Program: M.A./M.Sc. (Mathematics)

M.A./M.Sc. (Final)

Paper Code:MT-09

Integral Transforms and Integral Equations

Section – C

(Long Answers Questions)

- 1. Prove that $L[J_0(t); P] = \frac{1}{\sqrt{1+p^2}}$ and hence deduce that $L\{e^{-at}J_0(bt); p\} =$
- 2. If f(t) is a periodic function with period T > o then derive the Laplace transform if (t); also define periodic function.
- 3. Obtain $L[er\ f(t); P]$ hence deduce the value of $L[er\ f(bt); p]$
- 4. Prove that $L\left[\frac{\sin^2 t}{t} ip\right] = \frac{1}{4} \log\left(\frac{p^2+4}{n^2}\right)$ and deduce that :
 - $\int_0^\infty e^{-t} \frac{\sin^2 t}{t} dt = \frac{1}{4} \log 5$
- (ii) $\int_0^\infty \frac{\sin^2 t}{t^2} dt = \frac{\pi}{2}$
5. Evaluate : $L\left[\frac{1-\cos t}{t^2}; p\right]$
- 6. Prove that $L\left\{\frac{\cos at \cos bt}{t}; p\right\} = \frac{1}{2} log\left(\frac{p^2 + b^2}{p^2 + a^2}\right)$ hence deduce $\int_0^\infty \left[\frac{\cos at - \cos bt}{t} \right] dt = \log \frac{b}{a}$
- 7. Using partial fractions. Find $L^{-1}\left[\frac{p^2}{n^4+4a^4}\right]$
- 8. Define convolution of two functions and prove that If f(t) and g(t) are two functions of class A of and if $L^{-1}[\overline{f}(p); t] = f(t); L^{-1}[\overline{g}(p); t] =$ g(t), then $L^{-1}[\overline{f}(p), \overline{g}(p); t] = \int_0^t f(u)g(t-u)du = f * g$
- 9. Apply convolution theorem to prove that $B(m,n) = \int_0^1 u^{m-1} (1-u^{m-1})^{m-1} du$ $u)^{n-1}du = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$, (m > 0, n > 0) hence deduce that: $\int_0^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta = \frac{1}{2}B(m,n) = \frac{\Gamma(m)\Gamma(n)}{2\Gamma(m+n)} \text{ where B9m, n) is called}$

- 10. Use complex inversion formula to obtain the inverse Laplace transform of
- 11. Find $L^{-1}\left[\frac{\cosh u \sqrt{P}}{P \cosh \sqrt{P}}\right]$ where 0 < u < 1. 12. Find $L^{-1}\left[\frac{3P-1}{p(p-1)^2 9P+1)}\right]$ be complex inversion formula.
- 13. Solve: ty'' + (t-1)y' y = 0, y(0) = 5, $y(\infty) = 0$.
- 14. A semi infinite rod x > o is initially at temperature zero. At time t > 0 a constant temperature $V_0 = 0$ is applied and maintained at the face x = 0. Find the temperature at any point of the solid at any time t > 0.

- 15. An infinite long string having one end x = 0 is initially at rest on the x-axis. The end, x = 0 undergoes a periodic transverse displacement given by $\Delta_0 \sin wt$, t > 0. Find the displacement of any point on the string at any time.
- 16. A flexible string has its end points on the x-axis at x = 0 and x = c. At time t = 0, the string is given a shape defined by $b \sin\left(\frac{\pi x}{c}\right)$, 0 < x < c and released. Find the displacement of any point x of the string at any time t > 0.
- 17. Find the solution of the equation $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ which tends to zero as $x \to \infty$ and which satisfies the conditions:

$$u = f(t)at x = 0, t > 0 & u = 0 at x > 0, t = 0$$

- 18. Find the solution of Diffusion equation $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$, x > 0, t > 0 subject to the initial and boundary conditions u(x, 0) = 0, x > 0; $-K(\frac{\partial u}{\partial x}) = f(t)at x = 0$, t > 0 and $u(x, t) \to 0$ as $x \to \infty$ and t > 0 where k & k are respectively the thermal diffusivity and conductivity of material of given solid.
- 19. Find the fourier transform of f(t), where $f(t) = \begin{cases} 1 t^2, & |t| < 1 \\ 0, & |t| > 1 \end{cases}$ and hence evaluate $\int_0^\infty \left(\frac{t \cos t \sin t}{t^3} \right) \cos \frac{t}{2} dt$
- 20. Find f(t) if its fourier sine transform is $\frac{P}{(1+p)^2}$
- 21. Prove that $e^{-t^2/2}$ is a self-reciprocal function under the fourier cosine transform. Hence obtain the fourier sine transform of $(te^{-t^2/2})$
- 22. State and prove convolution theorem for fourier transform.
- 23. Using Parseval's Identity prove that:

(i)
$$\int_{-\infty}^{\infty} \frac{dt}{(a^2+t^2)(b^2+t^2)} \frac{\pi}{2ab(a+b)} , (a>0, b>0)$$

(ii)
$$\int_{-\infty}^{\infty} \frac{\sin at}{(a^2 + t^2)} dt = \frac{\pi}{2} \left\{ \frac{1 - e^{-a^2}}{a^2} \right\}$$

24. Evaluate :
$$\int_{-\infty}^{\infty} \frac{dt}{(t^2+a^2)(t^2-b^2)}$$
, $a > 0$, $b > 0$

25. Prove that
$$M\{e^{-ax}J_2(bx);p\} = \frac{b^{\nu}2^{\nu-1}}{\sqrt{\pi}\Gamma(\nu+1)}(a^2+b^2)^{\frac{-(\nu+p)}{2}}$$

$$\begin{split} & \Gamma\!\left(\frac{v+p}{2}\right) \Gamma\!\left(\frac{v+p+1}{2}\right) 2 f_1 \left[\frac{v+p}{2}, \frac{v-p+1}{2}; \ v+1; \ \frac{b^2}{a^2+b^2}\right] \\ & \left(Re(a) > \ 0 \ , u < \ -\frac{1}{2} \right) \end{split}$$

Hence deduce that

(i)
$$M\{J_v(bx); p\} = \frac{b^{-p}2^{p-1}\Gamma(\frac{v+p}2)}{\Gamma(\frac{v-p+2}2)}$$
; $-v$

(ii)
$$M\{x^{-v}J_v(x); p\} = \frac{2^{p-v-1}\Gamma(\frac{p}{2})}{\Gamma(v-\frac{1}{2}p+1)}$$
; $o < Re(p) < 1, v > -\frac{1}{2}$

26. Prove that:

$$\begin{split} &M\{x^{\rho}(1-x)^{c-1}2f_{1}(a,b;c;1-x)H(1-x);p\}\\ &=\frac{\Gamma(c)\Gamma(p+\rho)\Gamma(p-a-b+c+\rho)}{\Gamma(p-a+c+\rho)\Gamma(p-b+c+\rho)} \end{split}$$

27. Prove that if m is a positive integer, $\alpha \neq 0$

$$M\left\{\left(x^{1-\alpha}\frac{d}{dx}\right)^m f(x); p\right\} = (-1)^m \alpha^m \frac{\Gamma(\frac{p}{\alpha})}{\Gamma(\frac{p}{\alpha}-m)} f(p-ma)$$

where $M\{f(x0; p) = f(p)\}$

28. If F(p) and G(p) are Mellin transform of f(x) and g(x) respectively find the mellin transform of:

$$x^{\lambda} \int_0^{\infty} u^{\mu} f\left(\frac{x}{u}\right) g(u) du$$
 where λ and μ are constants.

29. Obtain the Mellin transform of $f(x) = \frac{(1-x^2)^{\lambda-1}H(1-x)}{\Gamma(\lambda)}$

$$g(x) = \frac{2(1 - a^2 x^2)^{\mu - 1} H(1 - ax)}{\Gamma(\mu)} \text{ with } \lambda < 0, \mu > 0, o < a < 1 \text{ hence or at heavy is a catallish that$$

$$\frac{1}{2\pi_2} \int_{c-i\infty}^{c+i\infty} \frac{\Gamma\left(\frac{z}{2}\right) \Gamma\left(\alpha-\frac{z}{2}\right) a^z}{\Gamma\left(\beta+\frac{z}{2}\right) \Gamma\left(\gamma-\frac{z}{2}\right)} \; dz = \frac{2a^{2\alpha}}{\Gamma\left(\alpha+\beta\right) \Gamma\left(\gamma-\alpha\right)} \, 2F_1 \left[\alpha,\alpha+1-\gamma;a^2\right]$$

with
$$o < \alpha \le 1, 0 < \alpha < \gamma, \beta > 0$$
.

30. Find the Mellin transform of sin x and show that:

$$\begin{split} M^{-1}\left\{ \vec{\Gamma}(p) \sin\left(\frac{p\pi}{2}\right) f^*(1-p); x \right\} &= \sqrt{\frac{\pi}{2}} F_s\{f(t); x\} \\ where \ f^*(p) &= M \left\{ f(t); p \right\} \end{split}$$

31. Prove that if $v > -\frac{1}{2}$ then

$$H_{v}\{x^{v-1}e^{-ax};p\} = L\{x^{v}J_{v}(px);a\} = \frac{2^{v}p^{v}\Gamma(v+\frac{1}{2})}{\sqrt{\pi}(a^{2}+p^{2})^{v+\frac{1}{2}}}$$

32. Prove that:

$$H_v\{e^{-px^2/4} f(x); s\} = 2L\{f(2\sqrt{x}J_v(2s\sqrt{x}); p\}$$

Deduce that
$$H_v\left\{x^v e^{-p\frac{x^2}{4}}; s\right\} = \frac{2^{v+1}s^v}{p^{v+1}} e^{-\frac{s^2}{p}}$$

and hence that:

(i)
$$H_v\left\{x^v e^{-\frac{x^2}{a^2}}; s\right\} = \left(\frac{a^2}{2}\right)^{v+1} e^{-a^2 \frac{s^2}{4}}$$

(ii)
$$H_v\left\{x^v e^{-\frac{x^2}{2}}; s\right\} = s^v e^{-\frac{s^2}{2}}$$

33. Prove that

$$H_{v}\{x^{v}(a^{2}-x^{2})^{\mu-v-1} \cup (a-x); p\} = 2^{\mu-v-1}$$

$$\Gamma(\mu-v)P^{v>\mu}a^{\mu}J_{\mu}(pa), a>0, \mu>v>0$$

Hence deduce:

(i)
$$H_v\{x^v \cup (a-x); p\} = \frac{a^{v+1}}{p} J_{v+1}(pa), a > 0 \text{ and }$$

(ii)
$$H_v\left\{\frac{x^{\nu}\cup(a-x)}{\sqrt{a^2-x^2}};p\right\} = \sqrt{\frac{\pi}{2p}}a^{\frac{a^{\nu+1}}{2}}J_{\nu+\frac{1}{2}}(p,a)$$

34. Prove that:

$$H_v\big\{x^{v-\mu}J_\mu(a,x);p\big\} = \frac{p^v(a^2-p^2)^{\mu-v-1}}{2^{\mu-v-1}\Gamma(\mu-v)a^H} \cup (a-p)(a>0, \mu>v\geq 0)$$

Deduce that:

(i)
$$H_v\{x^{-1}J_{v+1}(a,x);p\} = \frac{p^v}{a^{v+1}} \cup (a-p); a > 0$$

(ii)
$$H_v\left\{x^{-\frac{v}{2}}J_{v+\frac{1}{2}}(ax);p\right\} = \sqrt{\frac{2}{\pi}} \frac{p^v \cup (a-p)}{a^{v+\frac{1}{2}}(a^2-p^2)^{\frac{1}{2}}}, a > 0, v \ge 0$$
 and hence that

(iii)
$$H_0\{x^{-2}(1-J_0(a,x);P)\} = H(a-p)\log\left(\frac{a}{p}\right)$$

- 35. If $f(x) = \frac{e^{-ax}}{r}$, then find (i) the Hankel transform of order zero of the function $\frac{d^2f}{dx^2} + \frac{1}{x} \frac{df}{dx}$ and (ii) the Hankel transform of order one of $\frac{df}{dx}$.
- 36. Find the Hankel transform of $x^{\nu}H(a-x)$ and $x^{\nu}H(b-x)$, $\nu > -\frac{1}{2}$ Hence or otherwise establish that:

$$H_{v}\{x^{-2}J_{v}(a,x);p\} = \begin{cases} \frac{1}{2v}(\frac{p}{a})^{v}, 0 a \end{cases}$$

37. Solve the Laplace equation in the half plane:

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = 0, (-\infty < a < \infty, y \ge 0)$$

With the boundary conditions:

$$U(x,0) = f(x), -\infty < x < \infty$$

and $U(a,y) \to 0$ as $|x| \to \infty, y \to \infty$

38. Show that the solution of Laplace equation for U inside the semi-infinite strip x > 0, o < y < b such that:

$$U = f(x)$$
, where $y = 0$, $0 < x < \infty$

$$U = 0$$
, where $y = b$, $0 < x < \infty$

$$U = 0$$
, where $x = 0$, $0 < y < b$

$$U = 0, where \ y = b, 0 < x < \infty$$

$$U = 0, where \ x = 0, 0 < y < b$$
Is given by
$$U = \frac{2}{\pi} \int_0^\infty f(u) du \int_0^\infty \frac{\sin h \ (b-y)p}{\sin h \ pb} \sin xp \sin up \ dp$$
Heat is supplied at a constant rate O per in the plane $z = 0$

39. Heat is supplied at a constant rate Q per in the plane z = 0 to an infinite solid of conductivity K. Show that the steady temperature at a point distant r from the axis of the circular area and distance z from the late r = 0 is given by:

$$\frac{Qa}{2k} \int_0^\infty e^{-pz} J_0(pr) J_1(pa) p^{-1} dp$$

40. The free symmetric vibrations of a very large membrane are governed by the equation:

$$\frac{\partial^2 U}{\partial r^2} + \frac{1}{r} \frac{\partial U}{\partial r} = \frac{1}{c^2} \frac{\partial^2 U}{\partial t^2}, \quad r > 0, t > 0 \text{ with } U = f(t), \frac{\partial U}{\partial r} = g(r), t = 0$$
show that for $t > 0$

$$U(r,t) = \int_0^\infty PF(p)\cos(pct)J_0(pr)dp + \frac{1}{c}\int_0^\infty G(p)\sin(pct)J_0(pr)dp$$

Where f(p) and G(p) are the zero order Hankel transforms of $f\mathbb{R}$ and $g\mathbb{R}$ respectively.

41. Find the potential V9r, z) of a field due to a flat circular disc of unit radius with its centre at the origin and axis along the z-axis satisfying the differ initial equation:

$$\frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} + \frac{\partial^2 V}{\partial z^2} = 0, \qquad o \le r \le \infty, z \ge 0$$

and satisfying the boundary conditions:

$$V = V_0$$
 when $z = 0, 0 \le r < 1$ and $\frac{\partial v}{\partial z} = 0$, when $z = 0, e > 1$

42. Solve the initial value problem for the wave equation $\frac{\partial^2 U}{\partial t^2} = c^2 \frac{\partial^2 U}{\partial x^2}$, $(-\infty < x < \infty, t > 0)$ subject to condition

$$U(x, o) = f(x)$$

$$U_t(x,0) = g(x), (-\infty < x < \infty)$$

43. Show that the function $g(x) = xe^x$ is a solution of the volterra integral equation:

$$g(x) = \sin x + 2 \int_0^x \cos(x - t)g(t)dt$$

44. Show that the function $g(x) = \sin\left(\frac{\pi x}{2}\right)$ is a solution of the Fredholm integral equation.

$$g(x) - \frac{\pi^2}{4} \int_0^1 K(x, t) g(t) dt = \frac{x}{z}$$

45. Form a integral equation corresponding to the differential equation :

$$\frac{d^3y}{dx^3} + x\frac{d^2y}{dx^2} + (x^2 - x)y = xe^x + 1$$

With conditions : y(0) = 1 = y'(0) and y''(0) = 0

46. Reduce the differential equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 4\sin x \text{ with the conditions } y(0) = 1, y'(0) = -2 \text{ into a non homogeneous Volterra's integral equation of second kind.}$ Conversely derive the original differential equation with the initial

conditions from the integral equation obtained.

- 47. Convert the differential equation $\frac{d^2y}{dx^2} + \lambda y = 0$ with the conditions y(0) = 0, y(l) = 0 into fredholm integral equation of second kind. Also recover the original differential equation from the integral equation you obtain.
- 48. Prove that the characteristic numbers of a symmetric kernel are real.
- 49. Find the eigen values and eigen function of the homogeneuous integral equation:

$$g(x) = \lambda \int_0^{\pi} [\cos^2 x \cos 2t + \cos 3x \cos^3 t] g(t) dt$$

50. Solve the f(x) the integral equation:

$$\int_0^\infty f(x0\cos p \ d \ dx = \begin{bmatrix} 1 - p, 0 \le p \le 1\\ 0, p > 1 \end{bmatrix}$$

Hence deduce that $\int_0^\infty \frac{\sin^2 t}{t^2} dt = \frac{\pi}{2}$

51. Find the resolvent kernel of the volterra integral equation and hence its solution.

$$g(x) = f(x) + \int_0^x (x - t)g(t)dt$$

52. Solve the integral equation:

$$g(x) = e^{-x} - 2\int_0^x \cos(x - t)g(t)dt$$

53. Solve the Abel integral equation:

(i)
$$f(x) = \int_0^x \frac{g(t)}{(x-t)^{\alpha}} dt$$
, $0 < x < 1$

(ii)
$$\int_0^x \frac{g(t)}{\sqrt{x-t}} dt = 1 + x + x^2$$

54. Solve the integral equation and discuss all its possible cases by the method of degenerate kernels:

$$g(x) = f(x) + \lambda \int_0^1 (1 - 3xt) g(t) dt$$

55. Solve the integral equation:

$$g(x) = x + \lambda \int_{-\pi}^{\pi} (x \cos t + t^2 \sin x + \cos x \sin t) \ g(t)dt$$
56. Solve the fredholm integral equation of second kind.

$$g(x) = x + \lambda \int_0^1 (xt^2 + x^2t) g(t)dt$$

57. Find the resolvent kernels of the following kernels:

(i)
$$k(x,t) = (1+x)(1-t), a = -1, b = 0$$

(ii)
$$k(x,t) = e^{x+t}, a = 0, b = 1$$

58. Solve by the method of successive approximation:

$$g(x) = \frac{3}{2}e^x - \frac{1}{2}xe^x - \frac{1}{2} + \frac{1}{2} \int_0^1 t \ g(t)dt$$

59. By iterative method solve:

$$g(x) = 1 + \lambda \int_0^{\pi} \sin(x+t)g(t)dt$$

60. Find the resolvent kernel of the following integral equation:

$$g(x) = 1 + \lambda \int_0^1 (1 - 3xt)g(t)dt$$

61. Find the resolvent kernel of the Volterra integral equation with the kernel.

$$k(x,t) = \frac{(2+\cos x)}{(2+\cos t)}$$

- 62. Solve $g(x) = \cos x x 2 + \int_0^x (t x)g(t)dt$
- 63. If a kernel is symmetric then show tat all its iterated kernels are also symmetric.
- 64. Solve the symmetric integral equation.

$$g(x) = (x+1)^2 + \int_{-1}^{1} (xt + x^2t^2)g(t) dt$$

65. Solve the following symmetric integral equation with the help of Hilbertschmidt theorem.

$$g(x) = 1 + \lambda \int_0^{\pi} \cos(x+t)g(t)dt$$

66. Using Hilbert-Schmidt method, solve integral equation

$$g(x) = 1 + \lambda \int_0^1 k(x,t) g(t) dt$$
Where $K(x,t) = \begin{bmatrix} x & (t-1); 0 \le x \le t \\ t(x-1), t \le x \le 1 \end{bmatrix}$

- 67. State and prove Hilbert-Schmidt theorem.
- 68. Using Hilbert-Schmidt theorem, solve integral equation:

$$g(x) = \cos \pi x + \lambda \int_0^1 k(x, t)g(t)dt \text{ where}$$

$$K(x, t) = \begin{bmatrix} (\lambda + 1)t, & 0 \le x \le t \\ (t + 1)x, & t \le x \le 1 \end{bmatrix}$$

69. Using fredholm's determinants find the resolvent kernel of the following kernel

$$\sin x \cos t$$
, $0 \le x \le 2\pi$, $0 \le t \le 2\pi$

70. Solve the integral equations:

$$g(x) = 1 + \lambda \int_0^{\pi} \sin(x+t)g(t)dt$$

71. Find $D(\lambda)$ and $D(x, t; \lambda)$ and dolve the integral equation.

$$g(x) = x + \lambda \int_0^1 [xt + \sqrt{xt}]g(t)dt$$

- 72. Using fredholm determinants find the resolvent kernels, when $k(x,t) = x e^t$, a = 0, b = 1.
- 73. Find the resolvent kernel and solution of

$$g(x) = f(x) + \lambda \int_0^1 (x+t)g(t)dt$$

- 74. Using securrence relations find the resolvent kernels of the following kernels:
 - (i) $k(x,t) = \sin x \cos t$; $0 \le x \le 2\pi$, $0 \le t \le 2\pi$
 - (ii) $k(x,t) = 4xt x^2$; $0 \le x \le 1$, $0 \le t \le 1$