(xHr(x) with

deg t(x) < deg g(x). Now; this equality is still irue if we consider it over the field of
fractions of F(x]. Then, we can divide throughout by g(x), and get

£ _ i3]

praal et

where deg 1(x) < deg g(x).

By Th=orem 6,

f(x) = (x—a) q(x}+f(a)

Thus, f(x} = (x—a}q(x) iff f(a) =0, i.e.,
(x-2) |f(x) iff f(a) = 0.

1) By the quadratic formuta, the roois are 3 and 2, each with multiplicity 1.
b) x24x+1 = (x-1)?, since ~2=1 in Z,. -
Thus, 1 is the only zero, and its multiplicity is 2.
¢) By trial, one zero is 1 . Now, applying long division,
we gel
R4202x-1 = (x- 1) (x343x243%+1)
Again, by Irial and error we find that x+1 is 2 factor of
x>+3x2435+1, Applying long division, we sec that
x243x243x4+1 = (x+ )%
Thus, x*+2x3-25-T = (x-1) (x+1)°

This shows that 1 is a root of multiplicity 1 and -1 (=4 } is a root of
multiplicily 3. :

n m
a) Letl(x}=L axi,gix)= Z bx.
=0

L

1=0

1

Then ¢ (f(x)ig(a) =6 ¢ L (a+b) x}). where 1 = max(nu.a),
1=}

L

= L (a+be
i=0.
i i

= L au+ L ba
=0 1=0

= M(al+eia)
=0 ([(x}+o (p(x)). and 35
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E [3)

E 14}

m+n N
¢mnam=¢_i@%@ﬁﬁJWMﬂ
l

m+n _
=' i=}:0 (aby+a;_ b +...+agby)al

= f(a) g(a)
= ¢ (£(x)) ¢ (B(x))-
Thus, ¢ is a homomorphism.
Now, given any clement b € F, 3 the constant polynomial
fixy € F[x] such that f(a} = b, i.c., ¢(f{(x)) = b.
Thus, ¢ is surjeclive.
b) This is what we have shown in the previous two lines.
c) f(x) € Ker b iff & (((x))=0iff f(a) =0
iff (x—a) [f(x) iff f(x) & <x—a>.
Thus, Ker ¢ = <x-a>
The Fundamental Thearem of Homomorphism says that
F[x}/ <x--a> = F. :

(Z:..} is a group and O(Z:) =p-1
Thus, by E 8 of Unit4, x> '=1V x e z: .

i.e., cach of the p—1.clements of Z: is a rool of xP-1-1.

Therefore, (x-1) ... (x—p—1) | (xP1-1).
Since, xP'—1 can have at most p-1 roets in Zp, we find that the (p-1) elements of
Z; are tic only roots of xP-1-I.

Thus, x#1-T = (¢-1) ... (x=p-1).

The polynomial x*+4 is the same 25 x* ~1 in Zs[x],
since 4 = —1. Thus, applying the result in E 13, we get,

X444 = (x-1) (x=2) (x-3) (x—3)
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141 INTRODUCTION

In this unit we shall look at three special kinds of integral domatns. These domains were
mainly studied with a view o develop number theory. Let us say a few introductory
sentences about them.

In Unit 13 you saw th-il the division algorithm holds for F[x], where F is a [ield. In Unit |
vou saw that it holds for Z.. Actually, there are lots of other domains for which this
algorithm is true. Sech integral domains are called Euclidean domains, We shall discuss their
properiics in Sec, 14.2.

[n the next section we shall look at some domains which are algebraically very similar to Z.
These are the principal idzal domains, so called because every ideal in them is principal.

Finally, we shall discuss domains In which every non-zero non-inve: ..t .2 element can be
uniquely (actorised in a particular way. Such domains are very app. .~ .. - cailed unique
(actorisation domains. While discussing them we shall intreduce you: . - ..reducible elemenlts
of a domain.

While going through the unit you will also see the relationship belween Euclidean domains,
principal-ideal domains and unique factorisation domains. ’

Objectives
After studying tius unit, you should be able to

chcck wheiher a function is a Euclidean valuation or not;

tdentify principal ideal domains;

<@

-]

€ identify unique (actorisation domains;

@  oblain the g.c.d of any pair of elements in a uniyue factodisation domain;
L

prove and use the relationship between Euclidean domains. principal ideal domains and
unique factorisation domains.

14.2 EUCLIDEAN DOMAIN

In this course vou have seen tni Z and Flx satis{y a division algorithm. There are many
Ather dommseins that have this property. Inibis section we witl introduce you Lo them any!
dimcues e ol therr properties, Let us start wath a dehimtion,

Definition ; et 1 b mtavie e domain Woe oy that a function d 0 By [0 > NUfu) s
a Duciidean valuation o ¥ 10 ihe Toliowing conditions are saiisticd:

A <d (aby T o b g R0 and

upforanya be R.b =03 4q.r € Rsuech tha
a = bg+r, where r = 0 or dir) < d(hj.

And then R is calied 2 Luclidean domain.

Thus, a domain on which we can define ¢ Euclidean valuation is a'Euctideun demain.
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" Let us'consider é'n'é_xa.mplt?-.' -

Example 1 : Show that Z iz 2 Eticlidean domain,

Solution : Define, d: Z — N U {0) : d(n) = |nl,

Then, forany a,b e Z‘,\-{UJ.

d(ab) = |abl = la] 1v] 2 lal (since [bl 2 1 for b=0)
= d(a),
i.e., d(a) < d(ab). '

Further, the division algorithm in Z, (sce Scc.1. 6.2)says thatif a, b e Z, 50, then
3q,re Z such that- . -

a=bq+r, wherer=0o0r0< |r] < |b],
i.el, a = ba+r, where r =0 or d(r) <d(b). )

Hence, d is a Euclidean valuation and Z is a Euclidean domain.

E1) LetF beafield. Show that F, with the Euclidean valuation d defined by
d(a)=1Y ne F\{0},isaPutlidean domain.

E2) LetF be e field. Define the function
d : FEKI\ {0} - N U {0} : d(f(x)) ='deg f(x).

Show thatd is a Euclidean valuation on F[x], and hence, F[x] is a Euclidean domain.

. . - . . I'_ . )
Let us now discuss some properties of Euclidean domains, The first property involves the
concept of units. So let us define this concept. Note that this definition is valid for any
integral domain, ’ o

Del’iriilion: Let R be an integral domain. An element a ¢ R is called a unit (or an
invertible clement) in R, if we can find an element b € R, such that ab = 1, i.p.. ifahas -
a multiplicative inverse. ’

For example, both 1 and —1 are units in Z since 1.1 =1 and -0.(-1)= 1.

Caution : Note the differcnce between a unit in R and the unity in R. The unity is
the identity with respect to-multiplication, and is certainly a unit. But a ring can have other
units 100, as you have just scen in the case of Z.

Now, can we obtain alf the units in a domain? You know that every non-zero clement in a
field F is invertible. Thus, the set of units of F is F\ [0}. Lel us look at some other cases
also. )

Example 2 1 Obtain all the units in F{x], where F is a ficld.

Solution : Tt f1x)-& F{x] be 2 unit. Then 3 g(x) & F(x] such that f(x) g{x) = 1. Thercfore,
gep (A piad) = uu: {(i)=0, i..e.,
deg f(x)+dep g(x) = Q. N

Since deg i(x) and deg ix) are non-negative integers, this equation can hold only if

deg {x) =0 = deg g(x). Thus, f(x) must bz a nen-zero constant, i.e., an element of F\ {0}.
Thus, ihe units of F(x] are the non-zero elements of F. That is. the units of F and F{x] i
coincide,

Example 3 : Find all the units in R = {a + b¥-5 | abe Z]. |



‘ -:Solution i Let a+bv =5 be a unit in R. Then there exists
c+dV=5 & R such that
(@+b[5 ) (c+dV=5)=1
"= (ac5bdy(bead) Vo5 = 1
= ac-5bd=1and betad=0
= abe-5bd = b and be+ad =0
=5 a(-ad)}-5b’d = b, substituting be=—ad.
= (2*+5b%)d = -b.
So, if b % 0. then (a™+5b%)| b, which is not possible.
S b=0.
Thus, the only units of R are the invertible clements of 7.

We have asked you Lo find thesc elements and other units in E 3 below.

E 3) Find all the units in
a) Z. b) Z;. e) Z/5Z., d) Z+iZ.
E 4) Let R be an integral domain. Prove thatu e R is a unit iff

Ru=R.

Now we are in'a position to discuss some very simple properties of a Euclidean demain,

Theorem 1 : Let R be a Euclidean domain with Euclidean valuation d. Then, for any
A€ RNO), d@) =d()iffaisa unitin R.

Prool : Let us lirst assume that a € R\ (0] with d(a) = d(1).
By the division algorithm in R, 3 q,f € Rsuchthat 1 = ag+r,
where r=0 ord(r) < d(a) = dil).

Now. il r 2 0, d(r) = d(r.1) = d{I}. Thus, d(r) <d(1) can't happen.
Thus. the only possibitity for risr = 0.

Therefere, t = aq, so that a is a unit.

Coaversely, assume that'a is a unir in R. Letb € R such that ab = . Then
d(a) £ d{ab) = d(1). But we know that d(a) =dga.1) 2d(1). So, we must have d(a) = d(1).

Using this theorem, we can immediately solve Example 2, since f(x) is a unit in F[x] ilf
deg ((x) =deg (1) =0.

Simitarly. Theorem | tells us that n < Z s wunitin Z i Inl = 11| = 1. Tiws, e only
utits in 7 are [ and (1),

tNow et us look at the deals of 2 Euclidean domain.

Theorem 2 : Let R be 1 Buclidean domain with Euclidean vainaiion ¢ Then cvery tdeal |
of R is ol the forni [ = Ra for scine 2 € R,

-_-["‘rgdf: M= [0}, then 1 = Ra, where a = 0. 5o let us assume that I - {0} Then I\ [0} is
non-empty. Consider the set | d(a) | a € [\0)). By the well ordering prinziple (see Sec,
[.6.1} this set has 2 minimal element. Letthis Be db). where b e [\ 07 We will show that
[ =Rb.

Special Integral Danclys
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We also donotz the principal ideal Ra
by <a>.

Evcry Euclidcan domain is a PID.

40

“Since b & [and Iis an idéal of R, I

Rbcl ........(1)

Now take anyae . Sincelc RandRisa Euclidéarg domain, we can find g, r € R such
that :

a=bqg +r. where r =0 or d(r) < d(bl.
Now,be I = bqe I Also,ae L Therefore, r=a-bqe 1.

But r = 0 or d(r) < d(b). The way we have chosen d(b), d(r} < d(b} is no1 possible.

Therefore, r =0, and hence, a=bg € Rb._

Thus, I c Rb. .-.(2)
From {1) and (2) we get
I =Rb.

Thus, every ideal I of a Euclidean domain R with Euclidean valuation d is principal, and is
generatcd by a & I, where d(a) is 2 minimal element of the se1 {d(x)i xe IN[0]).

So, for example, every ideal of Z is principal, a fact that you have already proved in Unit 10.

Now try the following exercises involving the ideals of a Euclidean donain,

“E 5) Show that every 1deat of F[x] is principal, where F is a ficld.

E 6) Using Z as an exampte, show lhal: lhc set

=fae R\{0}| d@>d(1) ) U {0} is nol an ideal of the Euclidean domzun R
w:th Euclidean valuvation d.

Theorem 2 leads us (o a concepl that we shall discuss now.

14.3 PRINCIPAL IDEAL DOMAIN (PID)

In the previous section you have proved thai every ideal of F[x] is principal, where F is a
field. There are several olher integral domains, apart from Euclidean domains. which have
this property. Ye give such rings a very appropriate name.

Definition : We call en iniegral domain R a principal idecal domain (TID, in short) if
every ideal in R is a principal ideal.

Thus, Z is a PID. Can you think of anotlier example of a PID? What about @ and Q[x]? In
fact, by Theorem 2 all Euclidean domains are PIDs. But, the converse is ;.0 true. That is,
every prineipal ideat domain is not a Euctidean domain.

—

For example, the ring of all complex numbers of ihe forn a+% (14 Y 19), where a, b e £,

is a principal 1deat domain, but not a Euclidean domain. The prool of this i oo technical Tol
this course, s¢ you can take our word for it for the present!

tow el us look at an example of an intepral domain that is not 4 PID.
Ethple 4 : Show that Z{x] is not a PID.

Sotution : You know that Z[x] is / domain, sinee 7, is anc.. We will show the all its
ideals are not principal. Consider the ideal of Z(x] generaled by 2 dnd x_i.e., « Za>. We
want 10 show thal < 2, x > # <f{x)> for any f{(x) € Z[x].

On the contrary, suppose that 3 f(x} € Z{x] such that <2,x > = <f{~r {b. Clearly, f(x) = 0.
Also, 3 g(x), h(x) € Z[x] such that

2=1(x) g and » {0 x). :



" Thus, deg £(x) + deg g(x} =deg 2 =0 . () Sgecial Integral Doma_in§: -
and deg {(x)+degh{x)=deg x = | . - L (2)
(1) shows thatdeg ((X) =0, i.e., f(x) € Z, say [{x) =n.

Then (2) shows that deg h(x) = 1. Let h(x) = ax+b wilh abe Z

Then x =[(x) h{x) = nlax+b).

Cemparing the coefficients on cither side of this equation, we sec thatna = [ and nb = 0.
Thus, n js a unitin Z, thatis.n =% 1.

Therefore, | € < {{x) > = < x,2>, Thus, we can write

1 = x {ag+a x+...+2,X") + 2(bg+b x+:...+bx"}, where abjeZVi=01,.... ,r and
j=0.1,...5s.

Now, on comparing the constant term on cither side we see thal 1 = 2by. This can't be true,
since 2 is nol invertible in Z, So we reach a contradiction.

Thus, <x,2> is not a pdncipal ideal.
Thus, Z[x] is not a2 P.LD.

Now, try the following excrcises.

E 7 Show thata subring of a PID need not be a PID.
E 8) Will any quotient ring of a PID be a PID? Why?

Remember that a PID must be an integral domain.

Y/ will now discuss some-properiics of divisibility in PIDs. You may tecall from Unit 12
that if R is a ring and a,b € R, with a # 0, then a divides b if there exists ¢ € R such that
b = ac. -

Inl
Now *wd would like to generalise the definition of some terms that you came across in
Unit 1 in the contextof Z.

Definition : Given two elements a and b in a ring. R, we say that ¢ € R is a common
divisor of a and bif ¢c|a and ¢|b..

An element d € R is a greatest common divisor (g.c.d. inshor) of u, b € R if
1d | aandd|b, and
it} for any common divisor ¢ of a and b, c|d.

For cxample, inZagcdolSand 15is5.andag.cdof 5 and 7 is 1.

We will show you that if the g.c.d of 1wo elements exists, it is unigue up o unils, i.e.. if ¢ Twoclemenis 3 and bina domsin R
: ' , . - » called assoctates i a = b I
and d”are two g.c.ds ol a and b, then d=ud’ | for some unit u. For this we need a result that Aee called assoctites it = bu for

: . . surie unil uin 2
you can prove in the following exercise.

L 3 Let R be an integral domain. Show

. - |
. e aieie i D ocee
I R T T LI TR

t) fora. be R, a|b and bl 2 ima and b are associnles in R

So now lel us prove the following result,

Theorem 3 : Lel R be an integral domain and a, b'e R. [[a g.c.d of 5 and b exists. then it
Is unique up to units.

Proofl : So. letd and d° be two p.o.ds of 2 and b, Since d is a common divisor and d is a NE
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g.c.d, we get d| o . Similarly, we gcl d’ld. Thus, by E9 we sce that d and 4" are a.ssocxates il
in R. Thus, the g.c.d of a2 and b is unique up to*units. - :

Theorem 3 allows us to say the p.c.d instead ol' a g ¢.d. We denote the gc d of a and b By
(a,b). (This notation is also used for clements of R x R. Bot there should be no cause for
confusion, The context will ciarify what we are using the notation.for.)

Hew do we obtain [he g.c.d of Lwo clements in practice? How did we do it in 27 We looked
at the commeon factors of the two elements and their product.tumed out to be the required
g.c.d \Wewill use the same methiod in the {ollowing example.

Example 5 :.In Q[x] find the g.c.d of
p(x) = x*43x-10 and
q(*:) 6x* --10x—4.

Solution: By the quadraiic formula, we kuow thiat the roots of p(xy are 2 and -5, and the
rools of q(x) are 2 and -1 / 3. : )

Therefore. p(x) = (x-2) (x+5) and g(x) = 2(x--2) (3x+1):

The g.c.d of p{x) and q(x) is the product of the common factors of p{X) and q(x), which is
{(x=2).

Try this exercise now.

E 10) Find the-g.ciiof
a) 2and5inZ [ <8>,
b) x2+8x+15 and x2+12x+35 in Z[x], -

¢) X3=2x*+6x-5 and x2— 2x+1 in Q{x].

Let us consider the g.c.d of elementis ina PID,

Theorem 4 - Let R be a Pild and a, b = R. Then (a.h) exists and is of the form ax+by for
some Xy € R, -

Proof : Considar the idea! <a b>. Since R is a PITY, this idez] must be principal also. Let
de % such that <ab> = <ds- We will show that the ged ofaand bis d

Since a e <d>, diz, Similarly, aio.

Now suppose ¢ € R such that cla and clb.

Since d € <ab>, 3 x, y € R such that d = ax+by.

Since ¢|a and el b. ¢! (ax+by). i.2.. cld.

Thus, we have shown Lt d = (2,0), aad d= ax+by for somie X,y = R.

The fact that F{x) is a P1D gives vs the following cornllary o Theorsm 4.

Coroiiary : Let F pe 2 fizid. Then any 120 poiynominds [{x) and gia} i Flaffone o g
which i of the form a0 +ht e for some alx). bixy & Fid.
!

: {):'-—2\;"-’;,\—5}-:-"';,‘" RS S

Far eample, in E 1O (e (a0 1y = <

Mow vou can use Thenrem 1 (o prove the foltoving exarcis? shout ralutic ody prime

elements in a PID. e pairs of clements whose g.ed is L

Eih Lel R be a P1D and ab.o = R sech that a| bc. Show that i1 {a,b) = t. ithen alc.

(Ilinl : By Theorem 4. 3 x,v € R osuch that ax+by = 1.3




Let us now discuss a concept related 1o that of a prime element of a domain (sec Sec, 12.4). Speeial futegral Dorzine

Definition : Let R be an integral domain. We say that an ¢lement x € Riis irreducible .
if

i} X 1s not a unit, and
i) if x = ab with a.b & R, then a is a unit or b is a unit,

Thus, an clement is irreducible if it cannot be factored in a non-trivial way, i.c.. its onty
factors are its associales and the units in the ring.

So, for cxample. the ireducible elements of Z are the prime numbers and their associales.
This means that an element’in Z is prime iff 1t is irreducible.

Another domain in which we can find several examples is F[x], where Fis a ficld. Let us
lock at theirreducible elements in R[x] and C[x], i.e., the irreducible polyromials over R
and C. Consider the following important theorem about polynomials in C[x]. You have
alrcady come across Lhis in the Linear Algebra course.

Theorem 5 (Fundamental Theorem of Algebra) : Any non-constant polynomial in
C[x] has a root in C. {In fact, it has all its roois in C,)

Does this tell us anything about the irreducible polynomials over C? Yes. In fact, we can
also wrile it as

Theorem 5 0 A polynomial is irreducible in Cfx] iff it is linear,
A coroliary ¢ this result 18
Theorem ¢ : Any irreducible polynomial in R{x] has degree 1 ar degree 2.

We will not prove these results here but we will use them often when discussing
polynomials over R or C. You can use them to solve the following exercise.

E 12) Which of the following polynomials is imeducible? Give reasons for your choice,
a) x*-2x+1e R[x]
by x*+x+l e Cix],
¢} xa-ie C[x]

d x-3x%+2 +5 & R{x].

Lol us now discuss the relitionship bewween prime and irreducible elements in a PID.
Theorem 7 : In 2 PID an clement is prime iffl it is imeducible.

Proof : Let R be a PID and x & R be irreducible. Let x |ab, where a,beR. Suppose x ra.
Then {x.2) = |. since the only factor of x is ilself, up to units. Thus, by E 11, x{b, Thus. x
is prime.

To prove ifie converse. vou must soive the following cxercise.

EA3 Let R beadomain and pe R e a prime clement. Show that p is imeducible.

(Lhnt : Suppose p = ab. Then p]ub. Ir pi:t, then show that b must be 2 unit}

o why do voe thiah we hive sard that Thaorem 7 is true for a PID oniy? From E 13 vou
<y s il one wan s tree tor any domain. 1s the other way true for any domain? That is, is
svers armadocihie clment odn s demndn prne? Yoo will et an answaer ty this quasiian in
Lxample . dust now we witl look at some uses of Theorem 7.

Theorem 7 allows us to give a lot of examples of prime elements of F{x]. For example. any

liner polvnomudi ver F s irreducible. and hence prime. [n the next unit we will
particularly censider ireducibility (und hence primeness) over Q[x]. : 13



Integral Domains and Ficlds Now we would like to prove a further analogy between prime elements in 2 PID and primé
numbers, namely. a result analogous to Theorem 10 of Unit 1. For this wé will firsi show a _ )
very interesting property of the ideals of a PID. This property. called the ascending chajn
condition, says thal any increasing chain of ideals in a PTD must stop after a finite
number of steps.

Theorem &: Let R be a PID and 1,,L,....... be an infinile sequence of ideals of R satisfying
Lclhce...

Then I3 me Nsuch that [, =Ina =T 2=.....

Proof : Considerthe set [ =, UL U...= U I,. We will prove that { is an ideal of R.
n=1

Firstly, [ 2 ¢, since [y #dpand [, g L.
Sccondly,ifa.be I, thenae L andbe L for somers e N.

Assume r 2 5. Then [ < I, Therefore, a,b € . Since I, is anideal of R, a-b e I, = I. Thus,
a~belVYabel

Finally, letx € Randae i. Thenae |, forsomere N.
SoXa € I L Thus, wheneverx eRandae L xae L

Thus, Tis an idea! of R. Since Risa PID, I = <a> forsemeae R. Sinceae l,ae I, for
some me N.

Thenlcl,. But Incl SoweseethatI =1,
‘ Now, I, € Imn € 1 = Im. Therefore, I, = Imu.

Similarly, fr, = Iy, and so on. Thus, In =1, = I

‘Now, for 2 moment let us £0 back to Sec. 12.4, where we discussed prime ideals. Over there
we said that an element p € R is prime iff < p > is a prime ideal of R, If R is a PID, we
shall use Theorem 7 to make a stronper statement.

Theorem 9 : Let R be a PID. An ideal < a > is a maximal ideal of R if( a is a prime
element of R.

Proof : [f < a > is a maximal ideal of R, then it is a prime idea) of R, Therefore, a is a
- prime clement o7 R.
Coenversely, lel a be prime and let [ be an ideal of R such that < a > < L. Since R is a PID,

[=<b>lorsome be R. We wilt show that b is a unit in R; and hence. by E 4,
Sh==R, e, 1=R.

Now. <a>¢g <b>»=a=>bclorsomece R. Since ais irreducible, either b is an
associale of a or bis a uaitin R, Butif b is an assceiate of a. then <b> = <a>, 1
contradiction. Therelore. b is a unit in R. Therefore, [ = R.

Thus, <> is a maximal ideal of R.

What Theorem 9 says is that the prime ideals and maximal ideals ceincide in a
",

e Ta, - FEVET AR T tdas puowEge
! oo ollowin TORUTUIERD DOW.

Loi Wik of the Teliow oy ddeats ate mantmad? Give ieisons Toi youl chioie.:.

L) < v -l in Q [x].
o < x*+x+l > in R{x).

dy <x>in &[x]. .
.4‘.¥ ==




Now, take any integer n. Then we can have n =0, orn = % 1, or n has a prime factor. This Special Integral Domains
property of integers is true for the elements of any PID, as you will sce now.

Theorem 10 : Let R $e a PID and a be a non-zero non-invertible clernent of R. Then there
is some prime element p in R such that pla.

Proof : If a is prime, take p = a. Otherwise, we can write a =a b, where neither a, nor by4s
an associate of a, Then < a >G<ay > If a; is prime, take p = a,, Otherwise, we can write a,

= a3b,, where neither a, nor b, is an associate of a;. Then <a; >& <, >. Continuing in this
way we get an increasing chain X

<A>G <A PE <A >E ...

By- Theorem 8, this chain stops with some < a, >, Then a; will be prime, since it doesn't
have any non-trivial factors. Take p = a,, and the theorem is proved.

And now we are in a position (0 prove that any non-zero non-invertible clement of a PID can
be uniquely written as a finite preduct of prime elements (i.c., irreducible clements).

Theorem 1! : Let R be a PID. Let a € R such that a # 0 and a is not a unit. Then
a = pPy....pn Where py,pa,..., P, are prime elements of R,

Froof : If a is 2 prime element, there is nothing to prove, If not, then p, | a for some
prime p; in R, by Theorem 10. Leta = pyay. If a, is a prime, we are through. Otherwise
p1| a for some prime p; in R. Let a; = pyay. Then a = pyp,a,. If a, is a prime, we are
through. Olherwise we continue the process, Note thal since a, is a non-trivial factor of a,
<@> G<a>. Similarly, <a;> g: < a,>. Sn, as the process continues we get an increasing
chain of ideals,

LA>E < >C < >G ...

in the PID R. Just as in‘the proof of Theorem L0, this chain ends at < a,, > for some
m & N, and ay, is irreducible.

Hence, the process stops after m steps, i.e., we can write a = PIP? --- PmuAvhere pis a prime
elementof R¥ i=1, ..., m. '

Thus. any non-zero non-invertible elemen: in a PID can be factorised into a product of
primes. What is interesting about this factorisation is the following result that you have
alrcady proved for Z in Unit 1.

Theorem 12 : Let R be a PID and a # 0 be non-invertiblein R. Leta = PiPa---Pa
= q192.--Q, Where p, and q; are prime elements ol R. Then n = m and each p, is an associae
ol some g;forl €i<n, 1<j<m,

Belare going into the proof of this result, we ask you to prove a property of prime clemenls
that you will need in the proaf.

E213) Use induction on n 10 prove that if p is 4 prime clement in an integral domain R and
it plaja, ... a, (where 2y, 1y @ R thzn pl a; forsomei= [2....n.

Now let us start the proot of Theorem 12.
Broof @ Since pypa...p, = 14r ove Qo POV oL 0

Vhus, by E S prig) S some j = G By chanzing e order of e 0. I N2CessAry,

ce s imeducible, uy must b a

we cun assume that j = 1. ie., p J'q|. Letqy =pyn,
unit in R. So p; and q; are associates. Now we lzve

PR = P qr . Q.
Cancelling p, from both sides, we get

PaPro-Py = Uy -Gy : - ' : : a3
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Now, if m >n, we can apply the same pfoccSS to P3P, a-nd 50 On.

Then we will get -

1.=“1U1----Un-%+1----qfn- - -

This shows that gq, is a unit. But this contradicts the fact that q,,,, is irreducible,

Thus, m <'n.

Inlcrchar-lging the rofes of the ps and gs and by using a similar argument, we get n < m. -
Thus, n = m.

During the proof we have also shown that cach piis°an associate of some Q;. and vice versa.

What Theorem 12 says is that any lwo prime factorisations of an element in a
PID are ideatical, apart from the order in which the factors appear and
apart from replacement of the factors by their associates.

Thus, Theorems 11 and 12 say that every non-zero element in a PID R, which'is not a unit,

* can be expressed uniguely (upto associates) as a preduct of 2 finite number of prime

elements.

For example, x*-1 € R[x] can be wriltt.cn as (in) {x+1)or (x+1) (x~1) or [% (x+1)] (20x-1)]
in R[x].

Now you can try the following exercise,

E 16) Give the prime factorisation of 2x*-3x+{ in Q[x] and Z,(x].

The property that we have shown for a PID in Theorems 11 and 12 is true for severat other
domains also. Let us discuss such rings now. C

14.4 UNIQUE FACTORISATION DOMAIN. (UFD)

In this section we shall look at some details of a class of domains that includes PIDs.

Definition : We call an integral domain R a unigque factorisation demain (UFD, in
short) if every non-zero element of R, which is not a unit inR can be uniquely expressed as a
product of a finite number of irreducible élements of R.

Thus, ifRisaUFDandae R, witha # 0 and & being non-invertible, then
i) wcan be written as a product of a finite number of irreducible elements, and

i} il 2= pp;....p, = q4q3 -... q,, be two factorisations into irreducibles, then n = m and ¢.ch
pi is an associate of some g where t€i<n, 1 <£j<m.

Can you think of an examplc of a UFD? Do Theorems | 1 and 12 help? Of course! In them
we have proved, that every PID is a UFD.

Thus, Fx} is & UFD for any field F.

Also. since any Euclidean domain is a PID, itis alyo 2 UFD. OF course, in Unit T you
direcily proved that Z 1s 2 UFD, Why don't you go through that proot and thee try and solve
the following exercises,

i. 17y Directy prove that Flx] is a UFD, for any field F
(Ilini : Suppose you want 1o factorise [(x). Then use inducr.ionlon deg ((x).)

£18) Guoy iwo dilferent prime factorisations of 10in Z.




So you have seen several examples of UFDs. Now we give you an exzmple of a domain Special [ategeai Tomains
which is not a UFD {(and hence, neither a PID nor a Euclidean domain).

Example 6 : Show that Z [=5] = (a+by/=5 | abe Z} is not a UFD.
Solution : Lel us define a function

f: Z [Y=5] = N U [0} by f(a+b ¥=5) = a*+5b%.

This function is thé norm function; and is usually denoted by N.

You can cheek that this function has the property (har
) = @) (B V ap e Z{ V=51,

Now, 9 has two factorisations in Z['\’-—_S]. namety,

9 =133 =(2+v¥-5) 2-y-5).

In Example 3, you have already showan that Lhe only units of Z {v-5] are | and —1. Thus,
no two of 3, 2+ =5 and 2 —/-5 are associates of each other.

Also, each of them is irreducible. For suppose any one of them,
say 2+ﬁ. is reducible. Then

244/=5 = af} for some non-invertible o.p € Z [ +/=5].

Applying the furction f we see that

f(2+¥-5) = f(c) f(B).
Le.. 9 = f{o)) {(B).
Since f(et), [} € Nand ¢, § are not units, the only possibilities are f(a}:_-* 3 =1((B).

So, if o = a+b+-5, then a%+5b% = 3.

But, if b # 0, then a® + 5b® 2 5; and if b = 0, then a2 = 3 is not possible in Z. So we reach a

contradiction. Therefore, our assumption that 2+y-5 is reducible is wrong, That is, 2+y-5
is imeducible..

Similarly, we can show that 3 and 2-4-3 are irreducible. Thus, the factorisation of 9 as a
product al irreducible elements is not unigue. Therefore, Z[V=5] is not a UFD.

From this example you can also see that an irreducible clement need not be a prime eiement.

For example, 2++—=5 is irreducible and 2++~53.3. but 244/=5}3. Thus. 2+y/=35 is not a
prime elemen'.

Now for an exercisc.

B G two dadterent lacionisaiions ¢ 6 45 4 product of imeduaible clements m Z[ v =51,

Now let us discuss some propertics of o UFD. The first property says that any two elements
of 2 UFD hav: a goedd; and their e.c.d s tee product of all their commaon factors. Here we
will use the fa00 et dny clement o in o U7 IR can b wiitian as

r, o Tn
A= P by

where the 25 are distinet irreducible elements of R. For example, in Z[x] we have

KP=x-x# 1 = (x=1) (x+1) (i=1) = (x=1)% (x+1).

So. let us prdfhu the following result, $
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“Thcorem 13 : Any two clements of a UFD have a g.c.d.

Fa
Prool : Let R be a UFD and a.b € R.

Tn

Let a=p" p2t.pa” and b =p,°! p_zsz----pns“

where.py, pa. ---. Py are distinet irreducible elements of R and r; and s; arc non-ncgative
integers ¥ i = L.2,....n.

" (If some p; does not occur in the factorisation of a, then the corresponding r; = 0.

Similarly, if some p, is not a factor of b. then the cormesponding s; = 0. For example, take.
20and I5in Z. Then20=22x3%x 5'and 15=20%x3 1 x 51)

Now, let, =min (s Vi=1,2,...n

[a

Then d = p,l' P2 e-e p,,l“ divides a as well as b. since ; €rjand 1, €5,V i= 1. 2......n.

Now, let ¢l a and ¢l b. Then every irreducible factor of ¢ must be an ireducible factor of a and
of b, because of the unique facterisation property.

l m m m ‘ .
Thus.c= p, ' Py 2eee'pny ".wherem,€rand m;<s; Vi = 1,2,...n. Thus, m< 1, ¥
i= 52,0

Therefore, ¢ 4.
Hence, d = (2.0).

This theerem teils us that the methed we used for obtaining the g.c.d in Example 5 and E 10
is correcl,

Now, let us go back 10 Example 6 for a moment. Over there we found a non-UFD in whick
an irreducible clement necd not be a prime clemeat. The following result says that this
distinction between ireducible and prime elements can only occur in a domain thal is not a
UFD. ' '

Theorem "4 : Let R be 2 UFD. An element of R is prime ifT it is irreducible.

Proafl : By EL3 we know that every prime in R is ireducible. So let us prove the .
converse,

Letae R be irreducible and let albe, where be € R.
Consider {a,b), Since a is irréduciblc, (aby=1or{ab)=a.
If (2.b) =«. a|b.

If (a.b) = 1, then afb. Let be = ad, where d € R.

Por 1. 10 T2 B P a 30 o iradositls fasnaciearione of h
Lk W — !]'l l!: am 1!”1 [TFR AN oY) o LR 1] e RN e BREL R L PLAMARS R WA ar
and ¢. Since be = ad and a 15 wreducible, a must be one o the ps or one ol the ¢,5. Since

afb, o+ b, for any 1. Therefore. o = g, for some . That iva .

Theo v Laby =1 thenale

50w Lave shown it abe = aibonadc

Hence, a s prune.

For tiv2 il property of UFDs that we stie going Lo state, et us go hack 10, Example 4 (or a

ot Over there we gave vou an example of o PID R, (or which R [x] is nwea PID. You
may sl whad happens 1o RN R s a UFD We statz the following result,



Theorem 15 : Let R be a UED. Then R[x] is a UED.

-

We will not prove this result here, even though it is very useful to mathematicians, Bun let
us apply it. You can use il to solve the [ollowing exercises.

E 20) Give an example of a UFD which s not a PID.

E21) Ifpisanirreducible clement of a UFD R, then is it ireducible in every quotient ring

of R?

E 22) Isthe quotient ring of a UFD a UFD? Why?

E 23) Is asubring of a UFD a UFD? Why?

(-4
Lot us wind up this unit now,-with a briel description of what we have covered in it,

14.5 SUMMARY

In this unit we have discussed the following points.

1) The definition and examples of a Euclidean domain:,

2) Z. any ficld and any polynomial ring over a field are Euclidean domains,

3) Units, associates, faciors, the g.c.d of two clements, prime elements and irreducible
clements in an integral domain.

4) The definition and examples of a principal ideal domain (PID}.- -

5) Every Euclidean domain is a PID. but the converse is not true.
Thus, Z, F and F[x] are PIDs-. for any ficld F.

6) Tle g.c.d of any (wo elements a and b in 2 PID R exists and is of the form ax+by for
some x,y € R.

7) The Fundamental Theorem of Algebra: Any non-constant polynomial over C has all its
roots in C.

&) InaPID every prime ideal is a maxima! ideal,

%) The definition and examples of a unique faclorisation domain (UFD).

10) Every PID is a UFD, but the converse is not true. Thus Z, F and F[x] are UFDs, for
any field 7, -

[1} Ina UFD (and hence, in a PID}) an element is prime if[ it is irreducible.

12} Any two elements in o UFD have a g.c.d.

133 If R is a UFD, then so is R[x].

14

L

6 SOLUTIONS/ANSWERS

JrEN{O) = N U0} s diny =1

Forany a. b e FN{0}.

diabl =1 =diay.

sodiay =d(ub.] Yaubes FNIO),

Afsa Jor anv ab o o h 20,

a = fab Yo+,

So. F mvially sausfies the second conditien Tar a domain 1o be Guclidean.

Thus. F is a Euclidean Jomain.

Special Integral Domains
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E3)

E4)

E 5)

E 6)

ET
E 8)
E9)

P -
St .-
[ S

deg (f(x) £(x)) = deg f(x)+deg g(x) V (x), g(x) € F (x}\{0}.-
Now, use Theorem 5 of Unit 13; and you will have proved-the result.

aynre Zisaunitiff-dne Z such that mn =1, i.e, iff m = £1.

b)Letm e Z;beaunit. Then 3 n e Z; such thatmn = 1.

Thus, from Sec. 1.6.2 we see that m is a unit if the g.c.d of m and 6 is 1.
“m=Tlers.
c) Z/5Z is a field. Thus, the units are all its non-zero clements.
d) Let a+ib be 2 unit. Then 3 ;‘.H-id € Z+Z such that. - )
(a+ib) (c+id)= 1. '
=» (ac—bd)+{adbo)i= 1
= ac—bd =1 and ad+bc =0,
= b =0, as in Example 3.
Thus, a+ib = | or -1, using {a) abave.
th ue R be a unit, Thén 3_ v € R such that vu = 1. Thus, for anyr € R,
r=r. 1 =r{vu) =Ifry,)u ] Ru. . o
Thus, R € Ru. .. R=Ru.
Convessely, let Ru="R. Since | e R'= Ru,3 v & R such that

1 = vu. Thus, u is a unit in R.
Apply Theorem 2 to the Euclidean domain F{x]."
LetR=Z.Then S=fne Z* | |n] > 1 JU{0}.

Then2€ 8,3 € Sbuw2-3& S since |2-3] =1.

Thus, S is not even a subring of R.

For example, Z[x] is a subring of Q{x], which is a PID. But Z{x] is not 2 PID.
Zis a2 PID. Bul Z;‘6Z is not even a2 domain. Thus, it is not a PID.
Auisaunitiffuv =1 forsomeve Riffull,

blalband bla )
= b=acand a =bd for some b,d € R.
= b=bdc
=b=0orde=1
ifb=0, then 2 =0, and then a and b are associates,
ifb =0, then de =1. Thus, ¢ is a unit and b = ac.
Therclore, 2 and b are associates,

Converscly,

cl a and b be associales in R, say & = bu. where u is a unit in R. Then
bla. Also. le

1
1
tv € Rsuchthatuv = |, Then av = buv = |,

Thus. a ] ta.

E10y ay2,

b) x48x+15 = (x+3) (x+5). X2+12x435 = (X+5) (x+7)
Thus, their g.c.d is x+5
€) xM=2x246x-5 = (x—1) (x2-x+5), x2=2x+] = (x-1)%

Thus, their pod is x-1.



E 11) 3 x,y € R such that ax+by = I. - Special Integral ' Damazing
Then ¢ = 1.c = {ax+by)c = acx+bey

Since alac and :1] bc, a| (acx+bcy) =c.

E-‘12) {c} is, because of Theorem 5.
{a) is not, since.it is (x-N%
(b) is not, because of Theorem 5'.

(d).is not, because .of Theorem 6.

E 13) Let p=2ab. Then p|ab=> p| aor plb. Suppose pfa. Leta = pe. Then p = ab = peb
= p{l-cb) = 0= 1—<b =0, since R is a domain and p # 0. Thus, bc = L,i.e.,bisa
upit. Similarly, you can show thal ifplb. then a is a unit. .

So, p=ab=> ais a unitor b is a unit, i.c., p is irreducible.

E 14) (a), (c), since § and x2+x+1 are irreducible in Z and R[x], respectively.
.(5) is not, using Theorem 9.

(d) is not, since Z[x])/ <x> = Z, which is not a field.

E 15} The resultis clearly wue forn = [. Assume that It holds for all m < n, i.e., whenever
m<nandp | 2,32,....4,, then p|z|i for somei=12,....m.

Now letpla,a,...a, Then plaa,......a,_)a,.

Since p is a prime element, we find that pl a2, ...a__ orpla,.

If plaa,....a, . then pla for some i = ,.....n~1 by our assumption.
If pfa,....a_,, pla,

Thus, in either case, 1:)|ai forsomei=1,...., n.
So, our result is true for n.

Hence, itis tue ¥ ne N.

E 16} 2x%-3x41 = (2x-1) (x-1) in Qx].

In Z,[x] the given polynomial is x+1, since 2=0and -3 =1

This polynomial is lincar, and hence, irreducible over Z,.
Thus, ils prime factonsation is just x+1,

E17) Let f(x) be a non-zero non-unit in F[x] and et deg f(x) = n.

Then n > 0. We will prove that f(x) can be written as a product of irreducible
elements, by induction on n. Il n = L, then £{x) is linear, and hence irreducible.

Now suppose that the resull is tue for polynontials ol degree < n. Now take f(x). If
f(x} is ireducible, there is nothing to prove. Othenwise, there is a prime f {x1 such

that £,(x)| f(x). Let £(x) = £, (02, (x). Note that deg £,(x) > 0.

Hence, deg g% < dep T TV g {x) s prime, we are through, Othenwise we can find a
prime clemeni [4(x) such it g,(x) = [,{x)ga(x). Then deg go(x) < duy w00, Tis
Process nusi siop after = fnlie nuinbaa of Sleps, sineg, cacl G e el s oy

of lower depree. Thus, we shall finally get
[y =f () f0x) X,
where each £(x) is prime in F[x].

Now, to show that the facterisalion is unique you go aleng the lines of the proof of
Theorem 12.

E18)10=2x5=5% 2. _
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E19) 6= 23—(l+\f_}(1—\l_)

Using the nerm function you should check that each of 2.3; I+\‘ 5 and l—‘*J 5 are
irreducible in Z[‘\l| 5].

E20) Z[x].
E 21) No. For example, x is irreducible in Z{x] ; but x is zero in Z[x)/< x 5= Z.

E 22) The quotient ring of a domain need not be a domain. For example, Z is a UFD, but
Zf<4> i5 not.

Also, even if the quotient ring'is a domain, it may not be a UFD. For example,
Z[¥-5] = Z [x]/ < x245 > is not a UFD, while Z[x] is.

E 23) No. For example, Z[\I' —5] is a subring of C, a UFD. But Z[‘*J —5] is not a-UFD.
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15.1 INTRODUCTION

In the previous unil we discussed various kinds of integral domains, including unique
factorisation domains. Over there you saw that Z{x] and Q[x] are UFDs. Thus, the prime
and irreducible clements coincide in these rings. In this unit we will give you a methed for
obtaining the prime (or imreducible) elements of Z(x] and Q[x]. This is the Eisenstein
criterion, which can also be used for obtaining the irreducible elements of any pelynomial
ring over a UFD.

Alter this we will introduce you 10 field exténsions and subficlds. We will use irreducible
. polynomials for obtaining field e¢xtensions of a field F from F{x]. We will also show you
that every field is a ficld extension of Q or Zp for some prune p. Because of this we call

and the Zps prime fields. We will discuss these ficlds briefly.

Finaily, we will ook at finite figlds, These fields were introduced by the young French
mathematician Evariste Galois (Fig. 1) while he was exploring number theory. We will

discuss some propertics of {inile fields which will show ushow 1o classify them,

Before reading this unit we suggest that you go through the defiritions of irreducibility from
Unil 14, We also suggest that you go thraugh Units 3 and 4 of the Linear Algebra course if
yeu want 1o understand the proof of Tineorem 7 of this unit. We have kept the proof
optional. But once you know whitt a vectar space and its basis are, then the proafl is very
simple,

Objectives

Afler reading this unit, you should te able tw

e  prove and use Eisenstein's criterior for irreducibility in Z{x] and Q[x];

. obtain ficld exiensions of a Neld F from Flx);

o abtain the prime field of any flicld:

e use the fact that any finite field F has p* elements, where char F = p and dim],_p [ =n.

i TDMNPITMNYITDIY 171°%7 1= AN TE
Po.A LNNAL L GCUID iR L T LY IA]
B Unic b we rodueed von s me § e sobunaamieds in dudowhors s o fizid We oha

sioed the Fundamentai Thearem of Alachwin wheh sind thise a potynomiat over Cis
arcaucible (0 s dinear, You also 1onran dal it a polvnomiul over R is irreducible, it must
have degree ordegree 2, Thus, wny nolvnomial ever R of degree more than 2 1s reducible.
Al using the quadrutic formulit, we know which quadratic pelynomials over R are
imeducible,

New et us look st palvnomisls ey Q. Again. as lor any field F, a linear polynot.nial over
(Q vinredicible, Adso, by using the Guandraic farmigly we can explicitly obtain the roots of
any tadratic pelynamial over QL and hence tigure out whether it is irreducible or nol Rut,

Fig. 1: Evariste Galois
(I811-1832)

53



Integral Domains &nd Fields  can you tell whether 2x7. 3 3%5 = Gx“ £33 £12is. irrcduc:[blc ovchor nol‘?.In two sccc;;{d'; :
we can-tell you that it is meducnb[c by usmg ‘the Eisenstéin eriterion. This crilerion’ was -
discovered by the ninctecnth century mathematician Fcrdma.nd Elanslc1n In this section we

will build up the theory for prowng this useful criterion.

Let us stan with a dcﬁnitiqn.

Definition: Let f(x) = g+ X+ ... +ax"e Z(x]. We define the content of f[x] 10 be
the g.c.d of the integers 2 A)yeey Ay

We say that f{x) is primitive if the content of f(x) is 1.

For example, the conient of 3% 4+ 6x + 12 i< the g.c.d. of 3, 6 and 12, i.c., 3. Thus, this

polynomial is not primitive. But x5 + 3x2 + 4x — 5 is primitive, since the g.c.d of
1,0,0,34,-5 is 1. :

You may like to try the following exercisgs now.

‘E 1) What are the contents of the following polynorﬁials over 27
a) [+x+x? +x34+xd
by Tx4-7
) 52~ (x+2).

E 2) Prove that any polynomial f(x) € Z[x] can be written as dg(x), where d is the content
of {(x) and g(x) is a primitive polynomial.

~

We will now prove that the preduct of primitive polynomm[s isa pnrmlwc polynomial.
This result is well known as Gaunss® lemma. -

Theorem I: Lel f(x) and g(x) be primitive polynomis's, '-I'hen so is (x} g(x).
Proof: Let f(x)= 8y +a XHLFE X" € Zix] and
g(x) = bD.+ bx+..+ bmx’" € Z[x], where the .
gedofa,a,..,aislandthegecdofb,b,... b -is 1. Now
01 0 1 m
() g(x) =¢p+ ¢ X + ... + ¢, x™0,
. where ¢, =ggb, +ab,, + ...+ b

Te prove the resuit we shall assume that it is false, and then reach a contradiction. So,.
suppose that f(x) g(x} is not primitive. Then the g.c.d of Cg, Cy...., Coya 15 greater than 1, and
hence some prime p muet Jivide it. Thus, p | ¢ ¥ i =0, L., m4n. Since {(x) is primitive,
p does not divide some a;. Let r be the least integer such 1!1:11 pia,. Similarly, let s be the
loast integer such that p,}'b

Now considar
Cp.p = Ogby,, + by ot b+ L+ a5 O

= b, + (2alns + WDy F e+ 2 byt b+ + a4, bo)

Eryovurchaiczaflrend soplagpla,....pla_.andplb,, pr,, e it L Also ple o
Theretore.ple  ~f(ua b, 4+ by +a b+ +2,.b)

= p | a.orpl b since pis o prime.

Butp § a.and p f by So wereach a contradictlion. Therefore, ovr supposition is-false. That
i5, our theorem is Lrue.

Let us shift our attention to polynoniials over Q now.

i - |
Ty ;xz + 3X + 3 Il we take the Le.m of

InJl-.a-'l

Consider any polynomial aver (), say ((x) =




all the denominaters, i.e., of 2,5,1 and 3, i.c., 30 and multiply f(x) by it, what do we get? Irreducibility and Fiely
We get ' . Extensions

-
L]

30f(x) = 45x? + 6x2 + H0x + 10 € Z[x]

Using the same process, we can multiply any {{(x) € Q[x] by a suitable integer d so that df(x).
€ Z[x]). We will use this fact while relating irreducibility in Q[x] with irreducibility in Z[x].

Theorem 2: If {(x) € Z[x] is irreducible in Z[x]), then it is irveducible in Q[x].

Proof: Let us suppose that {(x) is not irceducible over Qfx]. Then ve should reach a
contradiction, So let f(x) = g(x) h{(x} in Q[x], where neither g(x) nor h(x) is g unir, 7.c.,
deg g(x) > 0, deg h(x) > 0. Since g(x) € Q[x]. 3m e Z such that mg(x) € Z[x]. Similarly,
dne Z such that nh(x) € Z[x]. Then,

maf(x) = mg(x) nh(x) (1)

Now, let us use E2. By E2, f(x) = rf)(x), mg(x) = sg, (x), nh(x) = thy (x), where r, s and t are
the contents of f(x), mg (x) and nh (x) and £i(x), gi(x}, hy(x} are primitive polynomials of
pasitive degrpe.

Thus, () gives us
mnrf, (x) = stg(x) h; (x) -(2)

Since gy(x) and h,(x) are primitive, Theorem 1 says that g,(x) hy(x) is primitive. Thus, the
content of the right hand side.polynomial in (2) is st. But the content of the left hand side
polynomial in (2) is mnr. Tkus, (2) says that mar = st.

Hence, using ihe cancellation law in (2), we get £1(x} = g\ {x) b (x).

Therefare, f(x) = rf, (x) = {rg () h(x) in Z[x], where neither rg,(x) nor hy(x) is a unit. This
contradicts the fact that f(x) is irreducible in Z[x].

Thus, our suppasition is false. Hence. f(x) must be irreducible in Q[xl.

What this resuli says is that to check irreducibility of a polynomial in é{x}. it is enough lo
clieck it in Z[x]. And, for chzcking it in Z[x) we have tie terrific Eisenstein’s criterion, that
we mentioned at the beginning of this section.

Theorem 3 (Eisenstein’s Criterion) : Let [(x)=2p+a1x + ... +a,x"€ Z[x].
Suppose Lhat for some prime number p,

i pian
iy plag.plan. . pla,, and
i) pltug.

Then {(x) is irreducible in Z[x] (and hence in QIxD.

Proofl: Can you guess our method of proofl? By contradiction. once againt So suppose f(x)
is reducible in Z{x].

Let [{x) = g(x)hee,
WRETE BiX) — By 4+ by x4 by, 0T me O and
it = o 4 AN S o G Y

Thenn=degf=degg +deghi=m +r. and

e

o =bpro+bio 4 4b o, Yhk=0 g
Now ag = bwg. We know that plugy, Thus. plbyey - plbaor pic,. Since p? Fuy. p cannot
divide both by and cq. Let us suppose that p | by and p c,.

Now let as look at a, = b, ¢, Since pf a,. we see th pib,, and ple,. Thus. we see that for
«some i, ptb,. Let k be the least integer such that plby. Nome thit 0 < h 21 <. 13
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Therefore,p | a.
NOW '\L—(bock‘l' +bklcl)+bkcﬂ
Since p | ayand p | bu Plbpyanp | bre ,.wcsccmatplak—(bock+ +bl:—lcl}u_i-c

-p | by, But pl-by and pt Cor So we reach a contradiction.

Thus, f(x} must be irreducible in Z[x].

Let us illustrate the use of this criterion.

Example 1: Is 2x7 + 3x5 — 6x% + 3x% + 12 ireducible in Qfx]?

Solution: By looking at the coefficients we se¢ that the prime number 3 satisfics the .
condilions given in Eisenstein’s cntcnon Therefore, the given polynomial is irreducible in

- Qx).

Example 2: Let p be a prime numbcr Is Q[x1/<x? — p > a field?

Solution : From Unit 14 you know [hal for any ficld F, if {(x) is irreducible in F[x], then
<f{x}> is a maximal ideat of F[x].

Now, by Eiscnstein's criterion, x*-p is irreducible since p sausﬁes the CDl'ldllIOI'lS given in
Theorem 3. Therefore, <x3-p> is 2 maximal ideal of Q[x].

From Unu 12 you also know that if R isaring, and M is a maxnmal idcal ofR then R,.IM
is a fieid. - - - . o -

Thus, Qix} ;’cxj—p:- is 2 field. .
In this example we have brought out an imporiant fact. We, asK you 1o prove it in the
(ullowing excicise. . '

.E 3) Foranyne 1\ and pnmc number p, show that x'Lp is 1rrcduc:blé over Q[t] ‘Note ™ -

that this shows us that we can obiain ercdumblc polynom:als of any dcgmc over ..
. Qlx]. - '

Now let us look at another example of an irreducible polynomial, Wm[c solvmg lhm _wr: ‘
witl shiow you how Theorem 3 can be used indirectly.

Example 3: Let p be a prime number. Show' that

{(x) = xP! + x1 + .+ x + 1 is irreducible in Z[x]. f(x) is calied the pth cyclotomic
polynomial. -

Solution : To start with we would like you 10 nowe that [(x} = g(x) h(x) in Zx]iff
f(x + 1) =p(x + 1) Wz + 1) in Z[x]. Thas, f{x) is irreducible in Z[x] iff f{x+!} is ireducible
in Z[x].

Now, [(x) = ;—]

-1
(x+" =1
fix+1}) =" "=
X
] -~ - w1l M 1] s n 1] [ L Y
(x'- = '-‘.__1 A I L Ll_ 1 o =1}, l\'l_"\' PRI DRLEIAMIETT Gl THRLICLEn )
AY
n LI
- - ] , hee }
Now apply Blsenstein’s crmerian whing poas Uw P, W fiad that fpce by s irmeducibe
Theretore. (X1 is irreducible.
L1
You can ry 1hese exercises pow,
E 4y oy +ox+.sa,x% e Z\] s treducible in Q[ x|, can you always find 2 prime p
that aatisgies the constiiens o uoand i al Theerenm 37




E 5) Which of the following elements of Z[x] arc irreducible over Q‘? . Irreducibility sad Ficld
a x*-12
b) 8x1 + 6x2—-9x + 24

o Sx+1

Extensions

E 6) Letp bea prime integer. Let a be-a non-zero non-unit square-free integer, i.¢., b? Ia
for any be Z. Show that Z[x)/<xP+a> is an integral domain.

E 7) Show that xP + T € Z,[x] is not irreducible for any T € Z,
(Hint: Docs E 13 of Unit {3 help?)

So far we have used the fac that if f(x) € Z[x] is irreducible over Z, then it is also
ireducible over Q. Do you think we can have a similar relationship between irreducibility in
Q[x] and R[x]? To answer this, consider {(x} = x*~ 2. This is irreducible in Q[x], but

f{x) = {x — \E] (x+ \G) in R[x]. Thus, we cannot extend irreducibility over @ to
irreducibility over R.

But, we can generalise the fact that irreducibility in Z[x} implies irreducibility in Q[x]. This
is not only true for Z and Q; it is true for any UFD R and its field of quotients F (see Scc.
[2.5). Let us state this relationship explicitly.

Theorem 4: Let R be a UFD with field of quotients [

i) If f(x) € R[x] is an irreducible primitive polynomial, then it is alse irreducible in fo].

i) (Eisenstein™s Criterion) Lt fix) =ap + a2 + ... + 8, 8" Ri{zlandpes Rbca
prime clement such that p § a,, p*{ 2y and p | a; for 0 < i < n.Then f(x) is irreducible
in F[x].

The proof of this resull is on the same lires as 1hal of Theorams 2 and 3. We will not be
doing it here. Butif you are inlerested, you should try and prove the resuit yourself.

Mow, we have already pointed oul thatif Fis a ficld and f(x) is ircducible over I7, then
F[x])/<{(x)> is a field. How is this [icld related 10 F? That is part of what we will discuss in
the next section.

15.3 FIELD EXTENSIONS

In this seclion we shall discuss sublields and field exlensions. To start with lzt us deline
these terms, By now the definition may be quile obvious to you.

Deflinition: A non-cmpty subset S of a field FF is called a subfield of Fif it is a ficld
wilh respect 1o lhe operations on F. Il S#F, then S is called a proper subfield of F.

A {icld K is called a field extension of Fif F is a subficid of K, Thus. Q is a sublield of
R and R is a ficld extension of . Similarly, C is a {icld cxlension of Q as well as of R.

Note thai a non-empty subset § of a lield [ is u subficld of FilT

i1y the set of all nuit-zero elemenis of § fonus 1 subgrow,r of the group ot fon-zero
cme

clemenis of ¥ounder miuliplication.
Thus. by Theoremn 1 of Unit 3, we have the following theorent,
Theorem 3: A non-eaipty subsct S of a ficid T is o subiiid of IF 15 and only 1f
i} sasS.beS=2abe S and
iy ne 8. be S.b-‘iO;):\b"l e s.

Wiry don™t vou use Thearem 5 1o do the failowing exercis now. -
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E 8) Show that
@) Q +iQ is a subfield of C.

by T+ \G Z is not a subfield of R.

Now, let us ook at a particular field extension of a field F. Since F[x] is an integral domain,
we can obtain its ficld of quotients (see Unit 12). We denote this field by F(x). Then Fis a
subficld of F(x). Thus, F(x) is a ficld extension of F. Its elements are expressions of the

form é%% where [(x), g(x} € F[x] and g{x) = 0.

There is anolher way of obtaining a field extension of a field F from F(x]. We can look at
quoticnt rings of F{x] by its maximal ideals. You know that an ideal is maximal in F{x} iff
itis gencrated by an itreducible polynomial over F.

So, F[x)/<f(x)> is a ficld iff f(x) is ireducible over F.

Now, given any f(x} € F[x], such that deg f(x) > 0, we will show that there is a ficld
monomorphism from F into F[x)/<{(x)>. This will show that F[x)/<f{x)> contains an
isomorphic copy of F; and hence, we can say. that it contains F,

So, let us define ¢ : F— F{x)/<{x)}>: d(a) = a + <f(x)>,

Then ¢ (a+b) = ¢ (a) + ¢ (b), and
@ {ab) =9 (a) ¢ (b).

Thus, ¢ is a ring homomorphism.
Whatis Kergp 7
Kerd ={acF} a+ <f(x)> = <f(x)>)

={a€ F|ae <dx)>}

=(a€F| fx) | a]

={0], sincedeg{>Oand dega < 0.
Thus, ¢ is 1-1, and hence an inclusion.
Hence, F is embedded in F[x)/<f(x)>.
Thus, if f(x) is irreducible in F[x), then F[x]/<f(x)> is a ficld extension of F.

Now [or 2 related exercise !

E %) Which of the following rings are field extensions of Q7
) Qx]/<x? + 10>,
by R[x]/<x? + 2>,
c Q.
d) Qxl<x?-5x + 6.

Well, we have looked at field extensions of any ficld F. Now let uy look al certain fields, une
of wiich F will be an extension oi.-

15.3.1 Prime Fields

Letus cousider any Reld F. Can we say anything alout whal its subticlds ook like® Yas., we
can szy something aboul one of its subficlds. Lei us prove this very startling and useful facr.
Before going into the prool we suggest that rcu do a quick revision of Theorems 3, 4 and §
ol Unit 12. Well, here's the tesult.

Theorem 6 : Every ficld contains a subfield isomorphic 1o Q or to Zp. for some prime
number p.



I

Proof : Let F be a field. Define a function Irreducibility ead Field
' Extensionx
BZSFifmy=nl=141+..+1 (n times).

InE 11 of Unit 12"you have shown that f is a ring homoniorphism and Ker f = pZ, where p
is the characteristic of F. '

Nov-r, from Theorem 8 of Unit 12 you know that char F =0 or char F = p, a prime. So Iet
us laok at these'two cases separately,

Case I (chir F = 0) : In this case fis onc-onc. .. Z ~ f(Z). Thus, f(Z) is an integral
domain contained in the field F. Since F is a field, it will also contain the ficld of quoticnts
of f(Z}. This will be isomorphic to the ficld of quoticnts of Z, i.e., Q. Thus, F hasa
subficld whicl: is isomorphic to Q.

- Case 2 (char F = p, for some prime p) :

Since.p is a prime number, Z/pZ is a field.
Also, by applying the Furdamental Theorem of Homomorphism to f, we pet ZipZ ~ [(Z).

Thus, KZ) is isomorphic to Z, and is contained in F. Hence, F has a subfield isomerphic to
Zp.

Let us reword Theorem 6 slightly. What it says is that :

Let F be.a ficld.
i) If char F = 0, then F has a_subfield isomarphic to Q.

|

ii) If char F = P, then F has a subfield isomorphic to Z,.

Because of this property of Q and Z; (where p is a prime number) we call thesc fields
prime [ields.

Thus, the prime fields are Q. Z, Z}. Zg, elc.

Ve call the subfield isomorphic to a prime field (obtained in Theorem 6), the prime
subfield of the given field. h

Let us again reword Theorem & in terms of field extensions. What it says is that every
field is a field extension of a prime feld. '

Now, suppose a field F is an extension of a Geld K. Are the prime subfields of K-and F
1somorphic or not? To answer this let us look at char K and char F. We want to know if
char K = clar F or not. Since F is a ficld exiension of K, the unity of F and K is the same,
namely, 1. Therefore, the east posilive integer n such that | = 0 is the same for Fas well
as K. Thus, char K = char F. Therefore, the prime subfields of K and F are isamorphic.

So. now can you do thz following exercises?

E 10)  Show that the smallest subfield of any ficld is its pdme subficld, -

E11) LetF be a fizld which has no proper subfields. Stiow that F is isomorphic to a
prime field.

E12)  Obwin the prime subiields of R, Zs and the field given in E 15 of Unit 12,

E13)  Shaw that given any field_ il we know is aharacicrisic thew we van obtain its
prime subleld, and vice versa.

A very imporiant facr brought out by E 10 and E 11 is that a licld is a prime fcld iff
it has no proncr subficlds.

Now let us look at certain field exiensions of the fields Z,
15.3.2 Finite Figlds

You have dealt a lot with the finite fields Zy. Now we will Iook at field extensions of these
ficlds. You know that any finite field F has characteristic p. for same prime p. And then Fis 9
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Tihe order of a [inils Leld is the
number of elenienls i iL
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an extension of Z,. Suppose F contains q clements. Then q must be a power of p. That is
what we will prove now.

Theorem 7 :-Let F be a finile field having g clements and cliaracteristic p. Then q = pf, fo
some positive integer n.

The proof of this result uses the concepts of a veclor sp:\cclﬁ-ﬁ’d its basis. These are discussed
in Block I of the Lincar Algebra course. So, if you want to_go through the proof, we
suggest that you quickly revise Units 3 and 4 of the, Linear Algebra course. If you are not
interested in the proof, you may skip it.

Proof of Theorem 7 : Since char F = p, F has a prime subfield which is isomorphic to
Zp- We lose nothing if we assume that the prime sublicld is Zp. We first show that F is a
vector space over Zp with finite dimension.

Recall that a set V is a vector space over a ficld K if

i} we can defind a binary operation + on V such that {V, +) is an abelian group,

' ii) we can define a ‘scatar multiplication’™ :_K ¥V Vsuchthat Vabe Kand

v, we V,

o (v+w)=av+aw
(a+b).v=av+byv
(ab). v=a. (b.v)
lvy=v.

Now, we know thal {F, +) is an abelian group, We also know that the muiliplication in
F will satisfy all the conditions that the scalar multiplication should satisfy. Thus, Fisa
vector space over Z,,. Since Fis a finite ficld, it has a finite dimension over Zp_

Let dim,_pF =n. Then we can finda,,...,a, € F such that

F=Za +Za+..+ Zga,
We will show that F has p" elements.
Now, any element of F is of the form
b, + bsas+ ... +ba, where by, b e Z,
Now, since o(Zp) = p, b, can be any onc of ils p elements.

Similarly, each of by, by, .. b, has p choices. And, corresponding to each cf these choices
we et a distinet element of I Thus, the number of ¢lements in 7 is
DX pX..Xp L timesy=pt.

The wtility of this result is something simitar Lo that of Lagranpe's theorem. Using this
result we know that, for instznee, no ficld of order 26 exists, But does a field of order 25
exist? Does Theorem 7 answer this question? It only says that a ficld of order 25 can exist.
But it dozs not say thai it does cxist. The following exciting resull, the proof of which is
bzyond the scope of this course, gives us the required answer. This result was obtained by
e American mathematician B.H, Moore in 1893

Ueorer & : Tor any prime numiber pand 68 N, $@0e CRis ¢ Ciold with pf elomenis,
Noreaver. aay Lo finite fields having the same number of elemenis are womnerphic,
4~

oo, v can usiine v haowledge of finke ticlds e splve the following evercises The

frst exercrse s generalisation of £ 13 in Umit 13

£14) Lot IFbe a nnite field with p!' slements. Show (hat 2" = a Vae F. And hence,

shav, that 7" —x = [T (x-a). i
e F :

(Hinl : Moic thai {FN{0)..} is a group ol ocder p™-1.)



E15) Let Fbea finite field with p" elements. Define f: F — F : f(a) = aP. Show thay f is Trreducibility and Ficid

an automorphism of IF of order n, i ¢., f is an isomorphism such that f " =, and
fr=fforr<n,

E6) LetF beaficld such thala € Fiff a.is aroot of x27™-x ¢ F{x].

by Is Z,C F?
c) IsQ € I?
d) IsFg Q? Why?

E17)  Anytwo infinite ficlds are isomorphic. True or false? Why? Remember that
isomorphic structures must have the same z2lgebraic properties.

We close our discussion on {icld exiensions now. Let us go over the points that we have
covered in this unit.

15.4 SUMMARY

We have discussed the following points in this vnit.
1) Gauss' lemma, i.c., the ‘product of primitive polynomials is primitive.

2) Eisenstein's irteducibility criterion for polynomials over Z and Q. This states that if
f(x)=aq+a, x + ... +a x" € Z[x] and there is a prime p € Z such that

) pla, ¥ i=01, .. 0.
i} pfa,and
i) p*4 ay.

S

then f(x} is irreducible over Z (and hence aver Q).
3) Forany ne N, we can oblain an irredvcible polynomial over Q of degree n.
4)  Definilions z2nd examples of subfields and ficld extensions.
3) Different ways of ebtaining lield extensions of a field F from F[x].
6) Every ficld contains a subficld isamorphic to a prime field.
The prime fields are Q or Z. lor some prime p.
73 The number of elements in a {inite licld Fis p", where char F = p and dimzpF =n.

8) Givena prime number p and n € N, there exists a (ieid containing p" elements. Any
two [inite ficlds with the same number of clements are {somorphic.

9y If Fis afinite field with p? elements, then xM" - X is a product ol p" linear polynonials
over F.

Now we have réached the end of this unit as well as this course. We hope that we have been
able 1o pive you a basic understanding ol te aaure of groups, rings and ficlds. We also hopw
tha »ou enjoyed going through this course.

BCL 8 3 38 Nt
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E I al i, by 7, ¢l

E2) Letf{x) =4y +a, x + ... + 2, x"and let the content of f{x) be d. Leta;=db; Vi =
0.1.....n. Then the ged of by.b....... b, is . Thus,
g(x}=by + b, x+ ... + b x" is primitive. Also.

f{x) =dbg + db, x + ... + dbax" = dib, + b, x + ... + b x") = d g(x).

f is called the Frobenius
automerphism of F, afier the
mathemaucian Gegrg Frobenius

a) Whartis char F? (1248-1917).

Extensians

6



Tntepral Domains and Fields E 3) fry=x"—-p=gp+a x+....+ax",
whereag=-p,aj=0=......=a,_,a, =1 x . g
Thus, p | ;¥ i=0,1,...... ,n—[,pz.}'ao.p.fal.
50, by the Eisenstein criterion, {(x) is-irreducible over Q.
E 4) Not necessarily.
For cxan_lplc, there is no p that satisfies the conditions for {(x) in Example 3.

E35) All of.them. (a) and (b), because of Eisenstein's criterion; and (c), because any
linear polynomial is irreducible.

E &) Since a=0,% 1,3 a prime q such that q | a. Also @* { a, since a is square-frec.
Then, using q as the prime, we can apply Eisensicin’s criterion to find that xP + a
is irreducible in Z[x]. Thus, it is a prime element of Z{x}. Hence, < xP+a>isa
prime ideal of Z[x].

Hence the result.

ED By E 13 of Unit 13 we know that aP=3 VY ae Zp. Now consider
P +3 € Zpx]. -

p-a is a zero of this polynomial, since

(p-a+3 =p-a+a=p =0 inZp,
Thus, xP + a is reducible over Zp.

E 8) a) Q + 10 is a non-empty subset of C.
Now, let a+ib and ¢+id be in Q+iQ,
Then@+ib)-(c+id)=(@-¢c)+i(b-d)e Q+iQ.
Further, let ¢ + id % 0, so thatc? +d2 =0,

_ Then(c+id)yl= Cf:_‘ddz

Thus, (a+1ib) (c + i)' =(a + ib);(:;—:::l

_{ac+bd)+.(bc—ad)
. T e+ d? ¢t + g3

eQ+i(),
Thus, Q +1Q is a subficld of C.

b)2e Z+ Yoz b 2V 2 7+ V2 7. Therefore,

Z + \G Z is not a ficld, and hence not a subficld of R,
E9 {2), (b) and {c).

E 10y  Let Fbea field and K be a subficld ol F. Then, we have just seen that both K and
F have isomorphic prime subficlds. :

Thus, K contains the prime subfizld of F.
Thus, we kave shown that every subfieid of F must contain its prime subfictd,

Henee, this is the smallest subfield of F.

L 11y F must contrin a prime subfield. But it contains no proper subficld. Hence, it must
be its own prime subficld. That is. F must be isomoephic to a prime field.

E 12y (G, Zs5.Z;.since their characteristics arg 0,5 and 2. respectively.

E 13y Lei F bea field. Firstly, let us assume that char ¥ o= p s known. Then, by
Theorem 6. we know the prime subfzld of F. Conversely, et K be the prime
subfield of F. Then we know char K. and as shown betore 15 10, char F = char K.
62 ) So we know char F.



E 14)

E 15)

[-[l
&,

EI17)

Since (F\{0},.) is a group of order p"— {, af"™ ! = | -
Yac F\{0).

La"=zavae F\{0}. Also Opn =0.

Thus, 2" =aVae F,

Now, x*" ~x e F{x] can have al the most p" roots in F (by Theorem 7 of Unit
13).

Also, cach of thc p® elements of F is a root. Thus, these are all the roots of
xP" - X.
cxPlox = T (x-a).
aeF
f(a+b) = (a+b)P = aP+ bP (using E 10 of Unit 12)
= [(a) + f(b).
{(ab) = (ab)P = aP bP = f(a) f(b).
fis 1 -1, by E 10(c) of Unit 12.

Hence, Im fhas the same number of elements a3 the domain of [, i ie, F. Funher,
Imfg -~ Imf=F, ie, [isonto.

Heuce, f is an automorphism.
Now, [(4) = {[(a)]* ={aPy' = 2*" =aVagF
. fl’l :I

Also, forr<n, ff(a) = ar

Now, we can't have a” =a V a e F, because this would mean that the polynomial

XP'—x € F[x] has mare than p' roots. ThIS would contradict Theorem 7 of Unit 13,
Thus, f* (a)2aforsomeac F. - ff=[ifr<n.

Hence, off) = n.

ae Filla¥ =a ic.a¥ =a.

1 Char F -3,

b} No, since char Z. 2 char .

c) No.

d) No.stnce FcQ = char F =charQ =0,
IFalse.

For example, Q and R are both infinite, but Q¢ has no proper sublietds, while R
does. Thus. @ and R are not isomorphic.

Irreducibility and Fiald
- Extensions
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