Department of Electronics and Communication Engineering

Periyar Nagar, Vallam Thanjavur - 613 403, Tamil Nadu, IndiaPhone: +91 - 4362 - 264600Fax: +91- 4362 - 264660Email: headece@pmu.eduWeb: www. pmu.edu

Board of Studies in Electronics and Communication Engineering

CURRICULUM (I – VIII Semesters) & SYLLABUS (I –IV Semesters)

Regulation 2018

(For the candidates admitted from 2018-19 onwards Based on Outcome Based Education)

for

B.Tech (Electronics and Communication Engineering) DEGREE PROGRAMME

Board of studies in ECE (With effect from 26.6.2018 onwards)

Page 1

VISION	To be a University of global dynamism with excellence in knowledge and
	innovation ensuring social responsibility for creating an egalitarian society.

MISSION	UM1	Offering well balanced programmes with scholarly faculty and state-of-art	
		facilities to impart high level of knowledge.	
	UM2	Providing student - centered education and foster their growth in critical	
		thinking, creativity, entrepreneurship, problem solving and collaborative	
		work.	
	UM3	Involving progressive and meaningful research with concern for	
		sustainable development.	
	UM4 Enabling the students to acquire the skills for globa		
	UM5	Inculcating Universal values, Self respect, Gender equality, Dignity and	
		Ethics.	

CORE VALUES

- ♣ Student centric vocation
- 4 Academic excellence
- 🚽 Social Justice, equity, equality, diversity, empowerment, sustainability
- ♣ Skills and use of technology for global competency.
- **4** Continual improvement
- Leadership qualities.
- Societal needs
- ↓ Learning, a life long process
- 🗍 Team work
- ♣ Entrepreneurship for men and women
- 4 Rural development
- **H** Basic, Societal, and applied research on Energy, Environment, and Empowerment.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VISION	To be an innovative leading department in the domain of Electronics and
	Communication Engineering in promoting academic growth by offering UG, PG and
	Ph.D Programmes to augment the industrial and societal needs through cutting edge
	research activities

MISSION	DM1	To offer UG, PG and Ph.D programmes in Electronics and Communication Engineering through State-of-art facilities and Technology Enabled Teaching Methodologies.
	DM2	To produce Exemplary Electronics and Communication Engineers to meet the contemporary requirements of the industries and institutions.
	To excel in research and development activities along with establishing collaborative research ventures and linkages with leading organizations.	
	DM4	To cultivate entrepreneurial skill and concern for society among students.

Table: 1 Mapping of University Mission (UM) and Department Mission (DM)

	UM1	UM2	UM3	UM4	UM5
DM1	3	2	0	1	1
DM2	1	2	1	3	1
DM3	1	1	3	3	0
DM4	0	1	1	1	3
Total	5	6	4	8	5

3 – High

1-Low 2- Medium

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1	Graduates will be successful Electronics and Communication Engineering Professionals in industries, higher education and research.
PEO2	Graduates will be technically competent in identifying, analyzing and creating appropriate Electronics and Communication Engineering solutions to become an entrepreneur.
PEO3	Graduates will work as a member and lead following ethical practices.
PEO4	Graduates will strive to develop their knowledge and skills throughout their career for the benefit of the society.

 Table: 2 Mapping of Program Educational Objectives (PEOs) with Department Mission (DM)

PEO / DM	DM1	DM 2	DM 3	DM4
PEO 1	3	2	1	1
PEO 2	2	3	1	1
PEO 3	0	2	2	2
PEO 4	0	1	1	3
	5	8	5	7

1- Low 2 – Medium

3-High

GRADUATE ATTRIBUTES

- 1. **Knowledge base for Engineering:** Demonstrate competence in mathematics, natural sciences, engineering fundamentals and specialized engineering knowledge appropriate to the program.
- 2. **Problem Analysis:** Identify, formulate, analyze and solve diverse engineering problems.
- 3. **Design:** Solution for complicated open-ended engineering problems and design the components with appropriate standards to meet specified needs with proper attention to public health, safety, environment and society.
- 4. **Experimental Investigation:** Technical skills to conduct investigation, interpretation of observed data and provide solution for multifaceted problems.
- 5. **Modern Engineering tools usage**: Acquire, select, manipulate relevant techniques, resources and advanced engineering ICT tools to operate simple to complex engineering activities.
- 6. **Impact of engineering on society:** Provide a product / project for use by the public towards their health, welfare, safety and legal issues to serve the society effectively.
- 7. **Environment and Sustainability:** Design eco-friendly and sustainable products in demonstrating the technology development to meet present and future needs.
- 8. **High Ethical Standards:** Practice ethical codes and standards endorsed by professional engineers.
- 9. Leadership and team work: Perform as an individual and as a leader in diverse teams and in multi-disciplinary scenarios.
- 10. **Communication Skills:** Professional communication with the society to comprehend and formulate reports, documentation, effective delivery of presentation and responsible to clear instructions.
- 11. **Project management and Finance:** Appropriate in incorporating finance and business practices including project, risk and change management in the practice of engineering by understanding their limitations.

12. Life-long learners: Update the technical needs in a challenging world in equipping themselves to maintain their competence.

PROGRAM OUTCOMES (POs)

- 1. Able to apply the knowledge of Mathematics, Science, Engineering and Technology in the field of Electronics and Communication Engineering
- 2. Capable to identify and analyse the Electronics and Communication engineering problems.
- 3. Proficient to provide solutions to meet the specific needs of the public health, safety, environment and society.
- 4. Competent to conduct experiments, interpret the data and compare the performance and provide solutions for complex problems.
- 5. Adept to handle modern Electronics and Communication Engineering tools, equipments and software.
- Skillful to design Electronics and Communication products and validate by analysis and test for the benefit of the society towards safety and legal issues.
- 7. Efficient to develop a Electronics and Communication system or process to meet the economical growth, eco friendly environment and sustainability.
- 8. Instill to integrate professional, ethical and social responsibility in all walks of life.
- 9. Masterful to lead the group activities or as a team member for best outputs.
- 10. Effective to comprehend and formulate reports, deliver presentations and respond to the queries with clear ideas.
- 11. Capable to incorporate business practices and project management for the economical growth of the nation.
- 12. Able to update technical knowhow and engage in lifelong learning to meet the challenges of the modern world.

PROGRAMME SPECIFIC OUTCOMES (PSOS)

- 1. Able to design analog and digital electronic systems.
- 2. Competent to provide solutions in the field of Radio Frequency Communication.

PO/G	GA											
Α	1	2	3	4	5	6	7	8	9	10	11	12
PO1	3	1	0	0	1	0	0	0	0	0	0	0
PO2	1	3	1	1	1	0	0	0	0	0	0	0
PO3	1	1	3	1	1	0	0	0	0	0	0	0
PO4	1	1	1	3	1	0	0	0	0	0	0	0
PO5	1	1	1	1	3	0	0	0	0	0	0	0
PO6	1	1	1	1	1	3	0	0	0	0	0	0
PO7	1	1	1	1	1	1	3	1	0	0	0	0
PO8	0	0	0	0	0	1	1	3	1	0	0	0
PO 9	0	0	0	0	0	0	0	0	3	1	0	0
PO10	0	0	0	0	0	0	0	0	1	3	1	0
PO11	1	1	1	0	1	0	0	0	0	0	3	0
PO12	1	1	1	1	1	0	0	0	0	0	0	3
PSO1	2	2	2	2	2	2	2	0	0	0	0	2
PSO2	2	2	2	2	2	2	2	0	0	0	0	2

Mapping of Program Outcomes (POs) with Graduate Attributes (GAs)

0-Relation 1- Low Relation 2 – Medium Relation **3-High Relation**

Table 3 Mapping of Program Outcomes (POs) with Program Educational Objectives (PEOs)

PEO /	РО	PO	РО	PO	PO	PSO	PSO							
РО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
PEO 1	3	3	2	3	3	2	1	0	0	1	2	0	2	2
PEO 2	2	3	2	3	3	2	2	0	1	3	2	3	2	2
PEO 3	0	0	1	0	0	1	2	1	3	0	3	3	2	2
PEO 4	2	2	1	1	2	3	2	3	1	1	3	0	2	2

0-No Relation 1- Low Relation 2 – Medium Relation

3-High Relation

Board of studies in ECE (With effect from 26.6.2018 onwards)

STRUCTURE OF B.Tech ELECTRONICS AND COMMUNICATION ENGINEERING PROGRAMME

S. No	Торіс	Symbol	Credits
1.	Humanities and Social Sciences including	HSMC	10
	Management		
2.	Basic Sciences	BSC	27
3.	Engineering Sciences including workshop, drawing,	ESC	16
	basics of Electrical/mechanical/computer etc.		
4.	Professional Subjects: Subjects relevant to chosen	PCC-ECE	61
	specialization/branch and minor course		
5.	Professional Elective courses relevant to chosen	PEC-ECE	18
	specialization/branch		
6.	Open Subjects: Electives from other technical and/or	OEC	15
	emerging subjects		
7.	Project work, seminar and internship in industry or	PROJ	13
	elsewhere		
8.	Mandatory Courses [Induction Program, Indian	MC	0
	Constitution, Environmental Studies, Disaster		
	Management, Cyber Security]		
	Total		160

HUMANITIES & SOCIAL SCIENCES INCLUDING MANAGEMENT

Sl.	Code No.	Subject	Semester	Credits
No				
1.	XGS205	English	Π	2
2.	XGS209	English Lab	Π	1
3.	XGS306	Effective Technical Communication	III	2
4.	XUM601	Economics for Engineers	VI	3
	XEP706	Entrepreneurship Development	VII	2
		TOTAL		10

BASIC SCIENCE COURSES

Sl.	Code No.	Subject	Semester	Credits
No				
1.	XMA101	Calculus and Linear Algebra	Ι	4
2.	XAP102	Introduction to Electromagnetic Theory	Ι	4
3	XAP106	Introduction to Electromagnetic Theory Lab	Ι	1.5
4.	XMA201	Calculus, Ordinary Differential Equations and Complex Variable	Π	4
5.	XAC202	Chemistry-I	Π	4
6.	XAC207	Chemistry-I Lab	Π	1.5
7.	XMA301	Transforms and Partial Differential Equations	III	4
8.	XMA401	Probability Theory and Stochastic Processes	IV	4
		TOTAL		27

ENGINEERING SCIENCE COURSES

Sl. No	Code No.	Subject	Semester	Credits
1.	XBE103	Basic Electrical Engineering	Ι	4
2.	XEG104	Engineering Graphics and Design	Ι	3
3.	XBE107	Basic Electrical Engineering Lab	Ι	1
4.	XCP203	Programming for Problem Solving	II	3
5.	XBW204	Workshop	II	3
6.	XCP208	Programming for Problem Solving Lab	II	2
		TOTAL		16

PROFESSIONAL CORE COURSES

Sl. No	Code No.	Subject	Semester	Credits
1.	XEC302	Electronic Devices	III	3
2.	XEC303	Digital System Design	III	3
3.	XEC304	Signals and Systems	III	3
4.	XEC305	Network Theory	III	3
5.	XEC308	Electronics Devices and Networks Lab	III	1
б.	XEC309	Digital System Design Lab	III	1
7.	XEC402	Electrodynamics and Electromagnetic Waves	IV	3
8.	XEC403	Transmission Lines and Waveguides	IV	3
9.	XEC404	Analog Communication	IV	3
10.	XEC405	Electronic Circuits	IV	3
11.	XEC406	Microprocessors and Microcontrollers	IV	3
12.	XEC407	Electronic Circuits Lab	IV	1
13.	XEC408	Microprocessors and Microcontrollers Lab	IV	1
14.	XEC501	Analog Integrated Circuits	V	3
15.	XEC502	Digital Communication	V	3
16.	XEC503	Computer Architecture	V	3

17.	XEC504	Digital Signal Processing	V	3
18.	XEC507	Analog Integrated Circuits Lab	V	1
19.	XEC508	Analog and Digital Communication Lab	V	1
20.	XEC509	Digital Signal Processing Lab	V	1
21.	XEC602	Control Systems	VI	3
22.	XEC603	Antennas and Wave propagation	VI	3
23.	XEC607	Embedded Systems Lab	VI	1
24.	XEC608	Mini Project - Electronic System Design	VI	2
25.	Minor	Raspherry Pi and Python Programming	VI	1
	Course	Raspoorty IT and I yolon I togramming		
26.	XEC701	VLSI Design	VII	3
27.	XEC707	Microwave & Fiber Optics Lab	VII	1
28.	XEC708	VLSI Design Lab	VII	1
		TOTAL	•	61

PROFESSIONAL ELECTIVE COURSES

Sl. No	Code No.	Subject	Semester	Credits
1	PE-1	Bio-Medical Electronics	V	3
		Power Electronics	-	
		Nano electronics		
2	PE-2	Embedded Systems	VI	3
		CMOS Design		
		Scientific Computing		
3	PE-3	Microwave Theory and Techniques	VII	3
		Introduction to MEMS		
		Mixed Signal Design		
4	PE-4	Fiber Optic Communication	VII	3
		Satellite Communication		
		High Speed Electronics		

Board of studies in ECE (With effect from 26.6.2018 onwards)

5	PE-5	Mobile Communication and Networks	VIII	3
		Computer Networks		
		Wireless Sensor Networks		
6	PE-6	Speech and Audio Processing	VIII	3
		Adaptive Signal Processing		
		Digital Image & Video Processing		
		Total		18

OPEN ELECTIVE COURSES FOR ECE

Sl. No	Code No.	Subject	Semester	Credits
1.	XECOE1	Open Elective - 1	V	3
2.	XECOE2	Open Elective – 2	VI	3
3.	XECOE3	Open Elective – 3	VII	3
4.	XECOE4	Open Elective - 4	VII	3
5.	XECOE5	Open Elective - 5	VIII	3
		TOTAL		15

PROJECT AND IN- PLANT TRAINING

Sl. No	Code No.	Subject	Semester	Credits
	XEC708	Project Stage – 1	VII	4
	XEC805	Project Stage – 2	VIII	8
		In plant Training	VII	1
		Total		13

OPEN ELECTIVE COURSES FOR OTHER BRANCHES

Sl.	Code No.	Code No.SubjectSemester						
No								
1.	XECOE1	Entertainment Electronics and Management	V/ VI/	3				
			VII/					
			VIII					
	XECOE2	Industrial Electronics	V/ VI/					
			VII/					
			VIII					
		TOTAL	1	3				

MANDATORY COURSES

Sl.	Code No.	Subject	Semester	Credits
No				
1		Induction Program	I	0
2		Indian Constitution	II	0
3		Environmental Sciences	III	0
4		Disaster Management	VI	0
5		Cyber Security	VII	0
		Total	·	0

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING REGULATIONS – 2018

(Applicable to the students admitted from the Academic year 2018-19)

SEMESTER I

Course	Name of the Course		Cı	redits		Hours			
Code		L	Т	Р	С	L	Τ	P	Total
XMA101	Calculus and Linear Algebra	3	1	0	4	3	1	0	4
XCP102	Programming for Problem Solving	3	0	2	5	3	0	4	7
XGS103	English	2	0	1	3	2	0	2	4
XAC104	Applied Chemistry for Engineers	3	1	1	5	3	1	2	6
XWP105	Workshop Practices	1	0	2	3	2	0	4	6
	Total	12	2	6.5	20	13	2	13	27

Total Credits – 20

SEMESTER II

Course	Name of the Course Credits							Hours				
Code		L	Т	Р	С	L	Т	Р	Total			
XMA201	Calculus, Ordinary Differential Equations	3	1	0	4	3	1	0	4			
	and Complex Variable											
XES202	Environmental Science	0	0	0	0	3	0	0	3			
XBE203	Electrical and Electronics Engineering	3	1	1	5	3	1	2	6			
	Systems											
XAP204	Applied Physics for Engineers	3	1	2	6	3	1	4	8			
XEG205	Engineering Graphics	1	0	2	3	1	0	4	5			
	Total	12	2	6.5	18	13	3	9	26			

Total Credits – 18

Course	Category	Course Name		Cre	dits			H	Iours	
Code			L	Т	Р	С	L	Т	Р	Total
XMA301	BS	Transforms and Partial Differential Equations	3	1	0	4	3	1	0	4
XEC302	PC	Electronic Devices	3	0	0	3	3	0	0	3
XEC303	PC	Digital System Design	3	0	0	3	3	0	0	3
XEC304	PC	Signals and Systems	3	0	0	3	3	0	0	3
XEC305	PC	Network Theory	3	0	0	3	3	0	0	3
XES306	MC	Environmental Studies	0	0	0	0	3	0	0	3
XGS307	HSM	Effective Technical Communication	2	0	0	2	2	0	0	2
XEC308	PC	Electronics Devices and Networks Lab	0	0	1	1	0	0	2	2
XEC309	PC	Digital System Design Lab	0	0	1	1	0	0	2	2
		Total	17	1	2	20	20	1	4	25

SEMESTER III

***# Non-credit Course**

Total Credits – 20

SEMESTER IV

Course	Category	Course Name		Cre	dits]	Hours	
Code			L	Т	P	C	L	Τ	Р	Total
XMA401	BS	Probability Theory and Stochastic Processes	3	1	0	4	3	1	0	4
XEC402	PC	Electrodynamicsand Electromagnetic Waves	3	0	0	3	3	0	0	3
XEC403	PC	Transmission Lines and Waveguides	3	0	0	3	3	0	0	3
XEC404	PC	Analog Communication	3	0	0	3	3	0	0	3
XEC405	PC	Electronic Circuits	3	0	0	3	3	0	0	3
XEC406	PC	Microprocessors and Microcontrollers	3	0	0	3	3	0	0	3
XEC407	PC	Electronic Circuits Lab	0	0	1	1	0	0	2	2
XEC408	PC	Microprocessorsand Microcontrollers Lab	0	0	1	1	0	0	2	2
		Total	18	1	2	21	18	1	4	23

Total Credits – 21

SEMESTER V

Course				Cr	edits		Hours				
Code	Category	Course Name	L	Т	Р	С	L	Т	Р	Total	
XEC501	PC	Analog Integrated Circuits	3	0	0	3	3	0	0	3	
XEC502	PC	Digital Communication	3	0	0	3	3	0	0	3	
XEC503	PC	Computer Architecture	3	0	0	3	3	0	0	3	
XEC504	PC	Digital Signal Processing	3	0	0	3	3	0	0	3	
XEC505*	PE	Program Elective – 1	3	0	0	3	3	0	0	3	
XOE506**	OE	Open Elective - 1	3	0	0	3	3	0	0	3	
XEC507	PC	Analog Integrated Circuits Lab	0	0	1	1	0	0	2	2	
XEC508	PC	Analog and Digital Communication Lab	0	0	1	1	0	0	2	2	
XEC509	PC	Digital Signal Processing Lab	0	0	1	1	0	0	2	2	
		Total	18	0	3	21	18	0	6	24	

* Program Elective

Total Credits – 22

** Open Elective SEMESTER VI

Course	Category	Course Name		Cre	edits			Η	ours	
Code		Course Mame	L	Т	Р	С	L	Т	Р	Total
XEC601	PC	Control Systems	3	0	0	3	3	0	0	3
XEC602	PC	Antennas and Wave propagation	3	0	0	3	3	0	0	3
XEC603*	PE	Program Elective – 2	3	0	0	3	3	0	0	3
XOE604**	OE	Open Elective – 2	3	0	0	3	3	0	0	3
XDM605	MC	Disaster Management								
XUM606	HSM	Economics for Engineers	3	0	0	3	3	0	0	3
			0	0	0	0	3	0	0	3
XEC607	PC	Embedded Systems Lab	0	0	1	1	0	0	2	2
XEC608	PC	Mini Project - Electronic System Design	0	0	2	2	0	0	4	4
XECM01	PC	Raspberry Pi and Python Programming	0	0	1	1	0	0	2	2
		Total	15	0	4	19	18	0	8	26

Total Credits – 19

* Program Elective

**** Open Elective**

***# Non-credit Course**

In Plant Training for 21 days

Board of studies in ECE (With effect from 26.6.2018 onwards)

SEMESTER VII

Course	Category	Course Nome		Cre	dits			Hours			
Code		Course Name	L	Т	Р	С	L	Т	Р	Total	
XEC701*	PC	VLSI Design	3	0	0	3	3	0	0	3	
XEC702*	PE	Program Elective -3	3	0	0	3	3	0	0	3	
XEC703*	PE	Program Elective -4	3	0	0	3	3	0	0	3	
XOE704**	OE	Open Elective - 3	3	0	0	3	3	0	0	3	
XEP705	HSM	Entrepreneurship Development	2	0	0	2	2	0	0	2	
XEC707	PC	Microwave & Fiber Optics Lab	0	0	1	1	0	0	2	2	
XEC708	PC	VLSI Design Lab	0	0	1	1	0	0	2	2	
XEC708	Project	Project Phase – I	0	0	4	4	0	0	8	8	
*#	MC	Cyber Security	0	0	0	0	3	0	0	3	
		In plant Training	0	0	1	1	0	0	0	0	
		Total	14	0	7	21	17	0	12	29	

* Program Elective

Total Credits – 21

** Open Elective *# Non-credit Course

SEMESTER VIII

Course Code	Catagory	Carrie Name	Credits Hours L T P C L T P 3 0 0 3 3 0 0 3 0 0 3 3 0 0 3 0 0 3 3 0 0 3 0 0 3 3 0 0 3 0 0 3 3 0 0 3 0 0 3 3 0 0							
Course Code	Category	Course Manie	L	Т	Р	С	L	Т	Р	Total
XEC801*	PE	Program Elective -5	3	0	0	3	3	0	0	3
XEC802*	PE	Program Elective -6	3	0	0	3	3	0	0	3
XOE803**	OE	Open Elective - 4	3	0	0	3	3	0	0	3
XOE804**	OE	Open Elective - 5	3	0	0	3	3	0	0	3
XEC805	Project	Project Phase - II	0	0	8	8	0	0	16	16
		Total	12	0	8	20	12	0	16	28

* Program Elective

Total Credits – 20

**** Open Elective**

Grant Total Credits: 160

In Plant Training of 30 days in the vacation periods is mandatory to complete the graduation.

LIST OF ELECTIVES

Sl.No	CODE NO.	COURSE TITLE	L	Т	Р	С
	XECE01	Bio-Medical Electronics	3	0	0	3
1	XECE02	Power Electronics	3	0	0	3
	XECE03	Nano electronics	3	0	0	3
	XECE04	Embedded Systems	3	0	0	3
	XECE05	CMOS Design	3	0	0	3
2	XECE06	Scientific Computing	3	0	0	3
3	XECE07	Microwave Theory and Techniques	3	0	0	3
	XECE08	Introduction to MEMS	3	0	0	3
	XECE09	Mixed Signal Design	3	0	0	3
4	XECE10	Fiber Optic Communication	3	0	0	3
	XECE11	Satellite Communication	3	0	0	3
	XECE12	High Speed Electronics	3	0	0	3
	XECE13	Mobile Communication and Networks	3	0	0	3
5	XECE14	Computer Networks	3	0	0	3
	XECE15	Wireless Sensor Networks	3	0	0	3
	XECE16	Speech and Audio Processing	3	0	0	3
6	XECE17	Adaptive Signal Processing	3	0	0	3
	XECE18	Digital Image & Video Processing	3	0	0	3

LIST OF OPEN ELECTIVES

CODE NO.	L	Т	Р	С	
	THEORY				
XECOE1	Entertainment Electronics and Management	3	0	0	3

TOTAL CREDITS - 160

Board of studies in ECE (With effect from 26.6.2018 onwards)

FLOW CHART FOR THE ENTIRE PROGRAMME

Sei	mester	Course Name	Cours	e Code	L	Т	Р	С		
	III	Electronic Devices	XE	C302	3	0	0	3		
		Course Outcomes		Domain	Leve	el				
CO1	<i>Define</i> the	principles of semiconductor	physics.	Cognitive	Rem	Remembering				
CO2	Describe the semiconduction	<i>ne operation and characteris</i> ctor diodes.	tics of	Cognitive	Understanding					
CO3	Understand Bipolar Jun	<i>d</i> the operation and Charactenction Transistors.	ristics of	Cognitive	Understanding					
CO4	<i>Explain</i> the MOSFET	e operation and characteristic	cs of	Cognitive	Understanding					
CO5	Discuss the electronic a	e operation and characteristic and optoelectronic diodes	es of power	Cognitive	Unde	erstandi	ing			
CO6	<i>Illustrate</i> th processes.	he Integrated Circuit fabricat	ion	Cognitive	Unde	erstandi	ing			

9 hours

9 hours

9 hours

9 hours

Introduction to Semiconductor Physics: Review of Quantum Mechanics, Electrons in periodic Lattices, E-k diagrams. Energy bands in intrinsic and extrinsic silicon; Carrier transport: diffusion current, drift current, mobility and resistivity; sheet resistance, design of resistors

UNIT 2

Generation and recombination of carriers; Poisson and continuity equation P-N junction characteristics, I-V characteristics, and small signal switching models; Avalanche breakdown, Zener diode, Half wave Rectifier, Full wave Rectifier, Bridge Rectifier and Voltage Regulators.

UNIT 3

Bipolar Junction Transistor, I-V characteristics, NPN and PNP Transistors, Ebers-Moll Model, MOS capacitor, C-V characteristics, Junction Field Transistor, VI Characteristics, MOSFET, I-V characteristics, and small signal models of MOS transistor

UNIT 4

SCR, DIAC, TRIAC, LED, LDR, LCD, Photodiode, Photo Transistor and solar cell;

Board of studies in ECE (With effect from 26.6.2018 onwards)

Integrated circuit fabrication process: oxidation, diffusion, ion implantation, photolithography, etching, chemical vapor deposition, sputtering, twin-tub CMOS process.

HOURS	LECTURE	TUTORIAL	TOTAL
	45	0	45

TEXT BOOKS

1. Robert L. Boylestad and Louis Nashelsky, "Electronics devices and Circuit Theory" 11th Edition, UBS Publishers, New Delhi, 2013.

2. G. Streetman, and S. K. Banerjee, "Solid State Electronic Devices," 7th edition, Pearson, 2014.

3. D. Neamen , D. Biswas "Semiconductor Physics and Devices," McGraw-Hill EducationJacob

4. Millman and Christos C.Halkias, "Electronic Devices and Circuits" 3rd Edition, Tata McGraw Hill,New Delhi, 2010.

REFERENCES

1.C.T. Sah, "Fundamentals of solid state electronics," World Scientific publishing Co. Inc, 1991.

2. S. M. Sze and K. N. Kwok, "Physics of Semiconductor Devices," 3rd edition, John Wiley &Sons, 2006.

3. Y.Tsividis and M. Colin, "Operation and Modeling of the MOS Transistor," Oxford University .Press, 2011.

4. David A. Bell ,"Electronic devices and circuits", Prentice Hall of India, 2004.

5. S.Salivahanan, "Electronics devices and circuits". 2nd Edition, Tata McGraw Hill, 2008.

E REFERENCES

- 1. <u>http://www.rtna.ac.th/departments/elect/Data/EE304/Electronic%20Devices%20and%20Circuit%20</u> <u>Theory.pdf</u>
- <u>http://nptel.ac.in/courses/117103063/</u> (Prof. Chitralekha Mahanta, NPTEL, Basic Electronics, IIT-Guwahati)
- <u>http://nptel.ac.in/video.php?subjectId=117103063</u> (Prof. Gautam Barua, NPTEL, Basic Electronics, IIT-Guwahati)
- 4. <u>http://nptel.ac.in/courses/117101106/</u> (Prof. A N chandorkar, NPTEL, Analog Electronics, IIT-

Board of studies in ECE (With effect from 26.6.2018 onwards)

Bon	nbay)													
	<u>CO Vs PO Mapping</u>													
	PO 1	PO 2	PO 2	PO	PO 5	PO	PO 7	PO	PO	PO	PO	PO 12	PSO 1	PSO 2
CO 1	3	2	3	1	1	1	1	o 1	9	10	11	1	2	0
CO 2	3	2	1	1	1	1	1	1				1	2	0
CO 3	3	2	1	1	1	1	1	1				1	2	0
CO 4	3	2	1	1	1	1	1	1				1	2	0
CO 5	3	2	1	1	1	1	1	1				1	2	0
CO6	3	2	1	1	1	1	1	1				1	2	0
	18	12	6	6	6	6	6	6				6	12	0

Correlation level - 1 - Low , 2 - Medium, 3 - High

Seme	ster	Course Name	Course	Code	L	Т	P	C
II	[Digital System Design	XEC3	303	3	0	0	3
		Course Outcomes		Domain		Lev	el	1
CO1	Understa	und the fundamental concepts	and techniques	Cognitive	Un	dersta	andin	g
	used in d	igital electronics.						
CO2	Demonst	trate the operation of Karnaugh	n map reduction	Cognitive	Un	dersta	andin	g
	method.							
CO3	Design	and Analyze modular	combinational	Cognitive	Re	emem	berin	g
	circuits	with MUX/DEMUX, Decod	er, Encoder.		1	Analy	zing	
CO4	Design	and Analyze synchronous s	sequential logic	Cognitive	Re	emem	berin	g
	circuits.				1	Analy	zing	
CO5	Understa	and and Analyze logic	families and	Cognitive	Un	dersta	andin	g
	semicond	luctor memories.			1	Analy	zing	
CO6	Use HDI	L and appropriate EDA tools	for digital logic	Cognitive		Apply	ving	
	design ar	nd simulation.						

Logic Simplification and Combinational Logic Design: Review of Boolean Algebra and De Morgan's Theorem, SOP & POS forms, Canonical forms, Karnaugh maps up to 6 variables, Binary codes, Code Conversion.

UNIT 2

MSI devices : Comparator, Multiplexer, Demultiplexer, Encoder, Decoder, Driver & Multiplexed Display, Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder, Barrel shifter and ALU

UNIT 3

Sequential Logic Design: Building blocks S-R, JK and Master-Slave JK FF, Edge triggered FF, Ripple and Synchronous counters, Shift registers, Finite State Machines, Design of synchronous FSM, Algorithmic State Machines charts. Designing synchronous circuits : Pulse train generator, Pseudo Random Binary Sequence generator, Clock generation

UNIT 4

Board of studies in ECE (With effect from 26.6.2018 onwards)

9 hours

9 hours

9 hours

Logic Families and Semiconductor Memories: TTL NAND gate, Specifications, Noise margin, Propagation delay, fan-in, fan-out, Tristate TTL, ECL, CMOS families and their interfacing, Memory elements, Concept of Programmable logic devices: FPGA. Logic implementation using Programmable Devices.

UNIT 5

9 hours

VLSI Design flow: Design entry: Schematic, FSM & HDL, different modeling styles in VHDL, Data types and objects, Dataflow, Behavioral and Structural Modeling, Synthesis and Simulation VHDL constructs and codes for combinational and sequential circuits.

HOURS	LECTURE	TUTORIAL	TOTAL
	45	0	45

TEXT Books:

1. R.P. Jain, "Modern digital Electronics", Tata McGraw Hill, 4th edition, 2009.

2. Douglas Perry, "VHDL", Tata McGraw Hill, 4th edition, 2002.

3.W.H. Gothmann, "Digital Electronics- An introduction to theory and practice", PHI, 2nd edition ,2006.

4. D.V. Hall, "Digital Circuits and Systems", Tata McGraw Hill, 1989

5. Charles Roth, "Digital System Design using VHDL", Tata McGraw Hill 2nd edition 2012.

REFERENCES

1.M. Morris Mano, and Michael D.Ciletti "Digital Design: with an Introduction to Verilog HDL", VHDL, and SystemVerilog (6th Edition) 6th Edition, Pearson/Prentice Hall of India Pvt. Ltd., New Delhi, 2017.

2. Thomas L. Floyd, "Digital Fundamentals, 11th Edition, Pearson Education", Inc, NewDelhi, 2014

E REFERENCES

1.Lecture series on Digital Circuits & Systems by Prof.S.Srinivasan, Department of Electrical Engineering, IIT Madras.For more details on NPTEL visit <u>http://nptel.ac.in</u>

2.http://nptel.ac.in/courses/117106114/

3.http://nptel.ac.in/courses/117106086/1

CO Vs PO Mapping

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	3	2	2	2	1	1				2	2	0
CO 2	3	3	3	2	2	2	1	1				2	2	0
CO 3	3	3	3	2	2	2	1	1				2	2	0
CO 4	3	3	3	2	2	2	1	1				2	2	0
CO 5	3	3	3	2	2	2	1	1				2	2	0
CO6	3	2	2	1	3	1	1	1				2	2	0
	18	17	17	11	13	11	6	6				12	12	0

Correlation level - 1 - Low, 2 - Medium, 3 - High

Semeste	er	Course Name	Course	e Code	L	Т	Р	C	
III		Signals and Systems	XEC	C304	3	0	0	3	
		Course Outcomes	l	Domain		Leve	el	1	
CO1	Descri	be and Classify the signals & sy	ystems.	Cognitive	Reme	mberi	ng		
					Understanding				
CO2	Illustra	tte the properties of Linear S	Shift Invariant	Cognitive	Under	standi	ing		
	System	IS							
CO3	Apply	FT and DFT and Analyze the	properties of	Cognitive	Apply	ving			
	LSI sys	stems.			Analy	zing			
CO4	Сотри	te Laplace Transform to study	y the response	Cognitive	Apply	ving			
	of LSI	systems							
CO5	Interpo	plate Z transform to study the p	performance of	Cognitive	Apply	ving			
	Discret	e Time Signals							
CO6	Interpr	et the relation between the co	ontinuous and	Cognitive	Under	standi	ing		
	discret	e time signals by Sa	mpling and						
	Recons	struction.							

9 hours

An Introduction to Signals and Systems: Energy and power signals, continuous and discrete time signals, continuous and discrete amplitude signals. System properties: linearity, additivity and homogeneity, shift-invariance, causality, stability, realizability.

UNIT 2

9 hours

9 hours

Linear Shift Invariant (LSI) systems, impulse response and step response, convolution, input-output behavior with aperiodic convergent inputs. Characterization of causality and stability of linear shift-invariant systems. System representation through differential equations and difference equations.

UNIT 3

Periodic and semi-periodic inputs to an LSI system, the notion of a frequency response and its relation to the impulse response, Fourier series representation, the Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete-Time Fourier Transform (DTFT) and the

Board of studies in ECE (With effect from 26.6.2018 onwards)

Discrete Fourier Transform (DFT). Parseval's Theorem. The idea of signal space and orthogonal bases. UNIT 4 9 hours

The Laplace Transform, notion of Eigen functions of LSI systems, a basis of Eigen functions, region of convergence, poles and zeros of system, Laplace domain analysis, solution to differential equations and system behavior. The z-Transform for discrete time signals and systems-eigen functions, region of convergence, z-domain analysis.

UNIT 5

9 hours

State-space analysis and multi-input, multi-output representation. The state-transition matrix and its role. The Sampling Theorem and its implications- Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold, and so on. Aliasing and its effects. Relation between continuous and discrete time systems.

HOURS	LECTURE	TUTORIAL	TOTAL
	45	0	45
TEXT			

1. A.V. Oppenheim, A.S. Willsky and I.T. Young, "Signals and Systems", Prentice Hall, 1983.

2. R.F. Ziemer, W.H. Tranter and D.R. Fannin, "Signals and Systems - Continuous and Discrete", 4th edition, Prentice Hall, 1998.

3. Papoulis, "Circuits and Systems: A Modern Approach", HRW, 1980.

4. B.P. Lathi, "Signal Processing and Linear Systems", Oxford University Press, c1998.

5. Douglas K. Lindner, "Introduction to Signals and Systems", McGraw Hill International Edition: c1999.

6.Simon Haykin, Barry van Veen, "Signals and Systems", John Wiley and Sons (Asia) Private Limited, c1998.

7.Robert A. Gabel, Richard A. Roberts, "Signals and Linear Systems", John Wiley and Sons, 1995.

8.M. J. Roberts, "Signals and Systems - Analysis using Transform methods and MATLAB", TMH, 2003.

9.J. Nagrath, S. N. Sharan, R. Ranjan, S. Kumar, "Signals and Systems", TMH New Delhi, 2001.

10. Ashok Ambardar, "Analog and Digital Signal Processing", 2nd Edition, Brooks/ Cole

Board of studies in ECE (With effect from 26.6.2018 onwards)

Publishing Company (An international Thomson Publishing Company), 1999.

REFERENCES

1.John G. Proakis and D.G. Manolakis, Digital Signal Processing: Principles, Algorithms And Applications, Prentice Hall, 1997.

2.D.J.DeFatta, J. G. Lucas and W.S.Hodgkiss, Digital Signal Processing, John Wiley& Sons, 1988

E REFERENCES

https://onlinecourses.nptel.ac.in /noc18_ee02/preview

CO Vs PO Mapping

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	2	1	1	1	1	1				1	1	1
CO 2	3	3	2	1	1	1	1	1				1	1	1
CO 3	3	3	2	1	1	1	1	1				1	1	1
CO 4	3	3	2	1	1	1	1	1				1	1	1
CO 5	3	3	2	1	1	1	1	1				1	1	1
CO6	3	3	2	1	1	1	1	1				1	1	1
	18	18	12	6	6	6	6	6				6	6	6

Correlation level - 1 - Low, 2 - Medium, 3 - High

Se	emester	Course Name	Cours	e Code	L	Т	Р	C			
	III	Network Theory	XE	C305	3	0	0	3			
		Course Outcomes		Domain		Leve	el				
CO1	Explain the	basic concepts and laws of DC	and AC	Cognitive	Unde	rstand	ing				
	electrical net	works.									
CO2	Understand	basics electrical circuits with n	odal and	Cognitive	Unde	rstand	ing				
	mesh analysi	is.									
CO3	Appreciate e	electrical network theorems		Cognitive	Unde	rstandi	ing				
CO4	Interpolate S	Steady state and transient behave	vior of	Cognitive	Anal	yzing					
	networks.										
CO5	Distinguish 1	RL, RC and RLC networks and a	Analyze their	Cognitive	Unde	rstand	ing				
	characteristic	S		Analyzing	Analyzing						
CO6	Classify and	Design different types of filte	ers	Cognitive	Unde	Understanding					
				Analyzing	Creat						

9 hours

Node and Mesh Analysis, matrix approach of network containing voltage and current sources, and reactance, source transformation and duality.

Network theorems: Superposition, reciprocity, Thevenin's, Norton's, Maximum power Transfer, compensation and Tallegen's theorem as applied to AC. circuits. Trigonometric and exponential

UNIT 2

Fourier series: Discrete spectra and symmetry of waveform, steady state response of a network to non-sinusoidal periodic inputs, power factor, effective values, Fourier transform and continuous spectra, three phase unbalanced circuit and power calculation.

UNIT 3

Laplace transforms and properties: Partial fractions, singularity functions, waveform synthesis, analysis of RC, RL, and RLC networks with and without initial conditions with Laplace transforms evaluation of initial conditions.

UNIT 4

Transient behavior, concept of complex frequency, Driving points and transfer functions poles and zeros of admittance function, their properties, sinusoidal response from pole-zero locations,

9 hours

9 hours

convolution theorem

UNIT 5

Two four port network and interconnections, Behaviors of series and parallel resonant circuits, Introduction to low pass, high pass, band pass and band reject filters.

HOURS	LECTURE	TUTORIAL	TOTAL
	45	0	45

TEXT Books:

1.Van, Valkenburg.; "Network analysis"; Prentice hall of India, 2000

2.Sudhakar, A., Shyammohan, S. P.; "Circuits and Network"; Tata McGraw-Hill New Delhi, 1994

3. A William Hayt, "Engineering Circuit Analysis" 8th Edition, McGraw-Hill Education; Indian edition 2013

REFERENCES

1. Franklin F.Kuo, "Network Analysis and Synthesis", 2 nd Edition, John Wiley & amp; Sons, 2003.

2. T.Nageswara Rao, "Electric Circuit Analysis", A.R Publications, Sirkali , Tamil Nadu, 2009

3. Robert L. Boylestad, "Introductory Circuit Analysis", Pearson Education, 12 th Edition, 2010.

4. 2. Robert L. Boylestad , "Introductory Circuit Analysis", Pearson Education, 12th Edition, 2010.

5. Joseph A Edminister, Mahmood Nahvi, "Electric Circuits", 3 rd Edition, Schaum's Outline Series, Tata McGraw Hill, 2000.

E REFERENCES

 www.nptel.iitm.ac.in/108102042/lec1.pdf, (NPTEL Lecture Series on Circuit Theory by 'Prof.S.C Dutta Roy', Department of Electrical Engineering IIT Delhi).

CO Vs PO Mapping

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	3	2	1	1	1	1				2	2	1
CO 2	3	3	3	2	1	1	1	1				2	2	1
CO 3	3	3	3	2	1	1	1	1				2	2	1
CO 4	3	3	3	2	1	1	1	1				2	2	1
CO 5	3	3	3	2	1	1	1	1				2	2	1
CO6	3	3	3	2	1	1	1	1				2	2	1
	18	18	18	12	6	6	6	6				12	12	6

Correlation level - 1 - Low, 2 - Medium, 3 - High

XEP306 Entrepreneurship Development (Common Paper)

***# Environmental Studies (Common Paper)**

S	emester	Course Name	Course Code	L	Т	Р	C
	III	Electronic Devices and Networks Lab	XEC308	0	0	1	1
	·	Course Outcomes	Domain		Le	vel	
CO1	Construct a	and Verify the characteristics of	Psychomotor	Mech	nanisı	n	
	semiconductor	r diodes.	Affective	Inter	nalizi	ng va	lues
CO2	Construct and	d Verify the characteristics of Transistors	Psychomotor	Mech	nanisı	n	
			Affective	Inter	nalizi	ng va	lues
CO3	Construct a	and study the characteristics of Opto	Psychomotor	Mech	nanisı	n	
	electronic dio	des					
CO4	Construct and	d study the output of Rectifiers	Psychomotor	Mech	nanisı	n	
CO5	Construct	and Verify the characteristics of	Psychomotor	Mech	nanisı	n	
	Reciprocity an	nd Superposition Theorems	Affective	Inter	nalizi	ng va	lues
CO6	Construct and	d Verify the characteristics of filters and	Psychomotor	Mech	nanisı	n	
	resonance circ	cuits.	Affective	Inter	nalizi	ng va	lues

LIST OF EXPERIMENTS

- 1. V-I characteristics of PN junction diode and Zener diode.
- 2. V-I characteristics of Input and Output characteristics of Common base configuration of BJT.
- 3. Input and Output characteristics of Common emitter configuration of BJT.
- 4. Drain and Transfer characteristics of JFET.
- 5. Characteristics of LED and LDR.
- 6. Design and implementation of Half wave and full wave rectifiers.
- 7. Verification of Reciprocity and Superposition Theorem.
- 8. Frequency response of low pass and high pass filter
- 9. Frequency response of series resonance circuit
- 10. Frequency response of parallel resonance circuit

HOURS	PRACTICAL	TOTAL
	45	45

CO Vs PO Mapping

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	3	3	2	2	2	1	2	2	1	2	2	0
CO 2	3	3	3	3	2	2	2	1	2	2	1	2	2	0
CO 3	3	3	3	3	2	2	2	1	2	2	1	2	2	0
CO 4	3	3	3	3	2	2	2	1	2	2	1	2	2	0
CO 5	3	3	3	3	2	2	2	1	2	2	1	2	2	0
CO6	3	3	3	3	2	2	2	1	2	2	1	2	2	0
	18	18	18	18	12	12	12	6	12	12	6	12	12	0

Correlation level - 1 - Low, 2 - Medium, 3 - High

Sen	nester	er Course Name Course Code L T P C							
	III	Digital System Design Laboratory	XEC309	0	0	1	1		
		Course Outcomes	Domain		Lev	vel			
CO1	Choose th	he logic gates and Use them for vari	ious Psychomotor	Perce	eption	l			
	application	ns	Affective	Rece Phen	iving omen	a			
CO2	Assemble	Adder, Subtractor Magnitude Compara	tors Psychomotor	Resp	onse		1		
	and Verif	y their operation	Affective	Interi	nanzi	ng va	lues		
CO3	Build enco	oder and decoder and study their operation	ns. Psychomotor	Resp	onse				
CO4	Construct	Multiplexer and De-multiplexer.	Psychomotor	Origi	natio	n			
CO5	Design Co	ounters and Shift Registers and demonst	rate Psychomotor	Origi	natio	n			
	their outpu	ıt	Affective	Valu	ing				
CO6	Create di	gital circuits and <i>display</i> the results us	sing Psychomotor	Origi	natio	n			
	VHDL		Affective	Inter	nalizi	ng va	lues		
LIST O	F EXPERI	MENTS:							
1. 5	Study of log	ic gates.							
2. I	Design and i	mplementation of code converters using le	ogic gates						
3. I	Design and i	mplementation of Adders using logic gate	es.						
4. I	Design and i	mplementation Subtractor using logic gate	es.						
5. I	Design and i	mplementation of Magnitude Comparator	·S.						
6. I	Design and i	mplementation of encoder and decoder.							
7. I	Design and i	mplementation of Multiplexer and De-mu	ltiplexer.						
8. I	mplementat	ion of Flip- flops.							
9. (Construction	and verification of counter.							
10. 0	Construction	and verification of shift register.							
11. I	Logic gates	using VHDL.							
12. A	Adder and su	ubtractor using VHDL							
		HOURS	PRACTICAL		ТО	TAL			
			45			45			

CO Vs PO Mapping

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	3	3	2	2	2	1	2	2	1	2	2	0
CO 2	3	3	3	3	2	2	2	1	2	2	1	2	2	0
CO 3	3	3	3	3	2	2	2	1	2	2	1	2	2	0
CO 4	3	3	3	3	2	2	2	1	2	2	1	2	2	0
CO 5	3	3	3	3	2	2	2	1	2	2	1	2	2	0
CO6	3	3	3	3	2	2	2	1	2	2	1	2	2	0
	18	18	18	18	12	12	12	6	12	12	6	12	12	0

Correlation level - 1 - Low, 2 - Medium, 3 - High

Semester	Course Name	Course Code	L	Τ	P	С				
IV	Electrodynamics and Electromagnetic waves	XEC402	3	0	0	3				
	Course Outcomes	Domain Level								
CO1	<i>Classify</i> the basic Electrostatic theorems and laws.	Cognitive	Applying							
CO2	Discuss the behavior of Electric fields in matter and Polarization concepts.CognitiveUnderstand									
CO3	<i>Classify</i> the basic Magneto static theorems and laws and <i>Infe</i> r the magnetic properties of matter.	Cognitive	Appl	ying						
CO4	<i>Summarize</i> the concepts of electrodynamics and <i>Derive</i> the Maxwell's equations.	Cognitive	Unde	erstan	ding					
CO5	<i>Familia</i> r with Electromagnetic wave propagation	Unde	Understanding							
CO6	<i>Explain</i> Electromagnetic wave polarization.	Cognitive	tive Understandi							

9 hours

Electrostatics. Coulomb'slaw. Gauss's law and applications. Electric potential. Poisson's and Laplace equations. Method of images. Multipole Expansion.

UNIT 2

9 hours

9 hours

Electrostatic fields in matter. Dielectrics and electric polarization. Capacitors with dielectric substrates. Linear dielectrics. Force and energy in dielectric systems.

UNIT 39 hoursMagneto statics. Magnetic fields of steady currents.Biot-Savart's and Ampere'slaws. Magnetic vector potential. Magnetic properties of matter.

UNIT 4

Electrodynamics. Flux rule for motional emf. Faraday's law. Self and mutual inductances.

Maxwell's Equations. Electromagnetic Boundary conditions. Poynting theorem.

Electromagnetic wave propagation. Uniform plane waves. Wave polarization. Waves in matter. Reflection and transmission at boundaries. Propagation in an ionized medium.

HOUR	S	LECTURE	TUTORIAL	TOTAL	
		45	0	45	
TEXT	Books:				
1.	D.J.Griffiths, "Introduction to Electrodynamic	cs (3/e)", PHI, 2	2001		
2.	E.C. Jordan & G. Balmain, "Electromagnetic	Waves and Rac	liating Systems",	PHI,	
	1995.				
REFEI	RENCES				
1.	W.H.Hayt, "Engineering Electromagnetics, (7	7/e)", McGraw	Hill, 2006.		
2.	D.K.Cheng, "Field and Wave Electromagnetic	cs, (2/e)", Addi	son Wesley, 1999		
3.	M.N.O.Sadiku,"Principles of Electromagnetic	cs, (4/e)", Oxfor	rd University Pres	s, 2011.	
4.	N.NarayanaRao, "Elements of Engineering E	lectromagnetics	s, (6/e)", Pearson,	2006.	
5.	R.E.Collin, "Foundations for Microwave Eng	ineering (2/e)",	McGraw –Hill, 2	002.	
			UT11 1005		

6. R.E.Collin, "Antennas and Radiowave Propagation", McGraw-Hill, 1985.

E REFERENCES

1. http://nptel.ac.in/courses/115101004/

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	3	2	1	1	1	1				2	0	2
CO 2	3	3	3	2	1	1	1	1				2	0	2
CO 3	3	3	3	2	1	1	1	1				2	0	2
CO 4	3	3	3	2	1	1	1	1				2	0	2
CO 5	3	3	3	2	1	1	1	1				2	0	2
CO6	3	3	3	2	1	1	1	1				2	0	2
	18	18	18	12	6	6	6	6				12	0	12

CO Vs PO Mapping

Correlation level - 1 - Low, 2 - Medium, 3 - High

Semester	Course Name	Course Code	L	Т	Р	С			
IV	Transmission Lines and Waveguides	XEC403	3	0	0	3			
	Course Outcomes	Domain		Lev	el				
CO1	Classify the Guided Wave solutions -TE,	Cognitive	Understanding						
	TM, and TEM.								
CO2	Analyze and design rectangular	Cognitive	Unders	tandin	g				
	waveguides. Analyzin								
CO3	Understand the propagation of	Cognitive	Understanding						
	electromagnetic waves.								
CO4	<i>Evaluate</i> the resonance frequency of cavity	Cognitive	Evaluat	ting					
	Resonators and the associated modal field.								
CO5	Analyze the transmission lines and their	Cognitive	Analyz	ing					
	parameters using the Smith Chart.								
CO6	Apply the knowledge to understand various	Cognitive	Applyin	ng					
	planar transmission lines.								

9 hours

9 hours

Classification of guided wave solutions-TE, TM and TEM waves. Field analysis transmission lines.

UNIT 2

Rectangular and circular waveguides. Excitation of waveguides. Rectangular and circular cavity resonators.

UNIT 3

Transmission line equations. Voltage and current waves. Solutions for different terminations. Transmission-line loading.

UNIT 4

Impedance transformation and matching. Smith Chart, Quarter-wave and half-wave transformers. Binomial and Tchebeyshev transformers. Single, double and triple stub matching

9 hours

Microstriplines, stripline, slot lines, coplanar waveguide and fin line. Micro strip MIC design aspects. Computer- aided analysis and synthesis.

HOURS	LECTURE	TUTORIAL	TOTAL
	45	0	45

TEXT Books:

- 1. D.M.Pozar, "Microwave Engineering (3/e)" Wiley,2004.
- 2. J.D.Ryder, "Networks, Lines and Fields", PHI, 2003.

REFERENCES

- 1. R.E.Collin, "Foundations for Microwave Engineering (2/e)", McGraw-Hill,2002.
- 2. S.Y.Liao, "Microwave Devices and Circuits", (3/e) PHI, 2005.
- J. A. Seeger, "Microwave Theory, Components, and Devices" Prentice-Hall-A division of Simon & Schuster Inc Englewood Cliffs, New Jersy 07632, 1986.

E REFERENCES

- 1. http://nptel.ac.in/courses/117101056/
- 2. http://nptel.ac.in/courses/117101057/12
- 3. http://www.cdeep.iitb.ac.in/webpage_data/nptel/Electrical%20&%20Comm%20Engg/Tran smission%20Lines%20and%20EM%20Waves/TOC.htm

	PO	РО	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	3	2	1	1	1	1				2	1	2
CO 2	3	3	3	2	1	1	1	1				2	1	2
CO 3	3	3	3	2	1	1	1	1				2	1	2
CO 4	3	3	3	2	1	1	1	1				2	1	2
CO 5	3	3	3	2	1	1	1	1				2	1	2
CO6	3	3	3	2	1	1	1	1				2	1	2
	18	18	18	12	6	6	6	6				12	6	12

CO Vs PO Mapping

Correlation level - 1 - Low, 2 - Medium, 3 - High

Semester	Course Name	Course Code	L	Т	Р	С	
IV	Analog Communication	XEC404	3	0	0	3	
	Course Outcomes	Domain		Lev	vel		
CO1	Understand the basics of communication system	Cognitive	Understanding				
	and analog modulation techniques						
CO2	Apply the basic knowledge of signals and systems	Cognitive	Unde	erstan	ding		
	and Understand the concept of Frequency		Appl	ying			
	modulation						
CO3	Apply the basic knowledge of electronic circuits	Cognitive	Appl	ying			
	and Understand the effect of Noise in		Understanding				
	communication system and noise performance of						
	AM system						
CO4	Understand the effect of noise performance of FM	A Cognitive Understand					
	system.						
CO5	Construct pulse modulation system and	Cognitive	Unde	erstan	ding		
	Differentiate their system performance		analy	zing			
CO6	Understand FDM and TDM techniques	Cognitive	Understanding				

9 hours

Basic blocks of Communication System. Amplitude (Linear) Modulation – AM, DSB-SC, SSB-SC and VSB-SC. Methods of generation and detection. FDM. Super Heterodyne Receivers.

Unit 2

9 hours

Angle (Non-Linear) Modulation - Frequency and Phase modulation. Transmission Bandwidth of FM signals, Methods of generation and detection. FM Stereo Multiplexing.

Unit 3

9 hours

9 hours

Noise - Internal and External Noise, Noise Calculation, Noise Figure. Noise in linear and nonlinear AM receivers, Threshold effect.

Unit 4

Noise in FM receivers, Threshold effect, Capture effect, FM Threshold reduction, Pre-emphasis and De-emphasis.

Pulse Modulation techniques – Sampling Process, PAM, PWM and PPM concepts, Methods of generation and detection. TDM. Noise performance.

HOURS	LECTURE	TUTORIAL	TOTAL	
	45	0	45	
Т 4 D l				

Text Books

- 1. S.Haykins, Communication Systems, Wiley, (4/e), Reprint 2009.
- 2. Kennedy, Davis, Electronic Communication Systems (4/e), McGraw Hill, Reprint 2008.

Reference Books

- 1. B.Carlson, Introduction to Communication Systems, McGraw-Hill, (4/e), 2009.
- 2. J.Smith, Modern Communication Circuits (2/e), McGraw Hill, 1997.
- 3. J.S.Beasley&G.M.Miler, Modern Electronic Communication (9/e), Prentice-Hall, 2008.

E REFERENCES

1.http://nptel.ac.in /courses/ NPTEL, Communication Engineering ,Prof.Surendra Prasad, Department of Electrical Engineering , Indian Institute of Technology, New Delhi

2.http://freevideolectures.com/course/2311/Digital Communication (NPTEL, DigitalCommunication ,

Prof.Bikash Kumar Dey, IIT Bombay.

3. http://www.nptel.ac.in/syllabus/117105077, IIT Kharagpur.

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	2	2	1	1	1	1				1	2	2
CO 2	3	3	2	2	1	1	1	1				1	2	2
CO 3	3	3	2	1	1	1	1	1				1	2	2
CO 4	3	3	2	1	1	1	1	1				1	2	2
CO 5	3	3	2	2	1	1	1	1				1	2	2
CO6	3	3	2	1	1	1	1	1				1	2	2
	18	18	12	9	6	6	6	6				6	12	12

CO Vs PO Mapping

Correlation level - 1 - Low, 2 - Medium, 3 - High

Semester	Course Name	Course Code	L	Т	Р	С
IV	Electronic Circuits	XEC405	3	0	0	3
	Course Outcomes	Domain	vel			
CO1	Illustrate about rectifiers, transistor and FET	Cognitive	Understanding			
	amplifiers and its biasing and Compare the		Anal	yzing	5	
	performances of its low frequency models					
CO2	Discuss about the frequency response of MOSFET	Cognitive	Unde	erstan	ding	
	and BJT amplifiers.					
CO3	<i>Illustrate</i> about MOS and BJT differential amplifiers	Cognitive	Understanding			
	and its characteristics					
CO4	Discuss about the feedback concepts and construct	Cognitive	Understanding			
	feedback amplifiers and oscillators and Summarize					
	its performance parameters.					
CO5	Tell the condition for oscillations and the different	Cognitive	Unde	erstan	ding	
	types of oscillators					
CO6	Explain about power amplifiers and its types and	Cognitive	Unde	erstan	ding	
	Analyze its characteristics.		analy	yzing		

Load line, operating point, biasing methods for BJT and MOSFET. Low frequency and high models of BJT and MOSFET, Small signal Analysis of CE, CS, CD and Cascode amplifier

Unit2

MOSFET amplifiers: Current mirrors: Basic current mirror, Cascode current mirror, Single-ended amplifiers: CS amplifier - with resistive load, diode connected load, current source load, triode load, source degeneration. CG and CD amplifiers, Cascode amplifier,

Unit 3

Frequency response of amplifiers, Differential Amplifiers, CMRR, Differential amplifiers with active load, Two stage amplifiers

9 hours

9 hours

Feedback concept, Properties, Feedback amplifiers, Stability analysis, Condition for oscillation, Sinusoidal oscillators.

Unit5

Power amplifiers- class A, class B, class AB, Biasing circuits, class C and class D

HOURS	LECTURE	TUTORIAL	TOTAL	
	45	0	45	

Text Books

1. A.S.Sedra &K.C.Smith, "Microelectronic Circuits (5/e)", Oxford, 2004.

2. D.L.Schilling&C.Belove,"Electronic Circuits: Discrete and Integrated", (3/e), McGrawHill, 1989.

Reference Books

1. J.Millman&A., "Microelectronics", McGraw Hill, 1987.

2. K.V.Ramanan, "Functional Electronics", Tata McGraw Hill, 1984.

E REFERENCES

- 1. http://nptel.ac.in/courses/108102095/
- 2. <u>https://video.search.yahoo.com/search/video;_ylt=AwrgEanFzQ9bmR8APWFXNyoA;_ylu</u>

 $=\!X3oDMTByNWU4cGh1BGNvbG8DZ3ExBHBvcwMxBHZ0aWQDBHN1YwNzYw--$

CO Vs PO Mapping

 $?p{=}electronics{+}circuits{+}lecture{+}iit{+}karagpur\&fr{=}tightropetb$

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	2	2	1	1	1	1				1	2	1
CO 2	3	3	2	2	1	1	1	1				1	2	1
CO 3	3	3	2	1	1	1	1	1				1	2	1
CO 4	3	3	2	1	1	1	1	1				1	2	1
CO 5	3	3	2	2	1	1	1	1				1	2	1
CO6	3	3	2	1	1	1	1	1				1	2	1
	18	18	12	9	6	6	6	6				6	12	6

Correlation level - 1 - Low, 2 - Medium, 3 - High

Page 44

9hours

Semester	Course Name	Course Code	L	Т	Р	C	
IV	Microprocessors and Microcontrollers	XEC406	3	0	0	3	
	Course Outcomes	Domain	I				
CO1	Recall and Apply the basic concept of digital	Cognitive	Remembering				
	fundamentals to Microprocessor based personal		Appl	ying			
	computer system.						
CO2	Identify the detailed s/w & h/w structure of the	Cognitive	Rem	embe	ring		
	Microprocessor.						
CO3	<u>Illustrate</u> how the different peripherals are interfaced	Cognitive	Understanding				
	with Microprocessor.						
CO4	Distinguish and analyze the properties of	Cognitive	Unde	erstan	ding		
	Microcontrollers.		Anal	yzing	5		
CO5	<i>Explain</i> the peripheral interfacing using 8051	Cognitive	Appl	ying			
	Microcontrollers.						
CO6	Discuss the properties of mixed signal	Cognitive	Anal	yzing	5		
	microcontroller, analyze the data transfer information						
	through serial & parallel ports.						

9hours

9hours

Microprocessor based personal computer system. Software model of 8085. Segmented memory operation. Instruction set. Addressing modes. Assembly language programming. Interrupts. Introduction to 8086. Instruction set. Addressing modes .Programming with DOS and BIOS function calls.

Unit2

Hardware detail of 8086. Bus timing. Minimum vs Maximum mode of operation. Memory interface. Parallel and serial data transfer methods.8251, 8255 PPI chip. 8279, 8259 Interrupt controller. 8237 DMA controller.

Microcontroller. Von-Neumann Vs Harvard architecture. Programming model. Instruction set of 8051 Microcontroller. Instruction set, Addressing modes. Programming. Ports in 8051, Timer operation.

Unit4

Peripheral Interfacing using 8051. Serial data transfer - UART, SPI and I2C. Interrupts. I/O ports and port expansion. DAC, ADC, PWM, DC motor, Stepper motor and LCD interfacing.

Unit5

Mixed Signal Microcontroller: MSP430 series. Block diagram. Address space. On-chip peripherals - analog and digital. Register sets. Addressing Modes. Instruction set. Programming. FRAM vs flash for low power and reliability.

HOURS	LECTURE	TUTORIAL	TOTAL
	45	0	45

Text Books

1.J.L.Antonakos, "An Introduction to the Intel Family of Microprocessors", Pearson, 1999.

2.D. V. Hall, "Micro processors and Interfacing", 2nd Edition, Tata McGrawHill, 2006.

3.Ramesh S. Goankar, "Microprocessor Architecture, Programming and Applications with 8085", 5thEdition, Prentice Hall,2014.

4.M.A.Mazidi&J.C.Mazidi "Microcontroller and Embedded systems using Assembly & C. (2/e)",

Pearson Education, 2007.

5. John H. Davies," MSP430 Microcontroller Basics", Elsevier Ltd., 2008.

Reference Books

1.B.B. Brey, "The Intel Microprocessors, (7/e), Eastern Economy Edition", 2006.

2.K.J. Ayala, "The 8051 Microcontroller ", (3/e), Thomson Delmar Learning, 2004.

3.I. S. MacKenzie and R.C.W.Phan., "The 8051 Microcontroller.(4/e)", Pearson education, 2008.

4.A.K.Ray and K.M.Bhurchandani, "Advanced Microprocessors and Peripherals", 2nd Edition, TMH, 2006.

5.K.UmaRao,AndhePallavi, "The 8051 Microcontrollers, Architecture and programming and Applications", Pearson Education, 2009.

9hours

9hours

6.Liu and G.A.Gibson, "Micro Computer System 8086/8088 Family Architecture. Programming and Design",2nd Edition, PHI, 1986.

7. Ajay. V. Deshmukh "Microcontrollers and Applications", TMGH, 2005.

E REFERENCES

1.https://onlinecourses.nptel.ac.in/noc18_ec03/preview

2.http://www.avr-tutorials.com/general/microcontrollers-basics

 $3.https://www.tutorialspoint.com/embedded_systems/es_microcontroller.htm$

	PO	РО	PO	PSO	PSO									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	2	2	1	1	1	1				1	2	0
CO 2	3	3	2	2	1	1	1	1				1	2	0
CO 3	3	3	2	1	1	1	1	1				1	2	0
CO 4	3	3	2	1	1	1	1	1				1	2	0
CO 5	3	3	2	2	1	1	1	1				1	2	0
CO6	3	3	2	1	1	1	1	1				1	2	0
	18	18	12	9	6	6	6	6				6	12	0

CO Vs PO Mapping

Correlation level - 1 - Low, 2 - Medium, 3 - High

Semester	Course Name	Course Code	L	Т	Р	C
IV	Microprocessor and Microcontrollers Lab	XEC408	3	0	3	
	Course Outcomes	Domain		Lev	vel	
CO1	<i>Verify</i> the basic program in Microprocessor systems design with 8085.	Perception,				
CO2	Verify the programs in 8085 Microprocessor	Perception,				
CO3	<i>Design</i> and <i>perform</i> the Interfacing of peripherals with 8085 Microprocessor.	origination, Internalising Values				
CO4	Assemble and verify the 8051 Microcontroller based arithmetic operations.	Psychomotor	Mechanism,			
CO5	<i>Design</i> and <i>demonstrate</i> the Interfacing processes with different priority and real time constraints with 8051 Microcontroller.	origination, Valuing				
C06	<i>Construct and indentify</i> the timer applications using 8051 Microcontroller.	Psychomotor Affective	Mecl Rece Phen	hanis viving	m, na	

LIST OF EXPERIMENTS

1. Programs for 8/16 bit Arithmetic operations Using 8085.

2. Programs for Sorting and Searching Using 8085.

3.Parallel Communication between two MP Kits using Mode 1 and Mode 2 of 8255 with 8085.

4. Interfacing and Programming of Stepper Motor 8085/8086.

- 5. Interfacing and Programming 8279, 8259, and 8253 with 8085/8086.
- 6. Interfacing ADC and DAC using 8085.

7. Programming using Arithmetic, Logical and Bit Manipulation Instructions of

8051 Microcontroller.

8. Serial Communication between two Microcontroller Kits using 8051.

9. Communication between 8051 Microcontroller kit and PC.

10. Interfacing and Programming of DC Motor using 8051.										
11. Interfacing ADC and DAC using 8051.										
12. Programming and verifying Timer, Interrupts and UART operations in 8051										
Microcontroller.										
HOURS	PRACTICAL	TOTAL								
	45	45								

CO Vs PO Mapping

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	2	2	2	2	2	1	2	1	1	2	2	0
CO 2	3	3	2	2	2	2	2	1	2	1	1	2	2	0
CO 3	3	3	2	2	2	2	2	1	2	1	1	2	2	0
CO 4	3	3	2	2	2	2	2	1	2	1	1	2	2	0
CO 5	3	3	2	2	2	2	2	1	2	1	1	2	2	0
CO6	3	3	2	2	2	2	2	1	2	1	1	2	2	0
	18	18	12	12	12	12	12	6	12	6	6	12	12	0

Correlation level - 1 - Low , 2 - Medium, 3 - High