CHEMISTRY

- 51. The conjugate acid of NH_2^- is
 - (1) NH₃
- (3) NH₄ = 1
- $(4) N_2H_2$
- 52. Nucleophiles are:
 - (1) Lewis acids
- (2) Lewis bases
- (3) Bronsted acids
- (4) None of these
- 53. Mg^{2+} is than Al^{3+} .
 - (1) strong Lewis acid
- (2) strong Lewis base
- (3) weak Lewis acid
- (4) weak Lewis base
- 54. The following equilibrium exists in aqueous solution

 $CH_3COOH \square H^+ + CH_3COO^-$. If dilute HCl is added to this solution:

- (1) the equilibrium constant will increase
- (2) the equilibrium constant will decrease
- (3) acetate ion concentration will increase
- (4) acetate ion concentration will decrease
- 55. The osmotic pressure of a dilute solution is given by:
 - (1) $P = P_0 \times N_1$
- (2) $\pi V = nST$
- $(3) \quad \Delta P = P_0 N_2$
- (4) $\frac{\Delta P}{P_0} = \frac{P_0 P_S}{P_0}$
- boron is:
 - (1) $BF_3 < BCl_3 < BBr_3 < BI_3$
 - (2) $BI_3 < BBr_3 < BCl_3 < BF_3$
 - (3) $BBr_3 < BCl_3 < BF_3 < BI_3$
 - (4) $BCl_3 < BI_3 < BF_3 < BBr_3$
- 57. The pK_a for acid A is greater than pK_a for acid B. The strong acid is:
 - (1) acid A
- (2) acid B
- (3) are equally strong
- (4) none of these
- 58. Given, $HF + H_2O^{3/4}$ $M_3O^+ + F^-$

$$F^- + H_2O^{3/4} + H_2O^{-3/4} + OH^-$$

which relation is correct?

$$(1) K_b = K_w$$

(2)
$$K_b = \frac{1}{K_w}$$

(3)
$$K_a ' K_b = K_w$$
 (4) $\frac{K_a}{K_b} = K_w$

$$(4) \frac{K_a}{K_b} = K_w$$

59. pH of the solution of salt undergoing anionic hydrolysis (say CH₃COONa) is given by

(1)
$$pH = \frac{1}{2} [pK_w + pK_a + \log c]$$

(2)
$$pH = \frac{1}{2} [pK_w + pK_a - \log c]$$

(3)
$$pH = \frac{1}{2} [pK_w + pK_b - \log c]$$

- (4) none of these
- 60. Which statement / relationship is correct?
 - (1) Upon hydrolysis salt of a strong base and weak acid gives a solution with pH < 7

(2)
$$pH = -\log \frac{1}{\stackrel{e}{e}H^{+}\mathring{u}}$$

- (3) Only at 25°C the pH of water is 7
- (4) The value of pK_w at 25° C is 7
- 61. Which is an acid salt?

- (4) Na₂HPO₄
- (2) BiOCl 56. The decreasing trend of acidic nature of trihalides of 62. The correct relation for hydrolysis constant of NH₄CN

$$(1) \ \sqrt{\frac{K_{\rm w}}{K_{\rm a}}}$$

$$(2) \frac{K_{w}}{K_{a} \cdot K_{b}}$$

$$(3) \ \frac{\sqrt{K_H}}{c}$$

$$(4) \frac{K_a}{K_b}$$

- 63. Phenolphthalein shows in acid medium
 - (1) red colour
- (2) yellow colour
- (3) pink colour
- (4) no colour
- 64. Which can act as buffer?
 - (1) NH₄Cl+ NH₄OH
 - (2) CH₃COOH+CH₃COONa
 - (3) 40 mL of 0.1 M NaCN + 20 mL of 0.1 M HCl
 - (4) All of the above
- 65. A salt of strong acid and a weak base is dissolved in water. Its hydrolysis in solution is:
 - (1) no affected by heating
 - (2) increased by adding the strong acid

- (3) suppressed by adding strong acid
- (4) suppressed by dilution
- 66. Which metal sulphide has maximum solubility in water?
 - (1) $CdS(K_{sp} = 36 \times 10^{-30})$
 - (2) $FeS(K_{sp} = 11 \times 10^{-20})$
 - (3) $HgS(K_{sp} = 32 \times 10^{-54})$
 - (4) $CdS(S_{sp} = 36 \times 10^{-22})$
- 67. When 0.1 mL of dil. HCl acid is added to 100 mL of a buffer solution of pH 4.0, the pH of the solution:
 - (1) becomes 7
- (2) does not change
- (3) becomes 2
- (4) becomes 10
- 68. The pH of a saturated solution of $Mg(OH)_2$ [K_{sn} of $Mg(OH)_2 = 8.9 \times 10^{-12}$] is:
 - (1) 10.4168
- (2) 9.4168
- (3) 11.4168
- (4) 7.0
- 69. 0.1 millimole of CdSO₄ are present in 10mL acid solution of 0.08 N HCl. Now H₂S is passed to percipitat all the Cd²⁺ ions. The pH of the solution after filtering off precipitate, boiling of H₂S and making the solution 100 mL by adding H₂O is:
 - (1) 2

(3) 6

- (4) 8
- 70. Hydroxyl ion concentration of N/1000 HCl is
 - (1) $1 \times 10^{-3} \text{ N}$
- (2) $1 \times 10^{-7} \text{ N}$
- (3) $1 \times 10^{-11} \text{ N}$
- (4) Zero
- 71. The unit of electrochemical equivalent is:
 - (1) gram _____
- (2) gram/ ampere
- (3) gram/coulomb
- (4) coulomb/ gram
- 72. Molten NaCl conduct electricity due to the presence of
 - (1) free electrons
- (2) free molecules
- (3) free ions
- (4) atoms of Na and Cl
- 73. On electrolysing a solution of dilute H_2SO_4 between platinum electrode, the gas evolved at the anode and cathode are respectively is:
 - (1) SO_2 and O_2 (1) SO_2 and O_2 (2) SO_3 and O_2 (3) O_2 and O_2 (4) O_2 (4) O_2
 - (2) SO_3 and H_2
- 74. If 1 faraday of charge is passed through a solution CuSO₄, the amount of copper depoisted with be equal to its:
 - (1) gram equivalent weight
 - (2) gram molecular weight

- (3) atomic weight
- (4) electrochemical equivalent
- 75. $Cu^{2+} + 2e \otimes Cu \log [Cu^{2+}] \text{ vs. } E_{red} \text{ graph is of the}$ type is shown in figure where OA=0.34 V then

electrode potential of the half cell of Cu | Cu²⁺ (0.1M) will be

(1)
$$-0.34 + \frac{0.0591}{2}$$
V (2) $0.34 + 0.0591$ V

(4) none of these

- 76. At a given temperature if P is the vapour pressure of a solution and P₀ that of its pure solvent, the relative lowering of vapour pressure of the solution is given cby:

 - (1) $(P_0 P)/P_0$ (2) $(P P_0)/P_0$ (3) P_0/P (4) P/P_0
 - (3) P_0/P
- 77. E° for the half cell reactions are as,

$$Zn = Zn^{2+} + 2e$$
; $E^{\circ}=0.76$

$$Fe = Fe^{2+} + 2e$$
; $E^{\circ} = +0.41$

The E° for the cell reaction,

$$Fe^{2+} + Zn \otimes Zn^{2+} + Fe^{is}$$

- (1) -0.35V
- (2) +0.35V
- (3) +1.17V
- (4) -0.17V
- 78. The amount of sodium deposited by 5 ampere current for 10 minute from fused NaCl is
 - (1) 0.715 g
- (2) 71.5 g
- (3) 5.17 g
- (4) 0.517 g
- 79. How many coulomb of electricity are consumed when 100mA current is passed through a solution of AgNO₃ for 30 minute during an electrolysis experiment?
 - (1) 108
- (2) 18000
- (3) 180
- (4) 3000
- 80. The formula $a = \frac{L_v}{L_v}$ is valid for
 - (1) weak electrolytes
- (2) strong electrolytes
- (3) salts
- (4) none of these

- 81. Which relation is not correct?
 - (1) $k = C' \frac{l}{r}$
- $(2) L = k' V_{in mL}$
- (3) $L = \frac{k'1000}{N}$ (4) $L = k' V_{in L}$
- 82. The resistance of 0.01 N solution of an electrolyte was found to be 210 ohm at 298K, using a conductivity cell of cell constant 0.66 cm⁻¹. The equivalent conductivity of solution is:
 - (1) $314.28 \text{ mho cm}^2 \text{ eq}^{-1}$
 - (2) $3.14 \text{ mho cm}^2 \text{ eq}^{-1}$
 - (3) $314.28 \text{ mho}^{-1} \text{ cm}^2 \text{ eq}^{-1}$
 - (4) $3.14 \text{ mho}^{-1} \text{ cm}^{-1}$
- 83. 8:8 co-ordination of CsCl is found to change into 6: 6 co-ordination on:
 - (1) applying pressure
- (2) increasing temperature
- (3) both (1) and (2)
- (4) none of these
- 84. In a body centred cubic cell, an atom at the body of centre is shared by:
 - (1) 1 unit cell
- (2) 4 unit cells
- (3) 3 unit cells
- (4) 2 unit cells
- 85. The number of Na⁺ ions which surrounds each Cl⁻ ion in the NaCl crystal lattice is:
 - (1) 4

- (2) 6
- (3) 12

- (4) 8
- 86. A solid A⁺B⁻ has the B⁻ ions arranged as below. If the A⁺ ions occupy half of the tetrahedral sites in the structure. The formula of solid is:
 - (1) AB
 - (2) AB₂
 - (3) A_2B
 - $(4) A_2B_4$

- 87. A fcc element (atomic mass =60) has a cell edge of 400 pm. Its density is:
 - (1) 6.23 g cm^{-3}
- (2) 7.43 g cm⁻³
- (3) 8.53 g cm^{-3}
- (4) 9.63 g cm^{-3}
- 88. A solid XY has NaCl structure. If radius of X⁺ is 100 pm. What is the radius of Y ion?
 - (1) 120 pm
- (2) 136.6 to 241.6 pm
- (3) 136.6 pm
- (4) 241.6 pm
- 89. A catlyst in the finely divided form is most effective because:
 - (1) less surface area is available

- (2) more active centres are formed
- (3) more energy gets stored in the catalyst
- (4) none of above
- 90. Protons accelerate the hydrolysis of esters. This is an example of:
 - (1) a heterogeneous catalysis
 - (2) an acid base catalysis
 - (3) a promoter
 - (4) a negative catalyst
- 91. Which equation represents Freundlich adsorption isotherm (physical adsoprtion is basis of this theory)?
 - (1) $\frac{x}{m} = K(P)^{1/n}$; where x is amount of gas adsorbed on mass 'm' at pressure P
 - $(2) \log \frac{x}{m} = \log K + \frac{1}{n} \log P$
- of $\frac{x}{m} = KP$ at low pressure and $\frac{x}{m} = K$ at high pressure
 - (4) All of the above
 - 92. Overlapping of 2 hybrid orbitals at inter nuclear axis can lead to the formation of:
 - (1) Ionic bond
- (2) p bond
- (3) s bond
- (4) none of these
- 93. The total number of electrons that take part in forming bonds in N₂ molecule is:
 - (1) 2

(2) 6

(3) 4

- (4) 8
- 94. Which one is not tetrahedral?
 - (1) BF_4
- (2) NH_4^+
- (3) CO_3^{2-}
- (4) SO_4^{2-}
- 95. The bond order is maximum in:
 - $(1) H_{2}$
- (2) H_2^+
- (3) He₂
- (4) He_{2}^{+}
- 96. A number of ionic compounds, e.g., AgCl, CaF₂, BaSO₄ are insoluble in water. This is because:
 - (1) ionic compound do not dissolve in water
 - (2) water has a high dielectric constant
 - (3) water is not a good ionizing solvent

- (4) these molecules have exceptionally high attractive forces in their lattice
- 97. Which of the following acts sometimes as a metal and sometimes as a non metal?
 - (1) Hg
- (2) Cl

(3) K

- (4) At
- 98. Which has the largest first ionisation energy?
 - (1) Li

(2) Na

(3) K

- (4) Rb
- 99. The orientation of an atomic orbital is governed by: Entrance
 - (1) magnetic quantum number
 - (2) principal quantum number
 - (3) azimuthal quantum number
 - (4) spin quantum number
- 100. The energy of an electron in the first Bohr's orbit of H atom is -13.6 eV. The possible energy value (s) of the excited state (s) for electrons in Bohr's orbits of Entrance hydrogen is (are):
 - (1) -3.4 eV
- (2) -4.2 eV
- (3) -6.8 eV
- (4) +6.8 eV

