Roll No. Total No. of Questions : 09]

[Total No. of Pages : 04

B.Tech. (Sem. - 1st / 2nd) ENGINEERING MATHEMATICS - II <u>SUBJECT CODE</u> : AM - 102 (New) <u>Paper ID</u> : [A0119]

[Note : Please fill subject code and paper ID on OMR]

Time : 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- 1) Section A is Compulsory.
- 2) Attempt any Five questions from Section B & C.
- 3) Select atleast Two questions from Section B & C.

Section - A

Q1

(Marks: 2 each)

a) If
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix}$, then the determinant of AB is

(i) 4, (ii) 8, (iii) 16, (iv) 32

b) The rank of the matrix $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$ is ------.

c) Two balls of m_1 and m_2 gms are projected vertically upward such that the velocity of projection of m_1 is double that of m_2 . If the maximum height to which m_1 and m_2 rise, be h_1 and h_2 respectively, then

(i)
$$h_1 = 2h_2$$
, (ii) $2h_1 = h_2$ (iii) $h_1 = 4h_2$ (iv) $4h_1 = h_2$

d) The complementary part of the differential equation

 $x^2y'' - xy' + y = \log x$ is ----.

M-467 [1859]

P.T.O.

e) The particular integral of $(D^2 + a^2) y = \sin ax$ is

2

(i)
$$\frac{-x}{2a}\cos ax$$
 (ii) $\frac{x}{2a}\cos ax$
(iii) $\frac{-ax}{2a}\cos ax$ (iv) $\frac{ax}{2a}\cos ax$.

f) If
$$u = (x^2 + y^2)^{-\frac{1}{2}}$$
, then $\nabla \cdot (\nabla u)$ is
(i) 0 (ii) 1 (iii) -1 (iv) 2

g) Maximum value of the directional derivative of $f = x^2 - 2y^2 + 4z^2$ at point (1, 1, -1) is -----.

h) Average scores of three batsman A, B, C are respectively 40, 45, 55 and their standard deviations are respectively 9, 11, 16. Which batsman is more consistant?

2

i) If the correlation coefficient is zero, then regression lines are

(i) parallel
(ii) perpendicular
(iii) coincident
(iv) intersect at 45°.

j) The probability that a leap year should have 53 sundays is

(i)	$\frac{2}{7}$			-	(ii)	$\frac{1}{7}$	
(iii)	0.3				(iv)	0.5	

Section - B

(Marks: 8 each)

Q2) (a) Find the values of a, b, c if the matrix

 $\mathbf{A} = \begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & +c \end{bmatrix}$

is orthogonal.

M-467

2

(b) If A =
$$\begin{bmatrix} -1 & 2+i & 5-3i \\ 2-i & 7 & 5i \\ 5+3i & -5i & 2 \end{bmatrix}$$

Show that A is a Hermitian matrix and *i*A is a skew - Hermitian matrix.

Q3) Solve the following:

- (a) $xy(1 + xy^2) \frac{dy}{dx} = 1$ (b) $\frac{dy}{dx} = \frac{-(3x^2 + 6xy^2)}{6x^2y + 4y^3}$
- (c) (px y)(x + py) = 2p.

Q4) Solve the following:

- (a) $(D-2)^2 y = 8\{e^{2x} + \sin 2x + x^2\}.$
- (b) $x^{3}y''' + 2x^{2}y'' + 2y = 10\left(x + \frac{1}{x}\right).$

Q5) (a) Solve

 $(D^2 - 1) y = e^{3x} \cos 2x - e^{2x} \sin 3x$

using method of undetermined coefficients.

(b) Two particles each of mass m gms are suspended from two springs of same stiffness coefficient k. After the system comes to rest, the lower mass is pulled l cms downwards and released. Discuss their motion.

Section - C

(Marks: 8 each)

Q6) (a) What is conservative field? Show that

$$\overline{F} = (y^2 \cos x + z^3) \,\hat{i} + (2y \sin x - 4)\hat{j} + (3x z^2 + 2)\hat{k}$$

is conservative. Find its scalar potential.

M-467

(b) Use Divergence theorem to evaluate

 $\int_{S} \overline{F} \cdot d\overline{S} \text{ where }$

 $\overline{\mathbf{F}} = x^3\hat{i} + y^3\hat{j} + z^3\hat{k}$

and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$.

- **Q7)** (a) Show that the function $\phi = a \cos mx$ is not a valid velocity potential flow function of liquid.
 - (b) Test whether the motion specified by

$$\overline{q} = k^2 \left(x\hat{j} - y\hat{i} \right) / \left(x^2 + y^2 \right)$$
 (k is constant)

is a possible motion of a liquid.

- **Q8)** (a) Discuss Binomial frequency distribution. The probability that a bomb dropped from a plane hits the target is $\frac{1}{3}$. If 6 bombs are dropped, find the probability that atleast two will hit the target.
 - (b) The pressure and volume of a gas are related by the equation $pv^{\alpha} = k$, α and k being constants. Find the equation to the following set of values.

p (kg/cm²)0.51.01.52.02.53.0v (litres)1.621.000.750.620.520.46

Q9) (a) Discuss Chi-square test and its properties. Use this to test the hypothesis that data follows a binomial distribution for the problem in which a set of five similar coins is tossed 320 times and the result is

No. of heads :	0	1	2	3	4	5
Frequency :	6	27	72	112	71	32

(b) Two independent samples of size 7 and 6 have the following values:

Sample A :	28	30	32	33	33	29	34
Sample B :	29	30	30	24	27	29	

Examine whether the samples have been drawn from normal populations having the same variance. Given the values of F at 5% level for 16, 57 degrees of freedom is 4.95 and for 15, 67 degrees of freedom is 4.39.

000