

Total

(With effect from Academic Year 2019-20)

B.Sc. Programs Course = CBCS DETAILED CURRICULUM: Core course- PHYSICS-

PHY-CC-103(Theory) **PHY-CC-104(Practical)**

- The Course content has been designed on **Semester pattern**. •
- There shall be **01 Theory** papers having **04 unit**(4 lectures in a week set up by departments) •
- There shall be **02** Practical 6 lectures in a week set up by departments. •
- There shall be **01 Theory** paper of **70 marks** and 2:30 hours duration in University • Examination.
- There shall be **01 Practical Paper(One experiment from each section i.e. two** . **experiment)** of **100 marks** and 04:00 hours duration in University Examination.
- There shall be Continuous Internal Evaluation of 30 Marks for theory course. •

			TOTAL	Passing	TOTAL	
Course	Paner No	Title of Paner	MARKS	Standarads	TEACHING	CREDITS
Туре	i aper no.	The of Tuper	EXT.+INT*	EXT.+INT*	HOURS (In	CILLDIIS
			= TOTAL	= TOTAL	15weeks)	
		Vector and Classical				
		Mechanics,				
		Interference and				
Coro		Diffraction,				
Course	Danor	Properties of Matter	70+20*	70 - 1 7*		
Theory		and Simple	-100	-40 marks	60 hrs	04
-102	102	Harmonic Motion,	-100	-40 IIIal KS		
-105	105	Diode				
		Circuits - Network	etwork and X-			
		Theorems and X-				
		Ray				
Core						
Course	Paper PHY-	PRACTICAL	FXT 100	40 marks	90 hrs	06
Practical-	CC- 104	PHYSICS-1		TO IIIdi KS	50 1113	00
104						
	тот	AL.	170+30=		150 hrs	10
			200			
INTERNAL	EVALUATIO	N :				
lest : 15 Marks						
Assignment	Assignment/Presentation : 10 Marks					
Seminar/Att	tendance	: <u>05 Marks</u>				
'otal : 30 Marks						

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS) SEMESTER-1

Syllabus for UG B.Sc. Programs Course = CBCS Course No.- PHY-CC- 103(Theory) Title of the Paper : Vector and Classical Mechanics, Interference and Diffraction, Properties of Matter and Simple Harmonic Motion, Diode Circuit - Network Theorem and X-Ray

Credits: 04 Marks: 100

TOTAL		100
Internal Examination	:	30
Marks: Semester End Examination:		70

Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
	Vector and Classical Mechanics		
	Surface area as vector		
	 Scalar triple product 		
	Geometrical interpretation of scalar triple product	1	
	Rotational behavior of scalar triple product		
	Vector triple product		
	Multi vectors product		
1	Reciprocal vector	1 5	10
	Newton's Laws of motion	15	18
	Mechanics of a particle		
	Equation of motion of a particle		
	Motion under constant force		
	Motion under a force which depends on time only		
	Motion under a force dependent on distanceonly		
	Motion of a particle subjected to a resistiveforce		
	> Examples		
	Interference and Diffraction		
	 Condition of interference 		
	Interference by thin film		
	Interference due to transmitted light		
	Interference by variable thickness (wedge-shaped) film		
	Types of interference : Wave front division and Amplitude		
	division		
2	Wave front division :Fresnel Biprism	15	10
2	Amplitude division : Newton's ring	15	10
	 Fresnel's Assumptions 		
	Fresnel Half Period Zones and Rectilinear propagation of light		
	Positive and Negative Zone plate		
	 Fraunhoffer diffraction at a single slit 		
	Intensity distribution in diffraction pattern of a single slit in		
	fraunhoffer diffraction		
	➢ Examples		

	Prop	erties of Matter and Simple Harmonic Motion		
	\succ	Definition of stress and strain		
	\succ	Hooke's law and elastic constant		
	\succ	Strain energy		
	\succ	Restoring couple- required to produce torsion andelastic wire		
		with derivation		
	\succ	Relation between isothermal and adiabatic elasticities of gases		
	\succ	Searl's relation between elastic constant and derivations		
	\succ	Characteristics of simple harmonic motion	15	17
	\succ	Graphical Method: Composition of two linear simple harmonic	15	17
		motions in the same direction and at right angles with each		
		other		
	\succ	Analytical Method : Composition of two linear simple harmonic		
		motions in the same direction and at right angles with each		
		other		
	\triangleright	Lissaious figures		
	\triangleright	Compound pendulum and derivation of time period		
	\mathbf{A}	Examples		
	Diod	e Circuits , Network Theorems and X-Ray		
	\blacktriangleright	The Half wave Rectifier		
	\blacktriangleright	The Full wave Rectifier		
	\triangleright	The Bridge Rectifier		
	\triangleright	Types of Filter		
	\blacktriangleright	Super-Position Theorem		
4	\triangleright	Norton's Theorem	15	17
1	\triangleright	Thevenin's Theorem	15	17
	\triangleright	Origin , Production and Properties of X-ray		
	\triangleright	Laue spot		
	\triangleright	Absorption of X-ray		
	\succ	Application of X-ray		
	\triangleright	Compton effect		
	\succ	Examples		
			60hours	70marks

Course Outcome - Learner will able to learn the basic conceptual and theoretical aspects of Classical Mechanics,Interference and Diffraction, Properties of Matter ,Simple Harmonic Motion, Network Theorem and their applications.

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS) SEMESTER-1

Syllabus for UG B.Sc. Programs Course = CBCS

Course No.- PHY-CC-104

Title of the Paper: Physics PracticalMarking Scheme : Semester End Examination:100

TOTAL

100

DETAILED CURRICULUM FOR PRACTICAL

[Based on paper P- 103]

Students have to prepare their Practical journals of Physics for Laboratory work and they have to submit certified journals in the University practical exams. Students are not allowed in the laboratory without certified journals in the University practical examination.

Detailed Syllabus for Physics practical	Teaching Hours
SECTION A(General Physics)	
1. To determine Young's modulus of a given wire.	03
2. To determine expansion coefficient of pressure of constant volume air	03
thermometer and to determine absolute zero temperature and	
atmospheric pressure.	
3. To determine moment of inertia of body with different shapes using bi-	03
filler suspension.	
4. Calibration of spectrometer with help of prism spectra.	03
5. To determine wavelength of sodium light using Newton's ring.	03
6. To determine refractive index of liquid by using liquid lens method.	03
7. To determine 'g' by bar pendulum .	03

	Detailed Syllabus for Physics practical	Teaching Hours
SE	CTION B(Electricity and Magnetism)	
1.	To determine wattage and temperature of a given lamp.	03
2.	To verify tangent's law using tangent galvanometer.	03
3.	To determine low resistance using projection method.	03
4.	To determine magnetic moment and pole strength using	03
	deflection magnetometer.	
5.	To study bridge rectifier.	03
6.	To determine Impedance of coil using series L-R ac circuit.	03
7.	To study characteristics of thermistor.	03

Credits: 06

(With effect from Academic Year 2019-20)

References Books

- 1) Mathematical physics by H.K.Das &Dr. Rama Verma
- 2) Mathematical physics by Rajput
- 3) Nirav college physics paper:101
- 4) Nirav college physics paper:102
- 5) Introduction to classical mechanics by R.G.Takwale & P.S. Puranik
- 6) Classical Mechanics & Properties of Matter by A.B.Gupta
- 7) A textbook of optics by Dr. N. Subrahmanyam & Brij Lal
- 8) Optics by Singh & Agarwal
- 9) Properties of matter by D.S.Mathur
- 10) Electricity and Magnetism by D.N.Vasudev
- 11) Electric circuit analysis by Soni & Gupta
- 12) Electricity and Magnetism by R.Murugeshan
- 13) Nirav college physics paper :202
- 14) Modern physics by Murugeshan
- 15) Modern physics by Basier
- 16) Engineering physics by Dr. M.N.Avadhanulu (S.CHAND'S)
- 17) Advanced practical physics by Chauhan And Singh
- 18) B.Sc.Practical Physics by C L Arora
- 19) Practical Physics by Kumar and Gupta

(With effect from Academic Year 2019-20)

Syllabus for UG B.Sc. Programs Course = CBCS <u>DETAILED CURRICULUM</u> Core course- PHYSICS PHY-CC-203(Theory) PHY-CC-204(Practical)

- The Course content has been designed on **Semester pattern**.
- There shall be **01 Theory** papers having **04 unit** (4 lectures in a week set up by Departments)
- There shall be **02 Practical** 6 lectures in a week set up by departments.
- There shall be **01 Theory** paper of **70 marks** and 2:30 hours duration in University Examination.
- There shall be **01 Practical Paper(One experiment from each section i.e. two experiment)** of **100 marks** and 04:00 hours duration in University Examination.
- There shall be Continuous Internal Evaluation of 30 Marks for theory course.

Course Type	Paper No.	Title of Paper	TOTAL MARKS EXT.+INT* = TOTAL	Passing Standarads EXT.+INT* = TOTAL	TOTAL TEACHING HOURS (In 15weeks)	CREDITS
Core Course Theory- 203	Paper PHY- CC- 203	Thermodynamics and entropy, Magnetism and Solid State Physics, AC Bridge and DC Circuit, Modern Physics (Radioactivity) and Relativity	70+30* =100	28+12* =40 marks	60 hrs	04
Core Course Practical -204	Paper PHY- CC- 204	PRACTICAL PHYSICS-2	EXT 100	40 marks	90 hrs	06
	TOTAL		170+30= 200		150 hrs	10

INTERNAL EVALUATION :

Test	:	15 Marks
Assignment/Presentation	:	10 Marks
Seminar/Attendance	:	<u>05 Marks</u>
Total	:	30 Marks

(With effect from Academic Year 2019-20)

B.Sc. PHYSICS

SEMESTER-2

Syllabus for UG B.Sc. Programs Course = CBCS Course No.- PHY-CC- 203(Theory)

Title of the Paper : Thermodynamics and entropy, Magnetism and Solid State Physics,

AC Bridge and DC Circuit, Modern Physics(Radioactivity) and Relativity

Credits: 04 Marks: 100

Internal Examination	:	30
TOTAL		100

Unit	Detailed Syllabus	Teaching	Marks/
Unit	Detailed Syllabus	Hours	Weight
	Thermodynamics and entropy		
	Zeroth, first and second law of thermodynamics		
	Specific heat of gases		
	Application of first law of thermodynamics		
	Adiabatic equation of perfect gas		
	Carnot's theorem		
	Thermodynamic scale of temperature		
	Identity of perfect gas and absolute scale of temperature		
1	Change of entropy in reversible and irreversible process	15	18
	Principle of increase of entropy and disorder		
	Third law of thermodynamics in terms of entropy		
	Temperature – Entropy diagram		
	Calculation of entropy for a perfect gas and stream		
	Impossibility of attaining the absolute zero		
	Maxwell's relations		
	Derivation of Clausius - Claperon equation of agas		
	Examples		
	Magnetism and Solid State Physics		
	 Classification of Magnetic Materials: Diamagnetic, 		
	Paramagnetic, Ferromagnetic		
	Magnetic Properties of materials		
	Langevin's theory for diamagnetic materials(Classical)		
	Hysteresis loop for ferromagnetic substances		
_	 Ferromagnetic domains 		
2	Tangent law	15	18
	 The concent of lattice 		
	 Primitive cell and unit cell 		
	\sim 7 crystal systems and 14 Bravis lattice		
	Flomentary argental structures Neal 7ns Dismond U.C.D.		
	 Elementary crystal structures : Naci, ZhS, Diamond , H.C.P. Atomic no chine for store 		
	Atomic packing factors		
	Examples		

(With effect from Academic Year 2019-20)

	AC Bridge and DC Circuit		
3	 A.C.Bridge introduction and general Bridge balance equation 		
	De-sautty Bridge		
	Maxwell Bridge		
	Anderson Bridge	4 7	
	R.L. Circuit in series growth and decay	15	17
	R.C. circuit in series growth and decay	es growth and decay and its analysis and condition of oscillation	
	Series LCR circuit and its analysis and condition of oscillation		
	 Quality factor 		
	➤ Examples		
	Modern Physics(Radioactivity) and Relativity		
	Thermal radiation and Black body radiation		
	 Planck's radiation law 		
	 Rayleigh – Jeans law 		
	 Wien's law and Wien's Displacement law 		
	 De Broglie hypothesis 		
	 Uncertainty principle 		
	Laws of Disintegration : Activity and its units , Half-life ,		
	Average life (Mean)		
	 Radioactive series 		
4	Law of successive Disintegration	15	17
4	Radioactive Equilibrium: 1) Permanent or secular equilibrium	15	17
	2) Transient equilibrium		
	Frame of reference and Newtonian Relativity		
	 Galilean transformation equations 		
	The Ether hypothesis and the Michelson-Morleyexperiment		
	with result		
	 Postulates of special theory of relativity 		
	The Lorentz transformation equations		
	Length contraction and Time dilation		
	Mass energy equivalence (E=mc2)		
	> Examples		
		60hours	70marks

Course Outcome - Learner will able to learn the basic conceptual and theoretical aspects of Thermodynamics , Magnetism ,Solid State Physics, Modern Physics, Relativity and their applications.

(With effect from Academic Year 2019-20)

B.Sc. PHYSICS SEMESTER-II

Syllabus for UG B.Sc. Programs Course = CBCSCourse No.- PHY-CC- 204Title of the Paper: Physics PracticalMarking Scheme : Semester End Examination:100TOTAL100

DETAILED CURRICULUM FOR PRACTICAL

[Based on paper P- 203]

Students have to prepare their Practical journals of Physics for Laboratory work and they have to submit certified journals in the University practical exams. Students are not allowed in the laboratory without certified journals in the University practical examination.

Date	vilad Sullahua far Dhuaiga	Teaching
Deta	aneu synadus for Physics	Hours
SE	CTION A(General Physics)	
1.	To determine temperature coefficient of thermal conductivity by	03
Le	e's method.	
2.	To determine wavelength of mercury spectral lines with the help	03
of	grating method.	
3.	To determine Poisson's ratio of rubber tube.	03
4.	To study resonator to determine unknown frequency of tuning fork.	03
5.	To determine Melde's tuning fork frequency and to verify laws	
of	vibrating string.	03
6.	To determine radius of curvature of a given lens and refractive	03
in	dexof glass using optical lever method.	
7.	To determine moment of inertia of a disk using Tortional pendulum.	03
SE	CTION B(Electricity and Magnetism)	
1.'	Го determine resistivity of electrolyte using Koholaraus bridge.	03
2.'	Γο determine ratio of magnetic moments of two bar magnetsusing	
vi	oration magnetometer.	03
3.'	Γο determine resistance of galvanometer and Leclance cell	
us	ingP.O.Box Kelvin-Mens methods.	03
4.'	Γο study magnetic field of coil using Stuart gee galvanometer.	03
5.'	Γο determine self-inductance of a given coil using Andersonbridge.	03
6.'	Γο determine ratio of capacity of two capacitors using desautybridge.	03
7.'	Γο study parallel resonance of L.C.R.circuit.	03

Credits: 06

(With effect from Academic Year 2019-20)

References Books

- 1) Thermodynamics and statistical physics by J.P. Agarwal
- 2) Electricity and Magnetism by D.N.Vasudev
- 3) Electricity and Magnetism by R.Murugeshan
- 4) Elements of Solid State Physics by S.O.Pillai
- 5) Nirav college physics
- 6) Electricity and Electronics byD.C.Tayal
- 7) Electric circuit analysis by Soni & Gupta
- 8) Nirav college physics paper :102
- 9) Modern physics by Murugeshan
- 10) Modern physics by Basier
- 11) Modern physics by Aruldas & P Rajagopal
- 12) Introduction to Nuclear and Particle PhysicsBy V.K.Mittal & R.C. verma
- 13) Advanced practical physics by Chauhan And Singh
- 14) B.Sc.Practical Physics by C L Arora
- 15) Practical Physics by Kumar and Gupta

(With effect from Academic Year 2019-20)

DETAILED CURRICULUM <u>SEMESTER PATTERN</u> CHOICE BASED PATTERN B.Sc. (PHYSICS) SEMESTER-III

- The Course content has been designed on **Semester pattern**.
- The workload for Theory & Practical is allotted on Semester pattern.
- There shall be **02 Theory papers 70 marks each** of 2:30Hours duration.
- [70+30 marks Internal =100marks]
- Physics Practical Examination shall be of 10**0 marks** of 06 hours duration in University
- Examination.
- There shall be **Two Semesters** in an academic Year. (Semester-3 & 4)

SR. NO.	PAPER NO.	NAME OF THE PAPER	TOTAL MARKS EXT.+INT*= TOTAL	PASSING STANDARAD EXT.+INT = TOTAL	TOTAL TEACHING HOURS	EXAM HOURS	CREDI TS
1	РНҮ СС- 303	THEORY	70+30=100	28+12=40	15 WEEKS X 4 HOURS =60	2:30	04
2	РНҮ СС- 304	THEORY	70+30=100	28+12=40	15 WEEKS X 4 HOURS =60	2:30	04
3	РНҮ СС- 305	PRACTICAL	100	40	15 WEEKS X 9 HOURS =135	06	06

INTERNAL EVALUATION :

Test	:	15 Marks
Assignment/Presentation	:	10 Marks
Seminar/Attendance	:	<u>05 Marks</u>
Total	:	30 Marks

(With effect from Academic Year 2019-20)

B.Sc.(PHYSICS) SEMESTER-III

PAPER-CC-303: Classical Mechanics, Thermodynamics and Statistical Mechanics, Optics -1 and Thermoelectricity, Spectroscopy-1

Credits: 04

Marks:	100 Marks
Semester End Examination of:	70Marks
Continous Internal Evaluation:	30 Marks

Unit	Detailed Syllabus		Marks/
Unit			Weight
	Classical Mechanics		
	Equivalent one body problem		
	Motion in a central force field		
	Unit vector in polar co-ordinate system		
1	Radial and tangential acceleration component inpolar co-ordinate system	15	18
	General features of the motion		
	Equation of the orbit		
	Types of the orbit		
	Examples		
	Thermodynamics and Statistical Mechanics		
	Macroscopic States, Microscopic States		
	Fluctuations and their dependence on N molecules		
	Phase space, Phase trajectory, Density distribution in the phase space		
	Volume in phase space		
	Division of phase space into cells		
	μ-Space and Γ-Space		
	Concept of ensemble		
2	Types of ensemble	15	18
	General statistical distribution law		
	Thermodynamic probability		
	\succ β – Parameters		
	Entropy & probability		
	Law of equipartition of energy		
	Boltzmann Cannonical distribution and evaluation of its constants		
	Maxwell-Boltzmann distribution law of velocities		
	Examples		

(With effect from Academic Year 2019-20)

	Ontice 1 and Thormool actrigity		
	 Resolving power olgrading Desclaring an excess of Driver 		
	Resolving power of Prism		
	Resolving power of Telescope		
	Comparison of grating spectra & prism spectra		
	 Introduction to Eye pieces: (1) Kellner eyepiece (2) Ramsden eyepiece (3) Huygens's eyepiece (4) Gauss eyepiece 		
	Comparison of Ramsden eyepiece and Huygens's eyepiece		
	Michelson Interferometer		
3	Febry – Perot Interferometer	15	17
	Seeback Effect		
	Laws of thermo e.m.f.		
	Measurement of Thermo EMF using Potentiometer		
	Peltier Effect		
	Thomson Effect		
	Thermodynamics of Thermocouple		
	Thermo-Electric Diagrams		
	Uses of Thermoelectric Diagrams		
	➢ Examples		
	Spectroscopy-1		
	ATOMIC AND MOLECULAR SPECTROSCOPY		
	Different Series in alkali spectra		
	Ritz combination principle		
	Term values in alkali spectra and quantum defect		
4	Spin orbit interaction	15	17
т	Explanation of salient features of alkali spectra	15	17
	Doublet structure in alkali spectra		
	Alkali like spectra		
	Spectra of alkaline earths		
	Explanation of rotational spectra as a rigid rotator		
	Explanation of vibration spectra as a harmonic oscillator		

Course Outcome - Learner will able to learn the basic conceptual and theoretical aspects of Classical Mechanics, Thermodynamics , Optics and their applications.

TEXT BOOKS RECOMMENDED FOR PAPER PHY -CC-303:

- 1) Introduction to classical mechanics by R. G. Takwale & Puranik
- 2) Introduction to classical mechanics by Shrivastava & Gupta
- 3) Fundamental of statistical Mechanics by B. B. Laud (New Age International)
- 4) Elementary statistical mechanics by Gupta & Kumar (PragatiPrakashan)
- 5) Thermodynamics and statistical physics by Aggarwal and Satyaprakash (Pragatiprakashan)
- 6) Principles of Optics by B. K. Mathur
- 7) A textbook of optics by Dr. N. Subrahmanyam & BrijLal
- 8) Optics by Singh & Agarwal
- 9) Electricity and Magnetism by D. N. Vasudev
- 10) Electricity and Magnetism by R. Murugeshan
- 11) Elements of spectroscope by Gupta, Kumar and Sharma
- 12) Molecular Spectroscope by G. King

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS) SEMESTER-III

PAPER-CC-304: Mathematical Physics-1, Electricity, Electrostatics, Electronics-1 Instrumentation and Number System

Credits: 04

Marks:	100 Marks
Semester End Examination of:	70Marks
Continous Internal Evaluation:	30 Marks

Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
1	 Mathematical Physics-1 Definition of Complex number Complex number: Addition , Subtraction, Multiplication and Division complex numbers representation in argand plane and polar plane Conjugate of complex number Analytic function Cauchy Riemann Condition Definition of Green's Theorem Cauchy's integral theorem for simply and multiply connected region Cauchy's integral formula Taylor series : Definition and theorem Laurent series : Definition and theorem Examples 	15	18
2	 Flectricity Types of Galvanometer: (1) Moving ironGalvanometer (2) Electrodynamometer (3) Moving Coil Galvanometer: Ballistic and Dead beat Galvanometer Force of damping Equation of Damped Simple Harmonic Oscillator for Ballistic and Dead beat galvanometer Logarithmic decrement of Ballistic Galvanometer Types of damping Hall effect in conductor Hall probe Wattmeter : (1) Thomson Wattmeter (2) Induction type wattmeter Examples 	15	18
3	 Electrostatics Poisson's and Laplace's equation Solution of Laplace's equation in Cartesian Co-ordinate system Electrical Images Capacity of cylindricalcondenser Capacity of spherical condenser 	15	17

(With effect from Academic Year 2019-20)

		1	
	Capacity of a Parallel Plate condenser		
	Energy of charged Condenser		
	 Type of Capacitor and Uses of Capacitor 		
	 Effect of Dielectric 		
	Examples		
	Electronics-1 Instrumentation and Number System		
	Transistor load line analysis		
	Operating points		
	 Faithful Amplification 		
	 Stabilization and stability factor 		
	Transistors Biasing : Voltage Divider Bias method		
	Feedback amplifier : (1) Type of feedback amplifier		
	(2) Derivation of voltage gain with feedback amplifier		
4	Oscillator : (1) Tank circuit (2) BarkhausenCriterion	15	17
	(3) Colpitt's Oscillator (4) HartleyOscillator (5) Phase shift Oscillator		
	> G M Counter		
	Jamin Interferometer		
	> Oscilloscope		
	 Function generator 		
	Number system in digital electronics: Mutual conversion of decimal and		
	binary numbers, Addition, subtraction, multiplication of binary number		
	> Examples		

Course Outcome - Learner will able to learn the basic conceptual and theoretical aspects of Mathematical Physics, Electricity, Electrostatics, and their applications

TEXT BOOKS RECOMMENDED FOR PAPER PHY-CC-304

- 1. Mathematical Physics by P. K. Chatopadhyay (Wiley Eastern Limited)
- 2. Mathematical Physics by S. Chand
- 3. Mathematical Physics by MaryBose
- 4. Mathematical Physics by Rajput
- 5. Fundamental of Magnetism & Electricity by D. N. Vasudeva (S. Chand & Comm.)
- 6. Electricity and Magnetism by R. Murugeshan (S. Chand)
- 7. Principle of Electronics by V. K. Mehta and Rohit Mehta
- 8. Hand Book of Electronics by Gupta and Kumar(Prgati Prakashan)
- 9. Digital Electronics by A. Anand
- 10. Electrodynamics by S. L. Gupta & V. Kumar (S. P. Sinsh, Pragati prakshan)
- 11. Introduction to Electrodynamics by D. J. Griffith

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS) SEMESTER-III PHY-CC-305: PRACTICAL (Based on paper P- 303 & 304)

Credits: 06

Marks: Semester End Examination: 100 Marks

Students have to prepare their Practical journals of Physics for Laboratory work and they have to submit certified journals in the University practical exams. Students are not allowed in the laboratory without certified journals in the University practical examination.

HoursSECTION A (General Physics: Heat ,Sound,Light and Modern physics)031. Determination of Young's Modulus 'Y' of a bar bybending.032. Determination of modulus of rigidity 'η' of wire by Maxwell'sneedle.033. Determination of resolving power of prism.034. Determination of wave length of sodium source byBiprism.035. To determine Cauchy's constant.036. Determination of Thermal conductivity of rubber tube.03
SECTION A (General Physics: Heat ,Sound,Light and Modern physics)031. Determination of Young's Modulus 'Y' of a bar bybending.032. Determination of modulus of rigidity 'η' of wire by Maxwell'sneedle.033. Determination of resolving power of prism.034. Determination of wave length of sodium source byBiprism.035. To determine Cauchy's constant.036. Determination of Thermal conductivity of rubber tube.03
1. Determination of Young's Modulus 'Y' of a bar bybending.032. Determination of modulus of rigidity 'η' of wire by Maxwell'sneedle.033. Determination of resolving power of prism.034. Determination of wave length of sodium source byBiprism.035. To determine Cauchy's constant.036. Determination of Thermal conductivity of rubber tube.03
2. Determination of modulus of rigidity 'η' of wire by Maxwell'sneedle.033. Determination of resolving power of prism.034. Determination of wave length of sodium source by Biprism.035. To determine Cauchy's constant.036. Determination of Thermal conductivity of rubber tube.03
3. Determination of resolving power of prism.034. Determination of wave length of sodium source by Biprism.035. To determine Cauchy's constant.036. Determination of Thermal conductivity of rubber tube.03
4. Determination of wave length of sodium source byBiprism.035. To determine Cauchy's constant.036. Determination of Thermal conductivity of rubber tube.03
5. To determine Cauchy's constant.036. Determination of Thermal conductivity of rubber tube.03
6. Determination of Thermal conductivity of rubber tube.
7. Determination of focal length of an optical system by means of Goniometer. (Searle's
Method) 03
8 Determination of value of e/m by Thompson's method. 03
9. To study solar cell characteristics. 03
10. Absorption co efficient of liquid using Photo voltanic cell.03
11. To determine the band gap in a semiconductor using a P N junction diode.
SECTION B (Electricity, Magnetism and Electronics)
1. Determination of current sensitivity of Ballistic Galvanometer.03
2. Determination of capacity ratio by Desauty's bridge using Ballistic Galvanometer. 03
3. Determination of thermo EMF of thermo couple. 03
4. To convert a galvanometer in to an ammeter of a given range.
5. To determine the self inductance of a given coil by Maxwell's induction bridge.
6. Determination of resistance of unit length of potentiometer wire and to find specific
resistance of coil by Carey-Foster method.
7. To study a transformer: Determination of Parameters of transformer.
8. Determination of inductance of coil by Hartley Oscillator and calibration of variable
air capacitor.
9. To study frequency response of RC Amplifier .
10. Determination of O-factor of parallel resonance(LCR).

TEXT BOOKS RECOMMENDED FOR PAPER PHY-CC-305

- 1) Advanced practical physics by Chauhan AndSingh
- 2) B.Sc.Practical Physics by C L Arora
- 3) Practical Physics by Kumar and Gupta

(With effect from Academic Year 2019-20)

CHOICE BASED PATTERN <u>SEMESTER PATTERN</u> <u>Credit and semester System Syllabus</u>

B.Sc.(PHYSICS) SEMESTER-IV

- The Course content has been designed on **Semester pattern**.
- The workload for Theory & Practical is allotted on Semester pattern.
- There shall be **02 Theory papers 70 marks each** of 2:30 Hours duration. [70+30 marks Internal =100marks]
- Physics Practical Examination shall be of 10**0 marks** of 06 **hours duration** in UniversityExamination.
- There shall be **Two Semesters** in an academic Year. (Semester-3 & 4)

SR. NO.	PAPER NO.	NAME OF THE PAPER	TOTAL MARKS EXT.+INT*= TOTAL	PASSING STANDARAD EXT.+INT = TOTAL	TOTAL TEACHING HOURS	EXAM HOURS	CREDITS
1	РНҮ СС- 403	THEORY	70+30=100	28+12=40	15 WEEKS X 4 HOURS =60	2:30	04
2	PHY CC- 404	THEORY	70+30=100	28+12=40	15 WEEKS X 4 HOURS =60	2:30	04
3	РНҮ СС- 405	PRACTICAL	100	40	15 WEEKS X 9 HOURS =135	06	06

INTERNAL MARKS: 30

INTERNAL EVALUATION :

Test	:	15 Marks
Assignment/Presentation	:	10 Marks
Seminar/Attendance	:	<u>05 Marks</u>
Total	:	30 Marks

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS) SEMESTER-IV

PAPER-CC-403: Quantum mechanics , Solid State Physics , Sound and Optics-2, Nuclear Physics

Credits: 04

Marks:	100 Marks
Semester End Examination of :	70Marks
Continous Internal Evaluation:	30 Marks

Unit	Dotailed Sullabus	Teaching	Marks/
Unit	Detaneu Synabus	Hours	Weight
	Quantum Mechanics		
	Group velocity and Phase velocity		
	Schrödinger wave equation for a free particle subjected to a forcein one		
	dimension and three dimensions		
	> Operator correspondence for different dynamic variables		
	> Physical interpretation of the wave function	4 5	10
1	Probability interpretation of the wave function	15	18
	Normalization of wave function		
	Conservation of probability		
	Eigen value and Eigen function		
	Particle in a box		
	Finite Potential wall problem		
	➤ Examples		
	Solid State Physics		
	Introduction to Inter atomic forces in solids		
	Force between atoms		
	Different types of Bonds in solids		
	Cohesion of atoms and cohesive energy		
	Calculation of cohesive energy		
	Calculation of Madelung constant of Ionic crystal		
2	Construction of Reciprocal Lattice	15	18
_	Miller Indices	10	10
	Relation between crystal axes(a b c) and primitive vectors of reciprocal		
	lattice $(a^*b^*c^*)$		
	Brilliourn zone		
	Laue's interpretation of X-Ray Diffraction by Crystal		
	Crystal defects and its classification		
	➢ Examples		

(With effect from Academic Year 2019-20)

	Sound and Optics-2		
	Doppler effect for different cases		
	Limitation of Doppler'sprinciple		
	Architectural Acoustics		
	Loudness, Reverberation (Sabine's formula)		
	Determination of absorption coefficients		
	Method of Design for Good Acoustics		
	Properties of Ultrasound		
	Production of ultrasonic wave:		
	(1) Magnetostriction generator (2) Piezo-electric generator		
	Detection of Ultrasonic waves		
	(1) Piezo-electric detector (2) Kunt's tube method		
	(3) Sensitive flame method (4) Thermal detector method	. –	. –
3	Methods for Ultrasonic Velocity Measurement (Ultrasonic	15	17
	Interferometer)		
	Uses of ultrasonic (Physical, Medical & Navigation)		
	Production of linearly polarized light by Reflection : Brewster's Law		
	Polarizer and Analyzer : Nicol Prism		
	Effect of polarizer on natural light		
	Effect of analyzer on Polarized light : Malus Law		
	Explanation of Calcite Crystal		
	Positive crystals and Negative crystals		
	Phase difference between e-Ray and o-Ray		
	Quarter wave plate		
	➢ Half wave plate		
	> Examples		
	Nuclear Physics		
	$\succ \alpha$ - Decay : (1)Properties of Alpha Particles		
	(2) Alpha Spectrum		
	(3) Range of Alpha-Particles		
	(4) Geiger-Nuttal Law (5) Barrier Penetration		
	(6) Gamow Theory of Alpha Decay(with derivation)		
4	\triangleright Determination of velocity and energy of α – particleusing magnetic	15	17
4	spectrograph	15	17
	$\triangleright \beta$ – <i>Decay</i> :(1) Introduction		
	(2) Continuous β – Ray spectrum (3)Anomalies of continuous β – particle		
	spectrum		
	(4) Pauli's Neutrino hypothesis		
	Brief introduction of Nuclear Models		
	➢ Examples		

Course Outcome - Learner will able to learn the basic conceptual and theoretical aspects of Quantum mechanics , Solid State Physics , Sound , Nuclear Physics and their applications.

(With effect from Academic Year 2019-20)

TEXT BOOKS RECOMMENDED FOR PAPER PHY-CC-403

- 1. Quantum Mechanics by Ahuti NarayanKonark
- 2. Quantum Mechanics by Shrivastava
- 3. Elements of solid state physics by J. P. Shrivastava
- 4. Solid State Physics by S. O. Pillai
- 5. Solid State Physics by C. Kittle
- 6. A Text book of sound by R. L. Saihgal (S. Chand)
- 7. A Text book of sound by M. Ghosh (S. Chand)
- 8. Principles of Optics by B. K. Mathur
- 9. A textbook of optics by Dr. N. Subrahmanyam & Brij Lal
- 10. Optics by Singh & Agarwal
- 11. Nuclear Physics by S. B. Patel
- 12. Nuclear Physics by Pandya and Yadav
- 13. Introduction to Nuclear and Particle Physics by V.K. Mittal, R.C.Verma and S.C.Gupta

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS)

SEMESTER-IV

STER-IV

PAPER-CC-404: Mathematical Spectroscopy-2

physics-2, Magnetism, Electr

Electrodynamics, Electronics-2,

Credits: 04

Marks:	100 Marks
Semester End Examination of:	70Marks
Continous Internal Evaluation:	30 Marks

Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
	Mathematical Physics-2 Fourier Series		
	 Definition of Fourier series 		
	 Dirichlet's conditions for Fourier series 		
	 Evaluation of coefficient of Fourier series 		
	 Graphical Representation of a Function 		
	Cosine & Sine series(Even and Odd function)		
	 Change of interval in Fourier series 		
	 Complex representation of Fourier series 		
1	 Advantages of Fourier series 	15	18
	Physical Application of Fourier series : (1) Square wave		
	(2) Full wave rectifier (3) A saw-tooth wave (4) A triangular wave		
	Differentiation of Vector		
	 Formulae of Differentiation of Vector 		
	 Gradient of a Scalar field 		
	 Divergence of a Vector field 		
	 Curl of a Vector field 		
	Examples		
	Magnetism and Spectroscopy-2		
	Measurement of magnetic dipole moment by deflection		
	magnetometer		
	Ratio of two magnets by vibrational magnetometer		
	Measurement of Susceptibility : (1) Rowland method		
	(2)Magnetometer method (3) Curie Balance method		
	▶ Hysteresis Loss : (1) For $I \rightarrow H$ curve (2) For $B \rightarrow H$ curve		
2	 Langevin's theory for paramagnetic substances 	15	10
2	Curie Weiss law for ferromagnetic substance	15	10
	Magnetic Circuit of anelectromagnet		
	 Experimental study of Zeemaneffect 		
	 Classical interpretation of normal Zeeman effect 		
	 Experimental study of Ramaneffect 		
	 Classical interpretation of Ramaneffect 		
	 Experimental arrangements and results of stark effect 		
	Examples		

(With effect from Academic Year 2019-20)

	Electrodynamics		
	 Faraday's Law of Induction and Lenz's law 		
	Induced Electric Field in terms of the Vector Potential		
	 Electromotive Force in a system moving in a time varying 		
	Magnetic field		
	 Self Inductance 		
_	Mutual Inductance		
3	Equation of Continuity	15	17
	 Concept of displacement current 		
	 Derivation of Maxwell equation (in differential & integral form) 		
	Physical Interpretation of Maxwell's equation		
	Maxwell equation in free space		
	Linear Isotropic Media and Harmonically Varying Fields		
	Poynting theorem		
4	> Examples	15	10
4	Electronics-2	15	1/
	Zener diode: (1) Construction and working (2) Zener diode		
	asvoltage regulator		
	Unijuction Transistor (UJT):		
	(1) Construction and working		
	(2) Characteristics and application of UJT		
	Silicon Controlled Rectifier (SCR):		
	(1) Construction and working		
	(2) Transistor equivalent circuit of SCR		
	(3) Characteristics and application of SCR		
	Field Effect Transistor(FET):		
	(1) Construction and working		
	(2) Characteristics and salient features of FET		
	(3) Relation between FET parameters		
	MOSFET : (1) Depletion type MOSFET (2) Enhancement		
	typeMOSFET		
	Examples		

Course Outcome - Learner will able to learn the basic conceptual and theoretical aspects of Mathematical physics, Magnetism ,Electrodynamics, Spectroscopy and their applications.

(With effect from Academic Year 2019-20)

TEXT BOOKS RECOMMENDED FOR PAPER PHY-CC-404

- 1. Mathematical Physics by P. K. Chatopadhyay (Wiley Eastern Limited)
- 2. Mathematical Physics by S. Chand
- 3. Mathematical Physics by MaryBose
- 4. Mathematical Physics by Rajput
- 5. Fundamental of Magnetism & Electricity by D. N. Vasudeva (S. Chand & Comm.)
- 6. Electricity and Magnetism by R. Murugeshan (S. Chand)
- 7. Principle of Electronics by V. K. Mehta and Rohit Mehta
- 8. Hand Book of Electronics by Gupta and Kumar(Prgati Prakashan)
- 9. Electrodynamics by S. L. Gupta & V. Kumar (S. P. Sinsh, Pragati Prakashan)
- 10. Introduction to Electrodynamics by D. J. Griffith
- 11. Elements of spectroscope by Gupta, Kumar and Sharma
- 12. Molecular Spectroscope by G. King

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS) SEMESTER-IV PHY-CC-405: PRACTICAL (Based on paper P- 403 & 404)

Credits: 06

Marks: Semester End Examination: 100 Marks

Students have to prepare their Practical journals of Physics for Laboratory work and they have to submit certified journals in the University practical exams. Students are not allowed in the laboratory without certified journals in the University practical examination.

Detailed Syllabus for Physics practical		
1. Determination of surface tension of mercury by Quinck's method.	03	
2. Verification of Stefan's law of radiation.	03	
3. Determination of Young's Modulus 'Y' of a bar byelevation.	03	
4. Determination of Modulus of rigidity ' η ' of rod by Searle's statical method	03	
5. Determination of Viscosity of liquid by co-axialcylinder.	03	
6. Determination of resolving power of grating.	03	
7. Determination of wavelength of Sodium source by cylindrical edge. 8. To determine	03	
e/m of an electron by magnetic focusing method. 9.Determination of Plank's constant 'h'	03	
by Photo cell.	03	
Detailed Syllabus for Division practical	Teaching	
Detailed Synabus for Physics practical	Hours	
SECTION B(Electricity and Magnetism and Electronics)		
1. Determination of High resistance & leakage resistance by BallisticGalvanometer.	03	
2. Determination of low resistance by Potentiometer.	03	
3. Determine Ballistic constant and resistance of Ballistic Galvanometer.	03	
4. Determination of capacity ratio by method of Mixture.	03	
5. Determination of unknown frequency of audio-frequency oscillator byWein'sbridge.	03	
6. To convert a galvanometer in to a voltmeter of a given range.	03	
7. To determine absolute value of capacitor using Ballistic Galvanometer.	03	
8. To study voltage – regulation characteristics of Zener diode.	03	
9. To study characteristics of FET.	03	
10. To study Dynamic characteristics of transistor and find quiescent point.	03	
11. Determination of inductance of coil by Colpitt'soscillator.	03	
12. To study voltage multiplier (Doubter-half wave & full wave, Triplex andQuadruplet)	03	

TEXT BOOKS RECOMMENDED FOR PAPER PHY-CC-405

- 1) Advanced practical physics by Chauhan And Singh
- 2) B.Sc. Practical Physics by C L Arora
- 3) Practical Physics by Kumar and Gupta

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS) SEMESTER – V <u>SEMESTER PATTERN</u>

- > The Course content has been designed on **Semester pattern**.
- > The workload for Theory & Practicals is allotted on Semester pattern.
- > There shall be **04 Theory papers 70 marks each** 04 Hours of Teaching .
- [70+30 marks Internal =100marks]
- Physics Practical Examination shall be of 200 marks of 12 hours duration in University Examination.
- > There shall be **Two Semesters** in an academic Year. (Semester-5 & 6)

SR. NO.	PAPER NO.	NAME OF THE PAPER	TOTAL MARKS EXT.+INT* = TOTAL	PASSING STANDARAD EXT.+INT = TOTAL	TOTAL TEACHING HOURS	EXAM HOURS	CREDITS
1	Elective cource SEC-501	Astronomy & Astrophysics	70+30	28+12=40	15 WEEKS X 03 HOURS =45	2:30	03
2	Core cource CC-503	Classical Mechanics, Mathematical Physics, Thermal Properties of Solids	70+30=100	28+12=40	15 WEEKS X 4 HOURS =60	2:30	04
3	Core cource CC-504	Electrostatics, Magnetostatic , Laser and Solid State Physics , Atomic Physics	70+30=100	28+12=40	15 WEEKS X 4 HOURS =60	2:30	04
4	Core cource CC-505	Digital Electronics , "C Programming	70+30=100	28+12=40	15 WEEKS X 4 HOURS =60	2:30	04
5	Core cource CC-506	Power Electronics , Opto Electronics , Solar Physics	70+30=100	28+12=40	15 WEEKS X 4 HOURS =60	2:30	04
6	Practical CC-507	Practicals	200	80	15 WEEKS × 12 HOURS= 180	12	12

INTERNAL EVALUATION:

TOTAL	30 Marks
SEMINAR/ATTENDANCE	<u>05 Marks</u>
ASSIGNMENT/PRESENTATION:	10 Marks
TEST	15 Marks

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS) SEMESTER-V

PAPER-SEC-501: Astronomy & Astrophysics

Marks: 100 Marks

Semester End Examination of :	70Marks
Continous Internal Evaluation:	30 Marks

Unit	Detailed Syllabus	Teaching	Marks/
	Astronomical Scalos	nouis	weight
1	Astronomical Distance-Mass and Time		
	 Scalos Brightnoss 		
	 Scales, Digitiless Padiant Flux and Luminosity 		
	 Manuality Flux and Luminosity Manual Astronomical Quantities Astronomical 	11	10
	Distancos	11	10
	Stollar Padii		
	 Massas of Stars 		
	 Masses of Stars Stallar Temperature 		
	Basic concents of positional astronomy		
	 Basic Parameters of Stars: Determination of Distance by 		
	Parallax Method Brightness Radiant Flux and Luminosity		
	 Annarent and Absolute magnitude scale 		
2	 Distance Modulus 	11	18
	 Determination of Temperature and Radius of a star 		
	 Determination of Masses from Binary orbits 		
	 Stellar Spectral Classification 		
	Stellar spectra and classification		
	 Structure ; Atomic Spectra Revisited 		
	> Stellar Spectra		
	Spectral Types and Their Temperature Dependence		
	 Black Body Approximation 		15
3	 HertzsprungRussell Diagram, Luminosity Classification) 	11	17
	The sun		
	Solar Parameters ; Solar Photosphere, Solar Atmosphere,		
	Chromosphere. Corona, Solar Activity, Basics of Solar		
	Magneto- hydrodynamics. Helioseismology		
	The solar family and The milky way		
	 Solar System: Facts and Figures 		
4	Origin of the Solar System: The Nebular Model	12	17
	Tidal Forces and Planetary Rings		
	Extra-Solar Planets		

Credits: 03

(With effect from Academic Year 2019-20)

- > Basic Structure and Properties of the Milky Way
- > Nature of Rotation of the Milky Way
- Differential Rotation of the Galaxy and OortConstant
- Rotation Curve of the Galaxy and the DarkMatter
- Nature of the Spiral Arms
- > Stars and Star Clusters of the Milky Way

Course Outcome - Learner will able to learn the basic conceptual and theoretical aspects of Astronomy, Astrophysics and their applications.

TEXT BOOKS RECOMMENDED FOR PAPER PHY -CC-501

- 1. Modern Astrophysics by B.W. Carroll & D.A. Ostlie, Addison-Wesley Publishing Co.
- 2. Introductory Astronomy and Astrophysics by M. Zeilik and S.A. Gregory, th Edition, Saunders College Publishing.
- 3. The physical universe: An introduction to astronomy by F.Shu, Mill Valley: University Science Books.
- 4. Astronomy : The evolving universe by Michel Zeilik Harper & Row publishers
- 5. Fundamental of Astronomy (Fourth Edition) by H. Karttunen et al. Springer, K.S. Krishnasamy An introduction to Astro physics[®], Second printing, Prentice Hall of India
- 6. Foundations of Astronomy by Michael A. Seeds- Brooks Publication

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS) SEMESTER-V

PAPER-CC-503: Classical Mechanics, Mathematical Physics, Thermal Properties of Solids

Credits: 04

Marks: 100 Marks

Semester End Examination of :**70Marks**Continous Internal Evaluation:**30 Marks**

Unit	Detailed syllabus	Teaching Hours	Marks/ Weight
	Lagrangian Formulation and applications	nours	weight
Unit-1	 Constraints Constraints Generalized Co ordinates D Alembert s Principle Lagrangian Equations Importance of Langrangian function A general expression for kinetic energy Symmetries and laws of conservation Cyclic co-ordinates Velocity dependent potential Rayleigh s dissipation function Motion of a particle using Cartesian co-ordinates Motion of a particle using polar co-ordinates Equation of motion of one dimension harmonic oscillator Atwood s machine Simple pendulum with moving support Examples 	15	18
Unit-2	 Variational Principle and applications Configuration Space Some techniques of Calculus of variation Hamilton s Principle Equivalence of Lagrangian, Newtonian and Hamiltonian formulation Advantages of the lagrangian formulation Lagrange s undetermined multipliers and its application. Hamilton s Equations of motion Phase space Brachistochrome problem Geodesic Spherical pendulum Charged particle in an electromagnetic field Examples 	15	18

(With effect from Academic Year 2019-20)

	Differential Equations		
	 Some partial differential equations in Physics 		
	The method of separation of variables		17
	 Separation of Helm Holtz equation in Cartesian 		
Unit 3	coordinate system	15	
	 Separation of Helm Holtz equation in Spherical polar 		
	coordinate system		
	Laplacian equation in Cartesian coordinate system		
	 Laplacian equation in Spherical polar coordinate system 		
	Thermal Properties of Solids		
	Introduction	15	
Unit 4	Classical Lattice Heat Capacity		17
Unit 4	Einstein Model		17
	Debye Continuum Model		
	Problems		

Course Outcome - Learner will able to learn the basic conceptual and theoretical aspects of Classical Mechanics, Mathematical Physics, Thermal Properties of Solids and their applications

TEXT BOOKS RECOMMENDED FOR PAPER PHY -CC-503

- 1. Text Book : Introduction to classical mechanics R G Takwale & Puranik. Pub: Tata McGraw Hill
- 2. Text Book : Mathematical Physics P.K. Chatopadhyay. (Wiley Eastern Limited)
- 3. Classical mechanics Rana & Jog
- 4. Classical mechanics A.B.Bhatia
- 5. Mathematical Methods in Physical Sciences M.L.Bose
- 6. Mathematical Physics B.S.Rajput
- 7. Classical Mechanics by Gupta, Kumar and Sharma
- 8. Solid state physics by R L Singhal
- 9. Solid state Physics by S O Pillai
- 10. Solid State physics by J P Shrivastav
- 11. Solid State Physics by C Kittle

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS) SEMESTER-V

PAPER-CC-504: Electrostatics, Magnetostatic, Laser and Solid State Physics, Atomic Physics

Credits: 04

Marks: 100 Marks

Semester End Examination of :	70Marks
Continous Internal Evaluation:	30 Marks

Unit	Detailed syllabus	Teaching Hours	Marks/ Weight
Unit-1	 Electrostatics Di-electric Polarization. Relative permittivity. Relation between D, E and P. Point charge in Di-electric fluid. Potential and field due to polarized sphere. At external and internal point. Di-electric sphere is placed in uniform electrostatic field : Resultant field inside and outside the Di-electric sphere. Molecular field in a Di- electric (Claussius- Mossotti Relation) 		17
	 Validity of Claussius- Mossotti Relation. Examples Magnetostatic 		
Unit 2	 Current density Magnetic Induction Force on a current element (Ampere s force law). Application of Ampere s law Biot- Savert s law (Magnetic induction). Application of Biot-Savert s law Divergence of magnetic induction B. The magnetic vector potential A. The Lorentz condition. The curl of magnetic induction B. Magnetic scalar potential. Examples 	15	18

(With effect from Academic Year 2019-20)

	Laser and Lattice Vibrations		
	Absorption, Spontaneous emission, stimulated emission.		
	IASER principle and population inversion.		
	Einstein A and B co-efficient.		
	IASER: Ruby LASER, He-Ne LASER, Semiconductor		
	LASER.		
	I Holography.		
	- Principle of Holography		
	- Characteristic of holograph		
	- Practical Application of Holography.		
	- Difference between Photography & Holography.		10
Unit 3	Applications of LASER.	15	18
	Lattice Vibrations : Introduction		
	Interprovide the second sec		
	I Normal Modes of a One-dimensional Monatomic Chain		
	(i)The Periodic Boundary Condition		
	(ii)Salient Features of the Dispersion Curve		
	Normal Modes of One-dimensional Diatomic Chain		
	(i) Salient Features of the Dispersion Curves: Acoustic		
	Branch, Optical Branch		
	(ii) The Reststrahlen Band		
	Quantization of Lattice Vibrations		
	Atomic Physics (Zeeman Effect ,Paschen – Back Effect ,		
	Stark Effect) I. Magneto Optical Effect of an Atom		
	 Introduction 		
	The Magnetic Moment of the Atom		
	 Gyro magnetic Effect : Interaction of Atom with external 		
	MagneticField		
	 Vector Atom Model and Normal Zeeman Effect 		
	 Vector Atom Model and Anomalous Zeeman Effect 		
Unit 4	Selection Rule , Term and TermMultiplicity	15	18
	Vector Atom Model and Paschen-Back Effect		
	Testing the Validity of Zeeman Theory :		
	Analysis of the Normal and the Anomalous Pattern of		
	some Concrete Lines such as the D lines of Sodium , the		
	Green (5461 Å)and Violet (4358 Å lines of Mercury.		
	Lande's g factor		
	Experimental verification Lande s g factor		
	Atomic spectra by W White		

Course Outcome - Learner will able to learn the basic conceptual and theoretical aspects of Electrostatics, Solid State Physics ,Atomic Physics and their applications.

(With effect from Academic Year 2019-20)

TEXT BOOKS RECOMMENDED FOR PAPER PHY -CC-504

- 1. Electrodynamics by Gupta, Kumar & Singh
- 2. Introduction to Electrodynamics by Griffith.
- 3. Principles of optics by Dr. N. Subramayam, Brijlal.
- 4. Introduction to LASER by Tyagrajan
- 5. Solid state physics by R L Singhal
- 6. Solid state physics by J P Shrivastav
- 7. Atomic Physics by J B Rajam
- 8. Elements of spectroscopy by Kumar, Gupta and Sharma

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS) SEMESTER-V

PAPER-CC-505: Digital Electronics , "C Programming

Credits: 04

Marks: 100 Marks

Semester End Examination of :	70Marks
Continous Internal Evaluation:	30 Marks

Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
	Digital – I and II		
	Logic fundamental		
	Logic gates(Circuit and operation)		
	AND gate: diode and transistor circuit		
	OR gate: diode and transistor circuit		
	NOT gate transistor circuit		
	NAND gate: DTL and TTL		
1	NOR gate DTL: and TTL	15	18
	Laws of Boolean algebra		
	Reducing Boolean expression with problems		
	Logic circuits : Using AND,OR and NOT gates		
	Universal gates: NOR and NAND gates		
	Logic circuit using NOR and NAND gates		
	➢ Halfadder		
	> Full adder		
	Combinational logic		
	> Min terms		
	Truth tables and maps Two variables		18
2	Three variables Four variables	15	
	Solving digital problems using maps Sum of		
	products(SOP) map reduction Product of sums(POS)		
	map reduction		
	'C' Programming - I		
	 Introduction to computer 		
	Numeric constant		
	i. Constants		
3	ii. Scalar variables	15	17
	iii. Declaring variable names		
	iv. Defining constant		
	 Arithmetic Expressions 		
	i. Arithmetic operators and modes of expressions		

(With effect from Academic Year 2019-20)

	ii. Integer expression		
	iii. Floating point expression		
	iv. Operator precedence in expression		
	v. Assignment statements		
	vii. Arithmetic conversion		
	viii. Assignment expression		
	ix. Increment decrement statement		
	x. Multiple assignment		
	'C' Programming - II		
	Input output statements		
	Conditional statements		
	Implementing loops in programs		
4	i. The while loop	15	17
	ii. The for loop		
	iii. The do while loop		
	Flow Chart and algorithm		
	➢ Some simple program in "C□		

Course Outcome - Learner will able to learn the basic conceptual and theoretical aspects of Digital Electronics , "C Programming and their applications.

TEXT BOOKS RECOMMENDED FOR PAPER PHY -CC-505

- 1. Digital electronics by William Gothmann
- 2. Digital electronics by Gaonkar
- 3. Digital electronics by Malvino
- 4. Programming in C by V Rajaraman
- 5. Programming in C by Balaguruswamy

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS)

SEMESTER-V

PAPER-CC-506: Power Electronics , Opto Electronics , Solar Physics

Marks: 100 Marks

Semester End Examination of :	70Marks
Continous Internal Evaluation:	30 Marks

Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
	Power Amplifiers		
	Introduction		
	Series-fed class –A amplifier with analysis		
	Transformer coupled class-A amplifier with		
1	analysis	15	18
	Class –B amplifier with analysis		
	Class – A push pull amplifier (only description)		
	 Class – B push pull amplifier (onlydescription) 		
	➢ Examples		
	Amplitude Modulation		
	Definitions		
	Amplitude modulation		
	Methods of amplitude modulation		
	(i) linear modulation :(a) collector modulation		
2	(b)Base modulation	15	18
	(c) Emitter modulation (d) FET drain modulation		
	(ii) Square law modulation : (a) FET square law		
	modulation		
	(b) balanced modulator		
	> Examples		
	Opto Electronics		
	I Electromagnetic spectrum		
	Spectral response of human eye		18
	Comparison with tungsten lamp spectra		
3	Illumination and irradiance	15	17
	Photoconductive Sensors – Light dependent		
	resistor (LDR) – Photodiode- PIN diode –		
	Phototransistors		
	Photovoltaic sensor- solar cell		

Credits: 04

(With effect from Academic Year 2019-20)

	Solar Physics and Power supplies and Regulation		
4	Solar Physics and Power supplies and Regulation Piranometer – the solar energy measuring equipment Flat Plate solar collectors and its examples Solar Pond – Principle , operation, types of solar ponds Power supplies and Regulation Introduction Unregulated and regulated power supply (only explanation) Zener diode as voltage regulator	15	17
	Zener diode as voltage regulator Transistor voltage regulation – series voltage regulation		
	Transistor voltage regulation – series voltage regulation		
	or series regulator circuit, improved series regulator –		

Course Outcome - Learner will able to learn the basic conceptual and theoretical aspects of Power Electronics, Solar Physics and their applications

TEXT BOOKS RECOMMENDED FOR PAPER PHY -CC-506

- Hand book of Electronics By Gupta and Kumar Pragati prakashan(Thirty NinethEdition)
- Electronic devices and circuit theory By Boylestad and Nashelsky (Tenth Edition) Pearson(Prentice Hall)
- Physics of semiconductor Devices By S.M.Sze
- Electronic device and circuits By Allen Motershed- PHI
- Solar Physics By G.D.Rai

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS) SEMESTER-V

PHY-CC-507: PRACTICAL (Based on paper P- 503 to 506)

Credits: 12

Marks: Semester End Examination: 200 Marks

DETAILED CURRICULUM FOR PRACTICAL

[Based on paper P- 503 to 506]

Students have to prepare their Practical journals of Physics for Laboratory work and they have to submit certified journals in the University practical exams. Students are not allowed in the laboratory without certified journals in the University practical examination.

There shall be Local Excursion and Study tour in any part of India for the subjective study. It may include visit to Scientific Research laboratories, Observatories, R & D Departments of Industries and government institutions etc. Students shall have to submit field report/Tour report in their Journal.

Design of the practical setup should be such that student can develop their skill of connection of discrete components.

Detailed Gullehan for Dharrise was sticed					
	Detailed Syllabus for Physics practical				
<u>SEC</u>	<u> TTION - A (GENERAL PHYSICS AND HEAT):</u>				
1.	To determine "g " by Kater s pendulum (Variation of Length).	03			
2.	To determine "Y" by Koening s method.	03			
3.	To determine "Y" of a rod by Newton srings.	03			
4.	To determine Stefan s Constant σ .	03			
5.	To study variation of surface tension with temperature by Denou smethod.	03			
б.	To determine viscosity of liquid by log decrement method.	03			
<u>SEC</u>	<u>TION – B LIGHT AND MODERN PHYSICS</u>				
1.	To determine the wavelength of Sodium light using Lloyd s mirror.	03			
2.	To study the elliptical polarization of light.	03			
3.	To determine refractive index of liquid by method of total internal reflection.	03			
4.	To determine the separation between the plates of Febry-Perot etalon	03			
5.	To determine the band gap energy of semiconductor.	03			
6.	To determine magnetic sensitivity of cathode ray tube.	03			
7.	To determine the value of Rydberg s constant.	03			
8.	To study the absorption spectra of KMnO4 solution by spectrometer.	03			
9.	The platue of GM tube.	03			
<u>SEC</u>	<u> TTION - C (ELECTRICITY AND MAGNETISM)</u>				
1.	To study charge and discharge of capacitor using Neon lamp.	03			
2.	To study L-C-R series circuit.	03			
3.	To obtain hysteresis curve for given material by magnetometer method.	03			
4.	To determine the self inductance of a given coil by Owen s bridge.	03			

MAHARAJA KRISHNAKUMARSINHJI BHAVNAGAR UNIVERSITY (With effect from Academic Year 2019-20)

5.	To determine current sensitivity, charge sensitivity and total criticaldamping resistance of Ballistic Galvanometer.	03
	SECTION – D (ELECTRONICS)	
1.	To study frequency response curve of negative feedbackamplifier	03
2.	To study phase shift oscillator.	03
3.	To determine the h parameter of transistor.	03
4.	To study the characteristics of UJT and relaxation oscillator	03
5.	To study a.c.load line for a given transistor.	03
6.	To study operational amplifier as square wave generator.	03

TEXT BOOKS RECOMMENDED FOR PAPER P-507

- 1) Advanced practical physics by Chauhan And Singh
- 2) B.Sc.Practical Physics by C L Arora
- 3) Practical Physics by Kumar and Gupta

MAHARAJA KRISHNAKUMARSINHJI BHAVNAGAR UNIVERSITY (With effect from Academic Year 2019-20)

B.Sc. (PHYSICS) SEMESTER – VI

SR. NO.	PAPER NO.	NAME OF THE PAPER	TOTAL MARKS EXT.+INT* = TOTAL	PASSING STANDARAD EXT.+INT = TOTAL	TOTAL TEACHING HOURS	EXAM HOURS	CREDITS
	Elective course EC- 601	Material Science	70+30=100	28+12=40	15 WEEKS X 03 HOURS =45	2:30	03
2	Core cource CC-603	Quantum Mechanics, Mathematical and Nuclear Physics	70+30=100	28+12=40	15 WEEKS X 4 HOURS =60	2:30	04
2	Core cource CC-604	Electromagn etic Theory, Fiber Optics and Solid State Physics, X- Ray	70+30=100	28+12=40	15 WEEKS X 4 HOURS =60	2:30	04
3	Core cource CC-605	OP-AMP, Solid state Electronics, Superconduct - ivity	70+30=100	28+12=40	15 WEEKS X 4 HOURS =60	2:30	04
4	Core cource CC-606	Electronics and Communicati on	70+30=100	28+12=40	15 WEEKS X 4 HOURS =60	2:30	04
5	Practic al CC- 607	Practical	200	80	15 WEEKS × 12 HOURS= 180	12	12

INTERNAL EVALUATION:

TOTAL	30 Marks
SEMINAR/ATTENDANCE	<u>05 Marks</u>
ASSIGNMENT/PRESENTATION:	10 Marks
TEST	15 Marks

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS) SEMESTER-VI

PAPER-SEC-601 : Material Science

Credits: 03

Mark: 100 Marks

Marks:Semester end University Examination:70 MarksContinuous Internal evaluation:30

Ilnit	Detailed Syllabus	Teaching	Marks/
Unit		Hours	Weight
1	Introduction and Imperfections in solids	12	18
	What is material science?,		
	classification of material-metals, ceramics		
	Polymers , composites , smart materials, advanced materials.		
	Point defects		
	Vacancies and self interstitial,		
	Substitutional impurities		
	Atomic point defect, Shottky defect, frenkel defect, dislocation-		
	ege and screw location,		
	➢ Bergers vector		
	Interfacial defects-external – surface		
	➢ Grain boundaries		
	➤ Twin boundaries		
	➤ Stacking faults		
	Bulk and volume defects		
2	Diffusion in solids	11	17
	Introduction		
	Diffusion mechanism		
	Vacancy diffusion		
	Interstitial diffusion		
	Steady state diffusion and Non-steady state diffusion		
	Fick's laws		
	Factors that influence diffusion- temperature		
	Diffusion species		
	Example of aluminium for IC interconnects		
	Diffusion in ionic and polymeric materials		
3	Ceramics and its properties	11	18
	➢ Glasses		
	Glass ceramics		
	Refractories – fire clay and silica refractories		
	Abrasives		

(With effect from Academic Year 2019-20)

	\triangleright	Cements		
	\triangleright	Advanced ceramics- optical fibers		
	\triangleright	Ceramic ball bearings		
	\triangleright	Piezo electric ceramics		
	\triangleright	Stress – strain behavior of ceramics		
	\triangleright	Flexural strength and elastic behavior		
	Ро	lymers and its properties		
	\triangleright	Different forms of Carbon-Diamond		
	\triangleright	Graphite		
	\triangleright	Fullerenes		
	\triangleright	Carbon nano tubes		
	\triangleright	Hydro carbon molecules		
	\triangleright	Polymer molecules		
	\triangleright	Homo polymers and copolymers		
	\triangleright	Molecular weight calculation		
	\triangleright	Linear polymers		
	\triangleright	Branched polymers		
	\triangleright	Cross linked polymers		
	\triangleright	Network polymers		
	\triangleright	Thermo setting and thermo plastic polymers		
	\triangleright	Stress – strain behavior and viscoelastic deformation ofpolymers		
4	Ма	terial Analysis Techniques	11	17
	\triangleright	Single crystal and powder diffraction techniques		
		with diffractometer		
	\blacktriangleright	Laue's technique and rotating crystal method		
	\blacktriangleright	Microscopic techniques-Optical microscopy		
	\triangleright	Electron microscopy		
	\triangleright	Transmission electron microscopy		
	\triangleright	Scanning electron microscopy		
	\triangleright	Scanning probe microscopy		
	\triangleright	Construction and working of each device		
	\blacktriangleright	Grain size determination technique		

Course Outcome- Learner will able to learn the basic conceptual and theoretical aspects of Material Science and their applications.

TEXT BOOKS RECOMMENDED FOR PAPER PHY-SEC-601

- 1. Material Science and Engineering by William D. Callister
- 2. Materials science and engineering by Raghavan
- 3. Material science by S.L.Kakani & Amit Kakani
- 4. Material science & Engineering R.K.Rajput
- 5. Material Science and Engineering I.P.Singh & Subhash Chander

B.Sc. (PHYSICS) SEMESTER- VI

PAPER-CC-603: Quantum Mechanics, Mathematical Physics, Nuclear

Credits: 04

Marks: 100 Marks

Semester End Examination of :	70Marks
Continous Internal Evaluation:	30 Marks

Unit	Detailed syllabus	Teaching	Marks/
onit	Detaneu Synabus	Hours	Weight
	Stationary states, Exactly soluble Eigenvalue Problems		
	 Admissible conditions on the wave functions 		
	 Ehrenfest's theorem and expectation values 		
	The time independent Schrodinger Equation		
	The fundamental Postulates of wave mechanics		
Unit-1	> The Schrodinger Equation for simple harmonic Oscillator in	15	18
	one dimension and it's Eigen function and Eigen values		
	The Abstract Operator method – Problem		
	 Ortho normal and Ortho gonal Eigen function 		
	 Schmidt Orthogonalisation process 		
	Few related theorems (I & II)		
	Operators and Differential equations		
	I Types of operators		
	Image: Algebra of operators		
	Interaction		
	Vector operator		
	Izaplancian Operator in Cartesian co-ordinate system		
	Izaplancian Operator in spherical co-ordinate system		
	commutator of operators		
Unit-2	Self Adjoint operator	15	18
	Initary operator		
	Image: Angular momentum operator		
	Image: Analytic function		
	Ordinary and singular points		
	Series solution around an ordinary point		
	Image: Problems		
	I Gamma Function		
	Image: Kroneker Delta Function and Dirac Delta function		

(With effect from Academic Year 2019-20)

	N	iclear Physics		
		The Liquid Drop Model of a Nucleus		
	\triangleright	Introduction Binding Energies of Nuclei : Plot of B/A versus A		
	\blacktriangleright	Weizsacher's Semi Empirical Binding Energy – Mass formula		
		Mass Parabolas: Prediction of Stability Against β decay		
		for Members of an Isobaric family		
		The Shell Model of a Nucleus		
Unit 3	\triangleright	Introduction	15	17
	\triangleright	The Evidence that Led to the ShellModel		
	\triangleright	Main Assumptions of the Single-Particle Shell Model		
	\triangleright	Concept of Spin-Orbit Coupling of an Electron bound in		
		an Atom		
	\triangleright	Spin-Orbit Coupling in Nuclei		
	\triangleright	Predictions of the Shell Model		
	\blacktriangleright	The Collective Model of a Nucleus		
	Int	roduction to Elementary Particles		
		2 Introduction		
		Pundamental Interactions -Nucleon Forces		
		Pamilies of Elementary Particles		
		Observed Interactions and Conservation Lows		
	Nu	clear Instrumentation		
		Nuclear Magnetic Resonance (NMR)		
Unit-4		2 Introduction	15	17
		The Technique of NMR (Nuclear Magnetic Resonance)		
		Applications of NMR in Physics		
		Applications of NMR in Chemistry		
		Mossbauer Spectroscopy		
		Introduction		
		In The Mossbauer Effect		
		Applications of Mossbauer Effect		

Course Outcome - Learner will able to learn the basic conceptual and theoretical aspects of Quantum Mechanics, Mathematical Physics, Nuclear and their applications

(With effect from Academic Year 2019-20)

TEXT BOOKS RECOMMENDED FOR PAPER PHY -CC-603

- 1) Text Book : Quantum mechanics Ahutinarayan Konar Pub: The Dacca Students' Library, Calcutta
- 2) Text Book : Mathematical Physics P.K. Chatopadhyay.- Wiley Eastern Limited
- 3) Mathematical Methods in Physical Sciences M.L.Bose
- 4) Mathematical Physics B. S. Rajput
- 5) Nuclear Physics by S. B. Patel
- 6) Nuclear Physics by Pandya and Yadav
- 7) Modern Physics By Jermy Bernstein , Paul M. Fishbane and Stephen Gasiorowicz (Pearson Publication)
- 8) Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles by Robert Eisberg and Robert Resnick

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS)

SEMESTER-VI

PAPER-CC-604: Electromagnetic Theory, Fiber Optics , Solid State Physics, X-Ray

Credits: 04

Marks: 100 Marks

Semester End Examination of :	70Marks
Continous Internal Evaluation:	30 Marks

Unit	Detailed syllabus	Teaching Hours	Marks/ Weight
	Maxwell's Equation (Propagation of EM waves in media)		
	Maxwell's equation (without derivation)		
	Differential and integral form, in free space and in Linear		
	isotropic media.		17
Unit 1	Propagation of EM waves in,	1 Г	
Unit-1	a. Free space	15	
	b. Non-conducting media		
	c. conducting media		
	Boundary conditions for the electromagnetic field vectors:		
	* E,D,H & B (At the interface between two media).		
	Fiber Optics:		
	Introduction.		17
	Principle of light transmission in a fiber.	15	
	 Effect of index profile on propagation. 		
Unit-2	Modes of Propagation.		
	Losses in fiber.		
	Dispersion.		
	Characteristic of fiber.		
	Merits and Applications of fiber.		
	Free Electron Theory of Metals and Band Theory of		
	Solids		
	I.Free Electron Theory of Metals		
	Introduction		
	The Drude Model		
Unit 3	(i) DC Electrical Conductivity of	15	18
01110	Metals (ii)Thermal Conductivity of	15	10
	Metals		
	Lorentz Modification of the Drude Model		
	Fermi-Dirac Distribution Function		
	The Sommerfield Model		
	(i) The Density of States		

(With effect from Academic Year 2019-20)

	(ii) The Free Electron Gas at 0 K		
	(iii) Energy of Electron Gas at 0K		
	The Electron Heat Capacity		
	The Sommerfield Theory of Electric Conduction in Metals		
	Band Theory of Solids		
	➢ Introduction		
	Consequences of Periodicity		
	Proof of the Bloch Theorem		
	The Periodicity of the Bloch Functions and Their Eigen		
	values The Kronig-Penney Model		
	X-RAY		
	➤ X-Ray scattering:-		
	i. Coherent scattering.		
	ii. Incoherent scattering.		
	Continuous x-ray spectrum:-		
	i. Characteristic Emission spectrum.		
Unit-4	ii. Characteristic Absorption spectrum.	15	18
	Explanation of emission and absorption spectra.		
	Comparison of optical and X-rayspectra.		
	Mosely's law.		
	➢ Auger effect.		
	Applications of X-Ray.		
	≻ Examples		

Course Outcome - Learner will able to learn the basic conceptual and theoretical aspects of Electromagnetic Theory, Fiber Optics , Solid State Physics and their applications.

TEXT BOOKS RECOMMENDED FOR PAPER PHY -CC-604

- 1. Electrodynamics by Gupta, Kumar & Singh
- 2. Introduction to Electrodynamics by Griffith.
- 3. Principles of optics by Dr. N. Subramayam, Brijlal.
- 4. Communication electronics by Rody & Coolin
- 5. Element of spectroscopy by Gupta, Kumar & Sharma
- 6. Solid State Physics by R.L.Singhal
- 7. Elements of Solid State Physics by J.P.Shrivastav
- 8. Solid State Physics by S.O.Pellai

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS) SEMESTER-VI

PAPER-CC-605: OP-AMP, Solid State Electronics, Superconductivity

Credits: 04

Marks: 100 Marks

Semester End Examination of :	70Marks
Continous Internal Evaluation:	30 Marks

Unit	Detailed Syllabus	Teaching Hours	Marks/ Weight
	OP-AMP - I		
	Introduction to op-amp		
	Definition and block diagram of op-amp		
	Schematic symbol and Ideal voltage transfer curve		
1	Different parameters of op-amp	15	18
	Equivalent circuit of an OP-AMP		
	Open loop configuration : Inverting amplifier ,Non		
	inverting amplifier, Differential amplifier, block		
	diagram representation of feedback configuration		
	OP-AMP -II		
	Close loop configuration		
	i. Inverting amplifier		
	 Voltage gain with feedback 		
	 Input resistance with feed back 		
	 Output resistance with feedback 		
	ii. Non inverting amplifier		
	iii. Differential amplifier		
2	Summing amplifier	15	18
	i. inverting configuration		
	ii. Non inverting configuration		
	Difference amplifier		
	i. inverting configuration		
	ii. Non inverting configuration Integrator		
	Differentiator		
	I-V converter		
	V-I converter		
	Solid state devices and Digital flip-flops		
	DIAC : Construction – operation – characteristics-		
3	application	15	17
	TRIAC: Construction-operation -characteristics –		
	application		

(With effect from Academic Year 2019-20)

	LED : Operation- application, Photo diode		
	IC : Classification - making of monolithic IC		
	The diode as an ac switch		
	The bipolar transistor as a ac and dc switch		
	Memory elements-flip-flops- Introduction		
	R-S flip-flop		
	NAND and NOR latches		
	 Gated flip-flop 		
	Clocked R-S flip-flop		
	Clocked D flip-flop		
	Edge triggered R –S flip-flop		
	 Edge triggered D flip-flop 		
	 Edge triggered J-K flip-flop 		
	Superconductivity		
	Phenomena Without Observable Quantization		
	Zero resistance and Persistent Current		
	Perfect Diamagnetism: Meissner Effect		
	F-H London Equations		
	Critical Field : Type I and Type II superconductors	45	1 🗖
4	Isotope Effect	15	17
	BCS Theory : A Qualitative Approach		
	(i) Cooper Pair formation		
	(ii) BCS Ground state		
	Coherence Length		
	High Temperature Superconductors (HTS)		

Course Outcome - Learner will able to learn the basic conceptual and theoretical aspects of OP-AMP, Solid state Electronics, Superconductivity and their applications.

TEXT BOOKS RECOMMENDED FOR PAPER PHY -CC-605

- 1. Digital electronics by William Gothmann
- 2. Digital Electronics by A. Anand
- 3. Operational amplifier and linear integrated circuit by Ramakant A Gayakwad
- 4. Solid State Physics By S.O.Pillei
- 5. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles byRobert Eisberg and Robert Resnick

(With effect from Academic Year 2019-20)

B.Sc. (PHYSICS) SEMESTER-VI

PAPER-CC-606 : Electronics and Communication

Marks: 100 Marks

Semester End Examination of :	70Marks
Continous Internal Evaluation:	30 Marks

Unit	Detailed Syllabus	Teaching	Marks/ Woight
	Multivibrators	nours	weight
	 Astable multivibrator 		
	Monostable multivibrator		
	Bistable multivibrator		
1	➤ Timer IC 555	15	18
	Astable operation of IC 555		
	Monostable operation of IC 555		
	> Examples		
	Electronic Devices and its applications		
	Light activated silicon controlled Rectifier(LASCR) and its		
	applications		
2	Liquid crystal Display (LCD) and its applications	15	18
	Thermistors and its applications		
	Varactor diode and its applications		
	Tunnel diode and its applications		
	Frequency and Phase Modulations		
	Frequency Modulation – Characteristics of FM wave – Analysis		
	of FM wave – Power relation in FM wave – Frequency spectrum		
	of FM wave – Band width of FM wave		
	Reactance method for producing FM wave		
3	(i) Transistor Reactance modulator	15	17
	(ii) FET Reactance modulator		
	Comparison of FM and AM		
	Phase Modulation – Definition – analysis comparison with FM		
	wave – Production of FM wave by phase modulation – Armstrong		
	phase modulator FET circuit		
	Demodulation (Detection)		
4	Principle of AM detection and classification of AM detectors	15	17
	Envelope diode detector	_	
	Op-Amp envelope detector		

Credits: 04

(With effect from Academic Year 2019-20)

	Automatic volume (gain) control	
	Frequency modulation – Slope detector – balanced slope detector	

Course Outcome - Learner will able to learn the basic conceptual and theoretical aspects of Electronics, Communication and their applications.

TEXT BOOKS RECOMMENDED FOR PAPER PHY -CC-606

- 1. Hand book of Electronics By Gupta and Kumar Pragati prakashan(Thirty NinethEdition)
- 2. Electronic devices and circuit theory By Boylestad and Nashelsky (Tenth Edition) Pearson (Prentice Hall)
- 3. Physics of semiconductor Devices By S.M.Sze
- 4. Electronic device and circuits By Allen Motershed- PHI

MAHARAJA KRISHNAKUMARSINHJI BHAVNAGAR UNIVERSITY (With effect from Academic Year 2019-20)

B.Sc. (PHYSICS) SEMESTER-VI

PHY-CC-607: PRACTICAL (Based on paper P- 603 to 606)

Credits: 12

Marks: Semester End Examination: 200 Marks

DETAILED CURRICULUM FOR PRACTICAL [Based on paper P- 603 TO 606]

Students have to prepare their Practical journals of Physics for Laboratory work and they have to submit certified journals in the University practical exams. Students are not allowed in the laboratory without certified journals in the University practical examination.

There shall be Local Excursion and Study tour in any part of India for the subjective study. It may include visit to Scientific Research laboratories, Observatories, R & D Departments of Industries and government institutions etc. Students shall have to submit field report/Tour report in their Journal. Design of the practical setup should be such that student can develop their skill of connection of discrete components.

Detailed Syllabus for Physics practical	Hours
SECTION - A (GENERAL PHYSICS AND HEAT):	
1. To determine "g " by Kater's pendulum (Variation of Mass).	3
2. To determine young modulus Y and η using Flat spiral spring.	3
3. To calibrate the platinum resistance thermometer and to finde out melting point of	3
wax	
4. To determine poission ratio of glass plate by Cornu's Optical interferencemethod.	3
5. To determine and study the variation of moment of inertia of a system.	3
SECTION – B LIGHT AND MODERN PHYSICS	
1. To determine the wavelength monochromatic light by diffraction at straight edge.	3
2. To determine unknown wavelength using Hartmann's formula.	3
3. To calibrate spectrometer by Edser Butler plate and to determine unknown	3
wavelength.	
4. To determine refractive index of liquid by Bi prism.	3
5. To determine the wavelength of given LASER beam using diffraction grating	3
6. To estimate charge of electron using Millican's oil drop method.	3
7. Absorption spectrum of Iodine molecule.	3
8. To study intrinsic photoconduction of photovoltanic cell with following objectives.	3
(a) To find value of planck radiation constant	3
(a) To determine the threshold frequency value thereby work function w0 of photo	
voltanic coll	
() Te merify whether the static equation	
(c) To verify photoelectric equation.	

MAHARAJA KRISHNAKUMARSINHJI BHAVNAGAR UNIVERSITY (With effect from Academic Year 2019-20)

9. To estimate the intensity of β rays when passing through different thickness of	
alumiuim and to determine the linear absorption coefficient of aluminium.	

SECTION - C (ELECTRICITY AND MAGNETISM)

1.	To determine the capacitance and power factor of a capacitor by Schering Bridge.	03
2.	To estimate the magnetic volume susceptibility of solution by Quink's method.	03
3.	To determine the self inductance of a given coil by Rayleigh's method.	03
4.	To determine the self inductance of a given coil by Maxwell's bridge.	03
5.	To study variation of thermo-electric emf with temperature for thermo couple.	03
6.	To study time constant of an R.C.circuit experimentally and verify result theoretically.	03

<u>SECTION – D (ELECTRONICS)</u>

1.	To study FET as a voltmeter.	03
2.	To study multivibrator	03
3.	To study SCR characteristics.	03
4.	To study inverting and Non inverting operational amplifier.	03
5.	To study two stages RC amplifier	03
6.	To study a CE amplifier circuit with following objectives.	03

TEXT BOOKS RECOMMENDED FOR PAPER PHY -CC-607

- 1) Advanced practical physics by Chauhan And Singh
- 2) B.Sc.Practical Physics by C L Arora
- 3) Practical Physics by Kumar and Gupta