Program : M.A./M.Sc. (Mathematics)

M.A./M.Sc. (Final)

Paper Code:MT-09

Integral Transforms and Integral Equations Section-C (Long Answers Questions)

1. Prove that $L\left[J_{0}(t) ; P\right]=\frac{1}{\sqrt{1+p^{2}}}$ and hence deduce that $L\left\{e^{-a t} J_{0}(b t) ; p\right\}=$ $\frac{1}{\sqrt{p^{2}+2 a p+a^{2}+b^{2}}}$
2. If $f(t)$ is a periodic function with period $T>o$ then derive the Laplace transform if (t); also define periodic function.
3. Obtain $L[\operatorname{er} f(t) ; P]$ hence deduce the value of $L[\operatorname{er} f(b t) ; p]$
4. Prove that $L\left[\frac{\sin ^{2} t}{t}\right.$ ip $]=\frac{1}{4} \log \left(\frac{p^{2}+4}{p^{2}}\right)$ and deduce that:

$$
\begin{equation*}
\int_{0}^{\infty} e^{-t} \frac{\sin ^{2} t}{t} d t=\frac{1}{4} \log 5 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t=\frac{\pi}{2} \tag{ii}
\end{equation*}
$$

5. Evaluate : $L\left[\frac{1-\cos t}{t^{2}} ; p\right]$
6. Prove that $L\left\{\frac{\cos a t-\cos b t}{t} ; p\right\}=\frac{1}{2} \log \left(\frac{p^{2}+b^{2}}{p^{2}+a^{2}}\right)$ hence deduce that $\int_{0}^{\infty}\left[\frac{\cos a t-\cos b t}{t}\right] d t=\log \frac{b}{a}$
7. Using partial fractions. Find $L^{-1}\left[\frac{p^{2}}{p^{4}+4 a^{4}}\right]$
8. Define convolution of two functions and prove that If $f(t)$ and $g(t)$ are two functions of class A of and if $L^{-1}[\bar{f}(p) ; t]=f(t) ; L^{-1}[\bar{g}(p) ; t]=$ $g(t)$, then $L^{-1}[\bar{f}(p) \cdot \bar{g}(p) ; t]=\int_{0}^{t} f(u) g(t-u) d u=f * g$
9. Apply convolution theorem to prove that $B(m, n)=\int_{0}^{1} u^{m-1}(1-$ $u)^{n-1} d u=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)},(m>0, n>0)$ hence deduce that: $\int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta=\frac{1}{2} B(m, n)=\frac{\digamma(m)\ulcorner(n)}{2 \Gamma(m+n)}$ where $\left.\mathrm{B} 9 \mathrm{~m}, \mathrm{n}\right)$ is called Beta function.
10. Use complex inversion formula to obtain the inverse Laplace transform of $\frac{p}{(p+1)(p-1)^{2}}$
11. Find $L^{-1}\left[\frac{\cosh u \sqrt{P}}{P \cosh \sqrt{P}}\right]$ where $0<u<1$.
12. Find $L^{-1}\left[\frac{3 P-1}{\left.p(p-1)^{2} 9 P+1\right)}\right]$ be complex inversion formula.
13. Solve : $t y^{\prime \prime}+(t-1) y^{\prime}-y=0, y(0)=5, y(\infty)=0$.
14. A semi infinite $\operatorname{rod} x>o$ is initially at temperature zero. At time $t>0$ a constant temperature $V_{0}=0$ is applied and maintained at the face $x=0$. Find the temperature at any point of the solid at any time $\mathrm{t}>0$.
15. An infinite long string having one end $x=0$ is initially at rest on the x axis. The end, $x=0$ undergoes a periodic transverse displacement given by $\Delta_{0} \sin w t, t>0$. Find the displacement of any point on the string at any time.
16. A flexible string has its end points on the x -axis at $x=0$ and $x=c$. At time $t=0$, the string is given a shape defined by $b \sin \left(\frac{\pi x}{c}\right), 0<x<c$ and released. Find the displacement of any point x of the string at any time $t>0$.
17. Find the solution of the equation $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$ which tends to zero as $x \rightarrow \infty$ and which satisfies the conditions :

$$
u=f(t) \text { at } x=0, t>0 \& u=0 \text { at } x>0, t=0
$$

18. Find the solution of Diffusion equation $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, x>0, t>0$ subject to the initial and boundary conditions $u(x, 0)=0, x>0 ;-K\left(\frac{\partial u}{\partial x}\right)=$ $f(t)$ at $x=0, t>0$ and $u(x, t) \rightarrow 0$ as $x \rightarrow \infty$ and $t>0$ where $\mathrm{k} \& \mathrm{k}$ are respectively the thermal diffusivity and conductivity of material of given solid.
19. Find the fourier transform of $f(t)$, where $f(t)=\left\{\begin{array}{c}1-t^{2},|t|<1 \\ 0,|t|>1\end{array}\right.$ and hence evaluate $\int_{0}^{\infty}\left(\frac{t \cos t-\sin t}{t^{3}}\right) \cos \frac{t}{2} d t$
20. Find $f(t)$ if its fourier sine transform is $\frac{P}{(1+p)^{2}}$
21. Prove that $e^{-t 2 / 2}$ is a self-reciprocal function under the fourier cosine transform. Hence obtain the fourier sine transform of $\left(t e^{-t 2 / 2}\right)$
22. State and prove convolution theorem for fourier transform.
23. Using Parseval's Identity prove that:

$$
\begin{align*}
& \text { (i) } \int_{-\infty}^{\infty} \frac{d t}{\left(a^{2}+t^{2}\right)\left(b^{2}+t^{2}\right)} \frac{\pi}{2 a b(a+b)},(a>0, b>0) \tag{i}\\
& \text { (ii) } \int_{-\infty}^{\infty} \frac{\sin a t}{\left(a^{2}+t^{2}\right)} d t=\frac{\pi}{2}\left\{\frac{1-e^{-a^{2}}}{a^{2}}\right\}
\end{align*}
$$

24. Evaluate : $\int_{-\infty}^{\infty} \frac{d t}{\left(t^{2}+a^{2}\right)\left(t^{2}-b^{2}\right)}, a>0, b>0$
25. Prove that $M\left\{e^{-a x} J_{2}(b x) ; p\right\}=\frac{b^{v}{ }_{2} p-1}{\sqrt{\pi} \Gamma(v+1)}\left(a^{2}+b^{2}\right)^{\frac{-(v+p)}{2}}$
$\Gamma\left(\frac{v+p}{2}\right) \Gamma\left(\frac{v+p+1}{2}\right) 2 f_{1}\left[\frac{v+p}{2}, \frac{v-p+1}{2} ; v+1 ; \frac{b^{2}}{a^{2}+b^{2}}\right]$
$\left(\operatorname{Re}(a)>0, u<-\frac{1}{2}\right.$
Hence deduce that

$$
\begin{equation*}
M\left\{J_{v}(b x) ; p\right\}=\frac{b^{-p_{2}}{ }^{p-1} \mathrm{\Gamma}\left(\frac{v+p}{2}\right)}{\mathrm{\Gamma}\left(\frac{v-p+2}{2}\right)} ;-\mathrm{v}<\mathrm{p}<\mathrm{v}+2 \tag{i}
\end{equation*}
$$

(ii) $\quad M\left\{x^{-v} J_{v}(x) ; p\right\}=\frac{2^{p-v-1} \Gamma\left(\frac{p}{2}\right)}{\mathrm{r}\left(v-\frac{1}{2} p+1\right)} ; \quad o<\operatorname{Re}(p)<1, v>-\frac{1}{2}$
26. Prove that:
$M\left\{x^{\rho}(1-x)^{c-1} 2 f_{1}(a, b ; c ; 1-x) H(1-x) ; p\right\}$
$=\frac{\Gamma(c) \Gamma(p+\rho) \Gamma(p-a-b+c+\rho)}{\Gamma(p-a+c+\rho) \Gamma(p-b+c+\rho)}$
27. Prove that if m is a positive integer, $\alpha \neq 0$
$M\left\{\left(x^{1-\alpha} \frac{d}{d x}\right)^{m} f(x) ; p\right\}=(-1)^{m} \alpha^{m} \frac{\Gamma\left(\frac{p}{\alpha}\right)}{\Gamma\left(\frac{p}{\alpha}-m\right)} f(p-m a)$
where $M\{f(x 0 ; p\}=f(p)$
28. If $F(p)$ and $G(p)$ are Mellin transform of $f(x)$ and $g(x)$ respectively find the mellin transform of :
$x^{\lambda} \int_{0}^{\infty} u^{\mu} f\left(\frac{x}{u}\right) g(u) d u$ where λ and μ are constants.
29. Obtain the Mellin transform of $f(x)=\frac{\left(1-x^{2}\right)^{\lambda-1} H(1-x)}{\Gamma(\lambda)}$
$g(x)=\frac{2\left(1-a^{2} x^{2}\right)^{\mu-1} H(1-a x)}{\Gamma(\mu)}$ with $\lambda<0, \mu>0, o<a<1$ hence or otherwise establish that
$\frac{1}{2 \pi_{2}} \int_{c-i \infty}^{c+i \infty} \frac{\digamma\left(\frac{z}{2}\right) \Gamma\left(\alpha-\frac{z}{2}\right) a^{z}}{\mathrm{r}\left(\beta+\frac{z}{2}\right) \Gamma\left(\gamma-\frac{z}{2}\right)} d z=\frac{2 a^{2 \alpha}}{\Gamma(\alpha+\beta)\ulcorner(\gamma-\alpha)} 2 F_{1}\left[\begin{array}{c}\alpha, \alpha+1-\gamma ; a^{2} \\ \alpha+\beta ;\end{array}\right]$
with $o<\alpha \leq 1,0<\alpha<\gamma, \beta>0$.
30. Find the Mellin transform of $\sin \mathrm{x}$ and show that:
$M^{-1}\left\{\Gamma(p) \sin \left(\frac{p \pi}{2}\right) f^{*}(1-p) ; x\right\}=\sqrt{\frac{\pi}{2}} F_{s}\{f(t) ; x\}$
where $f^{*}(p)=M\{f(t) ; p\}$
31. Prove that if $v>-\frac{1}{2}$ then
$H_{v}\left\{x^{v-1} e^{-a x} ; p\right\}=L\left\{x^{v} J_{v}(p x) ; a\right\}=\frac{2^{v} p^{v} \Gamma\left(v+\frac{1}{2}\right)}{\sqrt{\pi}\left(a^{2}+p^{2}\right)^{v+\frac{1}{2}}}$
32. Prove that:
$H_{v}\left\{e^{-p x 2 / 4} f(x) ; s\right\}=2 L\left\{f\left(2 \sqrt{x} J_{v}(2 s \sqrt{x}) ; p\right\}\right.$
Deduce that $H_{v}\left\{x^{v} e^{-p^{\frac{x^{2}}{4}}} ; s\right\}=\frac{2^{v+1} s^{v}}{p^{v+1}} e^{-\frac{s^{2}}{p}}$
and hence that:

$$
\begin{equation*}
H_{v}\left\{x^{v} e^{-\frac{x^{2}}{a^{2}}} ; s\right\}=\left(\frac{a^{2}}{2}\right)^{v+1} e^{-a^{2 \frac{s^{2}}{4}}} \tag{i}
\end{equation*}
$$

(ii)

$$
H_{v}\left\{x^{v} e^{-\frac{x^{2}}{2}} ; s\right\}=s^{v} e^{-\frac{s^{2}}{2}}
$$

33. Prove that:
$H_{v}\left\{x^{v}\left(a^{2}-x^{2}\right)^{\mu-v-1} \cup(a-x) ; p\right\}=2^{\mu-v-1}$
$\digamma(\mu-v) P^{v>\mu} a^{\mu} J_{\mu}(p a), a>0, \mu>v>0$
Hence deduce:
(i) $H_{v}\left\{x^{v} \cup(a-x) ; p\right\}=\frac{a^{v+1}}{P} J_{v+1}(p a), a>0$ and
(ii) $\quad H_{v}\left\{\frac{x^{v} \cup(a-x)}{\sqrt{a^{2}-x^{2}}} ; p\right\}=\sqrt{\frac{\pi}{2 p}} a^{a^{v+1}} J_{v+\frac{1}{2}}(p, a)$
34. Prove that :
$H_{v}\left\{x^{v-\mu} J_{\mu}(a, x) ; p\right\}=\frac{p^{v}\left(a^{2}-p^{2}\right)^{\mu-v-1}}{2^{\mu-v-1} \Gamma(\mu-v) a^{H}} \cup(a-p)(a>0, \mu>v \geq 0)$
Deduce that:

$$
\begin{equation*}
H_{v}\left\{x^{-1} J_{v+1}(a, x) ; p\right\}=\frac{p^{v}}{a^{v+1}} \cup(a-p) ; a>0 \tag{i}
\end{equation*}
$$

(ii) $H_{v}\left\{x^{-\frac{v}{2}} J_{v+\frac{1}{2}}(a x) ; p\right\}=\sqrt{\frac{2}{\pi}} \frac{p^{v} \cup(a-p)}{a^{v+\frac{1}{2}}\left(a^{2}-p^{2}\right)^{\frac{1}{2}}}, a>0, v \geq 0$ and hence that
(iii) $\quad H_{0}\left\{x^{-2}\left(1-J_{0}(a, x) ; P\right)\right\}=H(a-p) \log \left(\frac{a}{p}\right)$
35. If $f(x)=\frac{e^{-a x}}{x}$, then find (i) the Hankel transform of order zero of the function $\frac{d^{2} f}{d x^{2}}+\frac{1}{x} \frac{d f}{d x}$ and (ii) the Hankel transform of order one of $\frac{d f}{d x}$.
36. Find the Hankel transform of $x^{v} H(a-x)$ and $x^{v} H(b-x), v>-\frac{1}{2}$. Hence or otherwise establish that:
$H_{v}\left\{x^{-2} J_{v}(a, x) ; p\right\}=\left\{\begin{array}{c}\frac{1}{2 v}\left(\frac{p}{a}\right)^{v}, 0<p<a \\ \frac{1}{2 v}\left(\frac{a}{p}\right)^{v} ; p>a\end{array}\right.$
37. Solve the Laplace equation in the half plane :
$\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}=0,(-\infty<a<\infty, y \geq 0)$
With the boundary conditions:
$U(x, 0)=f(x),-\infty<x<\infty$
and $U(a, y) \rightarrow 0$ as $|x| \rightarrow \infty, y \rightarrow \infty$
38. Show that the solution of Laplace equation for U inside the semi-infinite strip $x>0, o<y<b$ such that:
$U=f(x)$, where $y=0,0<x<\infty$
$U=0$, where $y=b, 0<x<\infty$
$U=0$, where $x=0,0<y<b$
Is given by $U=\frac{2}{\pi} \int_{0}^{\infty} f(u) d u \int_{0}^{\infty} \frac{\sin h(b-y) p}{\sin h p b} \sin x p \sin u p d p$
39. Heat is supplied at a constant rate Q per in the plane $z=0$ to an infinite solid of conductivity K. Show that the steady temperature at a point distant r from the axis of the circular area and distance z from the late $r=0$ is given by:
$\frac{Q a}{2 k} \int_{0}^{\infty} e^{-p z} J_{0}(p r) J_{1}(p a) p^{-1} d p$
40. The free symmetric vibrations of a very large membrane are governed by the equation:
$\frac{\partial^{2} U}{\partial r^{2}}+\frac{1}{r} \frac{\partial U}{\partial r}=\frac{1}{c^{2}} \frac{\partial^{2} U}{\partial t^{2}}, \quad r>0, t>0$ with $U=f(t), \frac{\partial U}{\partial r}=g(r), t=0$
show that for $t>0$

$$
U(r, t)=\int_{0}^{\infty} P F(p) \cos (p c t) J_{0}(p r) d p+\frac{1}{c} \int_{0}^{\infty} G(p) \sin (p c t) J_{0}(p r) d p
$$

Where $f(p)$ and $G(p)$ are the zero order Hankel transforms of \mathfrak{f} and $g ®$ respectively.
41. Find the potential V9r, z) of a field due to a flat circular disc of unit radius with its centre at the origin and axis along the z-axis satisfying the differ initial equation:
$\frac{\partial^{2} V}{\partial r^{2}}+\frac{1}{r} \frac{\partial V}{\partial r}+\frac{\partial^{2} V}{\partial z^{2}}=0, \quad o \leq r \leq \infty, z \geq 0$
and satisfying the boundary conditions :
$V=V_{0}$ when $z=0,0 \leq r<1$ and $\frac{\partial v}{\partial z}=0$, when $z=0, e>1$
42. Solve the initial value problem for the wave equation $\frac{\partial^{2} U}{\partial t^{2}}=c^{2} \frac{\partial^{2} U}{\partial x^{2}}, \quad(-\infty<x<\infty, t>0)$ subject to condition
$U(x, o)=f(x)$
$U_{t}(x, 0)=g(x),(-\infty<x<\infty)$
43. Show that the function $g(x)=x e^{x}$ is a solution of the volterra integral equation:
$g(x)=\sin x+2 \int_{0}^{x} \cos (x-t) g(t) d t$
44. Show that the function $g(x)=\sin \left(\frac{\pi x}{2}\right)$ is a solution of the Fredholm integral equation.
$g(x)-\frac{\pi^{2}}{4} \int_{0}^{1} K(x, t) g(t) d t=\frac{x}{z}$
45. Form a integral equation corresponding to the differential equation :
$\frac{d^{3} y}{d x^{3}}+x \frac{d^{2} y}{d x^{2}}+\left(x^{2}-x\right) y=x e^{x}+1$
With conditions : $y(0)=1=y^{\prime}(0)$ and $y^{\prime \prime}(0)=0$
46. Reduce the differential equation $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=4 \sin x$ with the conditions $y(0)=1, y^{\prime}(0)=-2$ into a non homogeneous Volterra's integral equation of second kind. Conversely derive the original differential equation with the initial conditions from the integral equation obtained.
47. Convert the differential equation $\frac{d^{2} y}{d x^{2}}+\lambda y=0$ with the conditions $y(0)=0, y(l)=0$ into fredholm integral equation of second kind. Also recover the original differential equation from the integral equation you obtain.
48. Prove that the characteristic numbers of a symmetric kernel are real.
49. Find the eigen values and eigen function of the homogeneuous integral equation:
$g(x)=\lambda \int_{0}^{\pi}\left[\cos ^{2} x \cos 2 t+\cos 3 x \cos ^{3} t\right] g(t) d t$
50. Solve the $f(x)$ the integral equation:
$\int_{0}^{\infty} f\left(x 0 \cos p d d x=\left[\begin{array}{c}1-p, 0 \leq p \leq 1 \\ 0, p>1\end{array}\right.\right.$
Hence deduce that $\int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t=\frac{\pi}{2}$
51. Find the resolvent kernel of the volterra integral equation and hence its solution.
$g(x)=f(x)+\int_{0}^{x}(x-t) g(t) d t$
52. Solve the integral equation:
$g(x)=e^{-x}-2 \int_{0}^{x} \cos (x-t) g(t) d t$
53. Solve the Abel integral equation:
(i) $f(x)=\int_{0}^{x} \frac{g(t)}{(x-t)^{\alpha}} d t, 0<x<1$
(ii) $\int_{0}^{x} \frac{g(t)}{\sqrt{x-t}} d t=1+x+x^{2}$
54. Solve the integral equation and discuss all its possible cases by the method of degenerate kernels :
$g(x)=f(x)+\lambda \int_{0}^{1}(1-3 x t) g(t) d t$
55. Solve the integral equation:
$g(x)=x+\lambda \int_{-\pi}^{\pi}\left(x \cos t+t^{2} \sin x+\cos x \sin t\right) g(t) d t$
56. Solve the fredholm integral equation of second kind.
$g(x)=x+\lambda \int_{0}^{1}\left(x t^{2}+x^{2} t\right) g(t) d t$
57. Find the resolvent kernels of the following kernels:
(i) $k(x, t)=(1+x)(1-t), a=-1, b=0$
(ii) $\quad k(x, t)=e^{x+t}, \quad a=0, b=1$
58. Solve by the method of successive approximation:
$g(x)=\frac{3}{2} e^{x}-\frac{1}{2} x e^{x}-\frac{1}{2}+\frac{1}{2} \int_{0}^{1} t g(t) d t$
59. By iterative method solve:
$g(x)=1+\lambda \int_{0}^{\pi} \sin (x+t) g(t) d t$
60. Find the resolvent kernel of the following integral equation :
$g(x)=1+\lambda \int_{0}^{1}(1-3 x t) g(t) d t$
61. Find the resolvent kernel of the Volterra integral equation with the kernel.
$k(x, t)=\frac{(2+\cos x)}{(2+\cos t)}$
62. Solve $g(x)=\cos x-x-2+\int_{0}^{x}(t-x) g(t) d t$
63. If a kernel is symmetric then show tat all its iterated kernels are also symmetric.
64. Solve the symmetric integral equation.
$g(x)=(x+1)^{2}+\int_{-1}^{1}\left(x t+x^{2} t^{2}\right) g(t) d t$
65. Solve the following symmetric integral equation with the help of Hilbertschmidt theorem.
$g(x)=1+\lambda \int_{0}^{\pi} \cos (x+t) g(t) d t$
66. Using Hilbert-Schmidt method, solve integral equation
$g(x)=1+\lambda \int_{0}^{1} \mathrm{k}(\mathrm{x}, \mathrm{t}) g(t) d t$
Where $K(x, t)=\left[\begin{array}{c}x(t-1) ; 0 \leq x \leq t \\ t(x-1), t \leq x \leq 1\end{array}\right.$
67. State and prove Hilbert-Schmidt theorem.
68. Using Hilbert-Schmidt theorem, solve integral equation:
$g(x)=\cos \pi x+\lambda \int_{0}^{1} k(x, t) g(t) d t$ where
$K(x, t)=\left[\begin{array}{ll}(\lambda+1) t, & 0 \leq x \leq t \\ (t+1) x, & t \leq x \leq 1\end{array}\right.$
69. Using fredholm's determinants find the resolvent kernel of the following kernel.
$\sin x \cos t, \quad 0 \leq x \leq 2 \pi, \quad 0 \leq t \leq 2 \pi$
70. Solve the integral equations :
$g(x)=1+\lambda \int_{0}^{\pi} \sin (x+t) g(t) d t$
71. Find $D(\lambda)$ and $D(x, t ; \lambda)$ ans dolve the integral equation. $g(x)=x+\lambda \int_{0}^{1}[x t+\sqrt{x t}] g(t) d t$
72. Using fredholm determinants find the resolvent kernels, when $k(x, t)=$ $x e^{t}, a=0, b=1$.
73. Find the resolvent kernel and solution of
$g(x)=f(x)+\lambda \int_{0}^{1}(x+t) g(t) d t$
74. Using securrence relations find the resolvent kernels of the following kernels:
(i) $\quad k(x, t)=\sin x \cos t ; 0 \leq x \leq 2 \pi, 0 \leq t \leq 2 \pi$
(ii) $\quad k(x, t)=4 x t-x^{2} ; 0 \leq x \leq \leq 1,0 \leq t \leq 1$

