BIOLOGY

101.	Unlinked genes show rec	combination frequency of	(2	2) Meiotic non-disjunct		
	(1) 100%	(2) 0%	(3	3) Repulsion	oce 1	
	(1) 100% (3) 50%	(2) 0% (4) 10-30%	(4	Heteropycnosis	entrance 4	
102.	Presence of heterochromatin the frequency of crossing over			-	What will be the number of Monosomic, haploid and	
,	(1) Increases	(2) Decreases		risomics?	wionosomic, napioid and	
	(3) does not effect	(4) Is directly related to) 41, 21 and 7	(2) 43, 21 and 7	
102		•	,	3) 15, 7 and 7	(4) 13, 7 and 15	
103.	First linkage maps were made for		`	, ·		
	(1) Drosphila and humans		112. If there is complete linkage in F ₂ generation (1) Parental types and recombinants appear in equal			
	(2) Drosophila and Pisum sativum			ratio	ceomoniants appear in equal	
1/0	(3) Drosophila and Maiz	ze & Entran	(2	2) Recombinants are le	ess than parental types	
	(4) Humans and maize	REIL	(3		nore than parental types	
104.	Sex pie balds are		,	There will be only p		
	(1) Haploids	(2) Gynanders		-rays cause mutation b	· -	
	(3) Free martins	(4) Nutritional mutants) Transition	(2) Transversion	
105.	_	g from different parents tend	`	b) Deletion	(4) Base substitution	
	it is	to remain apart in offspring,	`	rossing over results in	(1) Dusc substitution	
	(1) Non-disjunction (2) Criss cross inheritance		(1) Recombination between linked genes			
	(3) Repulsion	(4) Diagynic inheritance	- 1463	Linkages between g	000	
106.	Sex determination in moths and butterflies is			(3) Segregation of genes		
	(1) ZO–ZZ (2) XX–XY		,	Dominance of genes		
	(3) ZW–ZZ	(4) XX–XO	,	Melandrium, sex dete		
107.		g loops for rapid transcription) XX–XO	(2) ZZ–ZW	
	and informosomes production are		`	S) XX–XY	(4) XY–XO	
	(1) Lampbrush chromosomes		116. Mustard gas was used as a chemical mutagen for the first time by			
	(2) Polytene chromosomes					
	(3) SAT chromosomes		(1) Muller		
	(4) B chromosomes		(2	2) Alterberg	cell	
108.	Individuals showing presence of one barr body in		(3	(3) Auerbach and Robinson		
	nucleus of somatic cells		4 (4	Stadler		
	(1) Normal female	(2) Normal male	117. A	chromosome with sub	o-terminal centromere is	
	(3) Turner's syndrome	(4) Both (1) and (4)	(1) Acentric	(2) Acrocentric	
109.	Differential staining of c		(3	3) Metacentric	(4) Telocentric	
	(1) Constitutive banding		118. W	hich of the following i	s first Man Made Plant?	
	(2) Heteropycnosis		(1) Triticale	(2) Raphanobrassica	
	(3) Chromomeric stainin	g	(3	3) Upland cotton	(4) Brassica juncea	
	(4) Interkinesis		119. H	igest number of chrom	nosomes in plants have been	
110.	Non-separation of	synapsed homologous	101-5	ecorded in		
	chromosomes is		(1) Marsilia	(2) Aulosira	
	(1) Mitotic non-disjunction	on	(3	3) Ophioglossum	(4) Parthenium	

- 120. Which of the following histones is associated with linker DNA?
 - $(1) H_{1}$
- (2) H_{2A}
- $(3) H_{3}$

- (4) H_{4}
- 121. Which of the following increases the frequency of crossing over when increased?
 - (1) Temperature
- (2) X rays
- (3) Radium radiations
- (4) All of these
- 122. The number of linkage groups correspond to
 - (1) Number of pairs of chromosomes in a diploid
 - (2) Number of chromosomes in a diploid
 - (3) General structure of an organism
 - (4) Tetraploid number of chromosomes
- 123. Mendel observed that some characters did not assort independently. Later researches found it to be due to
 - (1) Crossing over
 - (2) Linkage
 - (3) Dominance of one trait over theother
 - (4) Amitosis
- 124. Individuals homozygous for cd genes were crossed with wild type (++). The F₁ dihybrid thus produced was test crossed. It produced progeny in the following ratio

++900

cd 880

+d115

+c 105

What is distance between c and d genes?

- (1) 5.75 units
- (2) 11 units
- (3) 47 units
- (4) 88 units
- 125. If two genes "a" and "b" are linked and show 20% recombination, the proportion of gametes produced in F₁ by a dihybrid ++/ab derived from a cross between ++/++ and ab/ab would be
 - (1) ++80: ab 20
 - (2) ++50: ab 50
 - (3) ++40 : ab 40 : +a 10 : +b10
 - (4) ++20 : ab 20 : +a 20 : +b 20

- 126. The condition required for Hardy- Weinberg equilibrium is
 - (1) No mutation and no gene flow between populations
 - (2) Very large population and random mating
 - (3) There must be no natural selection
 - (4) All of the above
- 127. Mutations
 - (1) Are the ultimate source of genetic variability
 - (2) Are goal directed
 - (3) Are commonly occurring phenomenon
 - (4) Arise as a result of, or in anticipation of environmental necessities
- 128. Which of the following statement is correct?
 - (1) When individuals move from one population to another and interbreed at the new location, alleles are transferred from one gene pool to another
 - (2) Gene flow spreads advantageous alleles throughout the species
 - (3) Gene flow helps to maintain all the organisms over a large area as one species
 - (4) All of the above
- 129. Genetic drift is a
 - (1) Random process
- (2) Directed process
- (3) Selection-driven process
- (4) Co-evolutionary process
- 130. Which of the following is not a characteristic of natural selection?
 - (1) Natural selection causes genetic changes in individuals
 - (2) Natural selection acts on individuals but evolution occurs in populations
 - (3) Fitness of an organism is measured by its reproductive success
 - (4) Natural selection is not the only evolutionary force
- 131. Disruptive selection
 (1) Adam (1) Adapts individuals within a population to different habitats
 - (2) Favours individuals who possess relatively extreme values for a trait at the expense of individuals with average values
 - (3) Favours organisms at both ends of the distribution of the trait
 - (4) All of the above

132. In Co-evolution

- (1) Two species interact extensively, and each exerts strong selection pressure on the other
- (2) When one species evolves a new feature or modifies an old feature, the other species typically evolves new adaptations in the response
- (3) Both species shows mutual feedback
- (4) All of the above
- 133. Speciation is the process by which new species form. The scientist who played a major role in describing the process of speciation was
 - (1) Charles Darwin
- (2) Ernst Mayr
- (3) G. J. Mendel
- (4) George Palade
- 134. Allopatric speciation can occur in populations that are
 - (1) Physically separated
 - (2) In the same area
 - (3) Physically non-separated
 - (4) In the same area and within the same ecological conditions
- 135. Darwinian fitness is a measure of
 - (1) Survival
- (2) Number of mating
- (3) Adaptation to the environment
- (4) Number of viable offspring
- 136. According to the Hardy- Weinberg theorem
 - (1) The genetic structure of a population should remain constant from one generation to next if, there is no selection, mutation, migration and random drift
 - (2) The genetic structure of a population should remain constant from one generation to next, if there is mutation, selection, migration and random drift
 - (3) Only natural selection, resulting in unequal reproductive success, will cause evolution
 - (4) Genetic drift, gene flow, mutations and nonrandom mating are non-adaptive causes of microevolution, natural selection being the only adaptive cause
- 137. Gene flow often results in
 - (1) Populations that are better adapted to the environment
 - (2) A reduction of the allele frequency differences between populations
 - (3) An increase in sampling error in the formation of the next generation
 - (4) adaptive micro-evolution

- 138. Two animals are considered different species if they
 - (1) Look different
 - (2) Cannot inter-breed
 - (3) Live in different habitats
 - (4) Are members of different populations
- 139. A new species can arise in a single generation
 - (1) Through geographical isolation
 - (2) In a very large population that is spread over a large area
 - (3) If a change in chromosome number creates a reproductive barrier
 - (4) If allopatric speciation occurs
- 140. The evolution of numerous species, such as Darwin's finches, from a single ancestor is called

 - (1) Adaptive radiation (2) Sympatric speciation
 - (3) Gradualism
- (4) Convergent evolution
- 141. Individuals of different species living in the same area may be prevented from inter-breeding by responding to different mating chances. This is called
 - (1) Ecological isolation (2) Hybrid break down
- - (3) Mechanical isolation (4) Behavioural isolation
- 142. Genetic basis of adaptation was demonstrated through experiments by
 - (1) Lederberg
- (2) Hugo de Vries
- (3) Charles Darwin
- (4) Lamarck
- 143. Population of dark *Biston betularia* increased greatly in England from 1848 to 1898. The selective agent causing the change was/were
 - (1) Tree bark
- (2) Birds
- (3) Human beings
- (4) Toxins from smoke
- 144. Many hybrids are sterile because their chromosomes don't pair up correctly during meiosis. Why aren't polyploid plants sterile?
 - (1) They backcross to the parental generation
 - (2) Most are triploid
 - (3) They cross-pollinate
 - (4) They self-fertilize, using their diploid gametes
- 145. and generate variation, while results in adaptation to the environment.
 - (1) Genetic drift natural selection mutation
 - (2) Mutation sexual recombination natural selection
 - (3) Overproduction of offspring mutation sexual recombination
 - (4) Natural selection mutation sexual recombination

- 146. The smallest unit that can evolve is a
 - (1) Species
- (2) Genotype
- (3) Gene
- (4) Population
- 147. In evolutionary terms, an organism's fitness is measured by its
 - (1) Health
 - (2) Contribution to the gene pool of the next generation
 - (3) Mutation rate
- (4) Genetic variability
- 148. Darwin
 - (1) Was the first person to realize that organisms can evolve
 - (2) Believed that organisms could pass on acquired changes to the offspring
 - (3) Was eager to publish his theory so that he could get all the credit
 - (4) Worked out the mechanism of evolution by natural selection
- 149. If a new allele suddenly becomes very abundant in, a population, most likely it is
 - (1) Mutating rapidly
 - (2) Flowing with emigrants
 - (3) Strongly selected for
 - (4) A product of assortative mating
- 150. People, who carry an allele for normal haemoglobin and an allele for sickle cell, are resistant to malaria. They are examples of
 - (1) Heterozygote advantage
 - (2) Extreme diploidy
 - (3) Out-breeding
- (4) Recessive superiority

