DEPARTMENT OF MECHANICAL ENGINEERING

M.TECH (THERMAL SYSTEM DESIGN)

SARDAR VALLABHBHAI NATIONAL INSTITUTE OF TECHNOLOGY Ichchhanath, Surat- 395007, Gujarat, India www.synit.ac.in

VISION AND MISSION OF INSTITUTE

Vision statement

To be one of the leading technical institutes disseminating globally acceptable education, effective industrial training and relevant research output.

Mission statement

To be a globally accepted centre of excellence in technical education catalyzing absorption, innovation, diffusion and transfer of high technologies resulting in enhanced quality for all the stake holders.

VISION AND MISSION OF MECHANICAL DEPARTMENT

Vision statement

Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat perceives to be globally accepted center of quality technical education based on innovation and academic excellence.

Mission statement

Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat strives to disseminate technical knowledge to its undergraduate, post graduate and research scholars to meet intellectual, ethical and career challenges for sustainable growth of humanity, nation, and global community.

Programme Educational Objectives(PEOs)

Master of Technology in Thermal System Design imbibes in students excellent technical capabilities in the area of thermal engineering and allied systems, effective communication skill, ensuring successful career and continuing their professional advancement through life-long learning.

The programme educational objectives of Master of Technology in Thermal System Design are

PEO1 : Excel students in analytical, computational and experimental skills to solve thermal engineering related problems.

PEO2 : Have high level of technical competency combined with research and problem solving ability to generate innovative solutions in thermal engineering or related areas.

PEO3 : Enjoy successful career in industry and/or academia with an ethic for lifelong learning.

PEO4 : Graduates will have inculcated to maintain high professionalism and ethical standards, effective technical presentation and writing skill and to work as a part of team on research projects.

Programme Outcomes (POs)

Following are the programme outcomes for M.Tech. (Thermal System Design)

By the time of post graduation:

- a. Student will be able to demonstrate and apply in depth technical knowledge of engineering in design and operation of various thermal systems.
- b. Student will be able to design and conduct experiments, as well as to organize, analyze and interpret data to produce meaningful conclusions and recommendations.
- c. Student will be able to design thermal systems or components or process to meet desired need within realistic constraints such as economic, environmental, social, safety, manufacturability and sustainability.
- d. Student will be able to work individually or as a member with responsibility to function on multidisciplinary team.
- e. Student will be able to identify, formulate and solve engineering problems.
- f. Student will be able to understand professional, legal, and ethical issues and responsibilities.
- g. Student will be able to convey thoughts effectively on the basis of acquired soft skills and self confidence with peers, subordinates and higher authority for the consistent and effective knowledge sharing process.
- h. Student will be sensitive towards the impact of engineering solutions in a global, economic, environmental and societal context.
- i. Student will be able to understand the need for, and an ability to engage in life-long learning and continual updating of professional skills.
- j. Student has knowledge about current issues/advances in engineering practices.
- k. Student will be able to use the techniques, skills and modern engineering tools necessary for engineering practices.

Course Structure for M.Tech. (Thermal System Design)

SEMESTER – I													
Code	Codo				Exam Scheme								
No.	Subject	L	LT	L T	L T	L T	P	Theory		Tuto.	Pract.	Total	Credits
NO.					Hrs.	Marks	Marks	Marks	1				
ME 603	Advance Heat Transfer	3	0	2	2	100	-	50	150	4			
ME 721	Advance Thermodynamics &	4	0	0	2	100	-	-	100	4			
	Combustion												
ME 723	Thermal Power Plant Engineering -I	3	0	0	2	100	-	-	100	3			
ME 725	Computational Methods in Fluid	3	0	0	2	100	-	-	100	3			
	Flow & Heat Transfer												
ME 727	Software Practice	0	0	4	-	-	-	100	100	2			
	Elective – I	3	0	0	2	100	-	-	100	3			
ME 650	Optimization Techniques.							•					
ME 729	Residual Life Assessment of Boiler												
	Plant Equipments												
ME 731	Analysis & Design of I.C. Engines												

COURSE STRUCTURE FOR M. TECH. (THERMAL SYSTEM DESIGN)

SEMESTER - II

Code					Exam Scheme					
No.	Subject	L	Т	P	Th	eory	Tuto.	Pract.	Total	Credits
NO.					Hrs.	Marks	Marks	Marks		
ME 682	Design of heat exchangers	3	0	2	2	100	-	50	150	4
ME 722	Exergy analysis of Thermal Systems	4	0	0	2	100	-	-	100	4
ME 726	Design of Refrigeration & Air-	3	0	2	2	100	-	50	150	4
	conditioning systems									
ME 724	Thermal Power plant Engineering – II	3	0	0	2	100	-	-	100	3
ME 728	Laboratory Practice	0	0	2	2	-	-	50	50	1
	Elective – II	3	0	0	2	100	-	-	100	3
ME 732	Non-conventional Energy Systems									
ME 734	Analysis & Design of Thermal									
	Turbomachines									
ME 736	Theory & Design of Cryogenic									
	Systems									

SEMESTER - III

Code					Exam Scheme							
No.	Subject	L	Т	Р	Theory		Theory		Tuto.	Pract.	Total	Credits
110.					Hrs.	Marks	Marks	Marks				
ME 801	Dissertation Preliminaries		0	16	-	-	-	400	400	8		
ME 803	Seminar		0	4	-	-	-	100	100	2		

SEMESTER - IV

Code	Subject		т	Р	Exam Scheme							
No.		L			Theory		Theory Tuto.		ry Tuto. Pract. 1		Total	Credits
NO.					Hrs.	Marks	Marks	Marks				
ME 802	Dissertation	0	0	24	-	-	-	600	600	12		

CURRICULAM SEMESTER-1

M. Tech (THERMAL SYSTEM DESIGN), Semester – I ME 603 : Advanced Heat Transfer

- Modes of heat transfer.
- Conduction, Factors affecting thermal conductivity of solids, liquids & gases, General three dimensional heat conduction equation in Cartesian, Cylindrical & spherical coordinates, Initial condition and various boundary conditions. Heat source systems, Critical thickness of insulation. Different types of fins & their analysis, Two dimensional steady state conduction, Electrical analogy, Graphical & numerical methods, Transient heat conduction with & without temperature gradients within the system, Heat flow in semi infinite solids. Application of Heisler charts. (12 Hours)
- Free & forced convection, Similarity & simulation of convection heat transfer, Boundary layer theory. Turbulent flow heat transfer, Analogy between momentum & heat transfer, Heat transfer with liquid metals, Heat transfer in high velocity flow, Recent developments in the theory of turbulent heat transfer, Natural convection under different situations, Empirical relations in convection heat transfer. (14 Hours)
- Boiling & condensation.
- Regimes of boiling heat transfer, Heat transfer in condensation, Drop wise & film condensation, Empirical equations. (2 Hours)
- Radiation heat transfer properties, Laws of thermal radiation, Shape factors, Radiation heat transfer between black, diffuse & gray surface, Electrical network method of solving radiation problems, Radiosity approach, Gas emission & absorption, Bulk radiations.

(12 Hours) (Total Lecture Hour 45)

PRACTICALS:

- 1. Calibration of thermocouple
- 2. Heat transfer in natural convection
- 3. Heat transfer in forced convection
- 4. Thermal conductivity of insulating powder
- 5. Heat transfer from pin fin apparatus
- 6. Heat transfer through composite wall

BOOKS RECOMMENDED:

- 1. J.P.Holman, "Heat Transfer", McGraw Hill Book Co. Special Indian 9th Edition, 2008
- 2. Oziski, M. N. "Heat Transfer A Basic Approach", McGraw Hill, N. Y., 2001.
- 3. Roshenow, W., Hartnett, J., Ganic, P., "Hand Book of Heat Transfer", Vol. 1 & 2, McGraw Hill, N. Y., 2002.
- 4. Incropera & Hewitt, "Fundamentals of Heat and Mass Transfer", John Wiley, 2000.
- 5. S.P.Sukhatme, "Heat Transfer", Orient Longman, 2001

(02 Hours)

LTPC

3 0 2 4

(03 Hours)

M. Tech (THERMAL SYSTEM DESIGN), Semester – I ME 721 : Advance Thermodynamics & Combustion

- Review of fundamentals availability, Entropy, Carnot theory, Entropy of the ideal gas, TS diagram, Entropy and reversibility, Entropy and irreversibility, Irreversible part of the second law, Heat and entropy in irreversible processes, Entropy and Non equilibrium states, Principle of increase of entropy, Application of the entropy principle, Entropy and disorder, Exact differentials. (10 Hours)
- Chemical thermodynamics and flame temperatures, Heat of reaction and formation, Free Energy and equilibrium constants, Flame temperatures and equilibrium composition.

(08 Hours)

- Chemical kinetics, Order of reaction, Rate of reactions, Simulations independent and chain reactions, Pseudo First order reactions, Partial equilibrium, Pressure and temperature effects. (08 Hours)
- Explosive and oxidative characteristics of fuels, Criteria for explosion, Explosion limits and oxidation of hydrogen, Carbon monoxide and hydrocarbons. (10 Hours)
- Premixed flames, Laminar flame structure, Laminar flame speed, Flame speed measurements, Stability limits of laminar flames, Turbulent flames, The turbulent flame speed, Flame stabilization in turbulent flows. (10 Hours)
- Diffusion flames, Gaseous fuel tests, Turbulent fuel tests, Burning of condensed phases, Droplet combustion. (06 Hours)
- Modeling of coal combustion and emissions shrinking core model, Theory of formation of NOx, CO2, SOx and particulate emissions. (08 Hours)

(Total Lecture Hours : 60)

- 1. S. P. Sharma and Mohan C., "Fuels & Combustion", McGrawHill2007.
- 2. Irvin Glassman, "Combustion", 2nd Edition, Academic Press, Inc. Harcourt Brace Jovanorich Pub., Orlando, 2002.
- 3. Strehlow, R. A., "Combustion Fundamentals", McGraw Hill Book Co., N. Y., 2002
- 4. Phil Attard, "Thermodynamics and Statistical Mechanics", Australian Research Council, University of South Australia, 2002.
- 5. Mark W. Zemansky and Richard H. Dittman, "Heat and Thermodynamics", McGraw Hill International Editions, 7th Edition, 2003.

- Classification of boilers, Description of boilers, Boiler specifications, Natural circulation boilers and forced circulation for subcritical and supercritical boilers. (08 Hours)
- Types of fuels, Fuel preparation for coal fired boilers, Features of boiler furnaces, coal fired, Gas fired, Oil fired, Pulverized fuel. (07 Hours)
- Fluidized bed combustion chambers, Burners, Combustion calculations, Economizers, Airpreheaters, Superheaters, Desuperheaters, Reheaters. (10 Hours)
- Forced and induced draft fans and blowers, Boiler feed pumps, Steps for boiler design, Steam system materials, Heat balance sheet, Electrostatic precipitators, Cogeneration and combined cycle, Boiler efficiency, Thermodynamics and power plant cycle analysis. (20 Hours)

(Total Lecture Hours: 45)

- 1. Shields, C. D., "Boilers", McGraw Hill, New York, 2001
- 2. Babcock Wilcox manual on "Steam"
- 3. Vandagriff, R.L "Practical guide to boiler systems", Marcel Dekker, 2000
- 4. Oliver, K.G "Industrial boiler management, an operations guide, Industrial Press, New York. 2002
- 5. El Wakil M. M., "Power Plant Technology", McGraw Hill, 2001.

• REVIEW OF GOVERNING EQUATIONS CONNECTIVE FLUID FLOW AND HEAT TRANSFER

Conservation of mass, Newton's second law of motion, Expanded forms of Navier-Stokes equations, Conservation of energy principle, Special forms of the Navier-Stokes equations, Classification of second order partial differential equations, Initial and boundary conditions, Governing equations in generalized coordinates. (08 Hours)

- FINITE DIFFERENCE, DISCRETIZATISON, CONSISTENCY, STABILITY AND FUNDAMENTAL OF FLUID FLOW MODELING Elementary finite difference quotients, Basic aspects of finite difference equations, Errors and stability analysis, Some nontrivial problems with discretized equations, Applications to heat conduction and convection. (10 Hours)
- SOLUTIONS OF VISCOUS INCOMPRESSIBLE FLOWS BY STREAM FUNCTION, VORTICITY FORMULATION Two dimensional incompressible viscous flow, Incorporation of upwind scheme, Estimation of discretization error, Application to curvilinear geometries, Derivation of surface pressure and drag.
 (07 Hours)
- SOLUTION OF NAVIERSTOKES EQUATIONS FOR INCOMPRESSIBLE FLOWS USING MAC AND SIMPLE ALGORITHMS Staggered grid, Solution of the unsteady Navier Stokes equations, Solutions of energy equation, Formulation of the flow problems, Simple algorithm. (06 Hours)
- INTRODUCTION TO FINITE VOLUME METHOD Integral approach, discretization & higher order schemes, Application to complex geometry.

(07 Hours)

IINTRODUCTION TO FINITE ELEMENT METHOD
 Stiffness matrix, Isoparametric elements, Formulation of finite elements for flow and heat
 transfer problems
 (07 Hours)

(Total Lecture Hours : 45)

- 1. Anderson D.A., Tannehill J.C., Pletcher R.H., "Computational Fluid Mechanics and Heat Transfer", Hemisphere Publishing Corporation, New York, U.S.A. 2004.
- 2. Ankar S.V., "Numerical Heat Transfer and Flow" Hemisphere Publ., Corporation, 2001.
- 3. H.K.Versteag and W.Malalsekara, "An Introduction to Computational Fluid Dynamics", Longman, 2000.
- 4. Carnahan B., "Applied Numerical Methods", John Wiley & Sons 2001.
- 5. Patankar, "Numerical heat transfer and fluid flow", McGraw Hill, 2002.

- Generation velocity profile for laminar flow
- Generation of velocity profile for turbulent flow
- Friction factor for laminar flow
- Friction factor for turbulent flow
- Shear stress distribution for a flow in horizontal duct
- Nusselt number determination for a flow with constant it edition
- Nusselt number determination for a flow with heat edition at constant temperature
- Determination of drag for a flow over a body
- Analysis of 2D transient heat flow over a plate

- Single and multivariable optimization methods, constrained optimization methods, Kuhn, • tucker conditions, necessary& Sufficiency theorems. (10 Hours)
- Linear programming, Traveling salesman problem and transshipment problems, Post optimization analysis. (10 Hours)
- Integer programming all integer, Mixed integer and zero, one programming (08 Hours)
- Geometric programming concept degree of difficulty solution of unconstrained & constrained non linear problems by geometric programming. (09 Hours)

• Dynamic programming.

(08 Hours)

(Total Lecture Hours : 45)

- 1. Rao S.S., "Optimization Theory & Applications", Wiley Eastern 2000.
- 2. Deb. K, "Optimization for Engineering Design", Prentice Hall of India, 2002
- 3. Reklaitis G.V., Ravindram A., Ragsdell K.M., "Engineering Optimization Methods & Application", Wiley, 2001.
- 4. Verma, A. P., "Operation Research", S. K. Kataria and Sons, 2007.
- 5. Vora, N. D, "Quantitative techniques", Tata Mc-Graw Hill, 2006.

	ch (THERMAL SYSTEM DESIGN), Semester I, Elective I 29 : Residual Life Assessment of Boiler	L T P C 3 0 0 3
•	General approval to the analysis of metallurgical objective of failure analysis, to failures, Stages of analysis, Collection of back ground data & selection of sa	
•	METAL FATIGUES Fatigue failure life, Cause & prevention of fatigues failures.	(07 Hours)
•	CORROSION RELATED FAILURES Introduction to corrosion, Types of corrosions, Environmental factors, Preventi	ve measures. (07 Hours)
•	ELEVATED TEMPERATURE FAILURE : Creep, Elevated temperature fatigue, Thermal fatigue prevention.	(07 Hours)
•	RESIDUAL STRESSES Thermal residual stresses, Metallurgical residual stresses, Mechanical re Chemical effects on residual stress.	sidual stresses, (08 Hours)
•	Remaining Life Assessment (RLA) of critical components relevance of methodology, Application of Non Destructive Testing, Risk based inspections boiler tube & its accessories failure.	
	(Total Lect	ure Hours: 45)

- 1. Towe, H. C., "Life Extension & Assessment of Fossil Power Plant", McGraw Hill, 2005.
- 2. Webster, G. A., Anisworth, R.A., "High Temperature Component life assessment", McGraw Hill, 2004.
- 3. Hozel, Deiter K., "Methods to Extend Mechanical Components life", AIAA Publication, Washington, 2004.
- 4. Oliver, K.G "Industrial boiler management, an operations guide", Industrial Press, New York. 2002
- 5. El Wakil M. M., "Power Plant Technology", McGraw Hill, 2003.

	ch (THERMAL SYSTEM DESIGN), Semester I, Elective I 31 : Analysis & Design of I.C. Engines	L T P C 3 0 0 3
•	Review of thermodynamic cycles ideal, fuel air and real cycles	(06 Hours)
•	Engine heat transfer and friction	(06 Hours)
	Gas exchange processes: flow through valves, phase of the flow, turbulence, suction and exhaust processes, manifold tuning.	analysis of (07 Hours)
	Analysis of compression and expansion processes.	(06 Hours)
	Modeling of combustion in S.I. and C.I. engines.	(05 Hours)
	Digital simulation of complete engine cycle.	(04 Hours)
	Design of engine components piston, cylinder, piston rings, connecting rod, cranks	shaft etc (08 Hours)
	Theory of super chargers / turbo chargers	(03 Hours)
	Similarity considerations, balancing and vibrations of engines	(04 Hours)

(Total Lecture Hours: 45)

BOOKS RECOMMENDED:

- 1. Maleev, "I. C. Engines: Theory and Practice", Mc-Graw Hill2000.
- 2. Heywood, J. B., "Internal Combustion Engine Fundament als", Mc-Graw Hill International Edition, 2002.
- 3. Richard, Stone, "Introduction to Internal Combustion Engines", 2nd Edn. McMillan Press, 2003.
- 4. Taylor, C. F., "Internal Combustion Engine in Theory and Practice", Vol. 1 & 2, M. I. T. Press, Cambridge, USA, 2003.
- 5. Juvinall, R. C., and Marshek, K. M., "Fundamental of Machine Component Design", John Wiley & Sons, N.Y., 2001.

Semester – II

Tech (THERMAL SYSTEM DESIGN), Semester II 682 : Design of Heat Exchangers	L T P C 3 0 2 4
Review of heat transfer principles & convection correlation.	(03 Hours)
• Introduction to heat exchangers and classification	(03 Hours
• Basic design methodologies, Net Transferable Units method and L Temperature Deference method	ogarithmic Mean (04 Hours)
• Design of double pipe heat exchangers	(05 Hours
• Shell & tube type heat exchangers, nomenclature, J-factors, conventiona bell, Delware method	al design methods (05 Hours)
• Compact heat exchangers, J-factors, design method	(08 Hours
• Condensers classification and design methods for surface condensers	(05 Hours
• Evaporators Classification and design methods	(03 Hours
• Plate type Heat exchangers	(03 Hours
• Regenerators	(03 Hours
Furnace design	(03 Hours
(Total Le	ecture Hours: 45)

PRACTICALS:

- 1. Thermal aspects of heat exchanger design
- 2. Design of double pipe Heat exchanger
- 3. Timkers model & TEMA standards
- 4. Bell Deware's method for shell and tube type heat exchanger design
- 5. Design of Reboilers and estimation of loss of energy in the pipe
- 6. Analysis and design regenerative heat exchanger
- 7. Circulated fluidized bed combustion boiler
- 8. Design of compact heat exchanger
- 9. Design of plate type heat exchanger
- 10. Heat exchange networking

- 1. Saunders, E.A.D., "Heat Exchangers Selection Design and Construction", Longmann Scientific and Technical, N.Y., 2001.
- 2. Kays, V.A. and London, A.L., "Compact Heat Exchangers", McGraw Hill, 2002.
- 3. Holger Martin, "Heat Exchangers" Hemisphere Publ. Corp., Washington, 2001.
- 4. Kuppan, T., "Heat Exchanger Design Handbook", Macel Dekker, Inc., N.Y., 2000
- 5. Seikan Ishigai, "Steam Power Engineering, Thermal and Hydraulic Design Principles", Cambridge Univ. Press, 2001.

M. Tech (THERMAL SYSTEM DESIGN), Semester – II	LTPC
ME 722 : Exergy Analysis of Thermal Systems	4 0 0 4

٠	Basic concepts of energy analysis of thermal systems	(08 Hours)
	Busic concepts of energy unarysis of thermal systems	(00 110415)

• Basic exergy concepts

Classification of forms of exergy, concepts of exergy, exergy concepts for a control region, physical exergy, chemical exergy, exergyconcepts for closed system analysis. (15 Hours)

• Elements of plant analysis

Control mass analysis, Control region analysis, Criteria of performance, Pictorial representation of exergy balance, Exergy based property diagram. (11 Hours)

• Exergy analysis of processes Expansions process, Compression processes, Heat transfer process, Mixing & separation Process, Chemical process including combustion. (15 Hours)

• Energy analysis of thermal systems

Gas turbine plant, Thermal power plant, Cogeneration plant, Captive power plant, Combined cycle power plant, Refrigeration plant, Chemical plant Linde air liquification plant, Heat exchanger. (11 Hours)

(Total Lecture Hours : 60)

- 1. Kotas J.J., "The Exergy Methods of Thermal Plant Analysis", 2nd Ed., Krieger Publ. Corp. U.S.A., 2000.
- 2. Larry, C.W., Schmidt, P.S., and Schmidt, P.S. and David, R.B., "Industrial Energy Management and Utilization", Hemisphere Pub. Corp., Washingto n, 2001.
- 3. Seikan, Ishigai, "Steam Power Engineering, Thermal and Hydraulic Design Principles", Cambridge Univ., Press, 2000.
- 4. Turner, W.C., (Ed.), "Energy Management Handbook", John Wiley & Sons, N.Y., 2002.
- 5. Dryden, I.G.C., "The Efficient use of Energy", Butterworths, London, 2000

	ch (THERMAL SYSTEM DESIGN), Semester II 26 : Design of Refrigeration and Air Conditioning Systems	L T P C 3 0 2 4
•	Review of basic principles of refrigeration -Vapour compression and vap cycles, Ecofriendly refrigerants.	pour absorption (03 Hours)
•	Low temperature refrigeration, Martinovesky, Dubinsky machine, Capitza a Phillips machines, Gifford models.	ir liquifier; Cap (04 Hours)
•	Refrigerator using solid CO ₂ as working media.	(03 Hours)
•	Magnetic refrigeration systems.	(03 Hours)
•	Design aspects of refrigeration system components.	(04 Hours)
•	Design of water coolers, Ice plant, Cold storage plants.	(03 Hours)
•	Review of air conditioning principles.	(05 Hours)
•	Psychrometry of various air conditioning processes.	(05 Hours)
•	Cooling load calculations for air conditioning systems.	(04 Hours)
•	Design aspects of various components of an air conditioning system such a coils, Heating coils, Ducts and air, Distribution system.	s fans, Cooling (04 Hours)
•	Analysis and design of air Washers and cooling towers.	(03 Hours)
•	Design of residential, commercial and industrial air conditioning plants.	(04 Hours)

(Total Lecture Hours: 45)

PRACTICALS:

- 1. Performance test on vapour compression refrigeration system using different expansion devices.
- 2. To determine the C.O.P. of vapour absorption system.
- 3. Performance test on heat pump.
- 4. To determine the adiabatic efficiency of an air cooler
- 5. Performance test on air conditioning plant.
- 6. To determine the C.O.P. of an ice plant

- 1. Stocker, W. F. and Jones, J. W., "Refrigeration and Air Conditioning", McGraw Hill, N. Y. 1986.
- 2. Dossat, R. J., "Principles of Refrigeration", John Wiley and Sons, 1988.
- 3. Threlked, J.L., "Thermal Environmental Engineering", Prentice Hall, N.Y., 1970.
- 4. Baron, R. F., "Cryogenics Systems", Oxford Press, USA, 1985.
- 5. ASHRAE Fundamentals, Applications, Systems and Equipment, 1999.

M. Tech (THERMAL SYSTEM DESIGN), Semester II ME 724 : Thermal Power Plant Engineering – II

- Steam turbines, Classification, Compounding of steam Turbines, Arrangements of steam turbines, Governing of steam turbines. (08 Hours)
- Steam cycle heat exchangers (Condensers), Concept of heat recovery steam generators, Reheaters, Regenerative feed heaters Fans and blowers, Boiler feed pumps, Condensate extraction pumps, Air pumps. (15 Hours)
- Circulating water systems, Cooling towers. (05 Hours)
- Natural and mechanical draught and their design calculations. (07 Hours)
- Energy auditing, Environmental considerations, Ash handling systems, Air pollution control. (10 Hours)

(Total Lecture Hours : 45)

- 1. Black and Vetach, "Power Plant Engineering", Chapman and Hall, International Thomson Publishing Co., 2001.
- 2. El, Wakil, "Power Plant Technology", McGraw Hill, 2003.
- 3. Gebhartt, G. F., "Steam Power Plant Engineering", John Wiley & Sons, 2002.
- 4. Kearton, "Steam Turbine Theory and Practice", ELBS, 2001.
- 5. Burger R., "Cooling Tower Technology", Lilburn, 2004.

- To determine specific fuel consumption & thermal efficiency of S. I. Engine
- To determine specific fuel consumption & thermal efficiency of C. I. Engine
- To determine Thermal conductivity of Insulating Material
- To determine valve timing diagram of I. C. Engine
- To determine the boiler efficiency
- To study various aspects of thermal power plant

- Wind energy conversion systems, Scientific chulhas, Biogas plant & their design, Microbiological aspects of biogas generation and alcohol fermentation, Production of liquid fuels, Pyrolysis, gasification. (10 Hours)
- Fuel cell technology & hybrid vehicles. (10 Hours)
 Hydrogen energy & Its future impact. (07 Hours)
 Geothermal energy (06 Hours)

(Total Lecture Hours : 45)

- 1. Duffie, J.A., and Bechman, "W. A., "Solar Engineering of Thermal Processes", John Wiley, N. Y., 2002.
- 2. Maths, D. A., "Hydrogen Technology for Energy", Noyes Data Corp., 2002.
- 3. Freris, L. L. "Wind Energy Conversion System", Prentice Hall, 2001.
- 4. Spera, D.A., "Wind Turbine Technology, Fundamental Concepts of Wind Turbine Engineering", ASME Press. N. Y. 2001.
- 5. Twidell, J.W., and Weir, A.D., "Renewable Energy Resources", ELBS, 2000

- Design of compressors, Centrifugal compressor, Inlet section, Impeller passages, Effect of impeller blade shape on performance, Impeller channel, Vaneless and vaned diffusers, Effect of mach number, Design procedure. (07 Hours)
- Axial flow compressor, stage characteristics, Blading efficiency, Design parameters, Blade loading, Lift coefficient and solidity, Three dimensional flow considerations, Radial equilibrium design approach, Actuator disc theory approach, Design procedure and calculations.
 (08 Hours)
- Design of turbine flow passages, Introduction, Isentropic velocity ratio, Energy distribution in turbines, Effect of carryover velocity on energy distribution. (06 Hours)
- Impulse turbine flow passages, Blade pitch and width, Blade height, B lade entrance and exit angles, Geometry of impulse blade profiles, Losses in impulse blade passages, Design procedure for single stage and multistage impulse turbines. (08 Hours)
- Reaction turbine flow passages, Reaction blade profiles, Blade angles, Gauging and pitch, Blade width and height, Losses in reaction blade passages, Degree of reaction, design procedure for impulse, reaction turbines, Calculations for axial thrust, Turbines for optimum capacity.
- Flow passage with radial equilibrium, The free vortex turbine, Turbine with constant specific mass flow, Turbines with constant nozzle angle, comparison of radial equilibrium design, off design performance using radial equilibrium theory, Actuator disc theory, Single parameter analysis, Stream line curvature methods. (08 Hours)

(Total Lecture Hours : 45)

- 1. Lee J.E., "Steam & Gas Turbine", McGraw Hill city, 2001.
- 2. Shlyakhin P., "Steam Turbines, Theory & Design", Peace Publications, Moscow, 2000.
- 3. Frank P. Beleier, "Fan Hand Book Selection", Application and Design", Wiley, 2003.
- 4. Saravanamootoo, H.I.H., & Rogers, G.F.C., "Gas Turbine Theory", Pearson Pub. Company, Pearson Education (Singapore) Pvt. Ltd., Indian Branch, New Delhi 2001.
- 5. Dixon, "Theory and thermodynamics of turbomachinery", Elsevier Science and Technological series, 5th Edition2005.

- Cryogenics Fluids: Properties of air, Oxygen, Nitrogen, Hydrogen, Helium and its isotopes. (04 Hours)
- Cryogenics refrigeration systems : Recuperative & regenerative cycles, Joule Thomson cycle ; Gifford, Mcmohan cycle, Stirling cycle, Pulse Tube refrigeration, Magneto caloric refrigeration, Vuilleumier refrigerator. (04 Hours)
- Gas liquefaction systems: Ideal systems, Linde, Linde dual pressure system, Claude, Heylandt, Kapitza systems, Cascade cycle.
 (04 Hours)
- Cryogenic insulation: Vacuum insulation, Multilayer insulation (MLI), Methods of measuring effective thermal conductivity of MLI, Liquid & vapour shield, Evacuated porous insulation, Gas filled powders and fibrous materials, Solid foams. (03 Hours)
- Cryogenic instrumentation: Peculiarities of cryogenic strain measurement, Pressure, Flow, Density, Temperature and liquid level measurement for cryogenic application. (03 Hours)
- Purification and separation of gases, Liquefied natural gas: Principles of gas separation: Separation by condensation & flashing, Separation by distillation. Air separation system: Linde single column system, Linde doubleColumn systems etc., Liquefaction of Natural Gas. (04 Hours)
- Storage & handling systems: Dewar vessel design, Piping, Support systems, Vessel safety devices and storage systems, Industrial storage systems. (03 Hours)
- Transfer systems: Transfer from storage, Uninsulated transfer lines, Insulated lines, Transfer system components. (04 Hours)
- Properties and selection of Materials: Study of material properties & their selection for cryogenic application. (05 Hours)
- Vacuum Systems, Cryo pumping.
- Equipments for low temperature systems: Heat exchangers, Compressor, Expanders.

BOOKS RECOMMENDED:

- 1. Hastlden, C., "Cryogenic Fundamentals", Academic Press, 2001.
- 2. Barron R., "Cryogenic Systems", Plenum Press, 2001.
- 3. Walker, "Cryocoolers", Vol. 1 & 2, Plenum Press, 2000.
- 4. Mikulin, Y., "Theory and Design of Cryogenic systems", MIR Publication, 2002.
- 5. Barron, R. F., "Cryogenics Systems", Oxford Press., USA, 2002.

LTPC

3 0 0 3

(03 Hours)

(05 Hours)

(Total Lecture Hours : 45)

Course Objectives

Year/ sem.	Subject Code	Course	Course Objectives
1 st semester	ME 603	Advance Heat Transfer	 To enable the students apply the fundamentals of heat transfer modes such as conduction, convection and radiation in various heat transfer applications. To enable the students apply analytical and semi analytical approach towards the solution of Heat Transfer problems. To prepare the students more competitive for thermal design of process equipment.
	ME 721	Advance Thermodynamics & Combustion	 To enable the students to extract in-depth knowledge on fundamental and applied thermodynamics and a firm grasp, clear understanding of basic principles of energy, entropy and work and energy conversion as well as their applications in advanced thermodynamic cycles. To describe the different combustion mechanisms, how these can be efficiently used in engineering applications e.g. power generation. To illustrate the elementary chemical and physical processes of combustion phenomena, and how they influence the development of combustion, the energy release, and the nature of combustion products. To describe simple mathematical models for flame ignition, propagation, and extinction, how they can help understanding combustion phenomena,

			and the training of the description of the second
			and their limitations in describing combustion in
			real applications.
		5.	To illustrate the different type of pollutants
			generated by combustion, their effects on health
			and on the environment, the methods to reduce
			their formation during combustion and to mitigate
			their effects once they have been produced.
		6.	To give basic notions about combustion processes
			in engineering devices, and how these help us in
			designing burners for different types of fuels and
			combustion chambers.
ME 723	Thermal Power Plant	1.	To enable students to list boiler specifications,
	Engineering - I		types, describe mechanism of subcritical and
			supercritical boilers, Natural and forced circulation
			boilers, fluidized bed combustion boilers, design
			steps for boilers,
		2.	To enable students to describe types of fuels,
			types of combustion chambers and fuel
			preparation for burners
		3.	To enable students to assess combustion
			mechanism, combustion equipments and firing
			methods
		4.	To enable student to carry out design and analyse
			heat exchangers of boilers like economisers
			preheater, feed water heaters, superheaters,
			reheaters etc.
		5.	To enable students to evaluate complete steam
		5.	generator plant to improve performance based on
			heat balance sheet describing energy distribution
		6.	To enable students to appraise ash handling
		0.	systems, feed water treatment, forced and
			induced draught fans, electrostatic precipitators,

				deaeration, fabric filters and bag houses in
				thermal power plant.
	ME 725	Computational Methods	1.	To comprehend the governing equation pertinent
		in Fluid Flow & Heat		to the fluid flow and Heat Transfer field.
		Transfer	2.	To develop the numerical skill towards the
				understanding and solution of fluid flow and heat
				transfer field.
			3.	To encourage the student to take a complex
				problem based on the numerical solution
				techniques
	ME 727	Software Practice	1.	To analyze and solve thermal engineering related
				problems with the help of latest
				Computational Fluid Dynamics Tools such as
				GAMBIT, FLUENT, ANSYS–CFX, etc.
	ME 731	Analysis and Design of I C	1.	To make students familiar with the basic
		Engines (E1)		thermodynamic cycles - ideal, fuel-air and real
				cycles
			2.	To describe the engine friction and heat transfer
				issues of modern Internal Combustion Engine
			3.	To make the students to present the design
				considerations for engine components like valves,
				piston, cylinder, rings.
			4.	To apply modelling and simulation techniques to
				the complex phenomenon of engine combustion
			5.	To introduce students the importance of gas
				exchange processes
			6.	To introduce students the balancing and
ct				vibrations issues in an engine
2 st	ME 682	Design of Heat	1.	To introduce different kind of Heat Exchangers
Semester		exchangers		used in industry.
			2.	To introduce the preliminary design and selection
				of Heat exchanger based on application.

		3.	To encourage the student to modify and analyse
		0.	the existing design procedure in the field of Heat
			Exchanger.
ME 722	Exergy Analysis of	1.	Appreciate the concept of exergy in engineering
	Thermal System		system
		2.	To enable students to evaluate physical exergy
			and chemical exergy for closed system
		3.	To enable students to make the pictorial
			representation of exergy balance
		4.	To enable students to carry exergy analysis of
			various processes like compression, expansion,
			mixing and separation
		5.	To enable students to formulate conservation
			laws for mass and energy to various thermal
			systems
ME 726	Design of Refrigeration &	1.	To enable students select alternate new
	Air-conditioning Systems		azeotrope and mixed refrigerants based on
			application in a various refrigeration system.
		2.	To enable students to analyse low temperature
			refrigeration systems
		3.	To enable students to present design aspects of
			various refrigeration systems and its components
		4.	To enable students to evaluate refrigeration
			systems to improve the performance
		5.	To enable students to assess psychometrics of
			various air conditioning processes, determination
			and calculation of various cooling loads and
			heating loads for air conditioning systems, cold
			storage plants etc.
		6.	To enable students use design aspects air
			distribution system components for air
			conditioning plants.

ME 724	Thermal Power Plant	1.	To learn about classification, compounding,
	Engineering - II		governing and arrangement of steam turbines.
		2.	To learn about working of co-generation and
			combined cycle power plant and its comparison
			with normal plant, advantages & disadvantages of
			different arrangement, types of co-generation
			system, economical feasibility
		3.	To learn about various types of steam/power
			cycles, computing various kind of efficiency reheat
			& regeneration cycle combination of both, do
			analytical study.
		4.	To learn about working and design of condenser,
			re-heater regeneration feed heater, Boiler pumps,
			and cooling towers.
		5.	To learn about natural & mechanical draught,
			Combination of mechanical draught, design of
			forced and induced draught system, Numerical
			analysis of Natural & Mechanical draught.
		6.	To learn about energy conservation in power
			plant, various techniques, important components
			for energy conservation
ME 728	Laboratory Practice	1.	To enable students to develop experimental skill
			and interpret experimental data of thermal
			systems.
		2.	Exposure to state of art laboratories like
			cryogenics Lab., Gas dynamics Lab, Sophisticated
			instrumentation lab, I.C Engines Lab.,
			Refrigeration Lab., and Heat transfer Lab.
 ME 734	Theory & Design of	1.	Understanding applications of cryogenics.
	cryogenic systems	2.	Understanding properties of cryogens like He, H ₂ ,
			Ar, Ne, N_2 , O_2 etc. and materials for cryogenic
			application.

			3.	Understanding fundamentals and theory of gas
				liquefaction system and cryogenic refrigeration
				system including cryocoolers.
			4.	Providing knowledge of cryogenics insulation
				materials and their properties, merits & demerits.
			5.	Study of cryogenics instrumentation for
				measurement of temperature, pressure, liquid
				level etc.
			6.	Understanding theory of purification and
				separation of gases using cryogenics technology.
			7.	Providing knowledge of transfer, storage, and
				handling system of cryogens.
			8.	Studying theory of vacuum and knowledge of
				different vacuum system.
3 rd	ME 801	Dissertation Preliminaries	1.	To enable students to indentify problem/area
				and to plan methodology to solve it.
semester			2.	To make students to use knowledge of various
				literature sources for research.
			3.	To enable students to develop technical writing
				and presentation skill
	ME 803	Seminar	1.	To enable students to aware about recent areas
				and technologies in thermal engineering and
				related area.
			2.	To enable students comprehend importance of
				system up gradation, improvement and
				application of new findings for human life.
			3.	To enable students to write technical report and
				presenting seminar work.
4 th	ME 802	Dissertation	1.	To enable students to solve identified technical
				problem using resources of knowledge.
semester			2.	To enable students to use latest equipments-
				instruments, software tools, infrastructure and

		learni	ing resources	s to solve p	roject p	orobler	n.
	3.	То	enable	students	to	ir	nterpret
		theor	etical/experi	mental fir	ndings	and	to use
		availa	able tools for	same.			

Course Outcomes (COs)

Year/ Sem.	Course and subject code	Course Outcomes
1 st	Advance Heat Transfer	At the end of the course, Students will be able to:
semester	(ME 603)	a. Apply the fundamentals of heat transfer modes such as
		conduction, convection and radiation in various heat transfer
		applications.
		b. Apply the concept of steady state and transient heat conduction
		problems and various methods towards exact solution of heat
		conduction applications.
		c. Apply fundamental knowledge of convection, its classification
		and solution strategy to determine heat transfer coefficient in
		various application.
		d. Appraise fundamental and advance level knowledge of radiation
		mode of heat transfer and its application.
		e. Comprehend the fundamentals of phase change processes such
		as boiling and condensation, its available correlations and
		methods to determine heat transfer coefficient in such complex
		mode of heat transfer.
	Advance	At the end of the course, Students will be able to:
	Thermodynamics &	a. Apply principle of mass, energy and entropy to analyze thermal
	Combustion	systems.
	(ME 721)	b. Determine operating conditions for thermodynamic cycles in
		order to optimize power or efficiency.
		c. Explain the basic concepts of combustion chemistry, the
		thermodynamic reasons that make a combustion reaction
		possible and the factors that affect the reaction rate.
		d. Distinguish different types of flames from their morphology, and
		explain how different combustion mechanisms are related to
		macroscopic qualitative features (colour, shape, etc.).

	e. Describe the features of flame propagation, estimate the flame
	velocity and thickness through simple calculations, explain the
	conditions that determine flame extinction.
	f. Demonstrate an awareness of the environmental impact of
	combustion processes, and understand the methods to reduce
	it.
	g. Execute simple calculations for the preliminary design of burners
	and combustion chambers, using the results of simple theories
	and empirical correlations in analytical or graphical form.
	h. Appreciate the importance of computational fluid dynamics in
	modelling combustion processes and its role as a tool for
	engineering design.
Thermal Power	At the end of the course, Student will be able to
Plant Engineering - I	a. List boiler specifications and types, Apply knowledge of
(ME 723)	mechanism of subcritical and supercritical boilers, Natural and
	forced circulation boilers, fluidized bed combustion boilers,
	Ascertain design steps for boilers,
	b. Comprehend about types of fuels, types of combustion chambers
	and fuel preparation for boilers
	c. Apply knowledge of combustion mechanism, combustion
	equipments and firing methods in thermal power plant.
	d. Design and analyze heat exchangers of steam generator like
	economizers preheater, feed water heaters and superheaters,
	reheaters.
	e. Evaluate complete steam generator plant to improve
	performancebased on heat balance sheet describing energy
	distribution.
	f. Appraise ash handling systems, feed water treatment, forced and
	induced draught fans, electrostatic precipitators, deaeration,
	fabric filters and bag houses in thermal power plant
Computational	At the end of the course, Student will be able to:
Methods in Fluid	a. Solve the basic governing equations and significance of these
	a. conte the basic perenning equations and significance of these

 I	1	
Flow & Heat		equations in the field of fluid flow and heat transfer.
Transfer	b.	Implement different techniques and solution procedure using
(ME 725)		different discretization schemes for real field complex problem.
	c.	Modify the available schemes and methods for multi-physics
		problem.
Software Practice	At	the end of the course, Student will be able to:
(ME 727)	a.	Develop and implement the computer code.
	b.	Demonstrate and use the commercial software in the field of
		fluid flow and heat transfer for various applications.
	c.	Take up research projects based on the knowledge of
		commercial software and develop their own computer program.
Analysis and Design	a.	Student will be able to develop an appreciation for theoretical
of I C Engines		and practical limits to engine performance and fuel economy
(ME 731)	b.	Students will be able to find out the maximum possible engine
		efficiency and ways to minimise losses from actual engine
	c.	Students will be able to address the issue of effective heat
		transfer from engine with suitable material for better heat
		transfer and compatibility
	d.	Students will be able to work out engine friction by different
		methods and will be able to learn that it is an important
		parameter to address engine efficiency
	e.	Students will be able to work out the material property
		requirement on to the part of each component to suit the design
		requirement
	f.	Students will be able to address real world engine design issues.
	g.	Students will be able to develop an ability to optimize future
		engine designs for specific sets of constraint like efficiency,
		ecology and economy
	h.	Develop skill to compare and contrast simulated results with
		experimental results
	i.	Able to appraise an understanding of suction and exhaust
		processes, flow through valves

		Alle to constant on constant of the state to the state of
		 Able to appraise an understanding to minimise the engine vibrations
2 st	Design of Heat	At the end of the course, Students will be able to:
_	-	
Semester	exchangers	a. Apply the fundamental principles of heat transfer and associated
	(ME 682)	correlations to heat exchangers.
		b. List different types of heat exchangers based on different
		attribute.
		c. Select and design various type of heat exchangers as per
		standard design methodology.
	Exergy Analysis of	a. Student will be able to relate the exergy and its difference from
	Thermal System	energy
	(ME 722)	b. Students will be able to work out physical and chemical exergy
		of a given system
		c. Students will be able to draw pictorial representation of exergy
		balance
		d. Students will be able to carry out exergy analysis of various
		thermal systems
		e. Student will be able to apply the first law and second law of
		thermodynamics to various thermodynamics systems
	Design of	At the end of the course, Students will be able to
	Refrigeration & Air-	a. Select appropriate new eco friendly refrigerants according to
	conditioning	application in various types of refrigeration systems.
	Systems	b. Design and analyze low temperature refrigeration systems.
	(ME 726)	c. Design and analyze the refrigeration systems for various
		applications
		d. Evaluate the refrigeration systems to improve the performance
		e. Compute various cooling loads and heating loads for air
		conditioning systems, cold storage plants etc.
		f. Design the residential, commercial and industrial air conditioning
		plants.
		g. Design air distribution systems for air conditioning plants.
()		

Thermal Power	a.	Student able to decide feasibility of co-generation system and
Plant Engineering - II	u.	match power plant for particular situation.
(ME 724)	b.	Employ computer analysis of the steam cycle having reheat,
(IVIE 724)	υ.	
		regeneration or combined arrangement, decide the method of
		efficiency improvement
	C.	Design natural, forced, induced draught system for given power
		plant/boiler.
	d.	Student able to identify the leakage/losses of energy in power
		plant and Apply various methods to reduce/stop energy losses
Laboratory Practice	a.	Students will be able to develop experimental skill and skill to
(ME 728)		analyze the experimental data and to interpret the results of
		thermal systems for various applications
	b.	Students will get exposure to state of art laboratories like
		cryogenics Lab., Reacting Gas dynamics Lab, Sophisticated
		instrumentation lab, I.C Engines Lab., Refrigeration Lab.,and
		Heat transfer Lab etc.
Theory & Design of	a.	Awareness of applications of cryogenics for a common man,
Cryogenic Systems		scientists & engineers.
Elective - II	b.	Selection of suitable cryogen and material for development of
(ME736)		cryogenic system for a particular application.
	с.	Design and analysis of gas liquefaction system and cryogenic
	0.	refrigeration systems including cryocoolers.
	d.	Selection of proper cryogenic insulating material and designing
	u.	of cryogenic insulation.
	e.	Selection of appropriate sensors and measurement system.
	f.	Analysis and design of gas purification and separation system
		using cryogenics.
	g.	Selection and designing of storage, handling and transfer
		systems for cryogens.
	h.	Designing of vacuum system.

3 rd	Dissertation	a.	Student will be able to identify technical problem and search
Semester	Preliminaries		related knowledge resources.
	(ME 801)	b.	Student will be able to demonstrate their technical and
			managerial skill for conducting experiments, analytical work and
			handling latest instruments and equipments.
		c.	Student will be able to apply research plan methodology by
			latest packages.
		a.	Student will be able to exhibit their communication and
			presentation skill for dissertation report.
	Seminar	a.	Student will be able to identify topic for importance of presence.
	(ME 803)	b.	Student will be able to search knowledge resource related with
			topic and related areas.
		c.	Student will be able to demonstrate skill of compiling data,
			subject matter, analysis of data and case studies.
		d.	Student will be capable to communicate and present prepared
			report.
4 th	Dissertation	a.	Student will be able to identify problem and search related
semester	(ME 802)		knowledge resources.
		b.	Student will be able to demonstrate their technical and
			managerial skill for conducting experiments, analytical work and
			handling latest instruments and equipments.
		c.	Student will be able to apply research plan methodology by
			latest packages.
		d.	Student will be able to exhibit their communication and
			presentation skill for dissertation report.